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Topologically non-trivial configurations of stratified fluid domains are shown to
generate selection mechanisms for conserved quantities. This is illustrated within
the special case of a two-fluid system when the density of one of the fluids limits
to zero, such as in the case of air and water. An explicit example is provided,
demonstrating how the connection properties of the air domain affect total horizontal
momentum conservation, despite the apparent translational invariance of the system.
The correspondence between this symmetry and the selection process is also studied
within the framework of variational principles for stratified ideal fluids.
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1. Introduction

The determination of conservation laws is an important element of any fundamental
understanding of the dynamics of fluids, as well as of any other physical system. The
case of the two-dimensional motion of an inviscid, incompressible and heterogeneous
fluid is particularly interesting, as it admits an elegant mathematical formulation
(Benjamin 1986) and provides a foundation for more complex theories of stratified
fluids. Benjamin (1986) introduced a Hamiltonian structure and used it to classify
system symmetries and their related conserved quantities. As a side-remark, he
pointed out a ‘curious’ fact: for fluids rigidly confined in (two-dimensional) infinite
horizontal-slab domains, horizontal momentum may fail to be conserved, even though
it remains a well-defined quantity free of divergences for any localized and bounded
initial data.

In Camassa et al. (2012, 2013) we isolated and studied this phenomenon,
substantiating Benjamin’s observation with analytical and numerical results both
for one-dimensional long-wave models and for the full two-dimensional Euler
equations. In the horizontal slab set-up, with hydrostatic equilibrium conditions
at infinity, the violation of momentum conservation is proportional to the difference
of the layer-mean pressure at the far ends of the channel. In particular, for the
case of two-layer stratification with equal hydrostatic equilibrium at both left and
right infinities, this is proportional to the asymptotic interfacial pressure difference
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Topology and conservation laws in air–water systems 535

P∆ = P(+∞) − P(−∞). Explicitly, the time derivative of the total horizontal
momentum is

Π̇ =−hP∆, (1.1)

h being the height of the slab.
As can be easily shown, P∆ vanishes in the limit of homogeneous stratification, and,

perhaps more remarkably, in the so-called Boussinesq approximation of disregarding
density differences in the inertial terms. In Camassa et al. (2013), we specifically
studied the asymptotic expansion

P∆ = P(1)∆ ρ∆ + P(2)∆ ρ
2
∆ + · · · ,

for the small normalized density difference ρ∆= (ρ2−ρ1)/ρ2. In particular, we showed
that for vanishing initial velocity the initial pressure difference at t = 0 is quadratic
in ρ∆, i.e. P(1)∆ = 0 and P(2)∆ is the first term in the expansion. Explicit formulae were
established at t = 0 for this first contribution to the horizontal momentum evolution,
particularly for piecewise-constant initial profiles, a set-up that can be – at least in
principle – implemented experimentally by use of removable gates.

The focus of the present paper is on a different aspect of the failure of conservation
laws in stratified fluids under gravity, one that affects the whole Hamiltonian symmetry
structure on which they may be based. When isopycnals intersect boundaries, such as
the horizontal plates confining the fluid in a slab domain, these laws may have to be
amended or fail altogether, even though configurational symmetries such as invariance
under translation may still be present. One of simplest set-ups where this can be seen
is that of an air–water system, with water partially filling an infinite horizontal slab
between rigid plates, with all fluids in hydrostatic equilibrium at infinity.

We recall that, for air motion with small Mach numbers, air can be considered
as incompressible (see e.g. Benjamin 1968; Landau & Lifshitz 1987). This situation
can be viewed as the opposite limit of that treated in Camassa et al. (2013), since
now ρ∆→ 1, instead of being small. In what follows, we shall also neglect viscosity
and surface tension for both fluids. This assumption can be justified when focusing
on configurations and on space–time scales that confine these effects to secondary
roles. For instance, viscous effects for a broad class of phenomena enter as boundary
layer corrections, leaving the bulk of the fluid free to behave essentially as inviscid.
Similarly, surface tension effects can be confined to regions of near-zero spatial
measure where typical curvatures are large. In terms of non-dimensional quantities,
these assumptions can be expressed concisely by the requirement that the flows
we consider have large Reynolds and Bond numbers. (Interestingly, a discussion of
the various contributions of surface forces in the context of air–water systems, and
within a set-up not unlike the one exemplified here, can be found as early as in the
investigations of Bidone (1820). The subdominant role played by surface tension in
similar contexts is discussed e.g. in Vanden-Broeck & Keller (1989).)

For simplicity, we assume that our class of motions be invariant along one
horizontal direction, y say, thus reducing the slab geometry to one horizontal
dimension (a channel) denoted by the x-coordinate. Euler equations for such systems
read

ρj(ujt + uj · ∇uj)=−∇pj − ρjg k, ∇ · uj = 0. (1.2)

Hereafter the subscripts j = a and j = w will refer to air and water, respectively,
uj = (uj, vj) and ρj are the velocities and densities of the two fluids, and k denotes
the vertical unit vector for the z-coordinate. Boundary conditions for this system are
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xl xr

Pl Pr

FIGURE 1. Air–water interfaces in an infinite channel, with uniform hydrostatic
equilibrium at infinity. The solid line represents a disconnected air domain for which, in
general, Pl 6=Pr. For the connected case (indicated by the dashed line), in the limit ρa→ 0
one has Pl=Pr irrespectively of the thickness of the sliver between water and upper plate.

assigned by requiring zero vertical velocities at the rigid plates, while continuity of
normal velocity uan= uwn and pressure pa= pw≡P is imposed at the interface between
the two fluids (consistently with our assumption of negligible surface tension). We
also assume localized initial data, so that uj→ 0 and the water surface approaches a
constant asymptotic level as |x|→∞ sufficiently fast.

