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In this paper, we concern with a backward problem for a nonlinear time fractional
wave equation in a bounded domain. By applying the properties of Mittag-Leffler
functions and the method of eigenvalue expansion, we establish some results about
the existence and uniqueness of the mild solutions of the proposed problem based on
the compact technique. Due to the ill-posedness of backward problem in the sense of
Hadamard, a general filter regularization method is utilized to approximate the
solution and further we prove the convergence rate for the regularized solutions.
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1. Introduction

Let Ω ⊂ R
N be a bounded domain smooth boundary ∂Ω (being of C2 class for

N � 3). We shall consider the following backward problem for time fractional wave
equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂α
t u − Δu = f(t, x, u), x ∈ Ω, t ∈ (0, T ],

u(t, x) = 0, x ∈ ∂Ω, t ∈ (0, T ],

∂tu(0, x) = 0, x ∈ Ω,

u(T, x) = g(x), x ∈ Ω,

(1.1)

where ∂t = ∂/∂t and ∂α
t is the Caputo fractional derivative of order α ∈ (1, 2)

defined by (see [15, 23])

∂α
t u(t, x) =

1
Γ(2 − α)

∫ t

0

(t − s)1−α∂2
su(s, x) ds, t > 0,
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provided that the right side is point-wise defined on [0,∞), where Γ(·) stands for
Gamma function. f is a nonlinear function which will be satisfied some suitable
assumptions.

Due to the nonlocality of fractional derivative, which reveals a powerful tool
for describing anomalous diffusion process, because it is fitted into the power-law
behaviour of anomalous diffusion phenomena (including subdiffusion and superdif-
fusion, there are not applicable the Fick’s law any more). As for the fractional
wave equation while sometimes it is called the superdiffusion equation, it is also
substituted for modelling the propagation of diffusive waves in viscoelastics solids
frequently, see e.g. [11, 12]. This is one of the reasons that many researchers pay
attention to study these problems, see e.g. [1, 3, 8, 16] and the related references
therein.

If the finial value condition u(T, x) = g(x) in problem (1.1) shall replace by an
initial value condition u(0, x) = y(x), then problem (1.1) is called the forward prob-
lem of time fractional wave equations. As we know, there are many papers coping
with forward problems of time fractional wave equations, for example, Li and Wang
[9] studied some regularity properties of time fractional stochastic wave equation
which is forced by an additive space–time white noise. The regularity of weak solu-
tions for time fractional wave equations has been studied by Otárola and Salgado
[13]. As for backward problem, which is one of the main topics of inverse problem,
we find that there are still few papers about backward problem for time fractional
wave equation, Wei and Zhang [22] studied the existence, uniqueness and condi-
tional stability for the backward problem, the Tikhonov regularization method has
been used to solve regularized solution. Following this paper, Tuan et al. [18] con-
sidered some existence and regularity results for finial value problems (also called
backward problems) with respect to linear function as well as a regularizing scheme
by using a modified regularization method in [17], compared with these methods
and conclusions, we improve the existence results on some weaker nonlinear func-
tions in this paper, additionally, we find that it is hard to check a positive constant
L0 such that an estimate of Mittag-Leffler function is valid for some observed point
t = T in view of its the approximation form (see the discussion after (2.2)). In order
to overcome this difficult, we propose a suitable concept of mild solutions. Huynh
et al. [5] studied the regularized solution for an inhomogeneous problem in a gen-
eral bounded domain by applying the fractional Landweber regularization method.
Inspired by the above research studies, we will consider several existence results
under some different conditions of nonlinear functions.

On the contrary, another issue worthy of consideration for backward problem
about time fractional wave equation is seriously ill-posed in the sense of Hadamard,
that is, even if a solution will exist and it is uniqueness, but it is not stable, in a
word, it does not depend continuously on the given data. In order to achieve it
at practical applications, many numerical methods are proposed to study the ill-
posedness behaviour, the regularization solution and error analysis are also given.
Additionally, one finds that the backward problems have emerged in optimal con-
trol, mathematical finance and so on. Some theoretical analyses are established to
study these problems contained with the properties of solution of existence, unique-
ness, regularity and convergence. In fact, our problem is seriously ill-posed, it urges
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us to prove the convergence rate for the regularized solutions. For more details
about backward problems, for example, we refer to [2, 4, 6, 14, 19, 20, 24] and
the related references therein.

The rest of this paper is as follows. In § 2, we introduce some concepts, prelimi-
naries and the properties of Mittag-Leffler functions. In § 3, we derive the solution
representation of problem (1.1), some useful properties of solution operators also
will be discussed. Furthermore, several existence results are obtained in § 4, which
do not necessarily satisfy Lipschitz condition or smoothness of nonlinear functions.
In § 5, a regularization method is proposed to approximate the solutions.

2. Preliminaries

In this section, some preliminaries will be presented in order to derive the solution
representation as well as our main results.

2.1. Fractional power spaces

We adopt the eigenvalues of the Laplacian operator L = −Δ. Since the oper-
ator L is nonnegative and self-adjoint in Sobolev space H1

0 (Ω), there exists an
orthonormal basis of L2(Ω) consisting of eigenfunctions φk ∈ H1

0 (Ω), k = 1, 2, . . .,
that correspond to eigenvalues

0 < λ1 � λ2 � · · · � λk � · · · ↗ ∞,

which satisfy

Lφk = λkφk, in Ω, φk = 0, on ∂Ω.

We first take the domain Hs(Ω) = D(Ls) of the fractional power operator Ls, for
s � 0, the space is introduced by

Hs(Ω) =

{
u ∈ L2(Ω) :

∞∑
k=1

λ2s
k |uk|2 < ∞

}
,

as the Hilbert space of functions

u(t, x) :=
∞∑

k=1

uk(t)φk(x) =
∞∑

k=1

(u, φk)φk(x) ∈ L2(Ω),

equipped with norm

‖u‖2
Hs(Ω) =

∞∑
k=1

λ2s
k |uk|2.

Let X,Y be two Banach spaces, B(X,Y ) stands for the space of all linear bounded
operators from X into Y . Now, we consider a Banach space X with the norm ‖ · ‖X ,
specially, let the norm of space L2(Ω) be given by ‖ · ‖ and inner product is defined
as (·, ·). We denote by C([0, T ];X) a Banach space of all continuous maps from
[0, T ] into X with supt∈[0,T ] ‖u(t)‖X < ∞, Cη((0, T ];X) stands for a Banach space
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of all weighted continuous functions mapping (0, T ] into X with exponent η ∈ (0, α]
as follows

Cη((0, T ];X) =
{

u ∈ C((0, T ];X) : lim
t→0+

tη‖u(t)‖X exists and finite
}

,

equipped with the norm

‖u‖Cη((0,T ];X) = sup
0�t�T

tη‖u(t)‖X .

Let 1 � p < ∞ and let Lp(0, T ;X) denote the space of the compositions of all the
p-integrable Lebesgue measure functions equipped with the norm

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖p
Xdt

)1/p

< ∞,

and L∞(0, T ;X) stands for the space of essentially bounded functions.

