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The generation of internal gravity waves by a vertically oscillating cylinder that is
tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency,
N, is investigated. This variant of the widely studied horizontal configuration – where
a cylinder aligned with a plane of constant gravitational potential induces four wave
beams that emanate from the cylinder, forming a cross pattern known as the ‘St.
Andrew’s Cross’ – brings out certain unique features of radiated internal waves from
a line source tilted to the horizontal. Specifically, simple kinematic considerations
reveal that for a cylinder inclined by a given angle φ to the horizontal, there is
a cutoff frequency, N sin φ, below which there is no longer a radiated wave field.
Furthermore, three-dimensional effects due to the finite length of the cylinder, which
are minor in the horizontal configuration, become a significant factor and eventually
dominate the wave field as the cutoff frequency is approached; these results are
confirmed by supporting laboratory experiments. The kinematic analysis, moreover,
suggests a resonance phenomenon near the cutoff frequency as the group-velocity
component perpendicular to the cylinder direction vanishes at cutoff; as a result,
energy cannot be easily radiated away from the source, and nonlinear and viscous
effects are likely to come into play. This scenario is examined by adapting the
model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid
Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted
line source of large but finite length. According to this model, the combination
of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of
energy, through the action of Reynolds stresses, to a circulating horizontal mean flow.
Experimental evidence of such an induced mean flow near cutoff is also presented.

Key words: geophysical and geological flows, internal waves

1. Introduction
The aptly named ‘St. Andrew’s Cross’ experiment performed by Mowbray & Rarity

(1967) is one of the most celebrated studies of internal gravity waves, although, as
acknowledged by these authors, it was Görtler (1943) who was the first to realize

† Email address for correspondence: trakylas@mit.edu
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A new perspective on the St. Andrew’s Cross 661

the phenomenon. For this experiment, a cylinder aligned horizontally with a plane
of constant gravitational potential is oscillated vertically with small amplitude in
a density stratification of constant buoyancy frequency. Since gravity provides a
preferred direction, internal wave propagation in this setting is anisotropic, with
energy being transported along rather than perpendicular to wave crests. As a result,
the wave disturbance generated by the oscillating cylinder, instead of circular wave
crests, features four wave beams that emanate from the cylinder, forming a cross
pattern whose opening is determined by the dispersion relation. The realization of the
St. Andrew’s Cross in the laboratory was a striking validation of the rather unusual
fundamental properties of internal wave motion predicted by Lamb (1932), Lighthill
(1965) and Yih (1965), inspiring a rich body of subsequent research in the field.

A succinct anthology of this vast research activity includes experimental investiga-
tions of the wave beams generated by an oscillating cylinder using particle tracking
(Gordon & Stevenson 1972; Thomas & Stevenson 1972) and interferometry (Peters
1985; Merzkirch & Peters 1992), and theoretical investigations by Appleby &
Crighton (1986) and Makarov, Neklyudov & Chashechkin (1990). Hurley (1997) and
Hurley & Keady (1997) considered cylinders of elliptical cross-section, incorporating
viscosity in a theoretical model in order to resolve the issue that the inviscid response
predicts infinite displacements of fluid particles; various aspects of this model were
subsequently confirmed in laboratory experiments (Sutherland et al. 1999, 2000;
Ermanyuk 2000; Ermanyuk & Gavrilov 2002; Sutherland & Linden 2002). Pursuing
variations on a theme, there have been numerous studies that deviate from the original
configuration of Mowbray & Rarity (1967), including: horizontal cylinders of square
cross-section (Dalziel 2000), transient behaviour of wave beams upon initiation of
excitation (Voisin 2003; Ermanyuk & Gavrilov 2005), excitation by circular and
rectilinear, rather than vertical, oscillations (Gavrilov & Ermanyuk 1997; Ermanyuk
& Gavrilov 2008), and the response to large-amplitude oscillations (Ermanyuk &
Gavrilov 2008).

The other canonical, and related, configuration that has also been substantially
investigated is the wave field generated by a vertically oscillating sphere, in which
case rather than the St. Andrew’s Cross a conical wave field arises (Voisin 1991;
Flynn, Onu & Sutherland 2003; Peacock & Weidman 2005; Voisin, Ermanyuk & Flor
2011; Ghaemsaidi & Peacock 2013). Furthermore, there are studies of subsequent
nonlinear interactions of internal wave beams due to reflections at boundaries and
beam collisions (Peacock & Tabaei 2005; Tabaei, Akylas & Lamb 2005; Jiang &
Marcus 2009; Rodenborn et al. 2011; Akylas & Karimi 2012; Smith & Crockett
2014).

One reason the St. Andrew’s Cross configuration has such broad appeal is
that it provides insight into many scenarios that are relevant to the ocean and
atmosphere. For example, internal wave beams have been observed to originate
from ocean ridges (Cole et al. 2009) and continental shelves (Lien & Gregg 2001;
Holbrook & Fer 2005), giving rise to solitary wave phenomena when they impinge
upon the ocean pycnocline (Pingree & New 1989; Akylas et al. 2007; Grisouard,
Staquet & Gerkema 2011). Indeed, for the continental shelf case, the solution of
Hurley (1997) for an oscillating cylinder has been shown to reasonably model the
resulting wave-beam structure (Gostiaux & Dauxois 2007). In regards to atmospheric
phenomena, Fovell, Durran & Holton (1992) and Alexander, Holton & Durran (1995)
explored the generation of internal wave beams by two-dimensional squall lines, and
proposed a mechanism analogous to mechanical forcing by an oscillating cylinder;
this ‘mechanical oscillator effect’ was further supported by simulations of actual
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662 T. Kataoka and others

storms (Piani et al. 2000; Lane, Reeder & Clark 2001). Moreover, evidence of
thunderstorm-generated wave-beam structures was found in satellite observations of
the upper stratosphere (Dewan et al. 1998).

