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We present a numerical analysis of the rheology of a dense suspension of spherical
capsules in simple shear flow in the Stokes flow regime. The behaviour of
neo-Hookean capsules is simulated for a volume fraction up to φ = 0.4 by graphics
processing unit computing based on the boundary element method with a multipole
expansion. To describe the specific viscosity using a polynomial equation of the
volume fraction, the coefficients of the equation are calculated by least-squares fitting.
The results suggest that the effect of higher-order terms is much smaller for capsule
suspensions than rigid sphere suspensions; for example, O(φ3) terms account for only
8 % of the specific viscosity even at φ= 0.4 for capillary numbers Ca> 0.1. We also
investigate the relationship between the deformation and orientation of the capsules
and the suspension rheology. When the volume fraction increases, the deformation of
the capsules increases while the orientation angle of the capsules with respect to the
flow direction decreases. Therefore, both the specific viscosity and the normal stress
difference increase with volume fraction due to the increased deformation, whereas
the decreased orientation angle suppresses the specific viscosity, but amplifies the
normal stress difference.
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1. Introduction

Predicting the rheology of capsule suspensions is of practical importance in a
wide range of medical and engineering applications. The specific viscosity of
particle suspensions increases linearly with the volume fraction of particles for
dilute suspensions. For rigid sphere suspensions, the specific viscosity is given
by µsp = 2.5φ, where φ is the volume fraction (Einstein 1906). The specific
viscosity of a dilute suspension of capsules was derived by Barthès-Biesel &
Rallison (1981) and Barthès-Biesel & Chhim (1981), under the assumption of
small deformation. Second-order theory (Barthès-Biesel & Chhim 1981) predicted
the shear-thinning behaviour of the shear viscosity. Such a shear-thinning behaviour
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has also been confirmed for large deformations by numerical simulations (Pozrikidis
1995; Ramanujan & Pozrikidis 1998; Bagchi & Kalluri 2010; Clausen & Aidun
2010). Ramanujan & Pozrikidis (1998) investigated the effect of internal viscosity
(the viscosity ratio between the internal and external liquids, λ) and found that
the shear viscosity reaches a minimum at an intermediate value of λ. Bagchi &
Kalluri (2010) extended this study to a large parameter space and showed that such a
minimum shear stress is caused by the interplay of elastic and viscous contributions.
They also explained that a smaller elastic contribution at larger viscosity ratio results
from smaller deformation and lower orientation of each capsule. Whereas the first
normal stress difference is zero for dilute suspensions of rigid spheres, a positive
value is predicted for that of capsule suspensions in the theoretical and numerical
studies mentioned above.

Although until recently there have been few numerical simulations of dense
capsule suspensions due to high computational costs, several groups have successfully
simulated a few hundred capsules using advanced computer architectures and methods
(Clausen, Reasor & Aidun 2010; Veerapaneni et al. 2011; Matsunaga et al. 2014).
Clausen, Reasor & Aidun (2011) first analysed the rheology of dense capsule
suspensions with a volume fraction up to 0.4. The specific viscosity increases
nonlinearly with volume fraction, similar to rigid spheres (Krieger & Dougherty
1959; Batchelor & Green 1972) and drops (Loewenberg & Hinch 1996; Zinchenko
& Davis 2000). They showed that the shear-thinning behaviour of the shear viscosity
is pronounced in high volume fractions. In the case of rigid spheres, the anisotropy
in the particle configuration results in a negative value for the first normal stress
difference for dense suspensions. However, due to the capsule orientation in the flow
direction, capsule suspensions still have a positive first normal stress difference for
dense suspensions, similar to drops (Loewenberg & Hinch 1996; Zinchenko & Davis
2000). More recently, other numerical studies on dense suspensions have also been
reported, for example, the self-diffusion of spherical capsules (Tan, Le & Chiam 2012)
and the transition from tumbling to tank-treading motion of red blood cells (Kruger
et al. 2013). Gross, Kruger & Varnik (2014) simulated suspensions of red blood
cells with a volume fraction up to 0.9, and demonstrated that the shear viscosity is
insensitive to the tumbling-to-tank-treading transition of the cells. They also proposed
a semi-empirical equation to predict the shear stress of red blood cell suspensions,
taking jamming and confinement effects into account.

