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Abstract. We consider a class of billiard tables (X, g), where X is a smooth compact
manifold of dimension two with smooth boundary ∂X and g is a smooth Riemannian
metric on X, the billiard flow of which is completely integrable. The billiard table (X, g)
is defined by means of a special double cover with two branched points and it admits
a group of isometries G ∼= Z2 × Z2. Its boundary can be characterized by the string
property; namely, the sum of distances from any point of ∂X to the branched points is
constant. We provide examples of such billiard tables in the plane (elliptical regions),
on the sphere S2, on the hyperbolic space H2, and on quadrics. The main result is that the
spectrum of the corresponding Laplace–Beltrami operator with Robin boundary conditions
involving a smooth function K on ∂X uniquely determines the function K , provided that
K is invariant under the action of G.

1. Introduction
This paper is concerned with a class of smooth compact Riemannian manifolds of
dimension two with smooth boundaries, the billiard flows of which are completely
integrable. We call them Liouville billiard tables of classical type. For such billiard tables
we prove that the following inverse spectral result is true.

Let (X, g) be a closed Riemannian manifold, dimX = 2, with a C∞ boundary

 := ∂X �= ∅. Let � be the ‘positive’ Laplace–Beltrami operator on (X, g). Given a
real-valued function K ∈ C∞(
), we consider the operator � with a domain of definition{

u ∈ H 2(X) : ∂u
∂n

∣∣∣∣



= Ku|

}
,

where n(x), x ∈ 
, is the inward unit normal to 
 with respect to the metric g. We denote
this operator by �K . This is a selfadjoint operator in L2(X) with discrete spectrum

Spec�K := {λ1 ≤ λ2 ≤ · · · },
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where each eigenvalue λ = λj is repeated according to its multiplicity, and it solves the
spectral problem

�u = λu in X,

∂u

∂n

∣∣∣∣



= Ku|
.
(1.1)

The manifolds we define admit a group of isometries G isomorphic to Z2 ×Z2. We denote
by SymmG(
) the set of all real-valued functions K ∈ C∞(
) which are invariant under
the induced action of G on 
. Consider the map

SymmG(
) −→ RN, (1.2)

assigning to each K ∈ SymmG(
) the spectrum Spec(�K) of the boundary value
problem (1.1). Guillemin and Melrose [6] have proved that for elliptical regions in R2

(
 is an ellipse), the map (1.2) is one-to-one (injective). We generalize their result for
Liouville billiard tables of classical type (see Definition 2.7).

Our main result is the following.

THEOREM 1. Let (X, g) be a Liouville billiard table of classical type. Then the map (1.2)
is one-to-one (injective).

By a billiard table we mean a compact connected Riemannian manifold (X, g) of
dimension two with smooth boundary. The corresponding dynamical system is the
billiard flow. Denote by H : T ∗X → R the Hamiltonian corresponding to the metric g

via the Legendre transformation. It will be shown that Hamiltonian systems corresponding
to Liouville billiard tables are integrable. Hereafter, integrable means that there exists a
real-valued function I ∈ C∞(T ∗X \ 0) which is constant on each (broken) bicharacteristic
of H , and such that the differentials dH and dI are linearly independent at almost any
� ∈ T ∗X \ 0. A (broken) bicharacteristic γ of H is a map

γ : [0, T ) \ P −→ T ∗ ◦
X \ 0,

◦
X = X \ 
,

where P is either a finite subset 0 < t1 < t2 < · · · < tN < T of [0, T ) or the empty set,
such that on each connected component of [0, T ) \ P the curve γ (t) = (x(t), ξ(t)) is an
integral curve of the Hamiltonian vector field XH of H in T ∗ ◦

X \ 0, and for 0 < t ∈ P we
have x(t) = x(t − 0) = x(t + 0) ∈ 
 and

ξ(t − 0)|Tx(t)
 = ξ(t + 0)|Tx(t)
, 〈ξ(t + 0), n(x(t))〉 > 0.

Recall from [8, §24.3], that for each � ∈ T ∗ ◦
X \ 0 there exists at least one generalized

bicharacteristic γ starting from � such that any compact arc of γ can be approximated
uniformly by (broken) bicharacteristics. Hence, I is constant on any such generalized
bicharacteristic. In other words, I is invariant under the ‘generalized billiard flow’.
Note that in the analytic case, for each � ∈ T ∗ ◦

X \ 0 there is only one generalized
bicharacteristic issuing from �.

Elliptical regions in R2 give a particular case of integrable billiard tables. We shall give
several other examples on the sphere S2, the hyperbolic space H2, and on quadrics. There is
a common property for all of them; namely, the existence of a special double cover with
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two branched points (see Proposition 2.1). It is more or less known that the corresponding
billiard flows are integrable. The novelty here is that we propose a general construction
for such billiard tables and we give explicit formulae for the covering maps. We also
show that the Liouville billiard tables in the examples are of classical type (Definition 2.7).
In particular, we obtain that Theorem 1 holds for all of them.

We prove that the boundary 
 of any Liouville billiard table has the string property;
namely, the sum of distances from any point of 
 to the branched points is constant.
In particular, elliptical regions are the only Liouville billiard tables in R2. In addition,
a class of the billiard tables we define satisfies the so-called strong evolution property
(see Proposition 4.9).

To prove Theorem 1 we use a result of Guillemin and Melrose in [6, 7] concerning the
singularities of the distribution

ZK(t) =
∑

λ∈Spec(�K)

cos(t
√
λ) = tr(cos(t

√
�K)), t > 0. (1.3)

It is well known that the singular support of ZK(t), t > 0, is contained in the length
spectrum L(X, g) of the corresponding billiard table. Recall that L(X, g) consists of
the lengths of all closed generalized geodesics of (X, g). Suppose now that there is an
‘invariant circle’ S of the billiard ball map B in the co-ball bundle B∗
, such that the
rotation number of the map B : S → S is rational. Then the generalized geodesics
issuing from S are all closed and we denote by " the corresponding common minimal
length. Assume that S is a ‘clean’ submanifold of B∗
 and that there are no other closed
geodesics with the same length ". Then the integral

M =
∫
S

K

cosφ
dµ (1.4)

can be recovered from the leading term of the asymptotic expansion of σ(t) = ZK(t) −
Z0(t) at t = ", where Z0 is the trace (1.3) corresponding to the Neumann problem
(see [6, Theorem 4.2]). Here φ is the angle between the initial vector of the corresponding
geodesic issuing form S and the inward normal to 
 at the initial point of the geodesic.
The measure µ on S coincides (up to multiplication with a constant) with the Leray form.

To prove Theorem 1 we look for an infinite sequence of such ‘invariant circles’ Sj
approaching the glancing manifold as j → ∞ (the boundary 
 is strictly geodesically
convex). The main difficulty is in finding Sj so that the corresponding lengths "j are all
‘simple’ in the length spectrum of (X, g), which means that if γ is a closed generalized
geodesic of length "j then γ is a broken geodesic issuing from Sj . To do this, we
essentially use the properties of the corresponding billiard ball map (see §4). In this
way, we recover the integral invariants Mj on Sj in (1.4) from the spectrum of �K .
Moreover, we obtain a simple formula for Mj in terms of the functions f and q defining
the Liouville billiard table (see (5.1)). This allows us to recover K from the sequence Mj .

An interesting and difficult question is if similar results are valid for dimensions greater
than or equal to 3. A construction for integrable billiard tables close to the one in this paper
could be done for dimensions greater than or equal to 3. The corresponding results will be
published elsewhere.
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The paper is organized as follows. In §2 we give a general construction of Liouville
billiard tables. In §3 we consider several examples on S2, H2, and on quadrics. In §4 we
investigate the corresponding billiard ball map. The proof of the main theorem is given
in §5.

2. Liouville billiard tables
In the present section we define a class of completely integrable billiard tables of
dimension two. The construction we propose is influenced from the classification theorems
of Liouville surfaces given in [3, 9, 10, 12, 14] and the classical examples of integrable
billiards described in §3 (see [1, 2, 4, 5, 16–18]). By definition, a Liouville surface is a
complete two-dimensional Riemannian manifold without boundary, the geodesic flow of
which admits a quadratic in the velocity integral, which is functionally independent of the
energy integral. The idea of using special covers first appears in [12, 19] (see §3, and [3] for
a complete list of references). Anyway, to the best of our knowledge, a similar construction
of integrable billiard tables has not been documented in the literature.

We consider two functions f ∈ C∞(R), f (x + 1) = f (x), and q ∈ C∞([−N,N]),
N > 0, such that:
(H1) f is even, f > 0 if x /∈ 1

2 Z, and f (0) = f (1/2) = 0;
(H2) q is even, q < 0 if y �= 0, q(0) = 0 and q ′′(0) < 0;
(H3) f (2k)(l/2) = (−1)kq(2k)(0), l = 0, 1, for every natural k ∈ N.