2.2. Mittag-Leffler functions

Let us recall the Mittag-Leffler function Eα,β(·), for more details, we refer
to [7, 10].

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, α > 0, β ∈ R, z ∈ C.

The function Eα,β(z) is an entire function, and so it is real analytic when restricted
to the real line. Moreover, the approximation form of Mittag-Leffler function is
given by

Eα,β(z) = −
N∑

k=1

1
Γ(β − αk)

1
zk

+ O

(
1

zN+1

)
,

with |z| → ∞, μ � |arg(z)| � π for μ > 0, and N ∈ N. In particular,

Eα,1(z) = − 1
Γ(1 − α)

1
z

+ O

(
1
z2

)
, (2.1)

with |z| → ∞, μ � |arg(z)| � π for μ > 0.

Lemma 2.1 [15]. Let 0 < α < 2, and β ∈ R be arbitrary. Suppose that μ is such that
πα/2 < μ < min{π, πα}. Then there exists a constant M = M(α, β, μ) > 0 such
that

|Eα,β(z)| � M

1 + |z| , μ � |arg(z)| � π.

Lemma 2.2 [15]. Let 0 < α and λ, a > 0. Then

(i) d
dt (Eα(−λtα)) = −λtα−1Eα,α(−λtα), for t > 0;

(ii) d
dt (t

α−1Eα,α(−λtα)) = tα−2Eα,α−1(−λtα), for t > 0.
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Lemma 2.3 [1]. Let 1 < β < 2, β′ ∈ R and λ > 0. Assume that 0 � μ � 1,
0 < ν < β. Then there exists a positive constant C1 such that∣∣λμtνEβ,β′(−λtβ)

∣∣ � C1 tν−βμ, t > 0.

Lemma 2.4 [22, lemma 3.2]. For 1 < α < 2 and any fixed T > 0, there is at most
a finite index set Θ = {k1, k2, ..., kn} such that Eα,1(−λkTα) = 0 for k ∈ Θ and
Eα,1(−λkTα) �= 0 for k ∈ N\Θ.

Lemma 2.5 [22, lemma 3.6]. Let 1 < α < 2. Then there exist positive con-
stants M−,M+ depending on α, T and finite eigenvalues λk with k ∈
{k1, k2, . . . , kn+m}\Θ, m ∈ N ∪ {0} such that

M−
λk

� |Eα,1(−λkTα)| � M+

λk
, k ∈ N \ Θ.

Noting that, in view of the approximation form of Mittag-Leffler function (2.1)
and lemma 2.4, there exists L0 > 0 such that

Eα,1(−λkTα) � 1
2Γ(1 − α)λkTα

< 0, λkTα > L0, (2.2)

for 1 < α < 2, thus Eα,1(−λkTα) = 0 only if λkTα � L0. Since limk→∞ λk =
+∞, there are only finite λk satisfying λkTα � L0 with k ∈ Θ. According to
the abovementioned discussions and related lemmas, we know that there exist
some finite λk and T such that Eα,1(−λkTα) = 0, for every k ∈ Θ. Thus,
throughout this paper, we shall get rid of the part of k ∈ Θ in λk and
set Eα(−λkTα) := Eα,1(−λkTα) �= 0 for k ∈ N\Θ, with using these notations
Eα(−λktα) := Eα,1(−λktα) and Eα,β(−λktα) := Eα,β(−λktα), for k ∈ N\Θ. Con-
sequently, similarly to lemma 2.4, lemma 2.5 and (2.2), together above arguments
and lemma 2.1, one can check the following inequalities obviously, for k ∈ N\Θ,
t � 0,

c−
1 + λkTα

� |Eα(−λkTα)| � c+

1 + λkTα
, |Eα,ζ(−λktα)| � c+

1 + λktα
, (2.3)

where ζ ∈ R,

c− := min
{
(2|Γ(1 − α)|)−1,M−,M−Tα

}
,

and

c+ := max{M,C1,M+,M+(Tα + λ−1
1 )}.

Clearly, we have c− < c+.
Noting that from (2.1) we see that it is hard to find a suitable constant L0 such

that (2.2) is satisfied in the actual application, that is, if T enough large such
that Eα,1(−λkTα) does not identically equal to zero, we do not need to get rid of
the part of k ∈ Θ in λk and remain all k ∈ N, however, from a view point of an
actual observation, this situation may not be achieved such T > (λ−1

1 L0)1/α with
an enough large constant L0 from the approximation form (2.1). Consequently, we
don’t consider this case in the current paper and in order to overcome this difficult,
we shall establish a suitable solution representation. In the sequel, set Π = N\Θ,
we will assume k ∈ Π all the time.
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3. Solution representation

In this section, we first give a suitable mild solution definition of problem (1.1),
and we will further study the properties of solution operators which derived from
solution representation.

3.1. Definition of mild solution

Let u be the solution of initial-boundary value problems with respect to forward
time fractional wave equations, passing the eigenvalues of the fractional Laplacian
operator, it yields

∂α
t uk(t) + λkuk(t) = fk(t, u),

associated with the initial conditions uk(0) = (u0, φk) = u0k, u′
k(0) = (u1, φk) = u1k

and fk(t, u) = (f(t, u), φk). Then, from theorem 5.15 in [7], one obtains

uk(t) = Eα(−λktα)uk0 +
∫ t

0

(t − τ)α−1Eα,α(−λk(t − τ)α)fk(τ, u) dτ. (3.1)

By substituting t = T into (3.1), it yields

uk(T ) = Eα(−λkTα)uk0 +
∫ T

0

(T − τ)α−1Eα,α(−λk(T − τ)α)fk(τ, u) dτ.

Let gk = (g, φk), since Eα(−λkTα) may be equal to zero for some k ∈ Θ, and then,
for k ∈ N\Θ, we have

uk(t) =
Eα(−λktα)
Eα(−λkTα)

(
gk −

∫ T

0

(T − τ)α−1Eα,α(−λk(T − τ)α)fk(τ, u) dτ

)

+
∫ t

0

(t − τ)α−1Eα,α(−λk(t − τ)α)fk(τ, u) dτ.

Let us simple u(t)(·) instead of u(t, x), for any v ∈ L2(Ω), denote two operators by

Sα(t)v =
∞∑

k=1,k∈Π

Eα(−λktα)
Eα(−λkTα)

(v, φk)φk,

and

Pα(t)v = tα−1
∞∑

k=1,k∈Π

Eα,α(−λktα)(v, φk)φk.

From above arguments, let symbol ◦ be a composition operator as follows

Sα(t) ◦ Pα(ς)v =
∞∑

k=1,k∈Π

Eα(−λktα)
Eα(−λkTα)

Eα,α(−λkςα)(v, φk)φk, v ∈ L2(Ω),

for t, ς ∈ [0, T ], hence, we can find a mild solution of problem (1.1) in which its
definition is given below.
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Definition 3.1. For every η ∈ (0, α], a function u is called a mild solution of
problem (1.1) if u ∈ Cη((0, T ];L2(Ω)) and it satisfies the integral equation

u(t) = Sα(t)g −
∫ T

0

Sα(t) ◦ Pα(T − τ)f(τ, u) ddτ +
∫ t

0

Pα(t − τ)f(τ, u) dτ. (3.2)

3.2. Some properties

Property 1. Sα(t) is a unbounded operator for the time t = 0 in L2(Ω) while it
belongs to B(H1(Ω), L2(Ω)).