By further ignoring the air mass, the governing equations simplify to

∇pa = 0, ρw(uwt + uw · ∇uw)=−∇pw − ρwg k, ∇ · uw = 0. (1.3)

Such a system is familiar from classical water-wave theory: the first equation implies
pa = const., and when the air domain is connected, with an interface described as a
graph z = η(x, t) over all the x values, this is the well-known free-surface dynamic
boundary condition of constant pressure pw = pa. Augmented by the kinematic
boundary condition for this surface, system (1.3) is well defined and a solution can
in principle be computed once appropriate initial conditions are assigned. However,
suppose now that the water is in contact with the upper plate, so that the air domain
becomes disconnected (see figure 1). In this case, while air pressure will still be
constant in each component of the domain, as required by the equation ∇pa = 0,
the values of these constants need not be the same for each air-domain component,
in general. This would have an effect on the conservation of the total horizontal
momentum of the water

Πw = ρw

∫ +∞
−∞

∫ η

0
uw dz dx, (1.4)

since for ρa = 0 (1.1) now reads (recall that air momentum is zero due to ρa = 0)

Π̇w =−hP∆. (1.5)

Thus, if the air domain is connected, P∆= 0 and the total horizontal water momentum
is conserved. Note that connectedness typically happens in genuine three-dimensional
settings for localized initial data, which implies that pressure is uniform at infinity.
On the other hand, when disconnectedness occurs (which in three dimensions can
be obtained by non-localized data such as an infinite water ‘ridge’ in contact with
the upper plate, or simply by suitably localized data in rectangular pipes), by (1.5)
the water momentum may not be conserved as a pressure imbalance P∆ 6= 0 between
different air domains can exist.
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Topology and conservation laws in air–water systems 537

In the air–water case, this phenomenon is a sort of ‘topological transition’, as it
only depends on the topology of the air free surface with respect to the boundaries:
air pressure maintains the same constant value throughout the channel for as long as
the air domain is connected; however, passing to the limit of an initial condition that
disconnects the air domain (see figure 1), air pressure may evolve in a non-trivial
way. Because of air occupying disconnected domains, it may seem at first sight
that different constant pressures for each air domain could be freely imposed. In its
simplest setting with zero-velocity initial data (the case discussed in detail in § 2)
the water pressure satisfies the Laplace equation, which admits a solution for any
values of the air pressure at the left- and right-hand wings of the channel. However,
this arbitrariness does not exist for any fixed ρa 6= 0, when hydrostatic equilibrium
at infinity is imposed. Passing to the limit ρa→ 0 while maintaining this constraint
provides an extra boundary condition, as we shall show in § 2 in the context of
specific examples. This leads to a well-defined, non-vanishing Π̇w corresponding to
initial configurations of channel-confined air–water systems where a finite amount
of water located in a portion of the channel disconnects an infinite exterior domain
occupied by air.

In § 3 we broaden our perspective, from a more theoretical point of view, in two
directions. First we consider momentum evolution under general initial conditions
(i.e. with generic initial velocities). We show that, for initial conditions in which
the air–water interface is not in contact with the plates, a family of constants of
motion related to horizontal momentum is associated with the system. On the other
hand, water initial data disconnecting the air domain may either select a specific
member within this family, or even prevent the whole family from being conserved
if portions of the floor are also dry. Next, these results are framed in a Hamiltonian
context. Specifically, we consider the Hamiltonian theory of two-dimensional stratified
Euler fluids described in Benjamin (1986). We work with continuous stratifications,
and show that the Hamiltonian operator described in Benjamin’s paper fails to be
antisymmetric when the density is not constant on the bounding plates. This is
the continuous counterpart of the disconnection phenomenon for general two-layer
systems, and in particular for the air–water case of § 2. The lack of antisymmetry
offers a theoretical standpoint for a topological selection of conservation laws.

Given the translational invariance of the set-up, even under variable-density
boundary values, it is natural to ask whether an alternative variational structure exists,
which could reveal conservation laws associated with the translational symmetry.
We briefly sketch how such a structure could be implemented, though not in full
generality but only for the class of motion identified by means of Clebsch variables,
using the variational formalism of Zakharov, Musher & Rubenchik (1985).

In closing this introduction, a few remarks are in order: we will not be concerned
in this paper with the issue of how connection and disconnection phenomena can
be dynamically achieved in the course of the fluid flow evolution. Our focus is
on a neighbourhood of the initial time t = 0 for special initial conditions, and on
the conclusions that can be drawn from these for the general issue of determining
conservation laws. Time evolution of general initial data may ultimately be accessible
only by numerical simulations. While these necessarily require non-zero air densities,
for general two-layer systems our results may still be used to validate numerical
approaches in the limit of high density contrast. In turn, the simulations can be used
to confirm the relevancy of this limit for interpreting realistic physical set-ups.
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0 L

h

z

x

FIGURE 2. The ‘boot configuration’ for different choices of the right-hand boundary. Solid
curves: conformal boundaries xR

c for exact theory in § 2.1. Dotted line: sinusoidal boundary
xR(z) ≡ L(1 + ε cos(πz/h)) for asymptotics in § 2.2. The figure is produced with actual
plots corresponding to the values h=1, L=3/2. Dotted and solid curves: ε= εs/π'0.068.
Grey curve: limiting boundary xR

c for ε= εs. For small ε, (xR
c , zR

c )∼ (xR(z), z), as evidenced
by closeness of dotted and solid curves for ε= 0.068.

2. An explicit computation: the ‘boot’ initial condition
An analytic computation of the initial time evolution of Πw for a non-connected air

domain of generic shape does not seem to be available, in general, even for vanishing
initial velocities. To make progress, we study a particular configuration of an air–water
system initially at rest at t = 0, for which the water domain is sandwiched between
non-connected ‘dry’ infinite channel regions, as sketched in figure 2. We will compute
Π̇w =−hP∆ for t = 0. Since we have assumed zero fluid velocity everywhere at the
initial time t= 0, taking the divergence of the second (momentum) equation in (1.3)
yields, due to the third (incompressibility) equation in (1.3), Laplace’s equation for
the initial water pressure

∇2pw = 0. (2.1)

As we have seen, the equation for the air pressure ∇pa= 0 shows that pa is constant
in both domains to the left and the right of the water section, though with possibly
different values. Continuity of pressure pa = pw at the left- and right-hand interfaces
then shows that, on these portions of the water domain, constant Dirichlet boundary
conditions are to be enforced. Conversely, the vertical momentum component of the
Euler system shows that at the top and bottom plates Neumann boundary conditions
for the water pressure are physically required. Thus, we have a well-formulated mixed
Dirichlet–Neumann boundary value problem for (2.1) in the water domain Ωw,

pw(0, z)=K, pw(xR(z), z)= 0,
∂pw

∂z

∣∣∣∣
z=0,h

=−ρwg, (2.2)

where we have taken, with no loss of generality, the reference pressure to be zero on
the right-hand boundary x= xR(z), and denoted by K the constant pressure value on
the left-hand boundary. A solution pw of (2.1) with these mixed boundary conditions
can always be found for any value of K, leading to an unphysical indeterminacy for
this problem (without a mechanism to establish such left-pressure forcing for any finite
value of the air density). In particular, Π̇w =−hP∆ ≡ hK for any constant K. Thus, a
selection mechanism for K is needed to resolve the indeterminacy. This can be found
by studying the limit ρa → 0 more closely. For a two-fluid system initially at rest,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