For dense suspensions of rigid particles, linear or quadratic equations (Einstein
1906; Batchelor & Green 1972) fail to predict the viscosity of suspensions even at
relatively small volume fractions, and empirical equations have been proposed (Krieger
& Dougherty 1959). However, it remains unclear whether high-order effects are still
large even if particles have deformability. The first objective of this study is to clarify
the effects of the first-, second- and higher-order terms on the specific viscosity and
the normal stress difference. We simulate a dense suspension of spherical capsules in
simple shear flow in the Stokes flow regime. The behaviour of neo-Hookean capsules
is simulated for a volume fraction up to 0.4 by the boundary element method with
multipole expansion. The second objective is to clarify the relationship between the
deformation and orientation of capsules and the bulk suspension rheology. Because
of hydrodynamic interaction between capsules, the extent of deformation and the
orientation of each capsule changes with the volume fraction, and both of them affect
the suspension rheology. We quantify the effects of these factors on the specific
viscosity and the normal stress difference using the stresslet tensor.
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2. Problem statement
Consider M capsules with radius a suspended in a triply periodic flow field under

simple shear flow of shear rate γ̇ . Both the internal and external fluids of the
capsules have equal viscosity µ and density ρ. The capsule membrane is modelled as
a hyperelastic sheet, with a surface shear elastic modulus Gs and negligible bending
resistance. The particle Reynolds number Rep= ργ̇ a2/µ is assumed to be sufficiently
small to treat the velocity field as a Stokes flow. The capillary number is defined as

Ca= µγ̇ a
Gs

, (2.1)

to describe the strength of the viscous force compared with the elastic stiffness of the
capsule membrane.

2.1. Fluid mechanics
The velocity of the Stokes flow at a given observation point x is described by the
boundary integral formulation (Pozrikidis 1992):

v(x)= v∞(x)− 1
8πµ

M∑
m

∫
Am

JE
· q(y) dA(y), (2.2)

where v∞ is the undisturbed flow, A is the capsule surface, and q is the traction jump
across the membrane. JE is the Green’s function over a triply periodic lattice, derived
by Beenakker (1986) as

JE
ij =

∑
γ

JEI
ij (rγ )+

8π

V

∑
λ 6=0

JEII
ij (kλ), (2.3)

JEI
ij =

δij

r
E1 + rirj

r3
E2, (2.4)

JEII
ij =

(
δij

k2
− kikj

k4

)(
1+ k2

4ξ 2
+ k4

8ξ 4

)
exp

(
− k2

4ξ 2

)
cos(k · r), (2.5)

and

E1 = erfc(ξr)+ exp(−ξ 2r2)√
π

(4ξ 3r3 − 6ξr), (2.6)

E2 = erfc(ξr)+ exp(−ξ 2r2)√
π

(2ξr− 4ξ 3r3). (2.7)

Here, γ is the index of periodic boxes, λ is the index of reciprocal vectors, ξ is the
convergence parameter, V is the volume of the unit lattice, k is the reciprocal vector,
r = x − y is the vector from the source point y to the observation point x, k = |k|,
and r= |r|.

2.2. Membrane mechanics
The membrane is modelled as an isotropic and hyperelastic material that follows the
neo-Hookean constitutive law. The surface deformation gradient tensor F s is given by

dx= F s · dX, (2.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

66
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.666


Rheology of a dense suspension of spherical capsules under shear 113

where X and x are the membrane material points of the reference and deformed states,
respectively. The Cauchy stress tensor T is

T = 1
Js

F s ·
∂ws

∂e
· F T

s , (2.9)

where Js = λ1λ2 represents the area dilation ratio, e is the Green–Lagrange strain
tensor,

e= 1
2

(
F T

s · F s − I s
)
, (2.10)

and I s is the surface identity tensor. The strain energy function ws of the neo-Hookean
constitutive law is

ws = Gs

2

(
λ2

1 + λ2
2 − 3+ 1

λ2
1λ

2
2

)
, (2.11)

where Gs is the surface shear elastic modulus, and λ1 and λ2 are the principal
extension ratios (Pozrikidis 2003).

