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An anisotropic particle in a simple shear flow: an
instance of chaotic scattering
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In the Stokesian limit, the streamline topology around a single neutrally buoyant sphere is
identical to the topology of pair-sphere pathlines, both in an ambient simple shear flow. In
both cases there are fore–aft symmetric open and closed trajectories spatially demarcated
by an axisymmetric separatrix surface. We show that the topology of the fluid pathlines
around a neutrally buoyant freely rotating spheroid, in simple shear flow, is profoundly
different, and will have a crucial bearing on transport from such particles in shearing
flows. An inertialess non-Brownian spheroid in a simple shear flow rotates indefinitely in
any one of a one-parameter family of Jeffery orbits. The parameter is the orbit constant C,
with C = 0 and C = ∞ denoting the limiting cases of a spinning (log-rolling) spheroid,
and a spheroid tumbling in the flow–gradient plane, respectively. The streamline pattern
around a spinning spheroid is qualitatively identical to that around a sphere regardless of
its aspect ratio. For a spheroid in any orbit other than the spinning one (C > 0), the velocity
field being time dependent in all such cases, the fluid pathlines may be divided into two
categories. Pathlines in the first category extend from upstream to downstream infinity
without ever crossing the flow axis; unlike the spinning case, these pathlines are fore–aft
asymmetric, suffering a net displacement in both the gradient and vorticity directions. The
second category includes primarily those pathlines that loop around the spheroid, and to a
lesser extent those that cross the flow axis, without looping around the spheroid, reversing
direction in the process. The residence time, in the neighbourhood of the spheroid, is a
smooth function of upstream conditions for pathlines belonging to the first category. In
contrast, the number of loops, and thence, the residence time associated with pathlines in
the second category, is extremely sensitive to upstream conditions. Plots reveal a fractal
structure with singularities distributed on a Cantor-like set, suggesting the existence of a
chaotic saddle in the vicinity of the spheroid.
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1. Introduction

Characterizing the rheological behaviour of a dilute Stokesian suspension of
hydrodynamically interacting particles requires the solution of the two-body problem
at the microscale. Einstein (1906) first obtained the effective viscosity (μe) of a dilute
suspension of non-interacting rigid spherical particles (the one-body problem) in terms
of the viscosity of the suspending fluid (μ) as μe = μ(1 + 5

2φ), φ being the volume
fraction of the suspended spheres; the factor 5/2 is referred to as the Einstein coefficient.
Much later, Batchelor & Green (1972a,b) investigated the effect of pair interactions
between spherical particles, in an ambient linear flow, in an attempt to calculate the
O(φ2) correction to the effective viscosity. In obtaining this correction, they examined
the pair-sphere pathlines in simple shear flow, and showed that these pathlines had the
same character as the streamlines around a single sphere in a simple shear flow (Cox, Zia
& Mason 1968). In both instances, the trajectories may be classified into two groups. The
first group consists of fore–aft symmetric open trajectories that extend to upstream and
downstream infinity. The second group consists of closed orbits around the test sphere.
The two groups are demarcated by a separatrix surface consisting of open trajectories
that asymptote to the flow axis infinitely far away in both the upstream and downstream
directions. The surface itself is axisymmetric, the axis of symmetry being the gradient
direction of the ambient simple shear. Both the fore–aft symmetry of open trajectories,
and the existence of closed ones, arise from the reversibility of the Stokes equations.
Closed streamlines in the single-sphere problem are known to profoundly affect heat and
mass transfer, leading to diffusion-limited transport at large Péclet numbers (Acrivos 1971;
Subramanian & Koch 2006a,c; Krishnamurthy & Subramanian 2018). Likewise, for the
pair-sphere problem, Batchelor & Green (1972a) showed that the pair-distribution function
is rendered indeterminate, in the region of closed pathlines, in the pure hydrodynamic
limit. This in turn leads to an indeterminate O(φ2) coefficient for the suspension stress
in all linear flows with regions of closed pair pathlines, simple shear flow being a special
case (Kao, Cox & Mason 1977).