64
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.644


Topology and conservation laws in air–water systems 539

with ρa 6= 0, continuity of the pressure and jump conditions of its normal derivative
have to be assigned at the interface ∂Ωw,

0= (pa − pw)|∂Ωw, 0=
(

1
ρa

∂pa

∂n
− 1
ρw

∂pw

∂n

)∣∣∣∣
∂Ωw

. (2.3)

The second relation follows from the continuity of normal accelerations. When ρa
vanishes, the jump condition is ill defined and needs to be properly interpreted. This
can be done as follows. For non-zero ρa and vanishing initial velocities, pa satisfies the
Laplace equation ∇2pa = 0 in each component of the air domain. Thus, the gradient
of air pressure ∇pa is a solenoidal field and its flux across the boundaries is zero:∫ h

0
dz
∂pa

∂x

∣∣∣∣
x=0

+
∫ 0

−∞
dx
∂pa

∂z

∣∣∣∣
z=h

−
∫ 0

−∞
dx
∂pa

∂z

∣∣∣∣
z=0

−
∫ h

0
dz
∂pa

∂x

∣∣∣∣
x=−∞

= 0. (2.4)

The top and bottom boundary and asymptotic conditions (∂xpa→ 0 as x→−∞) imply∫ h

0
dz

∂pa

∂x

∣∣∣∣
x=0

= 0. (2.5)

From the second condition in (2.3) we find that the same holds for the water pressure.
This holds for any value of ρa, however small, and hence it is natural to maintain this
constraint in the limit ρa→ 0. Thus, the Laplace equation for the water section must
be supplemented, along with (2.2), with the integral consistency condition∫ h

0
dz
∂pw

∂x

∣∣∣∣
x=0

= 0. (2.6)

The constant K will then be selected by enforcing (2.6), thereby determining the value
of the pressure in the left-hand air domain solely in terms of the solution to the water
problem.

We shall compute this constant value in two cases. The first will be an exact result
for a special one-parameter family of conformal maps of rectangles into the domain
shapes sketched in figure 2. The second case will be an asymptotic result for general
small deviations from a rectangular configuration.

2.1. An exact solution via conformal mapping
Consider the conformal mapping (see e.g. Howard & Yu 2007)

x= h
π
ξ + εL

sinh(πL/h)
sinh ξ cos η, z= h

π
η+ εL

sinh(πL/h)
cosh ξ sin η. (2.7)

The rectangular domain 0 < ξ < πL/h, 0 < η < π is mapped into a version of the
‘boot’ of figure 2, with the curved right-hand boundary defined parametrically by

xR
c (η)= L+ εL cos η, zR

c (η)=
h
π
η+ εL sin η coth(πL/h). (2.8)

The value of the parameter ε is arbitrary in the range 0 6 ε 6 εs = h tanh(Lπ/h)/Lπ.
The function p̃w(ξ , η)≡pw(x(ξ , η), z(ξ , η)), with the conformal map x(ξ , η) and z(ξ , η)
defined by (2.7), satisfies the Laplace equation in the (ξ , η)-domain. The boundary
conditions are

p̃w(0, η)=K, p̃w(πL/h, η)= 0, 0<η <π, (2.9)
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and
∂ p̃w

∂η
(ξ, 0)=−gρw

∂z
∂η
(ξ, 0)=−gρw

(
h
π
+ εL cosh ξ

sinh(πL/h)

)
, (2.10a)

∂ p̃w

∂η
(ξ,π)=−gρw

∂z
∂η
(ξ,π)=−gρw

(
h
π
− εL cosh ξ

sinh(πL/h)

)
, 0< ξ <πL/h. (2.10b)

The corresponding solution is given by

p̃w(ξ , η)=K
(

1− h
πL
ξ

)
+
∞∑

n=1

cn(η) sin(κnξ), κn ≡ nh/L, (2.11)

provided the cn(η) satisfy the boundary value problem

c
′′
n − κ2

n cn = 0, c′n(0)= ε+n , c′n(π)= ε−n , (2.12)

where the ε±n are the Fourier coefficients in the series expression

− gρw

(
h
π
± εL cosh ξ

sinh(πL/h)

)
=
∞∑

n=1

ε±n sin(κnξ). (2.13)

Hence, these coefficients are given by

ε±n =
2
π

gρwh
(
(−1)n − 1

nπ
∓ εLhn

L2 + h2n2
((−1)n coth(πL/h)+ cosech(πL/h))

)
,

(2.14)
and the solution of the boundary value problem (2.12) turns out to be

cn(η)= 1
κn sinh(κnπ)

(
ε−n cosh(κnη)− ε+n cosh(κn(π− η))

)
. (2.15)

In order to find K, we have to impose the constraint (2.6), which takes the form∫ π

0
zηdη

1
xξ

∂ p̃w

∂ξ

∣∣∣∣
ξ=0

= 0. (2.16)

Since zη = xξ , this yields

h
L

K =
∞∑

n=1

κn

∫ π

0
dη cn(η)=

∞∑
n=1

1
κn
(ε−n − ε+n ), (2.17)

where we have used (2.12). The sum can be computed explicitly, giving the pressure
along the left-hand boundary in closed form,

K = 2
π

gρw L ε tanh
(

πL
2h

)
. (2.18)

The maximal parameter value ε= εs corresponds to

K = 2
π2

gρwh tanh
(

Lπ

h

)
tanh

(
Lπ

2h

)
, (2.19)

with non-zero limiting value
K∞ = 2

π2
gρwh (2.20)
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Topology and conservation laws in air–water systems 541

as L→∞ (with h fixed). This happens despite the fact that in this limit water fills
the entire right-hand wing of the channel, which at first sight could be viewed as
a dam-breaking configuration. However, for a genuine dam-breaking set-up the initial
layer-mean pressure difference is zero (Camassa et al. 2013); this provides an example
where a naive interpretation of a geometrical limit can lead to incorrect conclusions,
and further shows how such limits must be carefully treated.

2.2. Generic small perturbations of rectangular domains
The preceding calculation is exact within the special class of domains from the
conformal map (2.7). Next, we outline the computation of the pressure differential K
for generic small deviations from the rectangular configuration (x, z) ∈ [0, L] × [0, h]
of the water domain. We let the right-hand boundary of the water domain be
xR(z) = L + Lεβ(z), with the parameter ε now chosen to be small, 0 < ε � 1,
and β(z) a smooth function in [0, h]. We define x+= xR(0), x−= xR(h), and we study
the asymptotics for ε→ 0. A general approach to handle such problems goes back
to the variational formulation of Hadamard (see e.g. Craig & Sulem 1993); however
a direct approach is self-contained and avoids adapting the general framework to our
particular set of boundary conditions.