Here, we step away from the canonical St. Andrew’s Cross to consider a more
generic setting that has not been previously explored, and in so-doing we find results
that are profoundly different and potentially of broad interest. Specifically, we study
internal wave generation by a vertically oscillating cylinder that is tilted with respect
to the horizontal. This forcing arrangement exploits further the inherent anisotropy
of internal wave motion and leads to a variant of the classical St. Andrew’s Cross
that has features with no counterpart in the corresponding horizontal cylinder problem.
For example, for a given tilt of the cylinder there is a cutoff frequency below which
there is no longer a radiated wave field. Furthermore, three-dimensional effects due
to the finite length of the cylinder, which are minor in the horizontal configuration,
here become a significant factor and eventually dominate the wave field as the cutoff
frequency is approached. These results follow from elementary linear wave theory and
are also confirmed by supporting laboratory experiments.

The response when the tilted cylinder oscillates at a frequency close to cutoff is
of special interest. Exactly at cutoff, the group-velocity component perpendicular to
the cylinder direction vanishes, so energy cannot be radiated easily away from the
source, suggesting a possible resonance phenomenon. From prior experience with
cutoff frequencies in simpler problems (Aranha, Yue & Mei 1982; Akylas 1984),
nonlinear and viscous effects are likely to play an important part in the response
near cutoff. This scenario is examined by adapting a recently developed theory for
three-dimensional modulated wave beams (Kataoka & Akylas 2015), to consider
the near-resonant wave field due to a tilted line source of large but finite length.
According to this model, the combination of three-dimensional, nonlinear and viscous
effects near cutoff triggers transfer of energy, through the action of Reynolds stresses,
to a circulating horizontal mean flow, analogous to that observed accompanying a
three-dimensional propagating beam (Bordes et al. 2012). Furthermore, we present
experimental evidence of such an induced mean flow near cutoff.

The theoretical models and supporting experiments discussed below point to certain
unique features of internal waves generated by line forcing tilted to the horizontal.
These results are likely to have implications for geophysical flow modelling, as real-
world wave sources need not be horizontal, and the ‘oblique’ St. Andrew’s Cross due
to a tilted oscillating cylinder could serve as a paradigm for improving understanding
of internal wave-beam generation and propagation in geophysical systems.

2. Wave-beam geometry

We first discuss the geometry of the steady-state internal wave pattern induced
by time-harmonic line forcing, modelling an oscillating long thin cylinder, in an
unbounded, non-rotating, uniformly stratified Boussinesq fluid. Here, the forcing is
taken to be infinitely long; the effects of finite length of the wave source will be
examined in § 3. Our analysis makes use of the well-known dispersion relation of
internal gravity waves,

ω2
= sin2 θ, (2.1)

where ω is the dimensionless wave frequency (scaled with the constant background
buoyancy frequency N) and θ is the inclination angle of the wavevector to the vertical
(y) axis pointing upwards. As illustrated in figure 1(a), the wave source stretches
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(a)

(b)

x

FIGURE 1. Geometry of wave beams induced by infinitely long line forcing tilted to
the horizontal by φ and oscillating with frequency ω= sin θ : (a) three-dimensional view;
four beams propagate along the directions ±ê± in (2.3) and form an oblique cross whose
opening is measured by ψ = cos−1(cot θ tan φ); (b) intersection of the planes of constant
phase k · x = 0 for the four k-directions (2.2) with the yz-plane; seen in this plane, the
four cross arms are inclined to the horizontal by χ = tan−1

√
tan2 θ − tan2 φ, forming a

symmetric cross pattern.

along the ξ -direction in the xy-plane and is tilted to the horizontal (x) axis by an
angle 0 < φ < π/2, with z being the transverse horizontal direction. Similar to the
classical St. Andrew’s Cross due to horizontal forcing (φ= 0), the dispersion relation
(2.1) being independent of the wavevector magnitude is key to the kinematic argument
used below for deducing the wave pattern due to a tilted line source.
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664 T. Kataoka and others

From elementary linear wave theory, the steady-state response to a time-harmonic
source comprises plane waves at the driving frequency; thus, according to (2.1), for
given 0<ω< 1, all participating wavevectors k= (kx, ky, kz) have fixed inclination to
the vertical. In addition, for infinitely long, uniform line forcing, the response does
not vary in ξ , so k must be perpendicular to the source direction. These requirements
constrain k to point in four specific directions:

k=±k cos θ(tan φ,−1,±
√

tan2 θ − tan2 φ), (2.2)

for given ω = sin θ (0 < θ < π/2). Also, (2.2) reveals that steady-state disturbances
radiate in the far field only if 0 6 φ 6 θ . Under this condition, upon varying the
wavevector magnitude k in (2.2), superposition of plane waves yields four wave beams.
The location of these beams relative to the source is determined by the group velocity
cg = ∇kω, which is at right angles to k and must point away from the source, in
keeping with the radiation condition. Specifically, as shown in figure 1(a), two beams
are found above the line source and propagate towards y→∞ along the corresponding
group-velocity directions

ê± = (cos θ cosψ, sin θ,± cos θ sinψ), (2.3)

where
ψ = cos−1(cot θ tan φ); (2.4)

the other two beams are located below the line source and propagate towards y→−∞
in the opposite directions.