In this paper, we analyse the fluid pathlines around a torque-free neutrally buoyant
spheroid of an arbitrary aspect ratio (regarded as a canonical anisotropic particle) in
simple shear flow. Keeping in mind the scenario for suspensions of spherical particles
detailed above, we expect our findings to, on one hand, shed some light on the transport of
heat or mass from a single spheroid immersed in a shearing flow. On the other hand, our
findings will also be relevant to the nature of pair-spheroid interactions, and thence, to the
pair-level microstructure of Stokesian suspensions of interacting anisotropic particles. In
any event, analysing the fluid motion around a single spheroid is a natural first step towards
an understanding of the more complicated two-body problem. The results reported here
suggest that the diffusion-limited scalar transport at O(φ), and the indeterminate rheology
at O(φ2), encountered for the case of spherical particles above, are both likely to be
resolved, to a significant extent, by the effects of shape anisotropy.

We characterize the topology of the fluid pathlines around a single prolate or oblate
spheroid in an ambient simple shear flow. The exact disturbance velocity field required
for this purpose is available in closed form from earlier efforts (Dabade, Marath &
Subramanian 2015, 2016; Marath & Subramanian 2018) that have used a spheroidal
harmonics formalism for this purpose. As is well known, a neutrally buoyant torque-free
spheroid in simple shear rotates along Jeffery orbits, and the disturbance velocity field is
therefore time dependent in all cases except when the spheroid axis is aligned with the
ambient vorticity (the log-rolling or spinning mode). Our results show that the departure
from sphericity has a profound effect on the nature of the fluid pathlines around a spheroid
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An anisotropic particle in a simple shear flow

in a precessional (non-spinning) orbit. The obvious changes happen for the open pathlines
which are still open, but unlike the case of a sphere, are no longer fore–aft symmetric.
Such pathlines undergo a lateral displacement in both the gradient and vorticity directions
as they proceed from upstream to downstream infinity. The unexpected aspect concerns
the originally closed pathlines. A fraction of these pathlines open up, but unlike the
pathlines above, the resulting open pathlines do not head directly downstream. Instead,
these pathlines loop around the rotating spheroid with the number of loops being extremely
(indeed, infinitely) sensitive to the upstream coordinates of the particular pathline. The
sensitivity with regard to the upstream coordinates has the signatures of chaotic scattering
(Aref & Pomphrey 1980, 1982; Aref 1983; Bleher, Grebogi & Ott 1990; Aref & Stremler
1999). The presence of a chaotic saddle suggested by the aforementioned scattering pattern
implies that both closed (periodic) and bounded pathlines continue to exist for a spheroid
in a generic precessional orbit, but only constitute a set of vanishingly small measure, and
one that is therefore numerically inaccessible.

The paper is organized as follows. In § 2 we discuss the problem formulation.
Calculation of the fluid pathlines requires an expression for the disturbance velocity
field due to a torque-free spheroid in simple shear flow, and as mentioned above, this is
obtained in terms of the appropriate vector spheroidal harmonics (Kushch 1997, 1998,
2013), after resolving the ambient simple shear into simpler canonical components in
body-fixed coordinates (Dabade et al. 2015, 2016; Marath & Subramanian 2018). In § 3 we
first analyse the fluid pathlines (which are the same as streamlines) for the simpler steady
case of a spinning spheroid. In this case, the topology of the streamline pattern is shown
to be identical to that around a torque-free sphere and a circular cylinder (Torza et al.
1971; Kao et al. 1977; Powell 1983), with fore–aft symmetric open and closed streamlines
being demarcated by a (non-axisymmetric) separatrix surface. For a prolate spheroid, the
streamline pattern (including the separatrix in particular) transitions from that for a sphere
to a cylinder, with increasing spheroid aspect ratio. In §§ 4.1 and 4.2, we investigate the
topology of the fluid pathlines for the general time dependent case when the spheroid
is not in its spinning orbit. Section 4.1 concerns regular open pathlines that do not loop
around the spheroid, while heading from upstream to downstream infinity. Unlike both a
sphere and a spinning spheroid, these pathlines are fore–aft asymmetric. This asymmetry
is best characterized in terms of the net gradient and vorticity displacements suffered by
the pathline (Da Cunha & Hinch 1996; Subramanian & Brady 2006). The numerically
determined displacements are then compared to the far-field analytical predictions, as a
function of the upstream pathline coordinates, for the spheroid rotating over a range of
Jeffery orbits. In § 4.2 we analyse the second category of pathlines which includes the
singular open pathlines that, although open, loop around the spheroid before heading off
to downstream infinity. For this case, we first show that the number of loops around
the spheroid, and therefore, the residence time of the pathline in a sufficiently large
neighbourhood of the spheroid, is sensitively dependent on the initial pathline coordinates
(chosen to lie on the negative flow axis). Plots of the residence time reveal an extremely
fine-scaled fractal-like structure, suggesting the existence of a chaotic saddle in the vicinity
of the spheroid. We examine the nature of this sensitive dependence as a function of the
spheroid aspect ratio, and more importantly, as a function of the orbit constant (C) for a
given aspect ratio; the latter reveals the singular nature of the approach to the integrable
limit (C = 0) of a log-rolling or a spinning spheroid. In § 5, we analyse the fluid pathlines
from the chaotic scattering perspective that has been gainfully used in other scenarios
(Aref 1983; Bleher et al. 1990; Jánosi et al. 1997; Faisst & Eckhardt 2004), by focussing on
the nature of the pathlines as a function of their upstream coordinates and the Jeffery phase
angle. Herein, we examine the transition from regular to chaotic scattering with varying
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spheroid aspect ratio, and again, as a function of the Jeffery orbit constant. There exists a
critical upstream offset corresponding to the onset of chaotic scattering, and for offsets less
than this value, intervals of regular and chaotic scattering appear interlaced down to the
smallest scales; the interlaced pattern is strongly dependent on aspect ratio. This critical
offset also varies with the Jeffery phase angle, and one may therefore characterize the
scattering in terms of a residence-time surface plotted as a function of the upstream offset
and the Jeffery phase angle, with a critical curve that separates regions of regular and
irregular dependence. The extent of chaotic scattering is nevertheless shown to decrease
for the largest aspect ratios, with the relevant signatures being eventually undetectable
(numerically). We present the fractal nature of the stable and the unstable manifold of the
chaotic saddle along with the uncertainty dimension plots for spheroids of varying aspect
ratios, which shows the necessary power law scaling for the underlying saddle. We also
examine the probability density of residence times, the emphasis being on the functional
form of the tail, which are determined by the large residence times associated with the
singular pathlines; rather unexpectedly, the tails appear to be algebraic, suggesting that
the underlying (chaotic) invariant set has a non-hyperbolic character. Section 6 presents a
summary of our findings, a discussion of the implications of these findings in the context
of transport in multiphase systems, and the expected nature of the fluid pathlines in a more
general setting – the one-parameter family of hyperbolic linear flows.