In particular, if f ∼ ∑∞
k=1 fkx

2k is the Taylor expansion of f at 0, then, by (H3), the
Taylor expansion of q at 0 is q ∼∑∞

k=1(−1)kfkx2k.
Consider the quadratic forms

dg2 = (f (x)− q(y))(dx2 + dy2) (2.1)

dI 2 = (f (x)− q(y))(q(y) dx2 + f (x) dy2) (2.2)

defined on the cylinder C = T1 × [−N,N], T1 �= R/Z.
The involution σ : (x, y) �→ (−x,−y) induces an involution of the cylinderC, that will

be denoted by σ as well. We identify the points m and σ(m) on the cylinder and denote by

C̃
�= C/σ the topological quotient space. Let π : C → C̃ be the corresponding projection.

A point x ∈ C is called singular if π−1(π(x)) = x, otherwise it is a regular point of π .
Obviously, the singular points are F1 = π(0, 0) and F1 = π(1/2, 0). Denote by D2 the
unit disk {x2

1 + x2
2 ≤ 1} in R2.

PROPOSITION 2.1. Suppose that f and g satisfy (H1)–(H3). Then the quotient space C̃ is
homeomorphic to the unit disk D2. There exists a unique differential structure on C̃ such
that the projection π : C → C̃ is a smooth map, π is a local diffeomorphism in the regular
points, and the push-forward π∗g gives a smooth Riemannian metric. The push-forward of
the form I is also smooth.

Remark 2.2. The uniqueness of the differential structure on C̃ means that if (C̃,D1) and
(C̃,D2) are two differential structures on the quotient space C̃ satisfying the conditions of
Proposition 2.1, then the identity map id : C̃ → C̃ is a diffeomorphism of the manifolds
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(C̃,D1) and (C̃,D2). In this way we obtain a unique Riemannian manifold, that we denote
by (X, π∗g).

We denote by 
 the boundary ∂X of X. We give the following definition.

Definition 2.3. The billiard table (X, π∗g) is said to be Liouville.

To prove Proposition 2.1 we need the next simple lemma which will also be useful in
the next section. Denote by V ⊂ R2 a neighborhood of the origin and by U the square
(−ε, ε) × (−ε, ε), ε > 0 in R2. We denote by (x, y) and (r, s) the coordinates in U and
V , respectively.

LEMMA 2.4. Let 5 : U → V be a smooth mapping such that σ ∗5 = 5 and 5−1(0, 0) =
(0, 0). Suppose that for each (r, s) �= (0, 0), the set 5−1(r, s) consists of exactly two points
and the differential d5|(x,y) is non-degenerate at each of them. Consider the quadratic
form (2.1), where f and q are smooth functions on the interval (−ε, ε), f ≥ 0 and q ≤ 0,
and suppose that the push-forward dg̃2 = 5∗(dg2) is a well-defined smooth Riemannian
metric on 5(U). Then the following conditions are satisfied:
(A1) f is even, f > 0 if x �= 0, f (0) = 0, f ′′(0) > 0;
(A2) q is even, q < 0 if y �= 0, q(0) = 0;
(A3) f (2k)(0) = (−1)kq(2k)(0), k ∈ N.
Moreover, there exist neighborhoods V0 ⊂ 5(U) and W0 ⊂ R2 = {(u, v)} of the origin in
R2 and a diffeomorphism K : V0 → W0, such that the map K̃ given by

5−1(V0)

5

��

K̃

�����
��

��
��

⊂ U

5

��
W0 V0

K�� ⊂ 5(U)

satisfies K̃(x, y)
�= (K ◦ 5)(x, y) = (x2 − y2, 2xy). In other words, setting z = x + iy

and w = u + iv we obtain K̃(z) = z2. Conversely, if the mapping 5 is given by
5 : z �→ w = z2 and (A1)–(A3) are satisfied, then 5∗g is well-defined and smooth,
and the push-forward of the quadratic form (2.2) is also well-defined and smooth.

Proof. Suppose first that the push-forward dg̃2 is well-defined and smooth. Then σ ∗(5∗g̃)
= 5∗g̃, and σ ∗g = g. The last equality shows that f (−x)−q(−y) = f (x)−q(y), hence
f and q are even functions. Moreover, f (0) = q(0) = 0 and f > 0 if x �= 0, and
q < 0 if y �= 0, since dg̃2 is a Riemannian metric. On the other hand, it is clear that the
push-forward g̃ is well-defined and smooth on 5(U) \ (0, 0), provided f and q are even.

Suppose that g̃ is smooth in 5(U). Consider a conformal coordinate system {(u′, v′)}
in a neighborhood V0 of the point (r, s) = (0, 0). In other words, dg̃2 = µ(u′, v′)
(du′2 + dv′2) in these coordinates. Let K1 : V0 → W ′

0 be the corresponding
transition function, K1(0, 0) = (0, 0), and K̃1

�= K1 ◦5. Since both (x, y) and (u′, v′)
are conformal local coordinates of the metric dg2 in U \ (0, 0), the mapping K̃1 is
conformal in U \ (0, 0). Taking the right orientation and introducing the complex variables
z = x + iy and w = u′ + iv′, we identify K̃1 with a holomorphic function p(z).
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Then p(−z) = p(z), and we have p(z) = p1(z
2), where p1(w) is holomorphic and

p1(0) = 0. If (dp1/dw)(0) = 0, then for each w′
0 �= 0 close to 0 the preimage

p−1(w′
0) would consist of more than two points, which is not allowed by assumption.

Hence, (dp1/dw)(0) �= 0 and shrinking W ′
0 if necessary we obtain a biholomorphic map

p1 : W0 → W ′
0, where W0 is a neighborhood of the origin in C. It is clear that in the

coordinates w = u + iv (with transition function w = p−1
1 (w′)) the map 5 is given by

z �→ w = z2. Let dg̃2 = λ(u, v)(du2 +dv2) = λ(w, w̄) dw dw̄ be the Riemannian metric
g̃ in the new chart. We have g = 5∗g̃ = 4λ(w, w̄)|z|2 dz dz̄. Hence,

f (x)− q(y) = 4λ(u, v)(x2 + y2), (2.3)

where λ(u, v) is a smooth positive function, u = x2 − y2, v = 2xy. Let

λ ∼ λ(1) + (λ
(2)
1 u+ λ

(2)
2 v)+ · · · , f ∼ f0 + f1x

2 + · · · , q ∼ q0 + q1y
2 + · · ·

be the Taylor expansion of the corresponding functions in the points u = v = 0, x = 0,
and y = 0, respectively. Substituting these series in (2.3) and comparing the coefficients
of the homogeneous terms of x and y, we obtain that f0 = q0, f1 = −q1 = 4λ(1) > 0 and
fk = (−1)kqk . Therefore, conditions (A1)–(A3) are satisfied.

Conversely, suppose that (A1)–(A3) are satisfied and let 5 be given by z �→ w = z2.
It is clear that the metric dg̃2 = λ(u, v)(du2+dv2) is well-defined and smooth on 5(U)\0
and 4λ(u, v) = (f (x)− q(y))/(x2 + y2). We have

4λ(u, v) = f1 + f2(x
2 − y2)+ o(|z|2) = f1 + f2u+ o(|w|),

where λ(0, 0) = f1/4. Hence, λ is differentiable at (u, v) = (0, 0). The proof that λ is
smooth is straightforward. The same arguments show that the push-forward 5∗I gives a
smooth form in a neighborhood of the zero, and we complete the proof of Lemma 2.4. ✷

A variant of the last lemma is proved in [11].

Proof of Proposition 2.1. The first statement of the proposition is obvious. The points
A = (0, 0) and B = (1/2, 0) on the cylinder C are fixed points of the involution σ .
Denote by D2

r the disk {x2 + y2 < r2}, where r is a fixed number, 0 < r < min{1/2, N},
and consider the map 5 : z �→ w = z2, where z = x + iy and w = u + iv. 5 maps
D2
r onto a neighborhood of w = 0. The coordinates {(u, v)} give a differential structure

in a neighborhood of the branched point π(A). It follows from (H1)–(H3) and Lemma 2.4
that the push-forwards 5∗g and 5∗I are smooth and 5∗g is positive definite. The same
construction gives a differential structure in a neighborhood of the other branched point.
The other points of the cylinder C are regular and the differential structure is induced from
the differential structure on the cylinder C. It follows from Lemma 2.4 that the differential
structure described above is unique in the sense of Remark 2.2. Proposition 2.1 is proved. ✷

PROPOSITION 2.5. Liouville billiard tables are integrable.