Overall, the generated wave pattern is in the form of a cross that leans in the
direction of the forcing. This ‘oblique’ cross undergoes dramatic transformation as the
source tilt angle φ is varied in the range 0 6 φ 6 θ . As indicated in figure 1(a), a
measure of the cross opening is the angle ψ in (2.4), which decreases monotonically
with φ, from ψ = π/2 for φ = 0 to ψ = 0 for φ = θ . As a result, the classical St.
Andrew’s Cross for horizontal forcing (φ= 0) gradually closes as φ is increased, and
ultimately degenerates to a single standing beam along the forcing (ξ ) direction in the
limit φ→ θ .

A convenient way to visualize this transformation is by considering the intersection
of the oblique-cross wave pattern – specifically, the planes of constant phase k · x= 0
(figure 1a) for the four k-directions (2.2) – with the (vertical) yz-plane. Seen in this
plane, the four cross arms are inclined at

χ = tan−1
√

tan2 θ − tan2 φ (2.5)

to the (horizontal) z-axis, as can be deduced from (2.2), and form a symmetric
configuration centred at the origin (figure 1b). The angle χ attains the maximum
χ = θ for the classical St. Andrew’s Cross (φ= 0) which lies in the yz-plane (kx= 0).
As φ is increased and the cross leans towards the forcing, χ monotonically decreases
and eventually χ→ 0 as φ→ θ ; in this limit, k=±k(−sin φ, cos φ, 0) according to
(2.2), corresponding to a beam standing along ξ and uniform in z.

For fixed source tilt angle φ, the limiting configuration of a single standing beam
arises when the driving frequency ω= sin θ approaches the critical value

ωc = sin φ. (2.6)
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A new perspective on the St. Andrew’s Cross 665

Thus, the condition θ >φ for the appearance of a far-field response translates into ω>
ωc, and ωc may be regarded as a cutoff frequency which marks the borderline between
a radiating wave field and a locally confined response in the vicinity of the source.
It should be noted that when ω = ωc (θ = φ) the beam propagation directions ê±
in (2.3), which are along the corresponding group velocity, coincide with the forcing
(ξ ) direction (figure 1a). This suggests a resonance phenomenon, as energy cannot be
transported away from the forcing and the inviscid steady-state response is expected
to be unbounded at the cutoff frequency ωc. An analogous situation was encountered
in a study of oblique collisions of internal wave beams (Akylas & Karimi 2012). The
transient response near the cutoff condition θ = φ is discussed in § 4.

3. End effects
We now turn to the effects of finite length of the line source. These end effects

become progressively more significant with increasing source tilt angle φ, and
understanding their role is crucial in interpreting the experimental observations in § 6.

As in the case of infinitely long forcing, the steady-state response to a time-
harmonic line source of finite length L is again made of plane waves with wavevectors
inclined to the vertical by a fixed angle θ , determined by the driving frequency
ω = sin θ . Thus, treating the forcing ends as point sources, the plane waves emitted
there propagate along vertical cones of angle θ from the horizontal, and contaminate
the four wave beams that emanate from the interior of the forcing. Specifically, for
tilted forcing as sketched in figure 2(a), the dominant end effects are expected to
come from the upper cone due to the left end and the lower cone due to the right
end, as these cones are closest to the main body of the forcing, where the wave
beams are generated.

To illustrate our approach, we now discuss how end effects modify the wave-beam
pattern in the vertical yz-plane across the middle of the forcing (x = 0). As argued
above, the combined response (see figure 2b) consists of the four beams (solid lines)
found earlier (figure 1b) and the two hyperbolae (dashed lines) {y± (L/2) sin φ}2 −
z2 tan2 θ = (L/2)2 cos2 φ tan2 θ formed by the intersection of the yz-plane with the end
cones shown in figure 2(a). From geometric considerations, it turns out that the four
beam directions become tangent to these hyperbolae at the points

(y, z)=±
L
2

cos φ

√
tan2 θ

tan2 φ
− 1(± tan χ, 1). (3.1)

Hence, the wave beams remain distinct from the disturbances emanating from the ends,
within a rectangle centred at the origin and of width

D= L cos φ

√
tan2 θ

tan2 φ
− 1 (3.2)

and height D tan χ (figure 2b).
It should be noted that D→∞ when φ→ 0 (horizontal forcing); in this instance,

the wave beams coincide with the asymptotes of the two hyperbolae so the classical
St. Andrew’s Cross is hardly affected by the ends. As the tilt angle φ is increased
and D is reduced according to (3.2), however, end effects are felt progressively more
seriously. Finally, D→ 0 as the cutoff condition is approached (φ→ θ ); in this limit,
the forcing is tangent to the end cones in figure 2(a) so end disturbances totally
interfere with the beams from the main body of the forcing. These kinematic results
are confirmed by more detailed computations as well as laboratory experiments in § 6.
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D

(a)

(b)

FIGURE 2. Kinematics of internal waves generated by line forcing of finite length L, tilted
at an angle φ to the horizontal and oscillating with angular frequency ω= sin θ : (a) the
dominant end effects arise due to plane waves that propagate along the two vertical cones
shown; (b) intersection of the wave pattern with the yz-plane across the middle of the
forcing (x=0). Here the dashed lines represent the end effects due to the two cones shown
in (a), and the solid lines depict the four beams shown in figure 1(b), which emanate from
the main body of the forcing.

4. Response near cutoff
The preceding, purely kinematic analysis has brought out the cutoff frequency

ω=ωc in (2.6), at which the group velocity of the kinematically allowed steady-state
beams becomes parallel to the forcing direction. This condition arises only for tilted
line forcing (φ > 0) and suggests the possibility of a resonance as energy keeps
accumulating near the forcing. Based on prior experience with cutoff frequencies
in simpler settings (Aranha et al. 1982; Akylas 1984), it is expected that transient,
nonlinear and viscous effects come into play when the driving frequency is close to
ωc. Here, we present an asymptotic model which takes into account these effects near
cutoff in the problem at hand.