2. Single spheroid in a simple shear flow

2.1. Jeffery orbits
The motion of spheroidal particles in linear flows in the absence of inertia is known since
the work of Jeffery (1922). In simple shear flow, a single torque-free spheroid rotates
in any one of a single parameter family of closed trajectories now known as Jeffery
orbits. The motion along a Jeffery orbit may be characterized in terms of the polar (θj)
and azimuthal (φj) angles of the spheroid axis (see figure 1), and these are given by the
following functions of time:

φj = cot−1
[
κ tan

(
κγ̇ t

1 + κ2

)]
, θj = tan−1

⎡
⎣ Cκ√

κ2 sin2 φj + cos2 φj

⎤
⎦ . (2.1a,b)

Here, γ̇ is the shear rate, κ is the spheroid aspect ratio and C is the orbit constant,
ranging from 0 to ∞, that parameterizes the Jeffery orbits; κ > 1(<1) for prolate (oblate)
spheroids. The generic orbit is a spherical ellipse, with its major axis along the flow
(gradient) direction for a prolate (an oblate) spheroid. The limiting cases C = 0 and C =
∞ correspond to a log-rolling motion of the prolate spheroid (spinning for the oblate one)
about the vorticity axis, and a tumbling motion in the flow–gradient plane, respectively.
The period of rotation is independent of C, being equal to Tj = 2π/γ̇ (κ + κ−1). Figure 2
shows the Jeffery orbits for prolate and oblate spheroids of different aspect ratios. The
eccentricity of the orbits can be seen to increase with increasing (decreasing) aspect ratio
of the prolate (oblate) spheroid. For slender fibres (κ = ∞) and flat disks (κ = 0), the
Jeffery orbits have a meridional character with the end points of the meridians, the poles,
corresponding to the intersections of the flow and gradient axes with the unit sphere,
respectively.
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Figure 1. A prolate and an oblate spheroid in simple shear flow. The primed (X′, Y ′, Z′) and unprimed (X, Y, Z)
coordinates denote the body and the space-fixed axes, respectively. Here, θj and φj are polar and azimuthal
Jeffery angles, respectively.
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Figure 2. Jeffery orbits for prolate (top) (κ = 1.25, 2, 4) and oblate spheroids (κ = 0.8, 0.5, 0.25).