Proof. Obviously the metric π∗g has Liouville form (2.1) in a neighborhood of any regular
point of the cover π . It is easy to see that the form π∗I gives a first integral of the geodesic
flow of the metric π∗g in a sufficiently small neighborhood of any regular point. Indeed, on
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the cover, π∗g and π∗I are given, respectively, by (2.1) and (2.2) in the coordinates (x, y).
As functions on the cotangent bundle T ∗C they have the form

H(x, y, p1, p2) = p2
1 + p2

2

f (x)− q(y)
(2.4)

I (x, y, p1, p2) = q(y)p2
1 + f (x)p2

2

f (x)− q(y)
. (2.5)

The functions H and I are in involution and their differentials are linearly independent
almost everywhere. Hence, the geodesic flow of the Riemannian metric π∗g is completely
integrable. Let ξ ∈ TxX, x ∈ 
, and let n(x) be the inward unit normal to 
 at the point x.
Define an involution τ : TX|
 → TX|
 by (x, ξ) �→ (x, ξ − 2g(ξ, n(x))n(x)). It follows
from (2.1) and (2.2) that τ preserves the values of g and I . This completes the proof of
Proposition 2.5. ✷

Remark 2.6. The corresponding analytic variants of Proposition 2.1, 2.5 and Lemma 2.4
are also true.

From now on we consider Liouville billiard tables which ‘resemble’ that of the ellipse
(see §3.1). We impose the following additional conditions:

(H4) the boundary 
 of X is locally geodesically convex which amounts to
(dq/dy)(N) < 0;

(H5) f (x) = f (1/2 − x) and f is strictly monotone on the interval [0, 1/4];
(H6) f and q are analytic and their critical points are non-degenerate.

Definition 2.7. Liouville billiard tables satisfying conditions (H4)–(H6) are said to be
of classical type.

Remark 2.8. One of the consequences of (H5) is that there is a group G ∼= Z2 × Z2 acting
on (X, g) by isometries.

Indeed, the involutions σ1 : (x, y) �→ (x,−y) and σ2 : (x, y) �→ (1/2 − x, y) induce
isometries of the Liouville billiard table (X, π∗g), which will be denoted by the same
letters. Consider the group of isometries G generated by σ1 and σ2. The set of fixed points
of σ1 (σ2) can be parameterized by a geodesic arc γ1 (γ2), which links two different points
of 
 and it is orthogonal to 
 at these points. In the case of the ellipse, γ1 and γ2 are the
corresponding axes.

Liouville billiard tables possess the so called string property. Namely, we have the
following.

PROPOSITION 2.9. Any broken geodesic in a Liouville billiard table starting from the
singular point F1 (F2) passes through F2 (F1) after one reflection at 
. Moreover, the sum
of distances from any point of 
 to F1 and F2 is constant.

The proposition will be proved at the end of §4.2.

We give examples of Liouville billiard tables of classical type in the next section.
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3. Integrable billiard tables on surfaces of constant curvature and quadrics
The aim of this section is to provide several examples of Liouville billiard tables of classical
type. It is more or less known that the corresponding billiard flows are integrable. The main
point here is that we give explicit formulae for the covering maps, the metric and the
integral.

3.1. Elliptical billiard tables in the Euclidean space. Consider the mapping 5 : T1 ×
R → R2, given by:

u = ε cosh 2πy cos 2πx,

v = ε sinh 2πy sin 2πx,

where (x, y) ∈ T1 × R and (u, v) ∈ R2, ε > 0 (see [19]). The images of the
coordinate lines y = y0 = constant �= 0 are confocal ellipses on the plane {(u, v)},
with foci F1 = (−ε, 0) and F2 = (ε, 0), while the images of the coordinate lines
x = x0 = constant �= k/2, k ∈ Z, are confocal hyperbolas with the same foci F1

and F2. The mapping 5 is a double cover of the plane R2 with branched points F1 and F2.
Let ds2 = du2+dv2 be the Euclidean metric on R2. The pull-back g := 5∗s of the metric
s has a Liouville form

dg2 = (f (x)− q(y))(dx2 + dy2), (3.1)

where f (x) = 4ε2π2 sin2 2πx and q(y) = −4ε2π2 sinh2 2πy. The quadratic form

dI 2 := (f (x)− q(y))(q(y) dx2 + f (x) dy2) (3.2)

is a first integral of the geodesic flow of the ‘metric’ g. Note that the quadratic forms
g and I vanish at the points (k/2, 0), k ∈ Z. It follows from Proposition 2.4, 2.5 and
Lemma 2.1 that the push-forward Ĩ of the form I gives a smooth integral of the elliptical
billiard tables in the interior of the ellipses {y = constant �= 0}. Moreover, Ĩ is an integral
of any billiard table, the boundary of which consists of curves from the confocal family
described above.

3.2. Integrable billiard tables on the sphere. Integrable billiard tables on S2 and H2

have been considered earlier in [2, 4]. Here we give explicit formulae for the corresponding
branched covers.

Denote by S2 = {x2+y2+z2 = 1} the unit sphere embedded in the Euclidean space R3.
The metric g1 is the restriction of the Euclidean one dg2

0 = dx2 + dy2 + dz2 on S2.
The coordinates {(x, y)} of the unit disk D2

1 = {x2+y2 < 1} give a parameterization of the
positive half (z > 0) of the sphere S2, and we can rewrite the metric g1 in these coordinates.
Let us consider the branched cover of the unit disk 51 : R/2πZ × (−1/k, 1/k) → D2

1
given by

x = k√
1 + k2

√
1 + v2 cosu,

y = kv sin u,
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where k is a positive constant. The pull-back g̃1
�= 5∗

1g1 has a Liouville form

dg̃2
1 = k2(f (u)− q(v))

(
du2

1 + k2 sin2 u
+ dv2

(1 + v2)(1 − k2v2)

)
,

where f (u) = sin2 u and q(v) = −v2. After an obvious change of the variables the
metric g̃1 takes form (2.1). Propositions 2.1, 2.5 and Lemma 2.4 show that the interior of
any curve {v = constant > 0} is a Liouville billiard table. It is easy to see that all these
billiard tables are of classical type.

3.3. Integrable billiard tables on the hyperbolic space. Consider the hyperboloid of two
sheets H2 = {−x2−y2+z2 = 1} embedded in the Minkowski space R2,1. The metric g−1

of the Hyperbolic space is the restriction of the Minkowski metric dg2
0 = dx2 + dy2 − dz2

on H2. The coordinates {(x, y)} give a parameterization of the positive sheet (z > 0) of
the hyperboloid H2. Consider the branched cover of the plane 5−1 : R/2πZ × R → R2

given by

x = k√
1 − k2

√
1 + v2 cosu,

y = kv sin u,

where k is a constant in the interval 0 < k < 1. The pull-back g̃−1 = 5∗−1g−1 has a
Liouville form

dg̃2
−1 = k2(f (u)− q(v))

(
du2

1 − k2 sin2 u
+ dv2

(1 + v2)(1 + k2v2)

)
,

where f (u) = sin2 u and q(v) = −v2. As in §3.2 we obtain that the billiard tables inside
the curves {v = constant �= 0} are Liouville billiard tables of classical type.

3.4. Integrable billiard tables on quadratic surfaces. Another class of integrable
billiard tables appears on quadrics. Consider, for example, the ellipsoid

E =
{
x2

a
+ y2

b
+ z2

c
= 1

}
,

where 0 < c < b < a. Denote by Eλ the corresponding one-parameter family of confocal
quadrics, i.e.

Eλ =
{

x2

a − λ
+ y2

b − λ
+ z2

c − λ
= 1

}
.

Fix a real number λ0
2 ∈ (c, b), and consider the hyperboloid of one sheet Eλ0

2
. It can

be easily seen that Eλ0
2

intersects the ellipsoid E in two curves S1 and S′1. These curves
are boundaries of two isometric regions D1 and D′

1 on the ellipsoid, diffeomorphic to
the unit disk. It turns out that the billiard flows in D1 and D′

1 (equipped with the induced
Euclidean metric from R3) are integrable. Fix a real number λ0

3 ∈ (b, a). The quadric Eλ0
2
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is a hyperboloid of two sheets that intersects the ellipsoid E in two curves S2 and S′2.
As in the previous case these curves bound two isometric regions D2 and D′

2 on the
ellipsoid. The corresponding billiard tables are integrable (see also [4]). It is easy to see
that the same construction gives integrable billiard tables on every fixed hyperboloid of two
sheets Eλ0

2
. The boundaries of the billiard tables are given by the intersection curves of the

hyperboloid Eλ0
2

with the ellipsoids from the confocal family Eλ.
Denote by (λ1, λ2, λ3) the standard elliptical coordinates λ1 < c < λ2 < b < λ3 < a.