Proof. Obviously, Sα(t) is linear operator. If taking vn = φn(x), n ∈ Π, in view of
(2.3) and limt→0 Eα(−λktα) = 1, we deduce that ‖vn‖ = 1 and

‖Sα(0)vn‖2 =
∞∑

k=1,k∈Π

1
|Eα(−λkTα)|2

|(vn, φk)|2

� 1
c2
+

∞∑
k=1,k∈Π

(1 + λkTα)2 |(vn, φk)|2

� 1
c2
+

‖vn‖2 +
T 2α

c2
+

λ2
n‖vn‖2.

Therefore, it follows that ‖Sα(0)vn‖ > Tαλn/c+. From λn → ∞ as n → ∞, it shows
that Sα(t) is not unbounded in L2(Ω) at time t = 0. On the contrary, for any
v ∈ L2(Ω), the Sobolev embedding H2(Ω) ↪→ L2(Ω) implies

‖Sα(0)v‖2 � 1
c2−

∞∑
k=1,k∈Π

(1 + λkTα)2 |(v, φk)|2

� 2
c2−

‖v‖2 +
2T 2α

c2−

∞∑
k=1,k∈Π

λ2
k|(v, φk)|2

� 2C2
2

c2−
‖v‖2

H1(Ω) +
2T 2α

c2−
‖v‖2

H1(Ω),

where C2 is a positive constant, in addition, we use the inequality (1 + a)2 � 2(1 +
a2), a ∈ R. Thus, we show the desired results. �

Property 2. Let v ∈ L2(Ω). Then Sα(t)v is continuous on L2(Ω) for all t ∈ (0, T ],
that is Sα(t)v ∈ C((0, T ];L2(Ω)).

Proof. In fact, we just need to show that the series

∞∑
k=1,k∈Π

Eα(−λktα)
Eα(−λkTα)

(v, φk)φk(x)

is uniformly convergent on L2(Ω) for any v ∈ L2(Ω) and any t ∈ [δ, T ] with δ > 0.
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By virtue of (2.3), we get∣∣∣∣ Eα(−λktα)
Eα(−λkTα)

∣∣∣∣ � c+

c−
1 + λkTα

1 + λktα
� c+Tα

c−tα
, for all t ∈ (0, T ]. (3.3)

In the following, we know that Eα(−λktα) is uniform continuous since the identity

Eα,1(−z2) =
∫ ∞

0

Mα/2(θ) cos(zθ) dθ, z ∈ C, α ∈ (1, 2). (3.4)

This above identity can be found in [11], where M�(·) is the Mainardi’s Wright-type
function defined by

M�(z) =
∞∑

n=0

(−z)n

n!Γ(1 − �(n + 1))
, � ∈ (0, 1), z ∈ C.

In fact, from the uniform continuity of cos(
√

z) for z ∈ R+, we know that for
any ε > 0 and each k ∈ N, there exists a δ > 0 such that, for t1, t2 ∈ R+ with
|t2 − t1| < δ, ∣∣∣cos

(√
λktα2 θ

)
− cos

(√
λktα1 θ

)∣∣∣ < ε.

Therefore, by virtue of (3.4), we have

|Eα(−λktα2 ) − Eα(−λktα1 )| =
∣∣∣∣
∫ ∞

0

Mα/2(θ)(cos(
√

λktα2 θ) − cos(
√

λktα1 θ)) dθ

∣∣∣∣ < ε,

where we use the property

M�(θ) � 0,

∫ ∞

0

M�(θ) dθ = 1.

It allows us to obtain the desired series which is uniformly convergent on [δ, T ] by
using the Cauchy convergence criterion. Now, for any ε > 0, there exists M > 0
such that for all positive integers p whereas m ∈ Π and m > M

m+p∑
k=m+1

|(v, φk)|2 <

(
c−tα

c+Tα

)2

ε, for all t ∈ [δ, T ].

Let

Sm(t)v =
m∑

k=1

Eα(−λktα)
Eα(−λkTα)

(v, φk)φk(x).

Therefore, it yields that

‖Sm+p(t)v − Sm(t)v‖2 =
m+p∑

k=m+1

∣∣∣∣ Eα(−λktα)
Eα(−λkTα)

(v, φk)
∣∣∣∣
2

�
(

c+Tα

c−tα

)2 m+p∑
k=m+1

|(v, φk)|2 < ε.

By the arbitrariness of ε, we deduce that the conclusion holds. �
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In the sequel, for convenience, we set X := Cη((0, T ];L2(Ω)), η = αγ for γ ∈
(0, 1], and let operator Tα be defined by

(Tαv)(t) =
∫ T

0

Sα(t) ◦ Pα(T − τ)v(τ) dτ, v ∈ X.

Lemma 3.2. Let γ ∈ (0, 1
α ) such that η ∈ (0, 1). Then operator Tα is a completely

continuous operator from X into X.

Proof. For every n ∈ Π, let Φn = span{φ1(x), ..., φn(x)}, since {φk}∞k=1 is an
orthonormal basis in L2(Ω), one finds that L2(Ω) can be expressed by
span{φ1(x), ..., φn(x), ...}. Obviously, Φn is a finite-dimensional subspace of L2(Ω).
For every n ∈ Π, denote operators Sα,n(t, ς) : L2(Ω) → Φn by

Sα,n(t, ς)v = ςα−1
n∑

k=1,k∈Π

Eα(−λktα)
Eα(−λkTα)

Eα,α(−λkςα)(v, φk)φk(x),

for t ∈ (0, T ], ς := T − τ with τ ∈ [0, T ]. Observe that, Sα,n(t, ς) are linear finite-
dimensional operators. Next, for every n ∈ N, we define linear operators Tα,n in the
same way by

(Tα,nv)(t) =
∫ T

0

Sα,n(t, T − τ)v(τ) dτ, v ∈ X.

Obviously, Tα,nv are well-defined on X. Denote a bounded set on X by Ur = {v ∈
X : ‖v‖X � r} for each positive constant r. We shall prove that for any positive
constant r, the set {tη(Tα,nv)(t), v ∈ Ur} is relatively compact in X.