2.2. The spheroid velocity field in simple shear flow
The determination of the velocity field due to an inertialess torque-free spheroid in
an ambient simple shear flow involves solving the (dimensionless) Stokes equations in
spheroidal coordinates (Kushch 1997, 1998, 2013)

∇2u = ∇p, (2.2)

with the following boundary conditions in place:

u(ξ = ξ0, η, φ) = ω × x and u(ξ → ∞, η, φ) = Γ · x. (2.3a,b)

Here, u and p are the velocity and pressure fields, x ≡ (x, y, z) is the position vector and Γ
is the (transpose of the) velocity gradient tensor; Γ = 1x1y in the space-fixed coordinate
system (X, Y, Z) shown in figure 1, with 1x, 1y and 1z denoting the unit vectors along
the flow, gradient and vorticity directions, respectively. The spheroid angular velocity, ω,
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in (2.3a,b) is determined from a torque-free constraint. The component of ω normal to
the spheroid axis, is obtained from the Jeffery relations (2.1a,b), while that along the
axis is just half the projected ambient vorticity. In (2.2) and (2.3a,b), (ξ, η, φ) are prolate
spheroidal coordinates which, for a prolate spheroid, are related to the Cartesian ones as:
x′ = dξ̄ η̄ cos φ, y′ = dξ̄ η̄ sin φ, z′ = dξη, where ξ̄ =

√
ξ2 − 1, and η̄ =

√
1 − η2 (for an

oblate spheroid, the corresponding relations are obtained by setting d → −id and ξ → iξ̄ ).
Here, the constant-ξ surfaces represent a family of confocal prolate (oblate) spheroids with
the interfocus distance (diameter of the focal circle) being 2d; ξ = ξ0 denotes the surface
of the spheroidal particle. The constant-η surfaces denote a family of confocal two-sheeted
(single-sheeted) hyperboloids, and the constant-φ surfaces are planes passing through the
spheroidal axis of symmetry.

The total velocity field u may be written as u = Γ · x + u′ where u′ is the disturbance
velocity field that is a function of the instantaneous spheroid orientation and vanishes in
the far field. The solution for u′ is best accomplished in a body-fixed coordinate system.
Defining (X′, Y ′, Z′) as the body-fixed coordinate system (see figure 1), the polar angle θj
denoting the angle between the Z and Z′ axes, and the azimuthal angle φj denoting the
dihedral angle between the X–Z and X′–Z′ planes, with the Y ′ axis constrained to lie in the
flow gradient (X–Y) plane, the rate of strain tensor, E = (Γ + Γ T)/2, is given by

E ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θj sin 2φj

2
cos θj cos 2φj

2
sin 2θj sin 2φj

4
cos θj cos 2φj

2
−sin 2φj

2
sin θj cos 2φj

2
sin 2θj sin 2φj

4
sin θj cos 2φj

2
sin2 θj sin 2φj

2

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.4)

in body-fixed coordinates. As shown by Subramanian & Koch (2006b), in the context of a
nearly spherical particle, the rate of strain tensor above can be resolved into five elementary
components, each corresponding to a canonical linear flow. The corresponding disturbance
velocity fields may be expressed in terms of the appropriate decaying vector spheroidal
biharmonics. Following Dabade et al. (2015, 2016), the disturbance velocity field for an
arbitrary aspect ratio spheroid may similarly be written as

u′(x′; θj, φj) =
5∑

i=1

uis(x′; θj, φj), (2.5)

where the uis(x′; θj, φj) values refer to the component disturbance fields, and are defined
in table 1.

Here, u1s corresponds to an axisymmetric extension with the axis of symmetry
coincident with the spheroid axis; u2s and u3s correspond to a pair of planar extensions
in the plane orthogonal to the spheroid axis, with their principal axes rotated by an angle
of π/4 relative to each other, and u4s and u5s correspond to planar extensions in a pair of
orthogonal planes containing the spheroid axis. The decaying spheroidal biharmonics in
the expressions for the disturbance velocity fields in table 1 are of the general form S(3)

ts ,
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in
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Axisymmetric extension

E1 =

⎡
⎢⎢⎢⎢⎢⎣

− sin2 θj sin 2φj

4
0 0

0 − sin2 θj sin 2φj

4
0

0 0
sin2 θj sin 2φj

2

⎤
⎥⎥⎥⎥⎥⎦ u1s = − dξ̄0

2(Q1
1(ξ0) − ξ0Q1

2(ξ0))
sin2 θj sin 2φjS

(3)
20

Transverse planar extensions

E(i)
2 =

⎡
⎢⎢⎢⎣

(cos2 θj + 1) sin 2φj

4
0 0

0 −−(cos2 θj + 1) sin 2φj

4
0

0 0 0

⎤
⎥⎥⎥⎦ u2s = − dξ̄0

2(3Q1
1(ξ0) − ξ0Q1

2(ξ0))
sin 2φj(1 + cos2 θj)[S

(3)
22 + S(3)