The relation between the elliptical coordinates λi and the Cartesian coordinates x, y and z

is given by the formulae

x2 = (a − λ1)(a − λ2)(a − λ3)

(a − b)(a − c)
,

y2 = (b − λ1)(b − λ2)(b − λ3)

(b − a)(b − c)
,

z2 = (c − λ1)(c − λ2)(c − λ3)

(c− a)(c− b)
.

Taking λ1 = c− θ2
1 , λ2 = c cos2 θ2 + b sin2 θ2, and λ3 = b cos2 θ3 + a sin2 θ3 we obtain a

single-valued mapping (θ1, θ2, θ3) �→ (x, y, z) given by the formulae

x =
(√

((a − c)+ θ2
1 )((a − c) cos2 θ2 + (a − b) sin θ2) cos θ3

)
/
√
a − c,

y =
√
(a − c)+ θ2

1 cos θ2 sin θ3,

z =
(
θ1 sin θ2

√
(b − c) cos2 θ3 + (a − c) sin2 θ3

)
/
√
a − c.

This mapping is a branched cover of the plane R3 (see [11]). It is not hard to see that
this cover gives a double branched cover of the billiard tables described above. We give
the formulae for the corresponding metrics on the cover, while the integral is given by the
push-down of (2.2).

3.4.1. Integrable billiard tables on the ellipsoid. We have two types of billiard tables
on the ellipsoid.
1. Setting θ1 = constant, u = θ3, and v = √

b − c sin θ2 we obtain a branched cover of
the first family of integrable billiard tables on the ellipsoid. In coordinates (u, v) we
obtain

dg2 = (f (u)−q(u))

(
(b cos2 u+ a sin2 u) du2

(b cos2 u+ a sin2 u)− c
+ (b − v2) dv2

(a − (b − v2))((b − v2)− c)

)
,

where f (u) = (a − b) sin2 u, q(v) = −v2 and −√
b − c < v <

√
b − c.

2. Taking θ1 = constant, u = θ2, and v = √
a − b sin θ3 we obtain a cover of the

second family of billiard tables on the ellipsoid. On the cover the metric is

dg2 = (f (u)−q(u))

(
(c sin2 u+ b cos2 u) du2

a − (c sin2 u+ b cos2 u)
+ (b + v2) dv2

(a − (b + v2))((b + v2)− c)

)
,

where f (u) = (b − c) sin2 u, q(v) = −v2 and −√
a − b < v <

√
a − b.

https://doi.org/10.1017/S0143385702001190 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001190


Liouville billiard tables and an inverse spectral result 235

3.4.2. Integrable billiard tables on the hyperboloid of two sheets. Fix α ∈ (b, a) and
consider the hyperboloid of two sheets given by the equation λ3 = constant. Taking u = θ2

and v = θ1, we obtain a branched cover of the family of billiard tables on the hyperboloid
of two sheets. On the cover we have

dg2 = (f (u)− q(u))

(
(α − (c sin2 u+ b cos2 u)) du2

a − (c sin2 u+ b cos2 u)
+ (α − (c − v2)) dv2

(1 + v2)(b − (c − v2))

)
,

where f (u) = (b − c) sin2 u, q(v) = −v2 and −1 < v < 1.
It is easy to see the following.

PROPOSITION 3.1. The Liouville billiard tables considered in §3 are of classical type.

Applying Theorem 1 to the billiard tables considered in this section we obtain the
following.

COROLLARY 3.2. The map (1.2) is one-to-one for each of the billiard tables in §3.1–§3.4.

4. Properties of the billiard ball map
Let (X, g̃) be a billiard table with boundary 
. Consider the co-ball bundle B∗
 =
{(x, ξ) ∈ T ∗
 : ‖ξ‖x ≤ 1}, where the Hamiltonian (x, ξ) → ‖ξ‖2

x is quadratic with
respect to ξ and is given by the Legendre transformation of the induced Riemannian metric
on 
. Denote by

◦
B∗
 the interior of B∗
. Let S∗X = {(x, ξ) ∈ T ∗X : H̃ (x, ξ) = 1}

be the co-sphere bundle of X, where H̃ stands for the Hamiltonian function on T ∗X
corresponding to the Riemannian metric g̃ via the Legendre transformation. Set G+ =
{(x, ξ) ∈ S∗X|
 : 〈ξ, n(x)〉 > 0}, n(x) being the unit inward normal to 
 at x.

The corresponding billiard ball map B is defined as follows [1]. Take (x, ξ) in the
interior of B∗
 and denote by ξ+ ∈ G+

x the co-vector uniquely determined by ξ+|Tx
 = ξ .
Consider the integral curve, exp(tXH̃ )(x, ξ+), of the Hamiltonian vector field XH̃ starting
at (x, ξ+). If it transversally intersects S∗X|
 at a time t1 > 0 and lies entirely in the
interior S∗

◦
X of S∗X for t ∈ (0, t1), we set (y, η−) = J (x, ξ+) = exp(t1XH̃ )(x, ξ+),

and define B(x, ξ) = (y, η), where η = η−|Ty
 . We denote by B̃∗
 the set of all such
points (x, ξ). As in [13] we can write B in an invariant form as follows. Consider the pull-
back ω1 in T ∗X|
 of the symplectic form ω in T ∗X via the inclusion map. The projection
along the characteristics of ω1 induces a smooth map π1 : S∗X|
 → B∗
 and we denote
by π+

1 : ◦
B∗
 → G+ an inverse map to π1. Then we can write B = π1 ◦ J ◦ π+

1 . In this
way we obtain a symplectic map B : B̃∗
 → B∗
, which is analytic if the billiard table is
analytic. We extend B as the identity mapping on the boundary S∗
 of B∗
.

4.1. The phase portrait of the integral. Suppose now that (X, g̃) is a Liouville billiard
table where g̃ = π∗(g). We identify the boundary 
 of a Liouville billiard table with the
circle {(x,N) : x ∈ T1} on the cylinder C with coordinates {(x, y)}. Consider the natural
coordinates {(x, y, p1, p2)} of the cotangent bundle T ∗C and set 
N = {y = N} ⊂ T ∗C.
Then 
N is diffeomorphic to T ∗X|
 and using (2.4) we identify

S∗X|
 ∼= {(x,N, p1, p2) ∈ 
N : p2
1 + p2

2 = f (x)− q(N)}.
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Moreover, we identify T ∗
 with T ∗T1 via the inclusion map (x, p1) �−→ (x,N;p1, 0).
The billiard ball map B : B̃∗
 → B∗
 preserves the symplectic form ω0 = dp1 ∧ dx

of T ∗
. It is easy to see that the characteristics of the pull-back ω|
N to 
N of
the symplectic form ω = dp1 ∧ dx + dp2 ∧ dy are spanned by the vectors ∂/∂p2.
Then π1(x,N, p1, p2) = (x, p1) on S∗X|
 ,

B∗
 ∼= {(x, p1) ∈ T ∗T1 : p2
1 − f (x)+ q(N) ≤ 0},

and the map π+
1 : B∗
 → G+ is given by

(x, p1) �−→ (x,N;p1,−
√
f (x)− q(N)− p2

1).

Consider the function I = I ◦π+
1 on B∗
, where I is the integral (2.5). In the coordinates

{(x, p1)} it is given by
I(x, p1) = f (x)− p2

1. (4.1)

By construction, I is a smooth function in
◦
B∗
 and it is analytic if the Liouville billiard is

of classical type.

LEMMA 4.1. The function I(x, p1) = f (x) − p2
1 is constant on the trajectories of the

billiard ball map B.

The lemma follows immediately from Proposition 2.5.
It is easy to see that q(N) ≤ I(x, p1) ≤ f (x). Fix a value h of the integral I(x, p1),

q(N) ≤ h ≤ max f and denote by Sh = {I(x, p1) = h} the corresponding level set
in B∗
. The set of glancing points of the billiard ball map coincides with the set of constant
level {I(x, p1) = q(N)}.

Consider now the critical points of the integral I(x, p1) in B∗
. Using (H1) (and (H5)
if the Liouville billiard table is of classical type), we easily obtain the following.