For any v ∈ X, it follows from the fact |Eα,ζ(−λkzα)| � c+, ζ ∈ R, z > 0 and
(2.3) that

‖Sα,n(t, ς)v‖2

= ς2(α−1)
n∑

k=1

∣∣∣∣ Eγ
α(−λktα)

Eγ
α(−λkTα)

E1−γ
α (−λktα)

E1−γ
α (−λkTα)

Eγ
α,α(−λkςα)E1−γ

α,α (−λkςα)
∣∣∣∣
2

|(v, φk)|2

� c4
+

c2−
ς2(α−1)

n∑
k=1

(
1 + λkTα

1 + λktα

)2γ (1 + λkTα

1 + λkςα

)2−2γ

|(v, φk)|2

� c4
+

c2−
T 2αt−2αγς2(αγ−1)‖v‖2. (3.5)

Therefore, by the assumption of η ∈ (0, 1), we have

‖(Tα,nv)(t)‖ �
∫ T

0

‖Sα,n(t, T − τ)v(τ)‖dτ

� c2
+

c−
Tαt−η

∫ T

0

(T − τ)η−1‖v(τ)‖dτ

� c2
+π

c− sin(πη)
Tαt−η‖v‖X ,

(3.6)
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where we use B(η, 1 − η) = π/ sin(πη), and B(·, ·) is the Beta function.
To begin with, we deduce that limt→0+ tη(Tα,nv)(t) exists and is finite. In fact,

from (3.5), one can see that the representation

tηςα−1
n∑

k=1,k∈Π

Eα(−λktα)
Eα(−λkTα)

Eα,α(−λkςα)(v, φk)φk(x)

is integrable bounded for ς = T − τ with respect to a.e. τ ∈ [0, T ] on L2(Ω) which
implies that tηTα,n(t)v is uniformly bounded on L2(Ω). Let

Sα,n1(t, ς)v = ςα−1 Eα(−λktα)
Eα(−λkTα)

Eα,α(−λkςα)(v, φk).

It follows from the uniform continuity of Eα(−λktα) that Sα,n1(t, ς)v is also uni-
formly continuous for every k = 1, 2, . . . , n, k ∈ Π and all t ∈ (0, T ]. On the contrary,
we know∫ T

0

|Sα,n1(t, T − τ)v(τ)| dτ � c2
+

c−
t−ηTα

∫ T

0

(T − τ)α−1‖v(τ)‖dτ � c2
+

c−
t−ηTα‖v‖X .

Therefore, tηSα,n1(t, ·)v is uniformly bounded for t ∈ [0, T ], which deduce that
tηSα,n(t, ·)v is uniformly continuous for t ∈ (0, T ] and thus tηTα,n(t)v is uniformly
continuous for t ∈ (0, T ] which implies from (3.6) that limt→0+ tηTα,n(t)v exists and
is finite. Let z(0) := limt→0+ tη(Tα,nv)(t), hence we deduce z(0) is well-defined.

For any w ∈ Ur := {y ∈ C([0, T ];L2(Ω)) : ‖y‖C([0,T ];L2(Ω)) � r}, r > 0, set

v(t) = t−ηw(t), for t ∈ (0, T ].

Thus, v ∈ Ur. Define

(Tα,nw)(t) =

{
tη(Tα,nv)(t), for t ∈ (0, T ],

z(0), for t = 0.

Thenceforth, it remains to show that {Tα,nw : w ∈ Ur} is relatively compact.
Observe that, from (3.6), ‖Tα,nw‖C([0,T ];L2(Ω)) � c2

+Tαr/c−. Thus, we conclude
that the set Ur is uniformly bounded. In order to prove that the set {Tα,nw, w ∈ Ur}
is equicontinuous, we need to proof that Sα,n(t, ·) is continuous in the uniform
operator topology on L2(Ω) for all t > 0. For this purpose, we need to show the
compactness and strong continuity of this operator. By applying (2.3), for any
v ∈ L2(Ω) and any δ > 0 such that t ∈ [δ, T ], it follows that

‖Sα,n(t, ·)v‖2 � T 2(α−1)
n∑

k=1,k∈Π

c4
+

c2−

(
1 + λkTα

1 + λktα

)2

|(v, φk)|2 �
(

c2
+T 2α−1

c−δα

)2

‖v‖2.

(3.7)
By virtue of the range R(Sα,n(t, ·)v) finite, we thus conclude that the operator
Sα,n(t, ·) are compact operators on L2(Ω) for every n ∈ Π. In addition, in view of
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(3.4) and (3.7), for any v ∈ L2(Ω) and any δ > 0, for t1, t2 ∈ [δ, T ] with t1 < t2, we
get

‖Sα,n(t2, ·)v − Sα,n(t1, ·)v‖2

� c2
+T 2(α−1)

n∑
k=1,k∈Π

∣∣∣∣Eα(−λktα2 ) − Eα(−λktα1 )
Eα(−λkTα)

∣∣∣∣
2

|(v, φk)|2

� 2
(

c2
+T 2α−1

c−δα

)2

‖v‖2.

Therefore, in view of uniform continuity of Eα(−λktα), by applying the property of
series, we thus obtain

‖Sα,n(t2, ·)v − Sα,n(t1, ·)v‖ → 0 as t2 → t1,

which shows that Sα,n(t, ·)v are strong continuous for all t ∈ [δ, T ]. Consequently,
we conclude the desired proof.

Now, for t1 = 0, 0 < t2 � T , it is easy to see that

‖(Tα,nw)(t2) − (Tα,nw)(0)‖ → 0, as t2 → 0.

For any 0 < t1 < t2 � T , we have

‖(Tα,nw)(t2) − (Tα,nw)(t1)‖
= ‖tη2(Tα,nv)(t2) − tη1(Tα,nv)(t1)‖
� |tη2 − tη1 |‖(Tα,nv)(t2)‖ + tη1‖(Tα,nv)(t2) − (Tα,nv)(t1)‖
:= I1 + I2.

By the inequality aρ − bρ � (a − b)ρ for 0 < b < a and ρ ∈ [0, 1], obviously from
(3.6) and |tη2 − tη1 | � (t2 − t1)η, we get I1 → 0 as t2 → t1. As for I2, by virtue of the
continuity in the uniform operator topology of Sα,n(t, ·) for all t > 0, we obtain

‖(Tα,nw)(t2) − (Tα,nw)(t1)‖ �
∫ T

0

‖(Sα,n(t2, T − τ) − Sα,n(t1, T − τ))w(τ)‖dτ

� T 1−ηr

1 − η
sup

ς∈[0,T ]

‖Sα,n(t2, ς) − Sα,n(t1, ς)‖B(L2(Ω))

→ 0, as t2 → t1.

That means I2 → 0 as t2 → t1 which the right-hand side of the aforementioned
inequality tends to zero independently of w ∈ Ur. From above arguments, one
can easily deduce that the set {Tα,nw, w ∈ Ur} is equicontinuous. Thus, accord-
ing to Ascoli–Arzelà theorem, we conclude that operators Tα,n are compact on
C([0, T ];L2(Ω)) as well as operators Tα,n are compact on X.

Now, we prove that Tα,n converge uniformly to Tα whenever n tends to infinite.
Indeed, for any υ ∈ L2(Ω) and any γ ∈ (0, 1), by applying lemma 2.3 with respect
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to μ ∈ (0, 1) and ς = T − τ ∈ (0, T ], we first have

‖Sα,n(t, ς)υ − Sα(t) ◦ Pα(ς)υ‖2

� ς2(α−1)
∞∑

k=n+1

∣∣∣∣ Eα(−λktα)
Eα(−λkTα)

Eα,α(−λkςα)
∣∣∣∣
2

|(υ, φk)|2

� c4−2γ
+

c2−
T 2αt−2ης2(η−1)

∞∑
n=N+1

∣∣λ−μγ
k (λμ

kEα,α(−λkςα))γ
∣∣2 |(υ, φk)|2

� c6−2γ
+

c2−
T 2αt−2ης2(η−1)−2ημλ−2μγ

N+1 ‖υ‖2.