3. Numerical method
We use a numerical method developed by Walter et al. (2010), in which the

boundary element method for fluid mechanics is coupled with the finite element
method for membrane mechanics. An unstructured triangular mesh generated by
recursive subdivision of an icosahedron is used to discretise a single capsule
membrane.

The weak form of the equilibrium condition on the capsule,∫
A

û · q dA=
∫

A
ε̂ : T da, (3.1)

is solved by the finite element method, where û is the virtual displacement, and ε̂ is
the virtual strain.

Equation (2.2) is solved by the boundary element method with the multipole
expansion. The Gaussian quadrature method is used to compute the surface integrals in
the boundary element method. For singular elements, polar coordinates are introduced
to remove the 1/r singularity (Pozrikidis 1995). The velocity of the material point of
the membrane is given by the kinematic condition:

dx
dt
= v(x). (3.2)

The explicit second-order Runge–Kutta method is used to update the position. A
volume constraint (Freund 2007) is implemented in order to avoid the accumulation
of a small error in the volume. In our simulation, the volume error is always
kept to less than 1.0 × 10−3 %. Graphics processing unit (GPU) computing is also
utilised to accelerate the computation by 10–100 fold compared with that provided
by conventional CPU computing (Matsunaga et al. 2014).

3.1. Multipole expansion
Although a fine mesh (computational mesh with sufficiently small size of elements) is
required for resolving the disturbed velocity generated by near-field forces, the velocity
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due to far-field forces can be coarse-grained using a multipole expansion (Durlofsky &
Brady 1989; Pozrikidis 1992) or fast multipole method (Greengard & Rokhlin 1987;
Ying, Biros & Zorin 2004). In this study, we used multipole expansion with patches
consisting of a group of elements (Zinchenko & Davis 2005).

When the membrane of a capsule is composed of P patches, (2.2) is rewritten as

vi(x)= vi
∞(x)− 1

8πµ

M∑
m

P∑
p

{
JE

ijF
mp
j + RE

ijL
mp
j +KE

ijkS
mp
jk +O(r−3)

}
, (3.3)

Fmp
i =

∫
Amp

qi(y) dA(y), (3.4)

Lmp
i =

∫
Amp
εijkr̂jqk dA(y), (3.5)

Smp
ij =

1
2

∫
Amp

{
r̂iqj(y)+ r̂jqi(y)− 2

3
δijr̂kqk(y)

}
dA(y), (3.6)

where Fmp is the point force, Lmp is the torque, Smp is the stresslet, Amp is the surface
area of the pth patch of the mth capsule, and r̂ is the vector from the centre of patch
p to the observation point x. The two propagators are given by

RE
ij = 1

4εkjl(∇kJ
E
ij −∇kJ

E
ij), (3.7)

KE
ijk = 1

2

(∇kJ
E
ij +∇jJ

E
ik

)
. (3.8)

In this study, the fine mesh was constructed of 5120 triangular elements (2562
nodes) and a mesh convergence test is given in the appendix, § A.1. A patch consisted
of a group of triangular elements; for example, a patch has 5120/80 = 64 elements
when P = 80. We investigate the accuracy of the multipole expansion to determine
the level of coarse-graining. For this test problem, the velocity generated by a single
capsule is computed under simple shear flow, where x1 is the flow direction, x2 is the
vorticity direction and x3 is the velocity gradient direction. The velocity observation
points are placed at distances of r/a away from the capsule centroid in the x1-, x2-,
and x3-directions. The reference solution of the disturbed velocity due to a capsule is
given by

v
ref
i =−

1
8πµ

∫
A

J ijqj dA, (3.9)

where J is the free-space Green’s function. The reference solution is computed with
an integral of 5120 fine elements using the Gaussian quadrature method. The reference
velocity is compared with the coarse-grained solution:

v
cg
i =−

1
8πµ

P∑
p

{
J ijF

p
j + RijL

p
j +KijkS

p
jk

}
, (3.10)

for different numbers of patches from 1 (the point stresslet) to 1280. The error is
defined by

ε= |v
cg − vref |
|vref | . (3.11)
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FIGURE 1. Error arising from the multipole expansion as a function of the distance from
the centre of a capsule. The motion of a capsule in simple shear flow is simulated for
capillary number (a) Ca= 0.1 and (b) 0.5.