The transient response to tilted, infinitely long, uniform line forcing at the cutoff
frequency, ignoring viscous and nonlinear effects, was discussed in Akylas & Karimi
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(2012) by solving an appropriate initial-value problem. Owing to the slow transport of
energy away from the source, the generated long-time disturbance takes the form of
a spatially modulated wave beam with continuously growing amplitude in time, like
t1/2. Specifically, this modulated beam is uniform in the along-beam direction which
coincides with the forcing (ξ ) direction (see figure 1a); however, the beam profile is
not only a function of the cross-beam coordinate η, but also evolves in a self-similar
fashion via the similarity variable z/t1/2, which accounts for the presence of slow
modulations in the transverse (z) direction. The unbounded beam-amplitude growth
(like t1/2) due to the vanishing group velocity normal to the source, and the self-similar
spreading of the disturbance (like z/t1/2) due to dispersion, are characteristic of the
linear forced response at a cutoff frequency (Akylas 1984).

In subsequent work, Kataoka & Akylas (2015) analysed the propagation of weakly
nonlinear modulated wave beams, including also the effects of weak viscous
dissipation. This study pointed out the significance of three-dimensional beam
variations, which enable resonant transfer of energy, via nonlinear interactions, to
a strong horizontal mean flow. Moreover, Kataoka & Akylas (2015) derived a system
of two coupled evolution equations for this resonant beam–mean-flow interaction.

As the transient forced response near the cutoff frequency ωc takes the form of a
modulated beam, we shall adapt the theoretical model of Kataoka & Akylas (2015)
to the tilted-line-forcing geometry of interest here. The modifications required for
this purpose turn out to be minor, and only the final results of the analysis will
be highlighted below. Readers interested in more details are referred to Kataoka &
Akylas (2015), and to ease such reference we shall use the same non-dimensional
variables and notation as in the earlier study.

We first look at the modulation scales relevant to the present setting. The similarity
variable z/t1/2 revealed by the transient linear response at cutoff (Akylas & Karimi
2012) suggests that the appropriate transverse coordinate and ‘slow’ evolution time
are

Z = εz, T = ε2t, (4.1a,b)

where 0 < ε� 1 is related to the forcing amplitude below (see (4.4)). Moreover, in
order to balance transverse with longitudinal dispersion, the along-beam coordinate is
scaled as

X = ε2ξ . (4.2)

The modulation variables (4.1) and (4.2) are identical to those in Kataoka & Akylas
(2015); here, however, the orientation of the external forcing is different, and ε is
related to the forcing amplitude parameter α in a distinct way from the earlier work.
Specifically, rather than being along the transverse horizontal (z) direction, the source
F (an externally applied line force along ξ ) now stretches along the ξ -direction, which
is tilted to the horizontal by the angle φ (figure 1a):

F= α{F̂(X, η, z)e−i sin θ t
+ c.c.}. (4.3)

The forcing profile F̂=O(1) is locally confined in η and z, as is appropriate for a line
source; moreover, F̂ depends on X= ε2ξ , to allow for slow along-source dependence,
in view of the key role of three-dimensional variations noted earlier.

Now, for tilt angle φ = θ , as is the case at cutoff, the linear, inviscid response to
uniform line forcing (i.e. F̂(η, z) in (4.3)) is known to be resonant and grows like
t1/2 (Akylas & Karimi 2012). As a result, by the time t ∼ 1/ε2 when T = O(1), the
response amplitude is O(α/ε). However, from Kataoka & Akylas (2015), in order for
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nonlinear effects to be comparable to dispersion effects due to the modulation scales
(4.1) and (4.2), the beam amplitude has to be O(ε1/2). Hence, the appropriate scaling
of the forcing amplitude parameter α relative to ε is

α = ε3/2
; (4.4)

compared with α = ε1/2 found in Kataoka & Akylas (2015), (4.4) makes sense near
resonance: O(ε3/2) forcing results in a larger-amplitude, O(ε1/2), wave-beam response.

The final modification to the Kataoka & Akylas (2015) model is to allow for
possible detuning of the resonance condition ω = ωc (θ = φ). Specifically, consistent
with the slow time T = ε2t, we put

sin θ = sin φ + γ ε2, (4.5)

where γ =O(1) is a detuning parameter. In view of (4.1), (4.4) and (4.5), the forcing
(4.3), as it is locally confined in z, can be approximated by

F= 2ε5/2δ(Z){f (X, η)e−iγTe−i sin φt
+ c.c.}, (4.6)

where δ(Z) denotes the delta function and f =O(1).
Using (4.6) as forcing, and taking into account (4.5), the perturbation procedure

detailed in Kataoka & Akylas (2015) leads to the following coupled evolution
equations for the wave-beam response and induced mean flow near cutoff:

UT − iγU + V∞Uη + i cos φ

(∫ η

UX dη′ +
cot φ

2

∫ η ∫ η′

UZZ dη′′ dη′
)
−
β

2
Uηη

= f (X, η)δ(Z), (4.7)

∂V∞
∂T
= i

∂

∂Z
H
[∫

∞

−∞

{(U∗Uη)T + βU∗ηUηη} dη
]
. (4.8)

Here, U(X, η, Z, T) is the complex amplitude of the beam flow velocity in the along-
beam (X) direction, and V∞(X,Z,T) is the induced-mean-flow component in the cross-
beam (η) direction. Furthermore, H stands for the Hilbert transform with respect to
Z and the parameter β =O(1) controls the effects of viscous dissipation,

ν = βε2, (4.9)