2,−2]

E(ii)
2 =

⎡
⎢⎢⎢⎣

0
cos θj cos 2φj

2
0

cos θj cos 2φj

2
0 0

0 0 0

⎤
⎥⎥⎥⎦ u3s = i dξ̄0

3Q1
1(ξ0) − ξ0Q1

2(ξ0)
cos θj cos 2φj[S

(3)
22 − S(3)

2,−2]

Longitudinal planar extensions

E(i)
3 =

⎡
⎢⎢⎢⎣

0 0
sin 2θj sin 2φj

4
0 0 0

sin 2θj sin 2φj

4
0 0

⎤
⎥⎥⎥⎦ u4s = dξ0ξ0

2Q1
2(ξ0)(2ξ2

0 − 1)
sin 2θj sin 2φj[S

(3)
21 − S(3)

2,−1]

E(ii)
3 =

⎡
⎢⎢⎢⎣

0 0 0

0 0
sin θj cos 2φj

2
0

sin θj cos 2φj

2
0

⎤
⎥⎥⎥⎦ u5s = − i dξ0ξ0

2Q1
2(ξ0)(ξ

2
0 − 1)

sin θj cos 2φj[S
(3)
21 + S(3)

2,−1]

Table 1. Canonical Stokesian velocity fields, associated with an arbitrarily oriented spheroid, in a body-fixed coordinate system.

913
A

2-7

https://doi.org/10.1017/jfm.2020.1139 Published online by Cambridge University Press

https://doi.org/10.1017/jfm.2020.1139


M.R. Banerjee and G. Subramanian

and are defined as

S(3)
ts = e1

{
−(x′ − iy′)D2Fs−1

t−1 − ξ̄2
0 dD1Fs

t + (t + s − 1)(t + s)β−(t+1)Fs−1
t−1

}
+ e2

{
(x′ + iy′)D1Fs+1

t−1 − ξ̄2
0 dD2Fs

t − (t − s − 1)(t − s)β−(t+1)Fs+1
t−1

}
+ 1z′

{
z′D3Fs

t−1 − ξ2
0 dD3Fs

t − C−(t+1),sFs
t−1

}
, (2.6)

where,

Fs
t (r, d) = Qs

t (ξ)Ys
t (η, φ), Ys

t (η, φ) = (t − s)!
(t + s)!

Ps
t (η) exp(i sφ) (2.7a,b)

βt = t + 3
(t + 1)(2t + 3)

, Ct,s = (t + s + 1)(t − s + 1)βt, |s| � t (2.8a−c)

e1 = 1x′ + i 1y′

2
, e2 = 1x′ − i 1y′

2
(2.9a,b)

D1 = (∂x′ − i∂y′), D2 = (∂x′ + i∂y′), D3 = ∂z′ . (2.10a−c)

Here, Ys
t are the scalar surface harmonics, with Ps

t and Qs
t being the associated Legendre

functions of the first and second kind, respectively; the index t in S(3)
ts denotes the rapidity

of the decay for large ξ (or r), with limr→∞ S(3)
ts ∝ r−t. Thus, all of the S(3)

2s values
appearing in the disturbance velocity fields (table 1) decay as 1/r2, as is appropriate since
the force-free freely rotating spheroid appears as a fluctuating force dipole in the far field.

The complete dynamical system governing the evolution of the fluid pathlines in terms
of the position vector (x) and Jeffery angles (θj, φj) may now be written as

dx
dt

= Γ · x + RT(θj, φj) ·
5∑

i=1

uis(x′; θj, φj), (2.11)

dφj

dt
= − 1

κ2 + 1
(κ2 sin2 φj + cos2 φj), (2.12)

dθj

dt
= 1

4

(
κ2 − 1
κ2 + 1

)
sin 2θj sin 2φj. (2.13)

Here, R(θj, φj) is the rotation tensor relating the space and body-fixed coordinates.