PROPOSITION 4.2. The critical points of the integral I(x, p1) are given by Pi = (xi, 0),
where xi are the critical points of f . The point Pi is non-degenerate in the Morse sense if
and only if f ′′(xi) �= 0. If f ′′(xi) > 0, then Pi is non-degenerate of index 1 (‘hyperbolic’
point). If f ′′(xi) < 0, then Pi is non-degenerate of index 2 (‘elliptic’ point). The points
A1 = (0, 0) and A2 = (1/2, 0) are non-degenerate of index 1. Each h ∈ (q(N), 0) is
a regular value of the integral I(x, p1) and the corresponding level set Sh consist of two
circles. The level set S0 consists of the critical points A1 and A2, and four different arcs
connecting them and containing only regular points of the integral I(x, p1). Moreover, if
the Liouville billiard table is of classical type, then each h ∈ (0, f (1/4)) is a regular value
of I(x, p1), the corresponding level set Sh consists of two circles, and Sf (1/4) consists of
two non-degenerate critical points of index 2.

If f (x) − h > 0 for x ∈ [a, b], then p1 = ±√
f (x)− h is a parameterization of Sh,

and we set S±h [a, b] = {(x,±√
f (x)− h) : x ∈ [a, b]}. In a neighborhood of these curves

we can introduce local coordinates {(x,I)}. The pull-back of ω0 to S±h [a, b] has the form

ω0 = dp1 ∧ dx = ±
(

dx

2
√
f (x)− I

)
∧ dI.
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We consider the following 1-form on Sh:

λh
�=


dx√

f (x)− h
p1 > 0,

− dx√
f (x)− h

p1 < 0.

If h is a regular value of the integral I(x, p1), the form λh gives a smooth 1-form on Sh

which is invariant under the Hamiltonian flow of I. λh is called the Leray form. It is easy
to see that the Leray form λh is invariant with respect to any symplectic transformation
defined in a tubular neighborhood of Sh and preserving the function I(x, p1). We supply
Sh with orientation by means of the Leray form.

4.2. Rotation function for Liouville billiard tables of classical type. Fix a regular
value h of the integral I(x, p1) and consider a connected component S0

h
∼= T1 of the

level set Sh. Suppose that the billiard ball map B is defined on S0
h and preserves it inducing

a diffeomorphismB|S0
h
: S0

h → S0
h . The Leray form λh provides S0

h with a smooth positive
measure which is invariant with respect to the map B|S0

h
. By means of λh we introduce

a periodic coordinate {s modµ0} (µ0 = ∫
S0
h
λh) on S0

h such that ds = λh. It is clear that
B|S0

h
takes s to s + µ, where µ is a constant on S0

h. The number ρ|S0
h
= µ/µ0 is the

rotation number of the map B|S0
h
. The rotation number ρ|S0

h
depends on the choice of the

orientation on S0
h and it is defined modulo 1. It is clear that

ρ|S0
h
=
∫
P̂Q

λh∫
S0
h
λh

,

were P is an arbitrary point on S0
h , Q = B(P), and P̂Q is an arc in S0

h connecting P

and Q.

We will prove (see Proposition 4.3) that there is at most a finite set N(q) of values
h1, . . . , hl ∈ (q(N), 0) such that the billiard ball map B is well-defined on Sh for each
h ∈ (q(N), 0) \ N(q), but it is not defined on the level sets Shi . Geometrically this
means that the geodesics issuing from the sets Shi do not reach the boundary 
 again
and they stay forever in the interior of the billiard table. If h ∈ (q(N), 0) \ N(q) then the
billiard ball map B preserves the connected components of the level sets Sh. Moreover, the
involution (x, p1)

ı→ (x,−p1) interchanges the connected components of Sh and we
have ıBı = B−1. In particular, the rotation number of the restriction of B to each of
the components of Sh is the same and we denote it by ρ−(h). If 0 < h < f (1/4)
then the billiard ball map interchanges the components of the level sets Sh. In this case
we consider the square B2 of the billiard ball map and denote the corresponding rotation
function by ρ+(h), h ∈ (0, f (1/4)). In what follows, we consider the cases h ∈ (q(N), 0),
h ∈ (0, f (1/4)), and h = 0 separately.

Given a value h of the restriction of integral I on S∗C, we consider the invariant set
of bicharacteristic flow Th = {H = 1, I = h} ⊂ S∗C. Passing to TC by the Legendre
transformation, we determine Th = {g = 1, I = h} ⊂ T C (in the coordinates (x, y) on C)
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by the system

g(v, v) = (f (x)− q(y))(ẋ2 + ẏ2) = 1,

I (v, v) = (f (x)− q(y))(q(y)ẋ2 + f (x)ẏ2) = h,

where v = ẋ∂x + ẏ∂y denotes the velocity of a geodesic curve in Th. This yields

ẋ = ±
√
f (x)− h

f (x)− q(y)
,

ẏ = ±
√
h− q(y)

f (x)− q(y)
.

It is easy to see that this dynamical system corresponds to the projections on the base C of
the bicharacteristics lying in the invariant set Th. Changing the parameterization we obtain

dx

dτ
= ±√f (x)− h,

dy

dτ
= ±√h− q(y).

(4.2)

If h < q(N), then the corresponding geodesics never touch the boundary of the
billiard table.

Case A. Suppose that q(N) < h < 0. Consider the caustics of the bicharacteristics
lying in Th, i.e. the envelope of the geodesics which are projections of bicharacteristics in
Th. Note that the geodesics tangent to a caustic of Th may never reach the boundary 
.
It follows from (4.2) that the caustics corresponding to Th, q(N) < h < 0, can be identified
with the curves {y = y(h)} on C, where y(h) are the positive solutions of the equation
q(y) = h. Denote by ym(h) the maximal of them, and suppose that ym is not a critical
point of the function q(y). Then {y = ym(h)} is a caustic corresponding to the broken

geodesics issuing from the invariant set Sh ⊂ ◦
B∗
, of the billiard ball map. Indeed, for

each ν ∈ Sh, the broken bicharacteristic γ issuing from ν (γ (0) = π+(ν)) lies in Th.
Consider the corresponding broken geodesic (x(τ ), y(τ )), y(0) = N , parameterized by
τ ≥ 0. In view of (4.2) it lies in the annulus ym ≤ y(τ) ≤ N . Moreover, dx/dτ(τ ) > 0
for each τ ≥ 0, and there exist τ1 > τ(h) > 0 such that dy/dτ(τ (h)) = 0, dy/dτ(τ ) < 0
for τ ∈ [0, τ (h)), dy/dτ(τ ) > 0 in τ ∈ (τ (h), τ1], and y(τ1) = N . By the same argument
to any other solution y0 of q(y) = h correspond caustics for Th such that the geodesics
tangent to {y = y0} never reach the boundary (y(τ) oscillates between two different zeros
of q(y) = h).

Consider the rotation function ρ−(h), q(N) < h < 0, of the billiard ball map
corresponding to the geodesics issuing from Sh, the caustic of which is given by
{y = ym(h)}.
PROPOSITION 4.3. Suppose that ym(h), q(N) < h < 0, is not a critical point of q . Then

ρ−(h) =
(

2
∫ N

ym(h)

dy√
h− q(y)

)(∫ 1

0

dx√
f (x)− h

)−1

.
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Proof. Denote by P1 ∈ 
 the point with coordinates (0, N) on the cylinderC. Consider the
solution γ (τ) = (x(τ ), y(τ )) of the system

dx

dτ
= √

f (x)− h,

dy

dτ
= −√h− q(y),

with initial data γ (0) = P1. The curve γ touches the caustic {y = ym(h)} at

τ (h) =
∫ N

ym(h)

dy√
h− q(y)

.

Denote by Q1 the point γ (τ(h)) and consider the solution γ̄ (τ ) of the system

dx

dτ
= √

f (x)− h,

dy

dτ
= √

h− q(y),

with initial data γ̄ (0) = Q1. This curve intersects the boundary 
 at a point P2 =
(x(h),N). In the coordinate chart {(x, I)} (defined in a neighborhood of the connected
component of Sh), the billiard ball map takes the point (0, h) to (x(h), h). Therefore, the
rotation function is

ρ−(h) =
∫ x(h)

0 λh∫ 1
0 λh

, (4.3)

where λh is the Leray form. It follows from (4.2) that

2τ (h) =
∫ x(h)

0

dx√
f (x)− h

which completes the proof of Proposition 4.3. ✷

We consider a subset N(q) = {h1, . . . , hl ∈ (q(N), 0)} of the set of critical points of q ,
defined recurrently as follows. We take h1 = q(N1), where N1 ∈ (0, N) is the closest
critical point of q to N (if such a point does not exist we set N(q) = ∅). Then given hk ,
k ≥ 1, we define by recurrence hk+1 = q(Nk+1), where Nk+1 < Nk is the closest critical
point of the function q to Nk on the interval (0, N), such that q(Nk+1) > hk . If such a
point Nk+1 does not exist we set N(q) = {h1, . . . , hk ∈ (q(N), 0)}.
PROPOSITION 4.4. The rotation function ρ−(h) is strictly increasing in a neighborhood
of the point q(N) and limh→q(N)+0 ρ

−(h) = 0. The rotation function is analytic on the set
(q(N), 0) \N(q), and limh→hi±0 ρ

−(h) = +∞ for every hi ∈ N(q).