Figure 1 shows the average error for the three directions, as a function of the
non-dimensional distance r/a. Because the magnitude of the disturbed velocity |v|
decays as O(r−2) and |vcg − vref | ≈ O(r−3), the error decays as O(r−1). For the
efficiency of the computation, the fine-mesh integral of 5120 elements using the
Gaussian quadrature method is performed for r/a< 3, and the coarse-grained integral
is set such that ε is less than 1.0× 10−2 as follows:

P=
{

80 (3 6 r/a< 10)

20 (10 6 r/a).
(3.12)

4. Results
We examine volume fractions up to φ= 0.4, and six values of the capillary number

from Ca= 0.1 to 0.6. There are M = 100 capsules per original unit domain, and the
size of the domain is varied to give a specified volume fraction (figure 2). Effects of
the capsule initial positions and the number of capsules per unit domain are evaluated
in §§ A.2 and A.3. A single capsule under unbounded shear flow is also simulated as
the dilute limit (φ� 1).

4.1. Deformation and orientation
The effect of the volume fraction on the deformation of capsules is quantified by the
ensemble average of the Taylor parameter,

〈D〉 = 1
NM

N∑
n

M∑
m

Dn
m, (4.1)

where N and M are the number of time steps and capsules, respectively, and D is the
Taylor parameter,

D= |L1 − L2|
L1 + L2

, (4.2)

where L1 and L2 are the lengths of the major and minor axes of the deformed capsule.
The time average starts after non-dimensional time γ̇ t = 10 to exclude the transient
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(a) (b)

(c) (d )

FIGURE 2. Snapshots of numerical results for the volume fraction (a) φ= 0.10, (b) 0.20,
(c) 0.30, and (d) 0.40. The capillary number is Ca= 0.3. Bright cubic regions show the
original unit domain, and the dark region shows Ewald periodic images. Note that periodic
boxes around the original domain are moving with the applied shear.
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FIGURE 3. (a) Ensemble average of Taylor parameter D and its slope, and (b) its standard
deviation σD, as a function of the volume fraction φ, where φ = 0 represents the dilute
limit.

phase, and stops at γ̇ t = 100. Note that ensemble averages of other variables are
calculated in a similar manner.

Figure 3 shows that the deformation increases as the volume fraction increases
for all capillary numbers. This trend is qualitatively similar to two-dimensional (Li,
Charles & Pozrikidis 1996) and three-dimensional (Loewenberg & Hinch 1996)
analyses of drop suspensions. Capsules at φ = 0.3 deform 5 % (Ca = 0.5) and 38 %
(Ca= 0.1) more than those at the dilute limit. Due to the complex interaction between
the capsules, each capsule has a different instantaneous deformation compared with
the others, resulting in a larger deviation for larger volume fractions. Also, note that
the Taylor parameter can be predicted by a linear function in the volume fraction
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FIGURE 4. (a) Ensemble average of the orientation angle θD and it slope, and (b) its
standard deviation σθD as a function of the volume fraction φ.

range and for the capillary number considered; the lower capillary number has a
larger slope.

The ensemble average of the capsule orientation angle θD and its standard deviation
σθD is presented in figure 4, where θD is defined as the angle between the major
principal axis of the capsule and the flow direction x1. The orientation angle decreases
as the volume fraction increases, and exhibits a 3.0◦–4.0◦ smaller angle than the dilute
limit for φ = 0.30. This trend is qualitatively similar to capsule suspensions (Clausen
et al. 2011), vesicle suspensions (Zhao & Shaqfeh 2013) and drop suspensions (Li
et al. 1996; Loewenberg & Hinch 1996). The change in the orientation angle is a
nearly linear function of the volume fraction for the conditions considered.