Let us consider the Green function G for the water domain, which satisfies

∇2
(x,z)G(x, z; ξ, ζ )= δ(x− ξ)δ(z− ζ ), (2.21)

with boundary conditions
∂G
∂z
(x, 0; ξ, ζ )= ∂G

∂z
(x, h; ξ, ζ )= 0, G(0, z; ξ, ζ )=G(xR(z), z; ξ, ζ )= 0. (2.22)

The corresponding third Green identity for this case reads

pw(ξ , ζ ) = ρwg

(∫ x−

0
dx G(x, h; ξ, ζ )−

∫ x+

0
dx G(x, 0; ξ, ζ )

)

−K
∫ h

0
dz

∂G
∂x
(0, z; ξ, ζ ). (2.23)

The consistency condition (2.6) then leads to

0 = −K
∫ h

0
dζ
∫ h

0
dz
∂2G
∂ξ∂x

(0, z; 0, ζ )

+ ρwg
∫ h

0
dζ

(∫ x−

0
dx
∂G
∂ξ
(x, h; 0, ζ )−

∫ x+

0
dx
∂G
∂ξ
(x, 0; 0, ζ )

)
. (2.24)

This formula gives the value K of the pressure in the left-hand air domain in terms
of G. Expanding the Green function as G=G0 + εG1 + o(ε) yields

∇2
(x,z)G0(x, z; ξ, ζ )= δ(x− ξ)δ(z− ζ ), ∇2

(x,z)G1(x, z; ξ, ζ )= 0. (2.25)

Boundary conditions for G0 and G1 follow from (2.22) and

G(xR(z), z; ξ, ζ )=G0(L, z; ξ, ζ )+ ε
[

G1(L, z; ξ, ζ )+ Lβ(z)
∂G0

∂x
(L, z; ξ, ζ )

]
+ o(ε),

(2.26)
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establishing a recursion between solutions at each order in powers of ε. In particular,

G0(L, z; ξ, ζ )= 0, G1(L, z; ξ, ζ )=−Lβ(z)
∂G0

∂x
(L, z; ξ, ζ ). (2.27)

Hence G0 is the Green function in the rectangle [0, L] × [0, h] with boundary
conditions

∂G0

∂z
(x, 0; ξ, ζ )= ∂G0

∂z
(x, h; ξ, ζ )= 0, G0(0, z; ξ, ζ )=G0(L, z; ξ, ζ )= 0, (2.28)

which can be expressed as G0(x, y; ξ, ζ )=∑∞n=0 g(0)n (x; ξ) cos(knz) cos(knζ ), where

g(0)0 (x; ξ)= 1
2h

(|x− ξ | + 2
L xξ − (x+ ξ)) (2.29a)

and for n > 1, kn ≡ nπ/h,

g(0)n (x; ξ)=−
e−kn|x−ξ |

nπ
+ cosh(kn(x+ ξ − L))− e−knL cosh(kn(x− ξ))

nπ sinh(knL)
. (2.29b)

From (2.25) and (2.27), the first-order correction term G1 to the Green function must
be a harmonic function satisfying the mixed boundary conditions

∂G1

∂z
(x, 0; ξ, ζ )= ∂G1

∂z
(x, h; ξ, ζ )= 0, (2.30a)

G1(0, z; ξ, ζ )= 0, G1(L, z; ξ, ζ )=−Lβ(z) ∂G0
∂x (L, z; ξ, ζ ). (2.30b)

For a solution of the form G1(x, z; ξ, ζ ) =∑∞n=0 g(1)n (x; ξ, ζ ) cos(knz), the Dirichlet
boundary conditions (2.30b) for G1 yield

g(1)0 (x; ξ, ζ )= f0(ξ , ζ ) x/L, g(1)n (x; ξ, ζ )=
sinh(knx)
sinh(knL)

fn(ξ , ζ ), n > 1, (2.31)

in terms of the coefficients fn of the expansion G1(L, z; ξ, ζ )≡∑∞n=0 fn(ξ , ζ ) cos(knz),
whose explicit form can be found from β(z) and G0 through (2.30b). If we put K =
K0 + εK1 + o(ε) in (2.24), then at leading-order we obtain

K0

∫ h

0
dζ
∫ h

0
dz
∂2G0

∂ξ∂x
(0, z; 0, ζ )

= ρwg
∫ h

0
dζ
∫ L

0
dx
(
∂G0

∂ξ
(x, h; 0, ζ )− ∂G0

∂ξ
(x, 0; 0, ζ )

)
. (2.32)

By using (2.29) the integral on the right-hand side vanishes, while that on the left-
hand side equals h/L, whence K0 = 0, as expected by symmetry considerations. At
the next order in ε (2.24) gives

K1 = ρwgL
h

∫ h

0
dζ
∫ L

0
dx
(
∂G1

∂ξ
(x, h; 0, ζ )− ∂G1

∂ξ
(x, 0; 0, ζ )

)
+ ρwgL2

h

∫ h

0
dζ
(
β(h)

∂G0

∂ξ
(L, h; 0, ζ )− β(0)∂G0

∂ξ
(L, 0; 0, ζ )

)
, (2.33)

where the last integral vanishes due to (2.29). Thus K1 can be computed from the
boundary values of G1. These, in turn, are determined by the profile perturbation β(z)
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(a) ε= 1/10 fixed, decreasing ρa

Numerics Theory

ρa 1/10 1/40 1/160 0
P∆ (conformal boundary) −4.29× 10−2 −5.41× 10−2 −5.73× 10−2 −5.84× 10−2

P∆ (sinusoidal boundary) −4.21× 10−2 −5.27× 10−2 −5.58× 10−2 −5.84× 10−2

(b) ρa = 1/160 fixed, decreasing ε

ε 1/10 1/20 1/40
Numerics P∆ (conformal boundary) −5.73× 10−2 −2.87× 10−2 −1.39× 10−2

P∆ (sinusoidal boundary) −5.58× 10−2 −2.85× 10−2 −1.43× 10−2

Theory P∆ −5.84× 10−2 −2.92× 10−2 −1.46× 10−2

(c) Maximal conformal map domain ε= εs, decreasing ρa

Numerics Theory

ρa 1/10 1/20 1/40 0
P∆ (conformal boundary) −0.116 −0.143 −0.161 −0.185

TABLE 1. Numerical and analytical P∆-values at t= 0 with water domains specified by the
conformal map (2.7) and the sinusoidal boundary β(z)= cos(πz/h) (figure 2). Parameters
are L= h= 1, ρw = 1, g= 1. The aspect ratio of the computational domain is 1:16 with
impermeable boundaries at x=−8, 8 and z= 0, 1. A square grid with 256 points along the
vertical is used throughout. The domain left-hand boundary is at x= 0. Top table: ε= 1/10
fixed, decreasing ρa; middle table: ρa = 1/160 fixed, decreasing ε; bottom table: maximal
conformal map domain ε= εs, decreasing ρa.

according to (2.30). For β(z)= cos(πz/h) we obtain

K = 2
π
ρwgεL tanh

(
πL
2h

)
+ o(ε), (2.34)

which agrees with the exact result (2.18) for the special profiles defined by (2.7). This
is in agreement with the fact that boundary profile from the conformal map limits for
small ε to this sinusoidal choice of β(z) in the definition of xR(z). In the Appendix,
we provide an explicit expression for the case of a step, which can in principle be
implemented experimentally by use of removable gates.