Therefore, for any v ∈ X, by Hölder inequality, we get

‖(Tαv)(t) − (Tα,nv)(t)‖ �
∫ T

0

‖(Sα,n(t, T − τ) − Sα(t) ◦ Pα(T − τ))v(τ)‖dτ

� c3−γ
+

c−
Tαt−ηλ−μγ

n+1

∫ T

0

(T − τ)η(1−μ)−1‖v(τ)‖dτ

� c3−γ
+

c−
Tα−ημt−ηλ−μγ

n+1B
(
η(1 − μ), 1 − η

)
‖v‖X ,

(3.8)
which implies that

‖Tαv − Tα,nv‖X � c3−γ
+

c−
Tα−ημλ−μγ

nN+1B
(
η(1 − μ), 1 − η

)
‖v‖X

Noting that, from the asymptotic property of the eigenvalue with λn+1 → ∞ as
n → ∞, we thus get Tα,nv → Tαv in X. It means that the operator Tα is a compact
operator from X into X.

To end this proof, we show that Tα is a continuous operator. In fact, let {vi}∞i=1 ⊂
Ur and v ∈ Ur with limi→∞ vi = v in Ur. Similarly to (3.5), it yields

‖Sα(t) ◦ Pα(ς)v‖ � c2
+

c−
Tαt−ηςη−1‖v‖. (3.9)

Hence, we get

‖Sα(t) ◦ Pα(T − τ)(vi(τ) − v(τ))‖2 � 2c2
+

c2−
Tαt−η(T − τ)η−1(‖vi(τ)‖2 + ‖v(τ)‖2),

which together Lebesgue’s dominated convergence theorem and the same way as in
arguments above, we get

‖(Tαvi)(t) − (Tαv)(t)‖ �
∫ T

0

‖Sα(t) ◦ Pα(T − τ)(vi(τ) − v(τ))‖dτ → 0,

as i → ∞.

Hence, Tαvi → Tαv as i → ∞. Then, Tα is continuous and we conclude that Tα is
completely continuous. The proof is completed. �
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Similarly to property 2 and lemma 3.2, it is not difficult to check the following
lemma.

Lemma 3.3. The operator Sα(t) is compact for every t ∈ (0, T ] and continuous in
the uniform operator topology on B(L2(Ω)) for all t ∈ (0, T ], and Pα(t) is compact
for every t � 0 and continuous in the uniform operator topology on B(L2(Ω)) for
all t � 0, respectively.

4. Existence and uniqueness results

In this section, the existence and uniqueness results of mild solutions for the present
problem are considered. To achieve this goal, we need the following assumption.

(Hf1) There exists a positive condition Lf such that f : (0, T ] × L2(Ω) → L2(Ω)
is continuous with respect to u and it is measurable with respect to t and satisfies

‖f(t, u)‖ � Lf‖u‖, ∀u ∈ L2(Ω).

Theorem 4.1. Let γ ∈ (0, 1
α ) and g ∈ H1−γ(Ω). Assume that (Hf1) holds. Then

problem (1.1) has at least one mild solution provided with

κ := c+LfTα−ηB(α, 1 − η) +
c2
+π

c− sin(πη)
LfTα � 1

2
.

Proof. For each r > 0, denote a set

Br = {u ∈ X : ‖u‖X � r}.

Clearly, Br is a bounded closed and convex subset of X. To achieve the aim of this
theorem, we need to show that the operator equation u = Fu has a solution in Br,
where F is defined as

(Fu)(t) = Sα(t)g − (Tαf)(t) + (Qαf)(t),

and Qα is defined by

(Qαf)(t) =
∫ t

0

Pα(t − τ)f(τ, u(τ)) dτ.

Claim I. The operator F : C((0, T ];L2(Ω)) → C((0, T ];L2(Ω)) is well-defined.
Indeed, from property 2, we know that Sα(t)g ∈ C((0, T ];L2(Ω)) for g ∈ L2(Ω) so it
is for g ∈ H1−γ(Ω). In view of lemma 3.2, we see that (Tαf)(t) ∈ C((0, T ];L2(Ω)).
From the assumption of f , for any t1, t2 ∈ [0, T ] with t1 < t2, it yields

‖(Qαf)(t2) − (Qαf)(t1)‖ �
∥∥∥∥
∫ t1

0

(Pα(t2 − τ) − Pα(t1 − τ))f(τ, u(τ)) dτ

∥∥∥∥
+
∥∥∥∥
∫ t2

t1

Pα(t2 − τ)f(τ, u(τ)) dτ

∥∥∥∥
:= J1 + J2.

https://doi.org/10.1017/prm.2021.70 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.70


1602 J. W. He and Y. Zhou

For J1, from lemma 3.3, we have

J1 �
∫ t1

0

‖(Pα(t2 − τ) − Pα(t1 − τ))u(τ)‖dτ

� Lf t1−η
1

1 − η
‖u‖X sup

τ∈[0,t1]

‖Pα(t2 − τ) − Pα(t1 − τ)‖B(L2(Ω)).

which implies that J1 → 0 as t2 → t1. As for J2, we have

J2 �
∫ t2

t1

(t2 − τ)α−1

√√√√ ∞∑
k=1,k∈Π

|Eα,α(−λk(t2 − τ)α)|2 |fk(τ, u(τ))|2dτ

� Lfc+

∫ t2

t1

(t2 − τ)α−1‖u(τ)‖dτ

� Lfc+

1 − η
‖u‖X(t2 − t1)α−η → 0, as t2 → t1.

Thus, Qαf ∈ C([0, T ];L2(Ω)). Combining with above arguments, for any u ∈
C((0, T ];L2(Ω)), we obtain Fu ∈ C((0, T ];L2(Ω)).

Claim II. The operator Fu ∈ Br for any u ∈ Br.
From the inequality (1 + a)b � 1 + ab and (1 + c)2 � 1 + c2 for a, c � 0 and b ∈

[0, 1], it is clear from lemma 2.3 and (2.3) that

‖Sα(t)g‖2 � c2
+

c2−

∞∑
k=1,k∈Π

(
1 + λkTα

1 + λktα

)2

|(g, φk)|2

� c2
+

c2−
T 2ηt−2η

∞∑
k=1,k∈Π

(
1 + λkTα

1 + λktα

)2(1−γ)

λ
−2(1−γ)
k λ

2(1−γ)
k |(g, φk)|2

� 2c2
+

c2−
T 2ηt−2η

∞∑
k=1,k∈Π

(
λ

2(1−γ)
k + T 2α(1−γ)

)
|(g, φk)|2.