3. A spheroid in the spinning or log-rolling orbit (C = 0)

To begin with, we analyse the simpler case of a spinning (log-rolling) spheroid. This also
serves as a partial validation for our numerical integration, based on prior knowledge of
the streamline patterns for the limiting cases of a cylinder and a sphere. The spinning
(log-rolling) orbit corresponds to θj = 0, and is obtained from (2.1a,b) by setting the
orbit constant C = 0. For this configuration, the only non-zero component in the general
disturbance field is u3s, corresponding to a transverse planar extension with the extensional
axis oriented at 45 degrees in the flow–gradient plane.

Numerically integrating (2.11) with only the disturbance velocity field u3s one may
obtain the streamlines around a spinning spheroid. Figures 3 and 4 show the topology
of the streamlines both within and outside of the flow–gradient plane. Figure 3 depicts
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Figure 3. The in-plane fore–aft symmetric streamline pattern for (a) a sphere, (b) a cylinder and (c) a prolate
spheroid with κ = 3.28(ξ0 = 1.05). In each case, fore–aft open streamlines are separated from the closed ones
by separatrices (shown in red).

the in-plane streamline patterns for a sphere, a cylinder and a prolate spheroid with
ξ0 = 1.05(κ = 3.28), the qualitative resemblance between the patterns being readily
evident. The only perceptible difference is an increase in the size of the closed-streamline
region as one moves from the sphere to the cylinder, this being consistent with the
increasing strength of the velocity disturbance, as is also evident from the far-field
behaviour of the disturbance field in the two cases – the O(1/r2) decay for the sphere
as opposed to the O(1/r) decay for the circular cylinder. Figure 4 shows the off-plane
streamlines, which intersect the gradient–vorticity plane at z = 0.5. The three-dimensional
view (figure 4c), and the projections of these streamlines on the flow–gradient (figure 4a)
and gradient–vorticity (figure 4b) planes are included. The separatrix surface is
non-axisymmetric for all cases except that of a sphere, and this is evident from the differing
projections of the separatrix envelope in the aforementioned planes; note that the envelope
in the flow–gradient plane is a single streamline, but that in the gradient–vorticity plane is
constructed from multiple separatrix streamlines (also shown in red in figure 4b). We have
verified that, although non-axisymmetric, the separatrix surface extends to infinity in the
vorticity direction for all κ .

Figures 5(a) and 5(b) show the shapes of both an open and a closed streamline around
log-rolling prolate spheroids with different aspect ratios (κ = 10.04, 3.25, 1.67, 1.15);
also included are limiting cases of a sphere (κ = 1) and a cylinder (κ = ∞). The open
streamline deviates the most (least) from the corresponding ambient streamline, and
the closed streamline is largest (smallest) in size, for κ = ∞(1). Figure 5(c) shows the
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Figure 4. The three-dimensional streamline pattern around a log-rolling prolate spheroid with κ = 3.28(ξ0 =
1.05) corresponding to z = 0.5 (on the gradient–vorticity plane). The panels include projections on the
flow–gradient plane (a), the gradient–vorticity plane (b) and a three-dimensional view (c). The projection of
the separatrix surface, and the constituent separatrix streamlines, in each of these figures are shown in red. In
figure 4(c), black dots denote the intersection of the separatrix envelope with the gradient–vorticity plane.
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Figure 5. The shapes of the open (a) and closed (b) streamlines for prolate spheroids with κ(ξ0) =
10.04(1.005), 3.25(1.05), 1.67(1.25), 1.15(2); the limiting cases of a sphere (κ = 1) and a cylinder (κ = ∞)
are shown. The open streamlines coincide at upstream and downstream infinity, while the closed streamlines
start from the same location on the flow axis (−3, 0.0); (c) A comparison of closed-streamline time periods for
the aforementioned aspect ratios, including the limiting sphere and cylinder cases.

time periods for closed streamlines, starting from a given location on the flow axis,
increasing monotonically as one goes from a cylinder to a sphere. The limiting values
for a sphere and cylinder are available for earlier efforts (Torza et al. 1971; Powell 1983).
All of these features are again consistent with the larger disturbance field associated
with longer prolate spheroids (the cross-sectional diameter is fixed as κ varies), with
the largest disturbance corresponding to a cylinder. In summary, the streamline topology
associated with a spinning spheroid is identical to that around a sphere and a circular
cylinder, with the various measures associated with the streamline pattern around a
log-rolling prolate spheroid, including the time periods of the closed streamlines, the
width of the closed streamline region etc., bounded between those for a sphere and a
cylinder.