2.3. Numerical validation
It is interesting to see how general algorithms for computing the time evolution of
stratified Euler fluids fare with respect to the above results. These can severely test the
limitations of numerical techniques as they require handling simultaneously the limits
of infinite channel horizontal lengths and zero densities of one of the fluids. In turn,
numerical simulations can help assess the robustness of the asymptotics ρa→ 0 for
small but finite air density ρa. As seen from table 1, computations using the VARDEN
algorithm (Almgren et al. 1998), following the set-up reported in Camassa et al. (2012,
2013), are in reasonable agreement with our analysis, despite finite channel lengths
and density ratios.

2.4. The case of unbounded water domain
We discuss now how to compute the initial value of the pressure difference P∆ in the
case of figure 3, where the water domain is unbounded and splits the air domain in
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x0 xl xr

FIGURE 3. Air–water system, with unbounded water domain, uniform hydrostatic
equilibrium at infinity, and initial zero velocities. In the limiting case ρa = 0, condition
(2.38) is assumed to hold.

two parts. The velocity field is always supposed to vanish at t= 0. When ρa = 0, we
can still put Pl = K and Pr = 0, so that the (initial value of the) water pressure pw
turns out to be the unique bounded harmonic function on the water domain satisfying
the Dirichlet–Neumann boundary conditions

pw =K at γl, pw = 0 at γr,
∂pw

∂z

∣∣∣∣
z=0,h

=−ρwg, (2.35)

where γl (resp. γr) is the left (resp. right) part of the air–water interface. As in the boot
configuration, we will find a selection mechanism to fix the value of K by considering
the case ρa 6= 0 and pointing out a condition on pw that survives the limit ρa→ 0. For
non-zero ρa and vanishing initial velocities, we let Ωx0

w (resp. Ωx0
a ) be the subset of

the water (resp. air) domain with x0 6 x 6 xl. We also let γ x0 be the subset of the
interface with x0 6 x6 xl. The initial pressures pw and pa satisfy the Laplace equation
in their domains. Then we can use, as in (2.4), the fact that the flux of the gradient
of pw (resp. pa) across the boundary of Ωx0

w (resp. Ωx0
a ) is zero, to obtain, for x0 6 xl,

−
∫ η0(x0)

0
dz
∂pw

∂x

∣∣∣∣
x=x0

+
∫
γ x0

ds
∂pw

∂n
+
∫ h

0
dz
∂pw

∂x

∣∣∣∣
x=xl

−
∫ xl

x0

dx
∂pw

∂z

∣∣∣∣
z=0

= 0, (2.36a)

−
∫ h

η0(x0)

dz
∂pa

∂x

∣∣∣∣
x=x0

−
∫
γ x0

ds
∂pa

∂n
+
∫ xl

x0

dx
∂pa

∂z

∣∣∣∣
z=h

= 0, (2.36b)

where ∂/∂n is the normal derivative in the direction from water to air, and we have
denoted with z = η0(x) the function describing the interface at t = 0. After dividing
the first (resp. second) equation by ρw (resp. ρa), summing, and using the boundary
conditions (at z = 0, h) and the jump conditions (2.3) of the normal derivatives, we
obtain that

1
ρw

∫ η0(x0)

0
dz
∂pw

∂x

∣∣∣∣
x=x0

+ 1
ρa

∫ h

η0(x0)

dz
∂pa

∂x

∣∣∣∣
x=x0

= 1
ρw

∫ h

0
dz
∂pw

∂x

∣∣∣∣
x=xl

(2.37)

for all x0 6 xl. Since ∂xpa and ∂xpw go to zero as x→−∞, we obtain∫ h

0
dz
∂pw

∂x

∣∣∣∣
x=xl

= 0. (2.38)
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(It is very easy to show that this is also true with xl replaced by any x ∈ [xl, xr].) It
coincides with the consistency condition (2.6) of the boot case, and the conclusion is
now the same. Namely, condition (2.38) holds for any non-zero value of ρa, so we
impose this constraint in the limit ρa→0. Hence, we add it to the boundary conditions
(2.35) for the Laplace equation in the water domain to select the constant K. The
value of the (initial) pressure in the left-hand air domain is therefore determined by
the solution to the water problem.

3. Topological selection
As we have seen from (1.5), when the air domain is connected, the total horizontal

momentum of the air–fluid system

Π =Πw = ρw

∫ +∞
−∞

dx
∫ η(x,t)

0
dz u(x, z) (3.1)

is conserved, since P∆ = 0 in this case. In order to deal with the disconnected air-
domain case, it is useful to define the boundary fields

lim
z→0+

u(x, z, t)≡ u−(x, t), lim
z→h−

u(x, z, t)≡ u+(x, t), (3.2)

and similarly for all other dependent variables in the Euler system. With the definition
of boundary variables (3.2) and their analogue for ρ and p, it is easy to see that the
corresponding ‘lower-boundary momentum’ Π− from the definition

Π± = h
∫ +∞
−∞

dx ρ±u±(x, t) (3.3)

is a time-invariant quantity. In fact, the boundary condition w−(x, t)= 0 implies

Π̇− =−h
∫ +∞
−∞

dx (ρw u−u−x + p−x)=−h(p−(+∞)− p−(−∞))=−hP∆, (3.4)

due to the assumed hydrostatic boundary conditions as |x| → ∞. Thus, if the air
domain is connected, so that P∆ = 0, Π− is conserved as well. This allows us to
define a one-parameter family of conserved quantities,

Πα ≡Π + αΠ−. (3.5)

Remarkably, while for a disconnected air domain when P∆ 6= 0 neither Π nor Π− are
separately conserved (cf. (1.5) and (3.4)), the member of the family with α =−1 is,

Π̇−1 = Π̇ − Π̇− = 0. (3.6)

Hence, the topological change of the air domain from connected to disconnected
results in the collapse of a whole family of conserved quantities (3.5) into the single
quantity (3.6). We may call this phenomenon ‘topological selection’ of horizontal
momentum.