The embedding H1−γ(Ω) ↪→ L2(Ω) implies

‖Sα(t)g‖ � CT t−η‖g‖H1−γ(Ω), (4.1)

where CT = c+

√
2C3(T η + Tα)/c− and C3 is a positive constant. Therefore, we

deduce that ‖Sα(·)g‖X � CT ‖g‖H1−γ(Ω).
It is similar to (3.6), for any u ∈ Br, that

‖(Tαf)(t)‖ � c2
+

c−
TαLf t−η

∫ T

0

(T − τ)η−1‖u(τ)‖dτ � c2
+π

c− sin(πη)
TαLf t−η‖u‖X ,

which deduces ‖Tαf‖X � c2
+LfTα r/c−. Moreover, from (2.3), we have

‖(Qαf)(t)‖ � c+Lf

∫ t

0

(t − τ)α−1‖u(τ)‖dτ � c+Lf tα−ηB(α, 1 − η) r.

https://doi.org/10.1017/prm.2021.70 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.70


On a backward problem for nonlinear time fractional wave equations 1603

Therefore, one can selected r large enough such that

CT ‖g‖H1−γ(Ω) +
c2
+π

c− sin(πη)
LfTαr + c+LfTαB(α, 1 − η)r � r,

and then we get

‖Fu‖X � ‖Sα(·)g‖X + ‖Tαf‖X + ‖Qαf‖X � r.

This implies that F(Br) ⊆ Br.

Claim III. Operator F is completely continuous.
Obviously, from lemmas 3.2 and 3.3, we just need to show that F is a completely

continuous operator. Indeed, by lemma 3.2, for every t ∈ [0, T ], it is sufficient to
prove that Qα is completely continuous in X. Since Pα(t) is compact for every
t ∈ [0, T ] in view of lemma 3.3, we can structure a family of finite dimension compact
operators as the same way in lemma 3.2 by

(Qα,nf)(t) =
∫ t

0

Pα,n(t − τ)f(τ, u(τ)) dτ,

for every n ∈ Π, in which

Pα,n(t)v = tα−1
n∑

k=1,k∈Π

Eα,α(−λktα)(v, φk)φk, v ∈ L2(Ω).

It is clear that the Hn(t) = {tη(Qα,nf)(t) : u ∈ Br} are relatively compact for every
t ∈ [0, T ].

On the contrary, applying lemma 2.3 with respect to μ ∈ (0, 1), and (2.3), we get

‖(Qαf)(t) − (Qα,nf)(t)‖ =
∥∥∥∥
∫ t

0

(Pα(t − τ) − Pα,n(t − τ))f(τ, u(τ)) dτ

∥∥∥∥
� c+Lfλ−μ

n+1

∫ t

0

(t − τ)α−1−αμ ‖u(τ)‖ dτ

� c+LfB(α(1 − μ), 1 − η)tα(1−μ)−ηλ−2μ
n+1 r,

which implies that ‖Qαf −Qα,nf‖X → 0, as n → ∞. Consequently, we derive that
set Hn(t) are arbitrarily close to the set H(t) = {tη(Qαf)(t) : u ∈ Br}. Thus, H(t)
is relatively compact in X for every t ∈ [0, T ]. Therefore, Qα is a compact operator.

Furthermore, by using the same ways as in claim I and lemma 3.2, one can check
that the set H(t) is equicontinuous. Next, we will show that Qα is continuous.

Let {um}∞m=1 ⊂ Br be a sequence and u ∈ Br such that limm→∞ um = u, hence
from the continuity assumption of f , it yields

lim
m→∞ f(t, um(t)) = f(t, u(t)), t ∈ (0, T ],

and

‖f(τ, um(τ)) − f(τ, u(τ))‖ � Lf‖um(τ)‖ + Lf‖u(τ)‖ � 2Lf t−η r,
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which makes that (t − τ)α−1τ−η ∈ L1(0, t) for a.e., τ ∈ (0, t). Therefore, Lebesgue’s
dominated convergence theorem implies

‖(Qαfm)(t) − (Qαf)(t)‖ =
∥∥∥∥
∫ t

0

Pα(t − τ)(f(τ, um(τ)) − f(τ, u(τ))) dτ

∥∥∥∥
� c+

∫ t

0

(t − τ)α−1 ‖f(τ, um(τ)) − f(τ, u(τ))‖ dτ

→ 0 as m → ∞.

Hence, ‖Qαfm −Qαf‖X → 0 as m → ∞ which shows that Qα is continuous, and
then operator F is also continuous. By Ascoli–Arzelà theorem, we know that F is
completely continuous. Consequently, Schauder’s fixed point theorem shows that F
has at least one fixed point on Br, and then problem (1.1) has a mild solution. The
proof is completed. �

Remark 4.2. Noting that the above existence result does not need to assume the
Lipschitz type condition or smoothness of nonlinear functions, that is, the assump-
tion condition of existence result is weaker than which in paper [5]. Specially, there
is a common technique to study a PDE by transforming it into an abstract differen-
tial equation, and the concept introduced of mild solutions will be more convenient
and useful to deal with such abstract problem. From this point of view, for an exis-
tence of nonlinear problem it is not necessary to assume that the function f has a
smoother requirement likely [1] where f is continuously differentiable.

Remark 4.3. If the following condition

‖f(t, u)‖ � L′
f‖u‖X , ∀u ∈ X, (4.2)

substitutes for f in (Hf1) for some constant L′
f > 0, then the operator Tα is also

completely continuous. Obviously, the above condition is stronger than the con-
dition (Hf1). However, we can pick a different range of η by η ∈ [1, α], that is
γ ∈ [ 1

α , 1]. By repeating the above proof process in theorem 4.1, we also establish
an existence result of mild solutions (see below). In addition, we also remark that
there exists a solution on Cα((0, T ];L2(Ω)) for η = α (γ = 1).

Theorem 4.4. Let γ ∈ [ 1
α , 1] and g ∈ H1−γ(Ω). Assume that (Hf1) holds with

respect to f satisfying (4.2). Then problem (1.1) has at least one mild solution
provided with

c2
+

c−η
L′

fT η+α + c+L′
fTα+η � 1

2
.

(Hf2) There exists a positive condition L′′
f such that f : (0, T ] × L2(Ω) → L2(Ω)

satisfies the following condition

‖f(t, u) − f(t, v)‖ � L′′
f‖u − v‖, ∀u, v ∈ X.