Proof. It is clear that ym(h) → N as h → q(N)+0, hence limh→q(N)+0 ρ
− = 0. We have

τ (h) =
∫ N

ym(h)

dy√
h− q(y)

= −2
∫ √

h−q(N)

0

dy

dq
(h−w2) dw,

where w2 = h− q(y). Hence,

τ ′(h) = −dy

dq
(q(N))

1√
h− q(N)

− 2
∫ √

h−q(N)

0

d2y

dq2 (h−w2) dw.
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This shows that τ ′(h) → +∞ as h → q(N)+ 0. We have

dρ−

dh
(h) =

(
2τ ′(h)

∫ 1

0

dx√
f (x)− h

− τ (h)

∫ 1

0

dx

(f (x)− h)3/2

)
×
[(∫ 1

0

dx√
f (x)− h

)2]−1

.

Therefore, (ρ−)′(h) > 0 if h is sufficiently close to q(N).
Consider the closest critical point N1 to N of the function q and the critical value

h1 = q(N1). It is clear that q(y) is strictly monotone on the interval [N1, N]. Moreover,
in view of (H6), there exists δ > 0 such that

dy

dq
(h) = R(h)√

h1 − h
, h ∈ (h1 − δ, h1],

where the function R(h) is continuous and R(h) < c1 < 0 on (h1 − δ, h1]. We have

τ (h) =
∫ N1+δ

ym(h)

dy√
h− q(y)

+
∫ N

N1+δ
dy√

h− q(y)

= −2
∫ √

h−q(N1+δ)

0

dy

dq
(h− w2) dw + r1(h)

= −2
∫ √

h−q(N1+δ)

0

R(h− w2)√
(h1 − h)+w2

dw + r1(h),

where r1(h) is smooth in a neighborhood of h1. Hence,

τ (h) > −2c1

∫ √
h−q(N1+δ)

0

1√
(h1 − h)+w2

dw = c1 ln(h1 − h)+O(1).

Therefore, limh→h1−0 ρ
−(h) = +∞. Analogously we prove limh→h1+0 ρ

−(h) = +∞.
The same arguments can be applied to any of the points of N(q). This completes the proof
of Proposition 4.4. ✷

Case B. Suppose that 0 < h < f (1/4). In this case the caustics of the set Th can
be identified with the curves {x = x(h)}, where x(h) are the solutions of the equation
f (x) = h in the interval (0, 1/2). Denote by xm(h) the minimal of them. The billiard ball
map changes the connected components of the level set Sh. Denote by ρ+(h) the rotation
function of the square of the billiard ball map.

PROPOSITION 4.5. The rotation function ρ+(h) of the iterated billiard ball map on the
interval 0 < h < f (1/4) is

ρ+(h) =
(∫ N

−N
dy√

h− q(y)

)(∫ 1/2−xm(h)

xm(h)

dx√
f (x)− h

)−1

. (4.4)

Proof. Suppose that the iterated billiard ball map takes the point (xm(h), h) to (x ′(h), h).
As in the proof of Proposition 4.3 we show that

2
∫ N

−N
dy√

h− q(y)
= 2k

∫ 1/2−xm(h)

xm(h)

dx√
f (x)− h

±
∫ x ′(h)

xm(h)

dx√
f (x)− h

,
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where k is an integer. Therefore, the rotation function is given by formula (4.4).
Proposition 4.5 is thus proved. ✷

COROLLARY 4.6. The rotation function ρ+(h) is analytic on the interval (0, f (1/4)).

Remark 4.7. Let f ∼ f (1/4)−α1(x−1/4)2−α2(x−1/4)4+· · · be the Taylor expansion
of f at x = 1/4. As in the proof of Proposition 4.4 it can be seen that limh→0−0 ρ

− = 1/2,
limh→0+0 ρ

+ = 1 and

lim
h→f (1/4)−0

ρ+ =
√
α1

π

∫ N

−N
dy√

f (1/4)− q(y)
.

The existence and the exact values of these limits will not be used later and we omit the
proof.

Case C. Let h = 0. Consider the coordinates {(x, p1)} on T ∗
 described in §4.1.
The level set S0 = {I(x, p1) = 0} consists of the points A1 = (0, 0) and A2 =
(0, 1/2), and the arcs S±0 (0, 1/2) = {(x,±√

f (x)) : x ∈ (0, 1/2)} and S±0 (1/2, 1) =
{(x,±√

f (x)) : x ∈ (1/2, 1)}. The billiard ball map B is defined and analytic in a regular
neighborhood of the singular level S0. It is clear that B maps S+0 (0, 1/2) to S+0 (1/2, 1)
and preserves the Leray form λ0 defined on them. Using λ0 we introduce the variable
s = ∫ x

1/2 λ0 and identify S+0 (0, 1/2) with R. It is clear that λ0 = ds and, therefore, the

square B2 of the billiard ball map is simply a translation s �→ s+α, where α is a constant.
If α = 0, we obtain that all geodesics issuing from S+0 (0, 1/2) are periodic with the same
primary length. If α �= 0 the geodesics issuing from S+0 (0, 1/2) are not periodic. We have
proved the following lemma.

LEMMA 4.8. For each T > 0 there are at most finitely many L ∈ (0, T ) such that L is the
length of a closed broken geodesic issuing from S0.

Proof of Proposition 2.9. Consider a broken geodesic γ in X starting from F1, and denote
by P ∈ 
 its first point of contact with the boundary. Suppose that γ is different
from γ1. Then the intersection points of γ with B∗
 lie in S0 and they are different
from the critical points A1 and A2. In the coordinates (x, y) in C we have F1 = (0, 0),
F2 = (1/2, 0), and we can suppose that P = (x1, N) with 0 < x1 < 1/2 (the case
P = (x1,−N), 0 < x1 < 1/2, is treated in the same way). Then γ is given by the solution
γ̄ (τ ) = (x(τ ), y(τ )) of the system

dx

dτ
= √

f (x),

dy

dτ
= ±√−q(y),

such that limτ→−∞ γ̄ (τ ) = (0, 0), and there exists τ0 ∈ R such that y(τ0) = N , y ′(τ ) > 0
for τ < τ0 and y ′(τ ) < 0 for τ > τ0. We have to prove that limτ→+∞ γ̄ (τ ) =
(1/2, 0). Using that −q(y) = Cy2(1 + O(y2)), C > 0, near y = 0 we obtain that
limτ→+∞ y(τ) = 0. In the same way we prove that limτ→+∞ x(τ) = 1/2. Differentiating
with respect to P ∈ 
 we prove that the sum of distances from P ∈ 
 to F1 and F2 is
|F̂1P | + |F̂2P | = C0, where C0 > 0 is a positive constant. ✷
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Suppose that (H4) holds. As we have seen in §4.2 (Case A), the caustics of the billiard
trajectories can be identified with the curves {y = y(h)} on C, where y(h) is a positive
solution of the equation q(y) = h, and h is a fixed real number in (q(N), 0). If h is close to
q(N), the curve {y = y(h)} (defined uniquely) is a boundary of another Liouville billiard
table (Xh, g|Xh), Xh ⊂ X, defined by functions fh, and qh such that fh ≡ f , and qh is
given by the restriction of the function q on the interval [−y(h), y(h)]. It is clear that Xh

and X share the same caustics 
h′ = {y = y(h′)} ⊂ Xh, h < h′, near the boundary 
h

of Xh. Hence, we have proved the following.

PROPOSITION 4.9. Near the boundary, Liouville billiard tables satisfying (H4) inherit
from the ellipses the so-called strong evolution property. It means that a caustic of a
caustic is again a caustic.

4.3. Length spectrum. Let P1 be a point in 
 with coordinates (x1, N) on the
cylinder C. Fix a value h /∈ N(q) of the integral I(x, p1) of the billiard ball map,
and consider the geodesic γ(P1,h)(t) such that γ(P1,h)(0) = P1, I (γ (0), γ̇ (0)) = h and
g(γ̇ (0), ∂x) ≥ 0. Denote by P2 = (x2, N) the next point of intersection of γ with 
.
Let l(P1, h) be the length of the geodesic segment of γ connecting P1 with P2. We are
interested in the behavior of l(P1, h) as h approaches the exceptional set N(q).

LEMMA 4.10. We have:
(a) l(P1, h) → ∞ as h tends to hi ± 0, hi ∈ N(q);
(b) for each 0 < ε & 1, there is Cε > 0 such that l(P1, h) > Cε for each h > q(N)+ε,

h /∈ N(q).