The upper-boundary counterpart of Π− is worth considering as well. While for
air–water systems with connected air-domains Π+ is clearly zero, this is no longer
the case for disconnected domains. The water dynamics may generate a non-vanishing
upper-boundary momentum contribution in regions where water is in contact with
the upper lid. For instance, when the contact region corresponds to the interval (see
figure 1) z = h, xl < x < xr, the integral in the definition of the upper-boundary
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momentum Π+ is taken over the interval and evolves as

Π̇+ = hρw

(
ẋru+(xr, t)− ẋlu+(xl, t)−

∫ xr

xl

dx (u+u+x + p+x /ρw)

)
= −hP∆ + hρw

2

(
(u+(xr(t), t))2 − (u+(xl(t), t))2

)
, (3.7)

since ẋr = u+(xr, t) (resp. ẋl = u+(xl, t)), and p+(xr, t) − p+(xl, t) = P∆(t). The
counterpart of (3.6) is then

Π̇ − Π̇+ =−hρw

2
((u+(xr(t), t))2 − (u+(xl(t), t))2), (3.8)

which is not a conservation law in general. A notable exception is offered by the case
of left–right symmetric initial interface and zero initial velocities, since time evolution
preserves the left–right symmetry and |u+(xr(t), t)| = |u+(xl(t), t)| at all times.

Two further remarks are in order. First, a configuration with a disconnected water
domain in the presence of a connected air domain preserves the total momentum Π ,
while Π− is not generally conserved. Second, and more importantly, if both water and
air domains are disconnected no member of the family (3.5) is conserved, in general.

3.1. Topological selection for continuous stratifications
The selection mechanism exemplified by (3.6) admits a natural extension within the
Hamiltonian formalisms for a continuously stratified incompressible two-dimensional
Euler fluid (see e.g. Zakharov et al. 1985; Benjamin 1986; Morrison 1998).

Let us briefly describe Benjamin’s formalism. The incompressible Euler equations
are written in terms of physical quantities, the density field ρ(x, z, t) and the density-
weighted vorticity σ(x, z, t)= (ρw)x − (ρu)z, as

ρt + ρxψz − ρzψx = 0, (3.9a)
σt + σxψz − σzψx + ρx(g− u · uz)+ ρzu · ux = 0. (3.9b)

Here the stream function ψ(ρ, σ ), and the ensuing velocity field u=ψz and w=−ψx,
should be interpreted as a shorthand notation for the solution of the elliptic problem

∇ · (ρ∇ψ)=−σ . (3.10)

As pointed out by Benjamin, an appropriate boundary condition for ψ is that
of homogeneous Dirichlet data, ψ = 0. This ensures that a unique solution ψ
of (3.10) can be found for any assigned density field ρ. The functions ρ and σ
are the fundamental variables for a Hamiltonian structure of the incompressible Euler
equations. The Hamiltonian H for system (3.9) is

H =
∫ +∞
−∞

∫ z+

z−

(ρ
2
|∇ψ |2 + gz(ρ − ρ0)

)
dz dx, (3.11)

where ρ0 = ρ0(z) is the density of a stable hydrostatic equilibrium reference
configuration for the fluid as |x| → ∞. Henceforth we consider for convenience a
general vertical coordinate origin with the bottom and top plates located at z= z−, z+
with total height of the channel h= z+ − z−.
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Equations of motion (3.9) can then be obtained by means of non-canonical Poisson
brackets, defined for general functionals F[ρ, σ ], G[ρ, σ ] by

{F,G} ≡−
∫ +∞
−∞

∫ z+

z−
(δρF, δσF)

(
0 ρx∂z − ρz∂x

ρx∂z − ρz∂x σx∂z − σz∂x

)(
δρG
δσG

)
dz dx.

(3.12)
In fact, the variational differential of the Hamiltonian (3.11) is(

δρH, δσH
)= (g z− |∇ψ |2/2, ψ) . (3.13)

Note that boundary terms generated by the variation are automatically eliminated by
the condition ψ = 0, as

H[ρ + δρ, σ + δσ ] −H[ρ, σ ]
=
∫ +∞
−∞

∫ z+

z−

((
g z− |∇ψ |2/2) δρ +ψ δσ +∇ · (ψ δ(ρ∇ψ))) dz dx. (3.14)

The generator of horizontal translations is easily recognized to be the functional

IB =
∫ +∞
−∞

∫ z+

z−
zσ(x, z) dz dx. (3.15)

This is a member of the family of constants of motion identified (along with the
associated symmetries) in Benjamin (1986).

The Poisson bracket (3.12) admits a wide class of Casimir functionals (namely,
functionals C[ρ, σ ] such that {·,C} = 0). They are given by

C α,β =
∫ +∞
−∞

∫ z+

z−
(α(ρ)σ + β(ρ))dz dx (3.16)

for every pair of functions α(ρ) and β(ρ). Obviously, as in any Hamiltonian setting,
Casimir functionals define constants of the motion (though unlike standard conserved
quantities, they are associated with trivial symmetries).

As it stands the Hamiltonian formalism ensuing from (3.12) falls apart with
configurations for which ρ (and/or σ ) is non-constant along the top and bottom
plates (as in the idealized air–water configurations of § 2, which, in their continuously
stratified extension, imply that some of the isopycnals intersect the bounding plates).
In particular, the bracket defined by (3.12) fails to be antisymmetric in general due
to boundary contributions in (3.12) dependent on ρ±x and σ±x .

A straightforward computation shows that the lack of antisymmetry of the Poisson
bracket is

S(F,G)≡ {F,G} + {G, F} =−
∫ +∞
−∞

(δρF, δσF)
(

0 ρx
ρx σx

) (
δρG
δσG

) ∣∣∣∣z+
z−

dx, (3.17)

where, hereafter,
A |z+z− ≡A (x, z+)−A (x, z−). (3.18)
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Despite this antisymmetry defect, equations of motion (3.9) can still be written as
those from the Hamiltonian structure (3.11)–(3.12),

ρt = {ρ,H} = ρz

(
δH
δσ

)
x

− ρx

(
δH
δσ

)
z

,

σt = {σ ,H} = ρz

(
δH
δρ

)
x

− ρx

(
δH
δρ

)
z

+ σz

(
δH
δσ

)
x

− σx

(
δH
δσ

)
z

.