4.2. Viscosity and normal stress difference

Stress due to the presence of capsules is evaluated using a particle stress tensor Σ (p)

(Batchelor 1970):

Σ (p) = nc〈S〉, (4.3)

S =
∫

A

1
2
(x⊗ q + q⊗ x) dA, (4.4)

where nc is the number density of capsules, and S is the stresslet. The specific
viscosity µsp measures the increase in viscosity due to the particle shear stress Σ (p)

12 :

µsp = Σ
(p)
12

µγ̇
= 3φ

4πCa
〈S12〉
Gsa2

. (4.5)

Figure 5(a) shows that the specific viscosity increases nonlinearly with the volume
fraction. The specific viscosity of particulate suspensions is often described by a
polynomial equation of the volume fraction φ as

µsp = a1φ + a2φ
2 + a3φ

3 + · · · , (4.6)

where ai is the coefficient of the ith-order term. For instance, Einstein (1906) derived
the first coefficient as a1= 2.5 for a dilute suspension of rigid spheres, and Batchelor
& Green (1972) extended the polynomial to the semi-dilute suspension.
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FIGURE 5. (a) Specific viscosity µsp as a function of the volume fraction φ. The grey
dotted lines represent a1φ + a2φ

2, and the black solid line is the specific viscosity of a
rigid sphere suspension (Krieger & Dougherty 1959). (b) The coefficients ai of polynomial
equation (4.6) as a function of the capillary number Ca.

The coefficients a1 and a2 evaluated for capsule suspensions are shown in
figure 5(b). The first coefficient is obtained from the results of the dilute limit,
whereas the second coefficient is given by a least-squares fitting to plots of
(µsp− a1φ). We tested the least-squares fitting for different ranges of volume fraction,
and confirmed that a2 converged well when we set the range as 0 6 φ 6 0.10. The
results are compared with an empirical expression for the suspension of rigid spheres
(Krieger & Dougherty 1959):

µsp(φ)=
(

1− φ

φm

)−2.5φm

− 1, (4.7)

where φm is the maximum packing fraction, and a Taylor series expansion around
φ = 0 gives

ai =
i∏

n=1

{
1
n

(
5
2
+ n− 1

φm

)}
, (4.8)

where
∏

is the product operator. When the maximum packing fraction is assumed
to be φm = 0.63 for random close packing (Onoda & Liniger 1990), the coefficients
for rigid sphere suspensions are given by a1 = 2.5 and a2 ≈ 5.1. Figure 5(b) shows
that the coefficients a1 and a2 become smaller for a larger capillary number, and a2
decreases more rapidly than a1.

To clarify the effects of the first-, second- and higher-order terms O(φ3) on the
specific viscosity, a1φ and (a1φ + a2φ

2) are shown in figure 6. The contribution of
the low-order terms is significantly larger for capsule suspensions than rigid sphere
suspensions, and a larger contribution is found for a higher capillary number. In
addition, the a1φ term accounts for a larger percentage for a higher capillary number.
In the case of rigid sphere suspensions, the effect of O(φ3) terms cannot be ignored
even for a low volume fraction; for example, O(φ3) terms account for approximately
15 % and 50 % of µsp at φ = 0.2 and 0.4, respectively. For capsule suspensions,
however, the effect of O(φ3) terms is much smaller; for example, the percentages
of O(φ3) terms are approximately 2 % and 8 % at φ = 0.2 and φ = 0.4 even for the
lowest capillary number examined, Ca = 0.1. Higher-order effect could be ignored
even for a dense suspension when the capillary number is sufficiently high.
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FIGURE 6. Ratios of (a) a1φ and (b) a1φ + a2φ
2 to the specific viscosity µsp.