Theorem 4.5. Assume that the hypotheses of theorem 4.1 and (Hf2) hold. Then
problem (1.1) has a unique mild solution.
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Proof. The existence can be found in theorem 4.1, in the following, we will check
the uniqueness of solution. For any u, v ∈ X, similarly to (3.6), we have

‖(Fu)(t) − (Fv)(t)‖ =
∥∥∥∥
∫ t

0

Pα(t − τ)(f(τ, u(τ)) − f(τ, v(τ))) dτ

∥∥∥∥
+

∥∥∥∥∥
∫ T

0

Sα(t) ◦ Pα(T − τ)(f(τ, u(τ)) − f(τ, v(τ))) dτ

∥∥∥∥∥
� c+L′′

f

∫ t

0

(t − τ)α−1 ‖u(τ) − v(τ)‖ dτ

+
c2
+

c−
TαL′′

f t−η

∫ T

0

(T − τ)η−1 ‖u(τ) − v(τ)‖ dτ,

which implies that ‖Fu−Fv‖X �C ′
T ‖u− v‖X , where C ′

T = c+L′′
fTαB(α, 1− η) +

c2
+πL′′

f/(c− sin(πη)). Therefore, choosing L′′
f such that C ′

T � κ which given in
theorem 4.1, we deduce that F is a contraction operator. Thus, the uniqueness
of mild solution follows. �

(Hf3) There exist a positive constant p with p > max{1/η, 1} and a positive
function ϑ(·) ∈ Lp(0, T ) such that f : (0, T ] × L2(Ω) → L2(Ω) is continuous with
respect to u and it is measurable with respect to t and satisfies

‖f(t, u)‖ � ϑ(t), ∀u ∈ X, t ∈ (0, T ]. (4.3)

Theorem 4.6. Let g ∈ H1−γ(Ω) for γ ∈ (0, 1]. Assume that (Hf3) holds. Then prob-
lem (1.1) has at least one mild solution u ∈ Cη((0, T ];L2(Ω)) ∩ Lq(0, T ;L2(Ω)) for
1 < q < 1/η.

Proof. Let us return the proof of the compactness of Tα. By repeating the proving
process of lemma 3.2, there is a similar method to show that Tα,n converge uniformly
to Tα as n → ∞. Indeed, for any u ∈ L2(Ω), by applying lemma 2.3 with respect
to μ ∈ (0, 1 − (1/pη)), one can use the same way as in (3.8) that

‖(Tαf)(t) − (Tα,nf)(t)‖

� c2
+

c−
Tαt−ηλ−γμ

n+1

∫ T

0

(T − τ)η(1−μ)−1‖f(τ, u(τ))‖dτ

� c2
+

c−
Tαt−ηλ−γμ

n+1

∫ T

0

(T − τ)η(1−μ)−1ϑ(τ) dτ

� c2
+

c−

(
p − 1

ηp(1 − μ) − 1

)1−1/p

Tα+η(1−μ)−1/pt−ηλ−γμ
n+1‖ϑ‖Lp(0,T ),

(4.4)

which implies that ‖Tαf − Tα,nf‖X → 0 as n → ∞.
Next, we just show that the operator F maps Br into itself, the remains of the

proof of existence result similarly follows to theorem 4.1. In fact, we have for any

https://doi.org/10.1017/prm.2021.70 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.70


1606 J. W. He and Y. Zhou

u ∈ Br, in view of (3.9) it yields

‖(Tαf)(t)‖ � c2
+

c−
Tαt−η

∫ T

0

(T − τ)η−1ϑ(τ) dτ

� c2
+

c−

(
p − 1
ηp − 1

)1−1/p

Tα+η−1/pt−η‖ϑ‖Lp(0,T ).

(4.5)

Moreover, from (2.3), we get

‖(Qαf)(t)‖ � c+

∫ t

0

(t − τ)α−1ϑ(τ) dτ � c+tα−1/p‖ϑ‖Lp(0,T ). (4.6)

Therefore, one can select r large enough such that

CT ‖g‖Hs(1−γ)(Ω) +
c2
+

c−

(
p − 1
ηp − 1

)1−1/p

Tα+η−1/p‖ϑ‖Lp(0,T )

+ c+Tα+η−1/p‖ϑ‖Lp(0,T ) � r,

and then we get that F(Br) ⊆ Br.
Finally, we will check that u ∈ Lq(0, T ;L2(Ω)). In fact, one see from (2.3), the

assumptions of f , and (4.1), (4.5), (4.6) that

‖Sα(t)g‖Lq(0,T ;L2(Ω)) + ‖(Tαf)(t)‖Lq(0,T ;L2(Ω)) + ‖(Qαf)(t)‖Lq(0,T ;L2(Ω))

�
(

1
1 − ηq

)1/q (
CT T 1/q−η‖g‖H1−γ(Ω) + c+Tα+1/q−1/p‖ϑ‖Lp(0,T )

+
c2
+

c−

(
p − 1
ηp − 1

)1−1/p

Tα+1/q−1/p‖ϑ‖Lp(0,T )

)
< ∞,

which implies u ∈ Lq(0, T ;L2(Ω)). Hence, the proof is completed. �

(Hρ) There exists a positive function ρ(t) ∈ L1(0, T ) such that

Λρ :=
∫ T

0

(T − τ)−1ρ(τ) dτ < ∞.

Noting that this function of (Hρ) will exist, for example, ρ(t) = T − t for t ∈ (0, T ].

Theorem 4.7. Let g ∈ H1(Ω). Suppose that there exists a positive function ϑ(·)
satisfying (Hρ) such that f : (0, T ] × L2(Ω) → L2(Ω) is continuous with respect to
u and it is measurable with respect to t and satisfies (4.3). Then the mild solutions
belongs to C([0, T ];L2(Ω)) for some η ∈ (0, α).

Proof. According to the assumptions of f , it is not difficult to check that there
exists at least one mild solution u ∈ Cη((0, T ];L2(Ω)). In the sequel, we shall show
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u ∈ C([0, T ];L2(Ω)). Now, for any 0 � t1 < t2 � T , it follows that

‖u(t2) − u(t1)‖ � ‖Sα(t2)g − Sα(t1)g‖ + ‖(Tαf)(t1) − (Tαf)(t2)‖
+ ‖(Qαf)(t2) − (Qαf)(t1)‖.

(4.7)

Noting that if g ∈ H2(Ω), then by property 1, Sα(t)g is bounded in L2(Ω) for all
t ∈ [0, T ]. Hence, we first obtain that Sα(·)g ∈ C([0, T ];L2(Ω)).

On the contrary, by using (i) in lemma 2.2, we have

‖(Tαf)(t1) − (Tαf)(t2)‖ � c2
+

c−

∣∣∣∣
∫ t2

t1

zα−1−ηdz

∣∣∣∣
∫ T

0

(T − τ)η−1‖f(τ, u(τ))‖dτ

� c2
+

c−
1

α − η
(tα−η

2 − tα−η
1 )T ηΛϑ.

Next, we shall estimate the last case in (4.7). To begin with, by using (ii) in
lemma 2.2, it follows that

∥∥(Qαf)(t2) − (Qαf)(t1)
∥∥ � c+

∫ t2

t1

(t2 − s)α−1ϑ(τ)dτ

+ c+

∫ t1

0

∣∣∣∣
∫ t2−τ

t1−τ

zα−2dz

∣∣∣∣ϑ(τ) dτ

� c+α

α − 1
(t2 − t1)α−1‖ϑ‖L1(0,T ).

Thus, together with arguments above, let t2 → t1, it is clear that u(t2) → u(t1) in
L2(Ω).

Moreover, setting ς = T − τ , for any v ∈ L2(Ω) it yields

‖Sα(t) ◦ Pα(ς)v‖2 � c4
+

c2−
ς2(α−1)

∞∑
k=1,k∈Π

(
1 + λkTα

1 + λkςα

)2

|(v, φk)|2 � c4
+

c2−
T 2ας−2‖v‖2.

Therefore, we have

‖(Tαf)(t)‖ � c2
+

c−
Tα

∫ T

0

(T − τ)−1 ‖f(τ, u(τ))‖ dτ � c2
+

c−
TαΛϑ.