ν being an inverse Reynolds number.
Compared with the Kataoka & Akylas (2015) model, equation (4.7) includes an

additional term, which accounts for the resonance detuning (4.5), and the variables X,
Z in the forcing term of (4.7) are interchanged. The latter difference derives from the
fact that the line source here is tilted and coincides with the along-beam (X), rather
than the transverse horizontal (Z), direction. It should be noted that, in the present
setting, it cannot be immediately concluded that the induced mean flow vanishes
(i.e. V∞ = 0) when the forcing is infinitely long and uniform (i.e. ∂f /∂X = 0), with
the response being independent of X; this is in contrast to the case of horizontal
line forcing, where the absence of transverse (Z) variations trivially implies V∞ = 0
according to the mean-flow equation (4.8).
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Nevertheless, under some conditions, it is still true that V∞ = 0 when the forcing
f (X, η)= f (η) in (4.7). Specifically, upon introducing the Fourier transform in η,

Ũ =
∫
∞

−∞

U(η, Z, T)e−ilη dη, f̃ (l)=
∫
∞

−∞

f (η)e−ilη dη, (4.10a,b)

equations (4.7) and (4.8) become

ŨT +

(
−iγ + ilV∞ +

β

2
l2

)
Ũ −

i cos φ cot φ
2l2

ŨZZ = f̃ (l)δ(Z), (4.11)

∂V∞
∂T
=−

∂

∂Z
H
[∫

∞

−∞

l
2π

(
∂

∂T
+ βl2

)
|Ũ|2 dl

]
. (4.12)

From this form of the evolution equations, it is clear that if |̃f (l)| is even in l (as is
the case when f (η) is real, for instance), so is |Ũ(l, Z, T)|; under this assumption, the
right-hand side of (4.12) then vanishes and so does V∞.

Finally, it is worth noting that for infinitely long uniform line forcing f (η) such
that V∞ = 0, the transient inviscid (β = 0) response exactly at cutoff (γ = 0) obtains
the similarity form U ∝ T1/2G(η, Z/T1/2), consistent with Akylas & Karimi (2012).
Moreover, for concentrated line forcing, f = δ(η), under conditions of steady state and
exact resonance (γ = 0), (4.7) reduces to

cos φ cot φUZZ + iβUηηηη =−2iδ′′(η)δ(Z). (4.13)

This equation accepts a similarity solution in the form U ∝ Z−1/2G(η/Z1/2), which
happens to be identical to the one derived by Gordon & Stevenson (1972) for the
profile of a vertically propagating viscous beam due to a horizontal line source
oscillating at the background buoyancy frequency (ω= 1).

5. Experimental set-up
Laboratory experiments were performed to investigate the geometry of the

wave-beam response due to a tilted oscillating cylinder as well as the nature of the
induced mean flows near cutoff. Here, we provide some details of the experimental
arrangements, before presenting results in § 6.

The experiments were performed in a glass wave tank 5.46 m long, 0.55 m wide
and 0.6 m deep; figure 3 presents schematics of the experimental configurations. A
partition ran nearly the length of the tank, dividing it into 0.44 m and 0.06 m sections,
with experiments being conducted in the wider section. A linear density stratification,
by virtue of vertically varying salinity, was set up via the double-bucket method
(Fortuin 1960; Oster 1965). The final stratification was measured using a calibrated
Precision Measurements Engineering (PME) conductivity and temperature (CT) probe.
A typical buoyancy frequency for an experiment was N = 0.901± 0.09 s−1.

For studies of the wave-beam geometry, we used as forcing three 25.0 ± 0.1 mm
diameter acrylic cylinders of different lengths and tilt angles. The tilt angles were
φ= 0◦, 27◦ and 44◦, with an accuracy of ±1◦. The ends of the cylinders were all cut
vertical (see figure 3a) so that each of the three cylinders had the same horizontal
projected length of 25 cm, and therefore different actual lengths. A vertical thin
metal rod was attached to the mid-point of each cylinder so that the cylinder could
be oscillated vertically via a National Instruments/Axis New England based motion
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Camera 1, 2

Camera 1
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Top view
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x
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d
z
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Inner region

Laser sheet

Laser sheet

(a)

(b)

FIGURE 3. Schematics of experimental arrangements for measuring: (a) beam angle χ ;
(b) induced mean flows. The xyz-coordinate system is the same as in figure 2(a), with
the oscillating tilted cylinder (length L and diameter d) lying in the (vertical) xy-plane
through z= 0. Experimental data for (a) was obtained in yz-planes close to the lower end
of the cylinder, and for (b) in the xy-plane containing the cylinder. The bright area under
the cylinder in figure (b) indicates the domain of integration used for computing S′, the
approximate form of the overall mean-flow strength S in (6.2) and (6.3). In the theoretical
model, the ‘inner’ region of the induced mean flow immediately below the cylinder is
taken to be one cylinder radius wide (= 1.25 cm).

control system operating a lead screw traverse. The peak-to-peak amplitude of vertical
oscillation was 6.00± 0.1 mm.

The experimental studies of mean-flow generation near cutoff (φ = θ ) involved
cylinders tilted at φ = 45◦ and 60◦, positioned mid-width of the tank (see figure 3b).
Each cylinder had a diameter d = 25.0 ± 0.1 mm and length L = 28.8 ± 0.1 cm.
Experiments were performed at forcing frequencies ω = sin θ in the range of
θ = φ ± 20◦, and with driving peak-to-peak amplitudes between 5 and 16 mm.