We also analysed the normal stress difference. The first and second normal stress
differences are defined by

N1

µγ̇
= Σ

(p)
11 −Σ (p)

22

µγ̇
= 3φ

4πCa
〈S11 − S22〉

Gsa2
, (4.9)

N2

µγ̇
= Σ

(p)
22 −Σ (p)

33

µγ̇
= 3φ

4πCa
〈S22 − S33〉

Gsa2
. (4.10)

The results for the normal stress difference are shown in figure 7. The first normal
stress difference N1 increases, while the second normal stress difference N2 is negative
and its magnitude increases with the volume fraction. This trend is similar to that
observed in previous studies of capsule (Clausen et al. 2011), vesicle (Zhao &
Shaqfeh 2013) and drop (Loewenberg & Hinch 1996) suspensions. When figure 7(c)
is compared with figure 5(a), it is found that a higher capillary number case has a
lower viscosity but a higher first normal stress difference. This is likely to be due
to the orientation of capsules: for higher capillary number, the orientation angle of
capsules to the flow direction tends to be smaller, resulting in lower shear stress but
higher anisotropy.

Using the same procedure as for the specific viscosity, the coefficients of the
polynomial equation,

N1

µγ̇
= b1φ + b2φ

2 + b3φ
3 + · · · , (4.11)

are calculated as shown in figure 7(d), and the effects of b1φ, b2φ
2 and O(φ3) are

presented in figure 8. The contribution of the b1φ and b2φ
2 terms is larger for higher

capillary number. When the higher-order effect for µsp and N1 is compared, the ratio
of O(φ3) terms to N1/µγ̇ increases with the volume fraction more rapidly than µsp.
The effects of O(φ3) terms for N1 are approximately 5 % and 19 % at φ = 0.2 and
φ= 0.4, respectively for Ca= 0.1, which is a few times larger than that for µsp. This
is also a consequence of the orientation of capsules.

4.3. Relationship between the deformation and orientation and the suspension
rheology

The shear viscosity and the normal stress difference of a rigid particle suspension are
often discussed using the microstructure of the suspension (Guazzelli & Morris 2012).
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FIGURE 7. Normal stress differences: (a) first normal stress difference N1/µγ̇ and (b)
second normal stress difference N2/µγ̇ , as a function of the capillary number Ca. (c) N1
as a function of volume fraction. (d) The coefficient bi of polynomial equation (4.11) as
a function of Ca.
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FIGURE 8. Ratios of (a) b1φ and (b) (b1φ + b2φ
2) to the first normal stress difference

N1/µγ̇ .

However, in the case of capsule suspensions, the microstructure is greatly affected
by the deformation and orientation of the capsules (Clausen et al. 2011). Here, we
discuss the relationship between the deformation and orientation and the suspension
rheology.
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When the volume fraction of capsules increases, the deformation of the capsules
increases while their orientation angle with respect to the flow direction decreases.
The increase in the deformation amplifies the amplitude of the particle stress, and
both the specific viscosity and the first normal stress difference increase with the
volume fraction. The decrease in the orientation angle changes the anisotropy of the
suspension, which suppresses the specific viscosity, but further amplifies the first
normal stress difference. To quantify the relationship between the deformation and
orientation of capsules and the suspension rheology, we analyse the stresslet tensor S.

By definition, the specific viscosity is proportional to the shear component of
the stresslet tensor 〈S12〉, and the normal stress difference N1 is proportional to
the difference in the normal components 〈S11 − S22〉. At the dilute limit, the stresslet
tensor of each capsule has two eigenvalues in the shear plane and one on the vorticity
axis. From the coordinate transformation using the eigenvalues, S12 and S11− S22 are
given by

S12 = 1
2(S1 − S2) sin 2θS, (4.12)

S11 − S22 = (S1 − S2) cos 2θS, (4.13)

where S1 and S2 are the eigenvalues (the principal stresslets) in the shear plane, and
θS is the orientation angle of the stresslet, defined as the angle between the eigenvector
of S1 and x1. The principal stresslet difference S1− S2 represents the strength of the
stresslet in the shear plane. Equations (4.12) and (4.13) may be valid only for dilute
suspensions, because the principal axis of the stresslet tensor of each capsule does not
lie in the shear plane for dense suspensions. However, for the ensemble average of the
stresslets the following approximations are applicable:

〈S12〉 ≈ 1
2 〈S1 − S2〉 sin 2〈θS〉, (4.14)

〈S11 − S22〉 ≈ 〈S1 − S2〉 cos 2〈θS〉. (4.15)

Figures 9(a) and 9(b) confirm that approximations (4.14) and (4.15) can be used for
our analysis.