Proof. Suppose first that h < 0. It follows from (4.2) that

l(P1, h)
�=
∫ τ0

0

{
(f (x)− q(y))

((
dx

dτ

)2

+
(
dy

dτ

)2)}1/2

dτ

=
∫ τ0

0
{(f (x)− q(y))(|f (x)− h| + |h− q(y)|)}1/2 dτ

=
∫ τ0

0
(f (x)− q(y)) dτ =

∫ τ0

0
f (x) dτ −

∫ τ0

0
q(y) dτ

=
∫ x2

x1

f (x)√
f (x)− h

dx − 2
∫ N

ym(h)

q(y)√
h− q(y)

dx

≥ −2
∫ N

ym(h)

q(y)√
h− q(y)

dy > 0. (4.5)

Similarly, if h > 0, then

l(P1, h) ≥ −
∫ N

−N
q(y)√
h− q(y)

dy.

The integral

l−0 (h)
�= −2

∫ N

ym(h)

q(y)√
h− q(y)

dy
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is a positive continuous function of h on [q(N)+ ε, 0) \N(q). Moreover, it is easy to see
that limh→hi±0 l

−
0 = ∞ and limh→0−0 l

−
0 = l0 > 0. The integral

l+0 (h)
�= −

∫ N

−N
q(y)√
h− q(y)

dy

is a positive continuous function of h on [0, f (1/4)]. This completes the proof of
Lemma 4.10. ✷

Let h /∈ N(q) be a regular value of the integral I(x, p1), and let the rotation number
ρ±(h) ∈ Q be rational. Then for each ν ∈ Sh there is a closed broken bicharacteristic
issuing from ν, and we denote by γν the corresponding primitive broken closed geodesic.
It follows from the definition of the rotation number (see the beginning of §4) that the
number of vertices of γν is independent of the choice of ν on Sh, and the length function
ν → L(γν) is continuous in Sh. Since the length spectrum L(X, g) (the set of lengths
of all closed generalized geodesics) of the billiard table (X, g) has measure 0 in R, we
obtain that the continuous function ν → L(γν) ∈ L(X, g) is constant on each connected
component of Sh. If h < 0 and the broken closed geodesic [0, L(γ )] ' t → γ (t) issues
from one of the components of Sh, then [0, L(γ )] ' t → γ (L(γ ) − t) issues from the
other component. In particular, the primary length of the closed broken geodesics issuing
from Sh is constant and we denote it by l(h). The same is true for h ∈ (0, f (1/4)) since B
interchanges the connected components of Sh in this case.

We consider now the closed broken geodesics issuing from Sh for h close to 0 and to
f (1/4). Denote by Lb(X, g) the set of lengths L(γ ) of all closed generalized geodesics γ
having at least one common point with the boundary. By definition the set L(γ )N∗ is also
contained in Lb(X, g).

LEMMA 4.11. There exist neighborhoods U0 and U1 in R of 0 and f (1/4), respectively,
such that for each T > 0 there are at most finitely many L ∈ Lb(X, g) ∩ (0, T ) which are
lengths of closed broken geodesics issuing from Sh, h ∈ U0 ∪ U1.

Proof. We shall first prove the lemma for h in a neighborhood of 0. In view of Lemma 4.8
we can exclude the singular level S0 from our consideration.

Suppose that there is an infinite sequence {xj }∞j=1 with limj→∞ xj = 0 such that the
geodesics issuing from the level sets Sxj = {I(x, p1) = xj } ⊂ B∗
 are all closed
(ρ±(xj ) ∈ Q) and limj→∞ l(xj ) = T0. Denote by nj the number of vertices of the
primitive closed geodesic issuing from ν ∈ Sxj , i.e. the smallest positive integer such that
Bnj (ν) = (ν), which is independent of ν. Since the set of lengths l(xj ), j ∈ N, is bounded,
using Lemma 4.10(b), we obtain that the set {nj }j∈N, is bounded as well. Hence, we can
suppose that nj = n does not depend on j ≥ 1.

Choose sufficiently small neighborhoods W0 ⊂ W in B∗
 of one of the critical points,
say A1, such that Bn(W0) ⊂ W . Then Bn is analytic in W0 and Bn(q, p) = (q, p) for
each (q, p) ∈ Sxj ∩ W0. On the other hand, by Proposition 4.2, A1 is a non-degenerate
critical point of I(q, p) of index 1 (hyperbolic), and we can provide W with analytic
local coordinates (q, p) ∈ R2 such that (q, p)(A1) = (0, 0) and I(q, p) = q2 − p2

in W . Then there is an open cone 
0 with a vertex at (0, 0) such that any ray in 
0

starting from the origin intersects infinitely many level curves Sxj ∩ W0. This implies
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Bn(q, p) = (q, p) in W0. Since B is analytic in the connected component U of A1

in the complement of
⋃l

j=1 Shj , hj ∈ N(q), in B∗
, we obtain Bn(ν) = ν for each
ν ∈ U . Moreover, the length of the closed geodesic corresponding to the periodic orbit
{ν, B(ν), . . . , Bn−1(ν)} ofB does not depend on ν ∈ U , and we denote it by T . Taking into
account Lemma 4.10(a), we obtain that N(q) = ∅. Hence, Bn is the identity mapping in
B∗
. This contradicts the strict geodesic convexity of 
. The same is true in the case when
h is close to f (1/4), since the corresponding critical point is non-degenerate elliptic. ✷

We now investigate the lengths of the closed broken geodesics approximating 
 with
winding number m = 1. Given a value h of the integral I(x, p1), close to q(N), and
such that ρ−(h) is rational, we denote by l(h) the length of the primitive closed broken
geodesics issuing from Sh. Consider a sequence {pk}∞k=1 tending to q(N) and such that
ρ−(pk) = 1/k, k ≥ M0, where M0 * 1 is a fixed natural number.

LEMMA 4.12. There is M0 * 1 such that for each k ≥ M0,

l(pk) < l(pk+1) < L(
) and l(pk) → L(
) as k → ∞.

Moreover, if ρ−(h) = m/n < 1/M0, (m, n) = 1, and m ≥ 2, then l(h) > L(
).

Proof. Set t0 = L(
)/2π and denote by (r, ϕ) ∈ [t0 − δ0, t0] × (R/2πZ) the ‘action-
angle’ coordinates corresponding to the smooth foliation of invariant ‘circles’ Sh for
h ≥ q(N) and close to q(N). The billiard ball map is given by B(r, ϕ) = (r, ϕ + µ(r))

for r ∈ [t0 − δ0, t0], where µ is smooth in the open interval and continuous in the
closed one. Taking into account that 
 is strictly geodesically convex, we are going
to show that µ is given by the derivative µ(r) = τ ′(r), where τ (r) = −Q(r)3/2 for
r ∈ [t0 − δ0, t0], Q is smooth in a neighborhood of r = t0 and Q(t0) = 0, Q′(t0) < 0.
To this end we make use of an approximate interpolating Hamiltonian ζ of B [13].
The function ζ is smooth in a neighborhood of t0, ζ(t0, ϕ) = 0, ∂ζ/∂r(t0, ϕ) < 0 and
R(r, ϕ) = B(r, ϕ)− exp(H−ζ 3/2)(r, ϕ) can be extended as a smooth function across t0 and
it vanishes to infinite order at r = t0. Here

exp(H−ζ 3/2)(r, ϕ) =
(
r, ϕ − 3

2
ζ(r, ϕ)1/2 ∂ζ

∂r
(r, ϕ)+O((t0 − r))

)
stands for the time-one-flow of the Hamiltonian −ζ 3/2. We are going to prove that
ζ(r, ϕ) = ζ(r, 0)(1 + R0(r, ϕ)), where R0 is smooth and vanishes to infinite order at
r = t0. Obviously, we have

µ(r) = −3

2
ζ(r, ϕ)1/2 ∂ζ

∂r
(r, ϕ)(1 +O((t0 − r)1/2).

On the other hand, B∗ζ = ζ +O(ζ∞), and we get

ζ(r, ϕ + µ(r)) = ζ(r, ϕ)+O((t0 − r)∞).

Expanding the smooth function ζ in Fourier series

ζ(r, ϕ) =
∑
k∈Z

fk(r)e
ikϕ,
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we obtain
fk(r)(e

ikµ(r) − 1) = Ok((t0 − r)∞)

which implies fk(r) = Ok((t0 − r)∞) for k �= 0. Since fk is smooth we get
(djfk/dr

j )(t0) = 0 for each j ≥ 0, k �= 0. Hence ζ(r, ϕ) − ζ(r, 0) vanishes to infinite
order at r = t0, and Q(r) = ζ(r, 0)+O((t0 − r)∞) is smooth in [t0 − δ0, t0].