Finally, figure 6 shows the separatrices for log-rolling prolate spheroids of different
aspect ratios, and compares their far-field forms with analytical predictions (shown
in dotted lines) derived in appendix A. For sufficiently large aspect ratios (κ → ∞
or ξ0 → 1), the separatrix exhibits an intermediate asymptotic form, (1/

√
2)x−1, in

the interval 1 	 x 	 κ , corresponding to that of a circular cylinder, before eventually
transitioning to the more rapid O(x−3/2) decay for x 
 κ .
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Figure 6. Separatrices in the flow–gradient plane, for spinning prolate spheroids (κ =
100.04, 31.63, 10.04, 3.28) in a simple shear flow. The dashed lines denote the analytical far-field
asymptotes derived in appendix A.

4. A spheroid in non-spinning orbits (C > 0)

4.1. Regular open pathlines
The results presented thus far show that the streamline pattern around spinning spheroids
is steady, and analogous to that around a sphere. In this section, we consider spheroids
in orbits other than the spinning one (C > 0). For all such cases, the velocity field is
time dependent. The focus from hereon will therefore be on the fluid pathlines rather
than the (time periodic) sequence of instantaneous streamline patterns associated with
the rotating spheroid. In our examination of fluid pathlines, it is natural to start from a
spheroid tumbling in the flow–gradient plane. The polar Jeffery angle is now a constant
(θj = π/2), with the time dependence of the velocity field arising only due to φj varying
with time. Thus, one only needs to integrate (2.11) and (2.12) in order to characterize the
pathlines. Further, the disturbance velocity field only involves three of the five canonical
components in the disturbance velocity fields in table 1 viz. the axisymmetric extension
(u1s), the first transverse extension (u2s) and the second longitudinal extension (u5s). An
additional symmetry-induced simplification is that fluid elements in the flow–gradient
plane are confined to this plane for all times, despite the time dependence of the flow
field. This makes it easier to visualize the changes in the pathline topology relative to the
case of a spheroid rotating in a generic precessional orbit.

The changing orientation of the tumbling spheroid implies that, unlike the spinning
case, one needs to specify an ‘initial’ orientation in order to fix the fluid pathlines. A
convenient choice is the spheroid orientation at the instant that the fluid element crosses
the gradient–vorticity plane (x = 0); the coordinates of the element at this instant may
be taken as (y0, z0). This orientation is fixed by the azimuthal Jeffery angle φj0. The
fore–aft symmetry of the spheroid implies that φj0 may be restricted to the interval
(0, π). Further, from reversibility considerations, one only need consider φj0 values in the
interval (0, π/2), since the pathline configuration for π − φj0 may be obtained from that
for φj0 via a reflection transformation with respect to the gradient–vorticity plane. Each
φj0 in (0, π/2) leads to a distinct configuration of pathlines, an individual pathline being
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obtained by integrating forward and backward in time starting from the initial position
of the fluid element in the gradient–vorticity plane. The pathline configurations for fluid
elements in the flow–gradient plane, and for five different values of φj0 in (0, π/2), are
shown in figure 7. While the pathlines for the cases φj0 = 0 and π/2 are evidently fore–aft
symmetric, all other values of φj0 lead to fore–aft asymmetric open pathlines that suffer a
net displacement (
y) in the gradient direction as they head from upstream to downstream
infinity. By analogy with the spinning spheroid, the ‘limiting’ open pathlines are again
shown in red for all configurations in figure 7. The expectation is that these red curves
now serve as fore–aft asymmetric separatrices (for φj0 /= 0, π/2), asymptoting to the flow
axis far upstream or downstream. These separatrices would therefore seem to demarcate
pathlines that extend to infinity in the upstream and downstream directions from those
that do not, being forced to cross the flow axis at a finite x, either positive or negative
(in a manner similar to the spinning spheroid or sphere above). It will be seen in § 5,
where we consider pathlines that loop around the spheroid as a function of their upstream
coordinates, that a subset of these separatrices mark the onset of chaotic scattering. This
subset must correspond to the interval φj0 ∈ (π/2, π) since, as implied by figure 7, it is
separatrices with φj0 values in the above interval that begin from finite offsets at negative
x values, and are therefore accessible from upstream infinity.

Figure 8 shows the off-plane pathline configurations, again for a tumbling prolate
spheroid. As for the in-plane case, the pathlines correspond to fluid elements that cross
the gradient–vorticity plane (x = 0) at a fixed vorticity offset of z0 = 0.25; the φj0 values
are the same as in figure 7. Expectedly, the off-plane pathlines are three-dimensional
trajectories, and their fore–aft asymmetry manifests as net displacements in both the
gradient and vorticity directions; these displacements (
y or 
z) are indicated in the
relevant pathline projections. Note that the ‘separatrices’ in particular have small-scale
wiggles superposed on a slower large-scale variation, on account of the short-time
tumbling dynamics of the spheroid.