When the viscosity ratio λ= 1, the principal stresslet difference is associated with
the deformation of the capsules. As shown in figure 9(c), the ensemble average of the
principal stresslet difference increases nonlinearly with that of the Taylor parameter,
and almost the same relationship holds as in the dilute limit. The orientation angle of
the stresslet tensor θS is also associated with that of the deformation θD (figure 9d),
where the two angles will be identical when the deformed shape becomes a perfect
ellipsoid.

The values of 〈S12〉 and 〈S11 − S22〉 are presented in figures 10(a) and 10(b) as a
function of the volume fraction. As discussed in § 4.2, the effect of higher-order terms
on the specific viscosity is small in the conditions examined, and the normal stresslet
difference N1 increases more rapidly than the specific viscosity. 〈S12〉 and 〈S11− S22〉
show the same trend as the specific viscosity and the normal stress difference.

Because the deformation of capsules becomes larger for higher volume fractions,
the principal stresslet difference 〈S1 − S2〉 is also larger for higher volume fractions
as shown in figure 10(c). Although the Taylor parameter increases linearly with
the volume fraction for the conditions examined, the principal stresslet difference
increases nonlinearly with the volume fraction due to the response of the stresslet to
the deformation shown in figure 9(c). The orientation angle of the capsules to the
flow direction decreases with the volume fraction. Because sin〈2θS〉 becomes smaller,
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FIGURE 9. Comparison of the left- and right-hand sides of (a) equation (4.12) and (b)
equation (4.13). Filled symbols show the dilute limit, and arrows indicate the direction
from small to large volume fraction. (c) Principal stresslet difference S1−S2 as a function
of the Taylor parameter D, and (d) comparison of the two orientation angles θD and θS.

whereas cos〈2θS〉 is larger, the decrease in the orientation angle has contrasting effects
on 〈S12〉 and 〈S11 − S22〉. Figure 10(d) shows that a decrease in sin〈2θS〉 suppresses
〈S12〉. On the other hand, an increase in cos〈2θS〉 amplifies 〈S1 − S2〉, as shown in
figure 10(e); therefore, 〈S11 − S22〉 increases with the volume fraction more rapidly
than the specific viscosity.

5. Conclusion

The rheology of a dense suspension of spherical capsules was investigated in
simple shear flow in the Stokes flow regime. First, the deformation and orientation of
the capsules were analysed. The Taylor parameter increases almost linearly with the
volume fraction for the conditions examined, Ca 6 0.6 and φ 6 0.4. The orientation
angle of the capsules with respect to the flow direction decreases almost linearly
with the volume fraction. Second, we evaluated the specific viscosity and normal
stress difference. To describe the specific viscosity by a polynomial equation of the
volume fraction, the coefficients of the equation are calculated using least-squares
fitting. The results suggest that the effect of higher-order terms is much smaller for
capsule suspensions than rigid sphere suspensions. It is also found that the normal
stress difference varies more rapidly with volume fraction than the specific viscosity.
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FIGURE 10. (a) Stresslet S12 and (b) normal stresslet difference S11−S22 as a function of
volume fraction. Grey dotted lines represent 1+ (a2/a1)φ and 1+ (b2/b1)φ. (c) Principal
stresslet difference S1 − S2, (d) sin 2θS and (e) cos 2θS as functions of φ. Note that the
superscript sol indicates the dilute limit.