Given an invariant circle Sh of B with a rational rotation number ρ−(h) = ρ = m/n,
where m,n ∈ N, (m, n) = 1, and ρ is close to 0, we consider the common primitive
length "(ρ) = l(h) of the family of broken geodesics issuing from Sh. Using a simple
argument about the symplectic invariance of the length spectrum (see [15, §4, (4.2)–(4.6)],
with Q0 = 0), we obtain that

"(ρ)

2πm
= S(ρ)

ρ
,

where S(ρ) is the Legendre transformation of τ (r)/2π . In other words,

S(ρ) = r(ρ)ρ − τ (r(ρ))/2π,

where [0, ε0] ' ρ → r(ρ) ∈ [t0 − δ0, t0], r(0) = t0, is the inverse function to the
‘frequency map’ r → τ ′(r)/2π . It is easy to see that

d

dρ

(S(ρ)
ρ

)
= τ (r(ρ))

2πρ2
< 0,

which implies the first statement. To prove the second, we observe that

r(ρ) = t0 − Cρ2(1 +O(ρ)), τ (r(ρ))/ρ = −C0ρ
2(1 +O(ρ)),

C,C0 > 0, as ρ → +0.

Then "(ρ) = 2πmS(ρ)/ρ = m(L(
) − ρ2s(ρ)), where s is smooth in a neighborhood
of 0 and independent of m, which completes the proof of the lemma. ✷

5. Proof of the main theorem
First we recall some facts about the singularities of the distribution ZK given by (1.3).
It is known that the singular support of ZK(t), t > 0, is contained in the length spectrum
L(X, g) of the corresponding billiard table. We also denote by Z0(t) the corresponding
distribution for the Laplace–Beltrami operator with Neumann boundary conditions. As in
[6] and [7], we consider the distribution σ(t) = ZK(t)−Z0(t), t > 0. We observe that the
singular support of σ on R+ is contained in the set Lb(X, g) which consists of the lengths
of all closed generalized geodesics having at least one common point with the boundary.
More precisely, we prove that the contribution in σ of any closed geodesic γ lying entirely
in

◦
X is C∞. Indeed, let B be a pseudo-differential operator of order 0 the wavefront of

which is contained in a small conic neighborhood of γ in T ∗ ◦
X \ {0} and let ζ ∈ C∞

0 (R)

have support in a small neighborhood of L(γ ). Consider the distribution

σB(t) = tr(cos(t
√
�K)B)− tr(cos(t

√
�0)B),

where �D is the Laplace–Beltrami operator in X with Neumann boundary conditions.
Since the parametrics of cos(t

√
�K)B and cos(t

√
�D)B differ by a smooth function for
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t ∈ [−T , T ], T > L(γ ), choosing the wavefront set of B sufficiently small, we obtain that
σB is a smooth function in that interval.

Consider now a regular level Sh of the integral I, where h /∈ N(q) is a fixed real
number in the interval q(N) < h < f (1/4). It is clear that if the rotation number ρ−(h) is
rational, say ρ−(h) = m/n, 0 ≤ m < n, then all the geodesics issuing from Sh are closed.
The corresponding primitive geodesics have n vertices, their winding number is m, and
they have the same primary length l(h). Moreover, if h is sufficiently close to q(N), then
dρ−/dh > 0 in a neighborhood of h = q(N) (see Proposition 4.4), which implies that Sh
is a clean submanifold for the iterated billiard ball map Bn. If there are no other broken
geodesics of length l(h), using Theorem 4.2 [6], we recover from the leading term of the
asymptotic expansion of σ(t) at t = l(h) the integral

M(h)
�=
∫
Sh

K

cosφ
dµSh.

In the last formula φ is the angle between the initial vector of the corresponding geodesic
issuing form Sh and the inward normal to the boundary of the billiard at the initial point of
the geodesic. The measure µSh on Sh coincides (up to multiplication with a constant) with
the Leray form λh defined in §4.1 . It is easy to see that

cosφ =
√

h− q(N)

f (x)− q(N)
.

Therefore,

M(h) = 1√
h− q(N)

∫ 1

0

K(x)√
f (x)− h

√
f (x)− q(N) dx (5.1)

is a spectral invariant.

LEMMA 5.1. There exists a strictly monotone sequence {pk}∞k=1 such that:
(a) pk → q(N)+ 0 as k → ∞;
(b) the geodesics issuing from Spk are closed and l(pk) �= L(
);
(c) the primitive closed geodesics issuing from Spk are the only closed broken geodesics

in X with length l(pk).

Proof. The lemma follows from the properties of the Liouville billiard tables proved in the
previous sections.

Given h > q(N) close to q(N) and such that ρ−(h) is rational, we consider the closed
broken geodesics γ issuing from Sh and denote by L(γ ) the length of γ (then h =
I (γ (t), γ̇ (t))). Using Lemma 4.12 we choose M0 such that the geodesics γ issuing
from Spk , ρ−(pk) = 1/k, k ≥ M0, are the only closed geodesics satisfying

L(γ ) ∈ [l(p0), L(
)), h = I (γ (t), γ̇ (t)) ∈ (q(N), p0], p0 = pM0 .

Obviously the sequence {pk}k≥M0 satisfies items (a) and (b) of Lemma 5.1. In view of
Lemma 4.10, there exist δi > 0 (i = 1, . . . , l) such that for each h ∈ (hi − δi, hi + δi)

the length l(h) > L(
). Denote by K the set U0 ∪ U1
⋃

j (hj − δj , hj + δj ) where U0

and U1 are the neighborhoods from Lemma 4.11. To prove (c) it is sufficient to show that
there are only finitely many k1, . . . , kr ∈ (p0, f (1/4)] \ K such that ρ±(kj ) ∈ Q and
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l(kj ) ∈ [l(p0), L(
)). Taking ε such that 0 < ε ≤ ρ−(p0) = 1/M0 & 1 and applying the
second statement of Lemma 4.10, we find J0 > 0 such that if the number of the vertices
of a closed geodesic γ is greater than J0 and h = I (γ (t), γ̇ (t)) ∈ (p0, f (1/4)], then
L(γ ) > L(
). Therefore, if h ∈ (p0, f (1/4)] \ K , l(h) < L(
), and ρ±(h) is rational,
then

ρ±(h) = u

v
(mod 1) with v < J0. (5.2)

Relation (5.2) gives a finite number of equations on h. The rotation function ρ±(h)
is analytic on (p0, f (1/4)] \ K and we obtain that each equation in (5.2) has only
finitely many solutions h in that set. Therefore, there is only a finite number of values
k1, . . . , kr ∈ (p0, f (1/4)] such that l(ki) ∈ [l(p0), L(
)). Choosing M0 sufficiently large
we complete the proof of Lemma 5.1. ✷

Suppose that Spec(�K1) = Spec(�K2), where K1 and K2 are smooth functions on ∂X

invariant under the action of the group G. It follows from (5.1) that∫ 1

0

K(x)√
f (x)− pk

√
f (x)− q(N) dx ≡ 0,

where K = K1 − K2 and q(N) < pk < 0, limk→∞(pk) = q(N). Denote by W the
complement of [0, f (1/4)] ∪ {z ∈ C : arg z = 3π/2} in C and consider the analytic
function

V (h)
�=
∫ 1

0

K(x)√
f (x)− h

√
f (x)− q(N) dx, h ∈ W.

Then V (h) ≡ 0, and we obtain

V1(h)
�=
∫ 1/4

0

K(x)√
f (x)− h

√
f (x)− q(N) dx ≡ 0.

We are going to show that K has zeros at x = 0, 1
4 ,

1
2 , and 3

4 . Let K(x) = K0 +O(x) as
x → 0. Since f (x) = f1x

2 + O(x3), f1 > 0, using the identity V1(h) ≡ 0, we get for
h < 0

0 = K0

∫ 1

0

ds√
s2 − h

+O(1) = −K0

2
log(−h)+O(1),

which implies K0 = 0. In the same way we prove that K(1/4) = 0. Then we have

V1(h) =
∫ f (1/4)

0

K̃(t)√
t − h

dt ≡ 0

where t = f (x) and K̃(t) = K(x)
√
f (x)− q(N)/f ′(x) is continuous on the interval

[0, f (1/4)]. Finally, the arguments used in [6] show that K ≡ 0. Indeed, differentiating
the function V1(h) with respect to h at the point h = q(N) we obtain∫ f (1/4)

0

K̃(t)√
t − q(N)

(t − q(N))−k dt = 0,

for k = 0, 1, . . . . The last equality and the Stone–Weierstrass Theorem show that K̃ ≡ 0.
This proves Theorem 1.
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