Wave-field visualization was performed using a previously validated LaVision
stereo-scopic particle image velocimetry (PIV) system (Ghaemsaidi & Peacock
2013) for the cross experiments, and a traditional PIV configuration for the
induced-mean-flow experiments, with the latter taking advantage of symmetry in
the z direction. The density stratification was seeded with Sphericel hollow glass
oxide particles of diameter 8–12 µm and densities ranging from 100 to 1050 kg m−3.
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Images were collected using a pair of Imager Pro X 4M CCD cameras with a
resolution of 2042× 2042 pixels. The cameras had a relative angle of around 45◦ and
the experimental field of view varied between ∼0.3× 0.3 m2 and ∼0.4× 0.4 m2 for
different experiments. Images were collected at 16 frames per period of oscillation
for each experiment, and were processed using the LaVision DaVis PIV software in
order to obtain three-dimensional velocity fields in the plane of the laser sheet. For
the analysis described in this paper, however, only the in-plane velocity components
have been used.

6. Experimental results and comparison with theory
6.1. Cross geometry

Our experimental study of the oblique-cross geometry focused on measuring the angle
χ that the four cross arms make to the horizontal in the yz-plane (figure 1b). As
discussed in § 3, the response to tilted line forcing is always affected by the finite
length of the source, and these end effects are amplified as the cutoff condition θ =φ
is approached. Specifically, in the yz-plane across the middle of the forcing (figure 2b),
where the wave pattern is symmetric in y, the four wave beams due to the main
body of the forcing remain intact within a rectangular region of width D given by
(3.2), which shrinks to zero as θ→φ. As a result, it becomes increasingly difficult to
measure the angle χ when the driving frequency ω= sin θ of the cylinder approaches
ωc = sin φ.

To tackle this issue, experimental data for χ was obtained in yz-planes closest to the
cameras so as to observe the wave field near the lower end (y=−(L/2) sin φ) of the
cylinder (see figure 3a). In this set-up, as sketched in figure 4, the wave pattern is no
longer symmetric as the wave beams emanating from the interior of the forcing appear
only below the cylinder (y < −(L/2) sin φ), in keeping with the beam propagation
directions −ê± relative to the forcing (see figure 1a). Moreover, the disturbance above
the cylinder (y>−(L/2) sin φ) is entirely an end effect, from the intersection of the
yz-plane with the end cone at the lower end of the cylinder (figure 2a), and turns out
to be rather weak. As demonstrated below, this wave-field geometry makes it possible
to accurately measure the beam angle χ even quite close to cutoff, by focusing on the
wedge formed by the two beams just below the lower end of the cylinder.

Before presenting experimental results, we verify that the above kinematic approach
to end effects is also supported by more detailed computations based on the steady
linear version of the evolution equation (4.7) near cutoff. Specifically, as right-hand
side of this equation we chose

f (X, η)=
e−8η2

4
{tanh[10(X + 0.5)] − tanh[10(X − 0.5)]}, (6.1)

to roughly mimic the forcing due to the oscillating cylinder (of diameter d= 2.5 cm
and length L= 34.8 cm) used in the experiments for tilt angle φ = 44◦. Taking d as
characteristic length, we set ε=

√
d/L; thus, the length of the source (6.1) in terms of

X= ε2ξ is normalized to 1, and the values of γ and β are determined from (4.5) and
(4.9), respectively. (The inverse Reynolds number ν = ν∗/Nd2, where ν∗ = 1 mm2 s−1

is the kinematic viscosity.)
Figure 5 compares the computed steady-state wave pattern in the yz-plane across

the mid-point with that in the yz-plane at the lower end of a cylinder tilted at φ =
44◦, for two driving frequencies corresponding to θ = 44◦ and θ = 50◦. Exactly at
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x z

y

2D

FIGURE 4. Kinematics of internal waves generated by line forcing of finite length, tilted
at an angle φ to the horizontal and oscillating with frequency ω= sin θ . The sketch shows
the intersection of the wave pattern with the (vertical) yz-plane across the lower end of
the forcing (y=−(L/2) sinφ). Using the same xyz-coordinate system presented in figure 2,
the solid lines represent the two beams emanating from the main body of the forcing and
the dashed lines represent disturbances due to the finite source length, or the end effects.
Specifically, the dashed line represents the disturbance coming from the upper end and
the dotted line that from the lower end.

cutoff (figure 5a,c), end effects dominate the horizontal (χ = 0◦) wave beams from
the interior of the forcing, which collapse to a point, in keeping with D → 0 as
φ→ θ in (3.2). Moreover, as expected from the kinematic analysis (figures 2 and 4),
the end disturbances are of hyperbolic shape, both at the mid-point (figure 5a) and
the lower end (figure 5c) of the cylinder; in the latter location, it is also possible to
discern above the cylinder two, rather weak, straight rays at the angle θ = 44◦ to the
horizontal, as suggested by the sketch in figure 4. By contrast, above cutoff (θ = 50◦,
figure 5b,d), the straight wave beams emanating from the main body of the cylinder,
at the angle χ = 35◦ to the horizontal, remain intact close to the cylinder, while end
disturbances of hyperbolic shape prevail away from the cylinder. According to the
kinematic estimate (3.2), the width of the rectangular region where the wave beams
are free of end effects is 18 cm at the mid-point (figure 2b) and 36 cm at the lower
end (figure 4) of the cylinder. These predictions are in reasonable agreement with the
wave patterns in figure 5(b,d); moreover, the geometry of the computed wave field
at the lower end of the forcing (figure 5d) is consistent with the kinematic results
sketched in figure 4.