To quantify the relationship between the deformation and orientation of the capsules
and the suspension rheology, we analysed the behaviour of the stresslet tensor. The
principal stresslet difference increases with increasing deformation of the capsules, and
the principal direction of the stresslet changes as the orientation angle of the capsules
decreases. Therefore, both the specific viscosity and the normal stress difference
increase with the volume fraction in response to the increased deformation, whereas
the decreased orientation angle suppresses the specific viscosity, but amplifies the
normal stress difference. Similar behaviour of the stresslet tensor is also expected for
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NE 〈D〉 εD µsp εµ

320 0.37181 0.0206 0.80256 0.0184
1280 0.37837 0.0033 0.81597 0.0020
5120 (case 1) 0.37958 0.0002 0.81782 0.0002
5120 (case 2) 0.38009 0.0012 0.81919 0.0019
5120 (case 3) 0.37927 0.0010 0.81586 0.0022
5120 (average): reference 0.37964 — 0.81762 —

TABLE 1. Effect of the number of elements per a capsule NE on the Taylor parameter
〈D〉 and the specific viscosity µsp, where εD and εµ are the errors defined by (A 1) and
(A 2), respectively. The parameters are Ca= 0.2, φ = 0.3.

other types of deformable particle suspensions. Hence, it is important to consider the
effect of particle interactions on the deformation and orientation of the particles.

Appendix A. Numerical setup
In order to obtain a proper numerical setup, we checked the effects of the mesh

size, the initial positions of capsules, and the number of capsules per unit domain.
We compared the Taylor parameter D12 and the specific viscosity µsp for Ca = 0.2
and φ= 0.3. The number of elements per a capsule is NE = 5120, and the number of
capsules per unit domain is M = 100 unless otherwise noted.

A.1. Effect of mesh size
We simulated several cases with a different number of elements, NE = 320, 1280 and
5120. For NE = 5120, three cases with different initial positions were simulated, and
the average value of the three cases was considered as the reference value. The error
in the Taylor parameter εD and that in the specific viscosity εµ are defined by

εD = |〈D〉 − 〈D〉
ref |

〈D〉ref
, (A 1)

εµ =
|µsp −µref

sp |
µ

ref
sp

, (A 2)

where the superscripts ref indicate the reference value. As shown in table 1, mesh
convergence was confirmed for NE > 1280. Both εD and εµ are approximately 2 % for
NE= 320, while the values for NE= 1280 are 0.2–0.3 % which is of the same order as
those for NE = 5120. In our simulation, the number of elements is fixed at NE = 5120.

A.2. Effect of initial position
The time average of a value can be written as

〈f 〉 = 1
te − ts

∫ te

ts

f (t) dt, (A 3)

where ts and te are the starting time and the ending time for the time averaging.
Figure 11 shows the effect of the ending time on the ensemble average of the Taylor
parameter and the specific viscosity. Numerical results for three cases with different
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FIGURE 11. Effect of the ending time te on (a) the ensemble average of the Taylor
parameter, and (b) the specific viscosity. Three cases with different initial positions are
simulated for Ca= 0.2 and φ = 0.3. The starting time for the time averaging is γ̇ ts = 10.
The value inside the figure is the average value and the standard deviation of three cases
at γ̇ te = 100.
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FIGURE 12. Effect of the number of capsules per unit domain M on the Taylor parameter
and the specific viscosity. The error bar shows the standard deviation of three cases with
different initial positions.

initial positions of capsules are plotted. The time averaging starts at γ̇ ts = 10 to
exclude the transient phase. When the ending time increases, 〈D〉 and µsp converge
even for the cases with different initial positions. The standard deviation of the three
cases is the order of 0.1 % at γ̇ te = 100. According to this result, the effect of the
initial positions of capsules can be ignored when the ending time is large enough.
In this paper, we simulate one case for each condition and the ending time is set at
γ̇ te = 100.

A.3. Effect of the number of capsules per unit domain
Figure 12 shows the effect of the number of capsules per unit domain M. Three
different initial positions are simulated and the average values of the three cases are
plotted with the standard deviation. Neither the Taylor parameter nor the specific
viscosity varies with M, while a larger deviation is found for a smaller value of M.
In our simulation, the number of capsules per unit domain is fixed at M = 100.
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