 (3.19)

We stress that this form of the motion equations, which is the one provided by
Benjamin (1986) for constant boundary values of ρ (and, in general, σ ), continues
to hold for non-constant boundary field configurations because of the choice of
homogeneous Dirichlet data for the stream function ψ (i.e. vanishing at z = z±),
since under this condition the variational differential of H is still given by (3.13).
The main consequence of the breakdown of the Hamiltonian formalism due to the
lack of bracket antisymmetry is the loss of the correspondence between symmetries
and constants of the motion. In general, a quantity which is conserved by motion
with constant boundary fields may very well change in time in the case of variable
boundary fields.

An example is the family of Casimirs C α,β . We have

Ċ α,β =
∫ +∞
−∞

∫ z+

z−

(
δρC

α,βρt + δσC α,βσt
)

dz dx= {C α,β,H}, (3.20)

where the last equality is due to (3.19). By definition (3.17) we have

{C α,β,H} =−{H,C α,β} + S(C α,β,H). (3.21)

The first term on the right-hand side vanishes since the variational differential of
C α,β annihilates point-wise the integral kernel operator in the definition of the
bracket (3.12). Thanks to the homogeneous boundary conditions for the stream
function, the antisymmetry defect S(C α,β,H) reduces in this case to

S(C α,β,H)= −
∫ +∞
−∞

ρxδσC
α,βδρH

∣∣∣∣z+
z−

dx= 1
2

∫ +∞
−∞

ρxα|∇ψ |2
∣∣∣∣z+

z−
dx. (3.22)

In terms of physical variables this is

Ċ α,β = 1
2

∫ +∞
−∞

αρxu2

∣∣∣∣z+
z−

dx. (3.23)

Similarly, the generator of horizontal translations (3.15) may fail to be conserved when
the field densities vary along the plates. Indeed, arguing as above (or directly by using
the equations of motion), it is easy to show that

İB = z+J+ − z−J−, (3.24)

where we have defined for simplicity the boundary quantities J± as

J± ≡ 1
2

∫ +∞
−∞

ρ±x(u
±)2 dx. (3.25)
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We remark that the time derivative of one of the simplest Casimir of the family,
namely

C ≡C (1,0) =
∫ +∞
−∞

∫ z+

z−
σ dz dx, (3.26)

can be written by means of the quantities J± as

Ċ = J+ − J−. (3.27)

Thus, as J± are generally non-zero if ρ varies along the plates, IB and C are no
longer conserved for generic configurations. Of course, non-constant ρ implies that
ρ-level sets intersect the boundaries, which effectively separates the fluid domain
into different topological regions. (Note that disconnected configurations cannot be
obtained by continuous deformation of a rest state in hydrostatic equilibrium.) Just as
in the particular air–water case, the analogue of the topological selection mechanism
may occur if the density is constant along one of the plates (but not both). For
instance, if ρ is constant along the lower plate, then ρ−x = 0 and J− is zero. From
(3.24) and (3.27) it follows that IB − z+C is conserved. Thus, we have a complete
analogy with the results for the air–water sharp stratification described in the first
part of this section.

3.2. Clebsch formulation
Even with non-constant ρ along the plates, the channel set-up is invariant under
horizontal translations, and one could ask whether a related conservation law can
nonetheless be found. We discuss this issue for a class of fluid motions that admits a
special variational representation (cf. Zakharov & Kuznetsov 1997). This set-up relies
on so-called Clebsch variables for two-dimensional Euler equations and, in particular,
allows for non-zero vorticity only in those regions where the density is not constant
(for a comparison with Benjamin’s formalism, see Camassa et al. 2013). Thus, an
additional pair of dependent variables (λ, φ) is introduced as Lagrange multipliers
in the Lagrangian obtained by the difference of kinetic and potential energy of the
system,

L=
∫ +∞
−∞

∫ z+

z−

(
1
2ρ|u|2 − ρgz+ φ∇ · u + λ(ρt +∇ · (ρ u))

)
dz dx. (3.28)

(Note that we have slightly altered the form of the Lagrangian with respect to the one
in Zakharov & Kuznetsov (1997), by using the full version of the mass conservation
equation ρt +∇ · (ρu)= 0, rather than its incompressible version ρt + u · ∇ρ = 0.)

Variation of the action corresponding to Lagrangian (3.28) yields evolution
equations

ρt +∇ · (ρ u)= 0, λt + u · ∇λ− 1
2 |u|2 + g z= 0,

∇ · u= 0, ρu−∇φ − ρ∇λ= 0.

}
(3.29)

These equations need to be augmented by the appropriate boundary conditions.
These can be retrieved from the variational formulation as follows: variations for the
velocity u+ δu must satisfy the same boundary conditions as u. Hence, in order to
be admissible for the class of fluid motions under consideration, variations δu are
subject to the homogeneous version of the u-conditions at the boundaries of the fluid
domain. In contrast, variations ρ + δρ are not assigned special values at the top and
bottom plates, though ∂x(δρ)→ 0 as |x| → ∞ in order to leave the far-end density
field in hydrostatic equilibrium. The boundary terms from the variation of the action
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generated by (3.28) are

(φ + λρ)n · δu+ (λn · u) δρ, (3.30)

and the first term vanishes because n · δu = 0, with n the normal to the boundary
of the fluid domain. When this is a channel, the boundary conditions generated by
ρ-variations are therefore either

w= 0 at z= z± and u= 0 as x→±∞, (3.31)

or
λ= 0 at z= z± and as x→±∞. (3.32)

Of these, only (3.31) correspond to the physical boundary conditions for Euler
flows in a channel. As to the structure of the resulting evolution equations, it must
be stressed that solutions of system (3.29) are also solutions of the original Euler
equations (1.2) in two dimensions, but the converse is not necessarily true; for instance
the homogeneous fluid ρ =const. case yields irrotational solutions ρ u = ∇(φ + ρλ)
only. Specifically, taking the gradient of the second equation in system (3.29), and
the convective derivative ∂/∂t+ u · ∇≡D/Dt of the last equation, yields

D(ρu)
Dt
=∇

(
Dφ
Dt

)
− ρg k, (3.33)

whence Euler equations follow from identifying

∇

(
Dφ
Dt

)
=−∇p, (3.34)

i.e. the relation between the Euler pressure p and the Clebsch variable φ.
We remark that the definition (3.29) of Clebsch variables possesses an inherent

indeterminacy consistent with the fact that the fields φ and λ are not physically
observable quantities per se: the two pairs (φ, λ), (φ′, λ′) reproduce the same
physical observables ρu and p if they satisfy

∇(φ′ − φ)=−ρ∇(λ′ − λ), ∇
(

D(φ′ − φ)
Dt

)
= 0. (3.35)

These can constrain the admissible values of φ′ − φ.
In contrast to the Hamiltonian formulation (3.19), it can be easily shown that the