Turning now to the experimental observations, figure 6 shows snapshots of wave
fields for φ = 44◦ and θ = 49.5◦ obtained in the yz-planes across the mid-point and
the lower end of the cylinder, corresponding to the theoretical results in figure 5(b,d);
the quantity plotted is the phase field of the vertical velocity component, which
was chosen to maximize the clarity of the wave-field structure. Consistent with the
theoretical predictions in figure 5(b,d), in the central plane of the cylinder (figure 6a)
the wave field is dominated by end disturbances at the angle θ whereas in the end
plane of the cylinder (figure 6b) the desired beam angle χ can be readily determined
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FIGURE 5. Computed steady-state wave fields showing the magnitude of flow velocity in
the yz-plane across the mid-point (a,b) and the lower end (c,d) of a cylinder of length L=
34.8 cm tilted at φ= 44◦ to the horizontal and oscillating with (dimensionless) frequency
ω= sin θ : (a,c) θ = 44◦ (χ = 0◦); (b,d) θ = 50◦ (χ = 35◦). The angle χ in (d) is defined
in (2.5) and is also marked in figures 2(b) and 4. These results were obtained from the
steady linear version of equation (4.7) with (6.1) as forcing.

in the lower half of the field of view. The velocity amplitude plot (figure 6d) also
shows good qualitative agreement with the model results (figure 5d), except for the
response in the immediate vicinity of the cylinder. This discrepancy is not surprising,
as the time-harmonic force (4.6) and (6.1) assumed in the model is different from
the oscillating cylinder used as excitation in the experiments.

Experiments were run across a wide range of driving frequencies ω= sin θ for the
three tilt angles φ= 0◦, 27◦ and 44◦, and the apparent beam angle χ was determined
as follows. For any given (y, z) coordinate, the velocity became a periodic function of
time once the wave field reached a harmonic state. Via Fourier analysis, we verified
that the fundamental frequency was dominant and higher harmonics were negligible.
The velocity at a (y, z) location therefore takes the form A(y, z) sin(ωNt + α(y, z))
and using a sinusoidal fit we determined the amplitude A(y, z) and phase α(y, z)
fields from the experimental data. The phase fields very clearly displayed the
wave-beam orientation and were used as the basis for measuring propagation angles.
As indicated in figures 6(b) and 6(c), a pair of roughly 500 × 250 pixel windows
(which corresponds to around 60 × 30 PIV data points) located in the lower beams
in the vicinity of the cylinder were selected. Matlab’s contour function was used to
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FIGURE 6. (Colour online) (a) Phase field plot across central plane of cylinder for φ=44◦
and θ = 49.5◦; this is a composite of an image showing measured data for z< 0 and its
mirror image about the y-axis. (b) Phase field plot across end plane of cylinder for φ=44◦
and θ = 49.5◦ (χtheory = 33.6◦ and χmeasured = 35.2± 1.1◦). (c) Phase field plot across end
plane of cylinder for φ = 27◦ and θ = 28.3◦ (χtheory = 10.1◦ and χmeasured = 15.8 ± 0.5◦).
(d) Velocity amplitude plot (with superposed arrows) corresponding to phase results in (b);
for comparison, see model results in figure 5(d). In each image, the black ellipse marks
the location and area of the cylinder.

extract several lines of constant phase within these windows. Linear regression was
then used to determine the angle of a best fit line through several such contours of
constant phase, from which the average angle χ was determined; the corresponding
experimental precision for each data point was typically 1 or 2 degrees, with a little
more variability for smaller values of χ .

The resulting data for χ as a function of θ = sin−1 ω is presented in figure 7, in
which the error bars presented represent the standard deviation of the mean. There
is generally excellent agreement between experiment and the theoretical predictions
obtained from (2.5). Most notably, for fixed driving frequency ω, the beam projected
angle χ is reduced as the cylinder tilt angle φ increases, and for non-zero φ there
is a lower cutoff driving frequency corresponding to θ = φ at which χ goes to
zero; as expected, no radiated wave beams were observed below cutoff (θ < φ).
As noted earlier, the wave beams emanating from the cylinder interior are masked
by end disturbances when the cutoff condition is approached; only as a result of
studying the form of the wave field in the end plane of the cylinder, having been
guided by the theoretical predictions in figures 4 and 5, were we able to make
reliable measurements of χ approaching the critical condition θ = φ. Away from the
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FIGURE 7. Experimental data for the beam angle χ as a function of θ set by the
driving frequency ω = sin θ , for tilt angle φ = 0◦ (E), φ = 27◦ (A) and φ = 44◦ (@);
the corresponding theoretical curves, obtained by (2.5), are included as solid, dashed and
dotted lines, respectively. The error bars are the standard deviation of the mean.

critical condition the phase plots were very well defined, but as θ approached φ they
became somewhat less so (e.g., compare figures 6b and 6c), likely due to the induced
mean flow discussed in § 6.2 below. Moreover, according to (2.5), dχ/dθ →∞ as
θ → φ, which makes χ sensitive to changes of θ near the critical condition. For
these reasons, no data are plotted in figure 7 for χ below a certain threshold, and
this inaccessible range of beam angles widens as the tilt angle φ is increased. (In
the case of a horizontal cylinder, no such difficulty arises even though figure 7 only
shows measured values of χ above about 25◦.)

6.2. Induced mean flow near cutoff
We also sought experimental evidence of resonance and associated nonlinear effects
when the cylinder driving frequency ω = sin θ approaches the cutoff frequency
ωc = sin φ, as suggested by the asymptotic model (4.7) and (4.8). From the
kinematic analyses in §§ 2 and 3, the wave-beam response near cutoff is contained
within the vicinity of the source. However, our theoretical model, which uses the
time-harmonic force (4.6) as excitation, is not expected to accurately predict the
near-field response due to an oscillating cylinder. Given this limitation, we pursued
a qualitative comparison in regard to the generation of horizontal mean flow – the
most prominent nonlinear feature of the resonant response near cutoff according to
theory.