In addition, one has

‖(Qαf)(t)‖ � c+

∫ t

0

(t − τ)α−1ϑ(τ) dτ � c+TαΛϑ.

Consequently, we deduce that u ∈ C([0, T ];L2(Ω)). The proof is completed. �
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5. Regularization

Let R(ε, λk) be identity to

R(ε, λk) =
|Eα(−λkTα)|2

|Eα(−λkTα)|2 + ελ2
k

, ε > 0, k ∈ Π,

and let

Cε =

{
C1ε

σ/4, 0 < σ < 4,

C2ε, σ � 4.

where C1 = C(σ, c−), C2 = C(σ, c−, λ1) > 0 for σ > 0.
Since Sα(t) is not bounded linear operator on L2(Ω) at time t = 0, it means

that problem (1.1) is not stable on L∞(0, T ;L2(Ω)), and it can lead to the general
ill-posed problem, in the sequel, we define a family of regularizing operators Sε

α(t)
with the main idea of a general filter regularization method by

Sε
α(t)v =

∞∑
k=1,k∈Π

R(ε, λk)
Eα(−λktα)
Eα(−λkTα)

(v, φk)φk.

Then we can obtain the following regularized solution by the same way as in above
theorems

uε(t) = Sε
α(t)gε − (T ε

αf)(t,uε) + (Qαf)(t,uε),

where gε is a noisy final data and ε > 0 is a noise level which is assumed to satisfy

‖gε − g‖ � ε, (5.1)

and hence we can rewrite it as follows

uε(t, x) =
∞∑

k=1,k∈Π

R(ε, λk)
Eα(−λktα)
Eα(−λkTα)

gε
kφk(x)

−
∞∑

k=1,k∈Π

R(ε, λk)
Eα(−λktα)
Eα(−λkTα)

×
[ ∫ T

0

(T − τ)α−1Eα,α(−λk(T − τ)α)fk(τ,uε(τ)) dτ

]
φk(x)

+
∞∑

k=1,k∈Π

[ ∫ t

0

(t − τ)α−1Eα,α(−λk(T − τ)α)fk(τ,uε(τ)) dτ

]
φk(x).
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Let us introduce the function uα by

uα(t, x) =
∞∑

k=1,k∈Π

R(ε, λk)
Eα(−λktα)
Eα(−λkTα)

gkφk(x) −
∞∑

k=1,k∈Π

R(ε, λk)
Eα(−λktα)
Eα(−λkTα)

×
[∫ T

0

(T − τ)α−1Eα,α(−λk(T − τ)α)fk(τ, u(τ)) dτ

]
φk(x)

+
∞∑

k=1,k∈Π

[∫ t

0

(t − τ)α−1Eα,α(−λk(T − τ)α)fk(τ, u(τ)) dτ

]
φk(x).

Theorem 5.1. Assume that u(0) ∈ Hσ(Ω) for any σ > 0 and there exists a positive
constant M such that

‖u(0)‖Hσ(Ω) � M.

Furthermore, there exists a positive function ϑ(·) satisfying (Hρ) such that f is
continuous with respect to u and it is measurable with respect to t, satisfies (4.3)
and the following conditions

‖f(t, u) − f(t, v)‖ � ϑ(t)‖u − v‖, ∀u, v ∈ L2(Ω), t ∈ (0, T ].

If ( c2
+

c−
+ c+Tα)Λϑ < 1, then

‖uε − u‖L∞(0,T ;L2(Ω)) �
[
1 −

(
c2
+

c−
+ c+Tα

)
Λϑ

]−1 [
c3
+

√
ε

2c−
+ c+MCε

]
.

Proof. According to the assumption of f , it is easy to check that there is a unique
solution uε ∈ L∞(0, T ;L2(Ω)) and uε − u ∈ L∞(0, T ;L2(Ω)) for each ε > 0. In fact,
we only need to give an exact upper bound of ‖uε − u‖L∞(0,T ;L2(Ω)).

By the triangle inequality, we have

‖uε(t) − u(t)‖ � ‖uε(t) − uα(t)‖ + ‖uα(t) − u(t)‖.

First, we estimate ‖uε(t) − uα(t)‖.
Indeed, in view of the inequalities in lemma 2.5, we have

1
|Eα(−λkTα)|2 + ελ2

k

� 1
c2−/λ2

k + ελ2
k

� 1
2c−

√
ε
.

Thus, by virtue of inequality z/(z + a) � 1 for any z, a � 0, it yields that

|R(ε, λk)| � 1,

∣∣∣∣R(ε, λk)
Eα(−λktα)
Eα(−λkTα)

∣∣∣∣ � c3
+

2c−
√

ε
,
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which implies from the assumption of f and (5.1) that

‖uε(t) − uα(t)‖ � c3
+

2c−
√

ε
‖gε − g‖ +

c2
+

c−

∫ T

0

(T − τ)−1‖f(τ,uε(τ)) − f(τ, u(τ))‖dτ

+ c+

∫ t

0

(t − τ)α−1‖f(τ,uε(τ)) − f(τ, u(τ))‖dτ

� c3
+

2c−
√

ε
‖gε − g‖ +

c2
+

c−

∫ T

0

(T − τ)−1ϑ(τ)‖uε(τ) − u(τ)‖dτ

+ c+

∫ t

0

(t − τ)α−1ϑ(τ)‖uε(τ) − u(τ)‖dτ

� c3
+

√
ε

2c−
+
(

c2
+

c−
+ c+Tα

)
Λϑ‖uε − u‖L∞(0,T ;L2(Ω)).

Next, we estimate ‖uα(t) − u(t)‖.
Obviously, let us return the initial value uk(0), it yields

‖uα(t) − u(t)‖ =

√√√√ ∞∑
k=1,k∈Π

∣∣∣∣(R(ε, λk) − 1)
Eα(−λktα)
Eα(−λkTα)

∣∣∣∣

×
[
hk −

∫ T

0

(T − τ)α−1Eα,α(−λk(T − τ)α)fk(τ, u(τ)) dτ

]

� c+

√√√√ ∞∑
k=1,k∈Π

∣∣∣∣ ελ2
k

|Eα(−λkTα)|2 + ελ2
k

∣∣∣∣
2

(u(0), φk)2

� c+ sup
k∈N∩Π

A(k)‖u(0)‖Hσ(Ω),

where

A(k) =
ελ2−σ

k

|Eα(−λkTα)|2 + ελ2
k

.

It follows from [21, lemma 2.5] and lemma 2.5 that

A(k) � ελ4−σ
k

c2− + ελ4
k

�
{

C1 εσ/4, 0 < σ < 4,

C2 ε, σ � 4.

Therefore, we have

‖uε − u‖L∞(0,T ;L2(Ω)) � c3
+

√
ε

2c−
+
(

c2
+

c−
+ c+Tα

)
Λϑ‖uε − u‖L∞(0,T ;L2(Ω))

+ c+MCε.

Consequently, since (c2
+/c− + c+Tα)Λϑ < 1, we deduce the desired conclusion. �
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