Clebsch variables define a canonical Hamiltonian formulation in which ρ and λ are
conjugate variables, evolving according to the system

ρt = δH
δλ
, λt =−δH

δρ
, H =

∫ +∞
−∞

∫ z+

z−

(
1
2ρ|u|2 + g(ρ − ρ0) z

)
dz dx. (3.36)

Here u is interpreted as shorthand notation for its definition in (3.29), while φ stands
for the function of (λ, ρ) defined through the elliptic problem

∇ ·

(
1
ρ
∇φ

)
=−∇2λ, (3.37)

which is equivalent to ∇ · u = 0. With Neumann boundary conditions and up to
constants, φ is therefore uniquely defined by inverting an elliptic operator similar to
that in (3.10) (for density ρ bounded away from zero everywhere). In terms of these

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

64
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.644


Topology and conservation laws in air–water systems 551

Clebsch variables, the generator of horizontal translations is

IZK ≡
∫ +∞
−∞

∫ z+

z−
λ ρx dz dx. (3.38)

According to Noether’s theorem, it is a conserved quantity. Up to an overall constant
depending only on the initial values of boundary fields, IZK equals IB for constant
ρ along the boundary. For general ρ, the following equality holds:

IZK =IB + z+
h
Π+ − z−

h
Π− −

∫ +∞
−∞

∫ z+

z−
(φ + ρλ)x dz dx. (3.39)

For the class of solutions of the incompressible Euler equations generated by solutions
of (3.29) we have, through (3.34),∫ +∞

−∞

∫ z+

z−
φxt dz dx=−hP∆. (3.40)

Deriving with respect to time equation (3.39) and using (3.40), we see again that
IZK is conserved independently of field boundary values. This continues to hold for
two-layer set-ups including the case of disconnected domains, provided suitable initial
and boundary conditions are chosen for the Clebsch variable λ. Generalizations of
these results to classes of incompressible, stratified Euler-fluid motion not governed
by (3.29) seem less known and deserve to be investigated separately.

4. Discussion
Inspired by a close examination of the air–water limit of two-layer flows in a

channel, we have isolated a class of new phenomena in the motion of stratified
fluids interacting with rigid boundaries, and provided some tools for its mathematical
modelling. This class consists of a selection mechanism for conservation laws rooted
in the topological properties of density isolines for the initial density configuration
of an incompressible Euler fluid. Specifically, even when the fluid system possesses
symmetries, such as translation invariance, the connection properties of density isolines
can make classical conservation laws associated with the symmetry fail. Depending on
the topology of pycnoclines, this failure can be treated by considering the appropriate
boundary terms. However, this is not always possible, e.g. when pycnoclines intersect
both boundaries, and in general explicit expressions for the corresponding conservation
laws ought to be derived from an appropriate variational formulation of the motion
equations. Note that boundary terms similar to the ones we have introduced also
emerged during the investigation of Hamiltonian symmetries and conservation laws in
Benjamin (1986). However, in the present case the corresponding boundary integrals
arise from the different mechanism of boundary-intersecting pycnoclines. This, in
general, contributes to breaking the conservation laws of horizontal momentum and
Casimirs which apply for constant ρ along the boundary.

The air–water system offers perhaps the most transparent illustration of these
topological effects, as boundary terms arise naturally in this context. When both the
air and water domains are connected and extend to infinity, a one-parameter family of
conservation laws, formed by the horizontal momentum and boundary terms, exists.
However, if only the water domain is connected while disconnecting the air domain,
by water being in contact with the upper plate over some finite region, only one
member of the family is selected as a conserved quantity. On the other hand, when
the water region is finite and the air domain is disconnected, even this member
of the family fails to be conserved in general. For this case, we have provided
explicit formulae for the horizontal momentum time derivative for special choices
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of initial data (with zero initial velocity). For the asymptotic limit of a perturbation
of a box-like initial domain, we have discussed the case of step-like data which
can in principle be studied experimentally. These results have been compared with
direct numerical simulations for two fluids with the one corresponding to air having
a density as small as 1/160 that of the lower fluid. As to the limit of air density
approaching zero, we remark that there are theoretical subtleties associated with the
limit of zero thickness of the connecting sliver (figure 1). As we have observed in
the context of a long-wave model (Camassa et al. 2013, Appendix C), these limits
do not commute, and give different results according to which order relation is used
for these two small parameters.

Finally, we mention that the results we have derived may provide useful monitoring
quantities for studies of air-domain disconnection in a sloshing tanks (Abrahamsen
& Faltinsen 2011), or internal wave propagation with trapped cores (Carr, King &
Dritschel 2012). Ongoing work in these directions will be reported in the future.
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Appendix.
Using the results of § 2 it is possible to compute the value of pressure difference

for a generic interface εLβ(z) of small amplitude εL. For every interface that can be
written as a Fourier series,

β(z)=
∞∑

m=0

cm cos(mπz/h), cm = 2
h

∫ h

0
β(z) cos(mπz/h) dz, (A 1)

the pressure value K at the first asymptotic order in the limit ε→ 0 can be obtained
by superposition due to linearity in β. We have

K ≡K(β)=
∞∑

m=0

cmK(m) + o(ε), (A 2)

where K(m) is the value of the pressure when the interface β is the single Fourier mode
cos(mπz/h). Setting β(z)= cos(mπz/h), with m> 1, formula (2.33) yields K(m)= o(ε)
if m is even and

K(m) = 2
mπ

ρwgεL tanh
(

mπL
2h

)
+ o(ε) if m is odd. (A 3)

Using relation (A 2) yields

K(β)= 2
π
ρwgεL

∞∑
n=0

c2n+1

2n+ 1
tanh

(
(2n+ 1)πL

2h

)
+ o(ε). (A 4)

Typically L is larger than h and therefore the hyperbolic tangent gives an exponentially
small contribution which can be neglected for all n. For example, in the practically
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FIGURE 4. (a) A simple step-like initial configuration for the air–water system. (b) The
corresponding value for the pressure difference K (A 6) versus height z0 of the step,
plotted with ε= 0.1, L= 5h and ρw = 1, g= 1.

realizable step-like configuration β(z)≡H(z0 − z) (figure 4),

cm = 2
mπ

sin(mπz0/h), m> 0. (A 5)

Thus, to leading-order in ε the pressure difference for this step-like interface is

K(β)∼ 4
π2
ρwgεL

∞∑
n=0

sin((2n+ 1)πz0/h)
(2n+ 1)2

=−2ρwgεL
πh

∫ z0

0
log
(

tan
(πz

2h

))
dz. (A 6)
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