Returning to the experimental configuration in figure 3(b), as an overall measure of
mean-flow strength, we take

S(t)=
∫
∞

−∞

|Θ(y, t)| dy; (6.2)
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FIGURE 8. Overall mean-flow strength S′ versus oscillation cycles of cylinder tilted at
φ = 45◦ to the horizontal and oscillating at frequency ω = sin θ : experimental results for
θ = 40◦ (E), θ = 45◦ (A), θ = 50◦ (@), θ = 60◦ (×); theoretical results for θ = 40◦ (u), θ =
45◦ (q), θ = 50◦ (p), θ = 60◦ (+). In the experiment, the cylinder (length L= 28.8 cm and
diameter d= 2.5 cm) is oscillated with peak-to-peak amplitude 16 mm. In the theoretical
model, equations (4.7) and (4.8) are solved with (6.1) as forcing and the delta function
approximated by δ(Z)' (2/

√
π) exp{−(2Z)2}.

here,

Θ(y, t)=
∫
∞

−∞

u(x, y, z= 0, t) dx, (6.3)

where u denotes the x-component of the induced mean flow. It should be noted
that, by Green’s theorem, Θ(y, t) is the integrated mean vertical vorticity over the
horizontal half-plane −∞< x<∞, z> 0 (or z< 0) at height y.

In the experiment, velocity-field data was from the portion of the xy-plane that lay
beneath the cylinder, as illustrated in figure 3(b), since data could not be obtained in
the shadow of the laser above the cylinder. Accordingly, integration of Θ and u in
(6.2) and (6.3) was carried out over the finite region under the cylinder in figure 3(b);
we refer to this approximation to S as S′.

The same integration region was also used in computing S′ theoretically. To this end,
the model equations (4.7) and (4.8), with (6.1) as forcing, were solved numerically
following the procedure described in Kataoka & Akylas (2015). The cross mean flow
V∞ obtained from the model was then used to estimate u, the desired horizontal mean-
flow component along x. According to the asymptotic analysis of Kataoka & Akylas
(2015), the induced mean flow extends far away from the cylinder (|η| � 1) and the
contribution to S′ from u in the vicinity of the cylinder (‘inner’ region) would be sub-
dominant compared with the far-field (‘outer’-region) contribution. However, as the
assumed separation of scales is not strictly satisfied in the experiment (ε =

√
d/L =

0.29), we also included the near-field contribution, taking the width of the inner region
to be one cylinder radius (d/2= 1.25 cm) as indicated in figure 3(b).

Figure 8 displays time histories of the overall induced-mean-flow strength S′, as
computed from experimental data and numerical results, generated by a cylinder
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tilted at φ = 45◦ and oscillating at various driving frequencies ω = sin θ near the
cutoff ωc = sin φ. Even though there is only rough quantitative agreement, the
experimental and theoretical results are generally in the same ball park and also
exhibit similar qualitative trends, namely: S′ grows rapidly at early times and then
begins to plateau as the beam response reaches a quasisteady state. Most notably,
however, S′ reaches significantly higher levels for driving frequencies slightly above
cutoff (θ ≈ 50◦), suggesting that the induced mean flow is particularly strong in this
narrow frequency range. This is an indication of resonant behaviour according to
our asymptotic model, where the mean flow is driven by Reynolds stresses brought
about by three-dimensional nonlinear interactions of the wave-beam response as
described on the right-hand side of (4.8). It should be pointed out, however, that
the time-harmonic line forcing used in this model does not account for the viscous
boundary layer around the oscillating cylinder and related phenomena that could
affect the mean flow observed experimentally. A definitive discussion of the beam
response and induced mean flow near cutoff, including quantitative comparison with
experiment, would require computing the actual flow field in the vicinity of the
oscillating cylinder.

7. Concluding remarks
We have discussed the generation of internal gravity waves by a time-harmonic

line source that is tilted with respect to the horizontal in a stratified Boussinesq fluid
of constant buoyancy frequency. In the laboratory, this flow configuration can be
realized by oscillating a cylinder tilted to the horizontal in a stratified fluid. In this
regard, the present study shares much in common with the classical experiment by
Mowbray & Rarity (1967) for a horizontal cylinder, which first drew attention to
internal wave beams and the now familiar St. Andrew’s Cross wave pattern. However,
our analysis and supporting laboratory experiments have pointed out that the response
to tilted forcing is profoundly different from the corresponding horizontal source
problem in two main respects: (i) radiation of wave beams, forming an ‘oblique’ St.
Andrew’s Cross, is limited due to a lower cutoff frequency set by the source tilt
angle to the horizontal; and (ii) the response is essentially three-dimensional, as end
effects eventually come into play when the cutoff frequency is approached, however
long a line source may be. These unique aspects of radiated wave beams from a
tilted source may have far-reaching implications for geophysical flow modelling. For
instance, these findings would be relevant to modelling gravity wave generation in the
atmosphere due to squall lines that need not be horizontal. Moreover, the oblique St.
Andrew’s Cross may prove useful in understanding the geometry of three-dimensional
ocean internal waves induced by tidal flow over a ridge with large-scale height
variations along the ridge.

The present paper has focused on the kinematics of the steady-state radiated wave
field. We have also made a preliminary study, based on an asymptotic model using
a time-harmonic line force as excitation, of the transient response near the cutoff
frequency. On kinematic grounds, the wave-beam response near cutoff is contained
within the vicinity of the forcing, suggesting a resonance phenomenon due to energy
accumulation there. According to our model, the combination of nonlinear, viscous
and three-dimensional effects near this resonance results in transfer of energy to
a horizontal mean flow. The generation of such an induced mean flow is also
qualitatively supported by our experimental findings. A complete investigation of
the response near cutoff, including quantitative comparison with experiment, would
require computing the detailed flow field close to the source and is left to future
studies.
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