4.1.1. Lateral displacements of the regular open pathlines: 0 < C � ∞
The upstream and downstream coordinates, along the gradient and vorticity directions,
are identical for all open streamlines associated with the spinning spheroid or a sphere.
An obvious measure of fore–aft asymmetry, as already implied in figure 7 and 8, is
therefore the difference between the upstream and downstream gradient and vorticity
coordinates of a given open pathline. These lateral displacements in the gradient (
y)
and vorticity (
z) directions have been used earlier to characterize the asymmetry of
finite-St pair-sphere trajectories (St here being the Stokes number, and a measure of
particle inertia; see Subramanian & Brady (2006) and to calculate the shear-induced
diffusivity arising from irreversible pair interactions in spherical particle suspensions (Da
Cunha & Hinch 1996). The definition of the lateral displacement in the gradient direction
(
y) is indicated in figure 9(a), along with a schematic in figure 9(b) highlighting the
coordinates used for a general off-plane pathline. Both 
y and 
z may be calculated
numerically, in a straightforward manner, for all pathlines down to the ‘separatrices’ shown
in figure 7 and 8. For pathlines that approach the spheroid to within a distance of order
its major axis, the lateral displacements will be comparable to the respective upstream
coordinates: that is, 
y ∼ O( y−∞) and 
z ∼ O(z−∞). For far-field pathlines, however,
the displacements are much smaller, allowing for an analytical approach involving a
perturbation about the upstream coordinates. The analysis, detailed in appendix B, leads
to the following expressions for the lateral displacements associated with the far-field
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Figure 7. The configuration of the in-plane regular pathlines for a tumbling prolate spheroid with κ =
3.28(ξ0 = 1.05). The different configurations correspond to φj0 values of (a) 0, (b) π/6, (c) π/4, (d) π/3
and (e) π/2. All configurations are bounded below by separatrices shown in red. The 
y values marked in (b)
and (d) denote the lateral displacement in the gradient direction.

pathlines:

Δy = Kap/o

8y2−∞

∫ ∞

−∞
dt

(t2 + sec2 Θ)5/2 [sin2 θj(tan2 Θ(3 cos 2θj + 1) sin 2φj

+ 6 tan Θ sin 2θj sin 2φj(sin φj + t cos φj)

+ 12 sin2 θj sin φj cos φj(t2 cos2 φj + sin2 φj)

+ 6t sin2 θj sin2 2φj − 2(t2 + 1) sin 2φj)]

+ Ktp/o

8y2−∞

∫ ∞

−∞
dt

(t2 + sec2 Θ)5/2 [sin 2θj((−2 tan2 Θ + t2 + 1) sin 2θj sin 2φj

+ 4 tan Θ(t sin φj + cos φj)) − 8 tan Θ sin3 θj cos θj sin 2φj(sin φj + t cos φj)

+ sin4 θj(2t cos 4φj − (t2 − 1) sin 4φj) + t sin2 θj(cos 2θj + 3)]
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Figure 8. The configurations of the off-plane (vorticity offset z = 0.25) regular open pathlines projected onto
the flow–gradient (a–e) and flow–vorticity ( f –j) planes for a tumbling prolate spheroid with κ = 3.28(ξ0 =
1.05); off-plane separatrices are shown in red. The different configurations correspond to φj0 values of (a,f ) 0,
(b,g) π/6, (c,h) π/4, (d,i) π/3 and (e,j) π/2. Here, 
y and 
z denote the lateral displacements in the gradient
and vorticity directions, respectively.

+ Klp/o

8y2−∞

∫ ∞

−∞
dt

(t2 + sec2 Θ)5/2 [sin2 θj sin 2φj(tan2 Θ(cos 2θj + 3) − 2(t2 + 1))

+ 4 tan Θ sin3 θj cos θj sin 2φj(sin φj + t cos φj) − 4 tan Θ sin 2θj(t sin φj + cos φj)

+ 2 sin4 θj sin 2φj(sin φj + t cos φj)
2 + 8t cos2 θj], (4.1)
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Figure 9. Panel (a) shows the lateral displacement of a regular open fluid pathline in the flow–gradient plane.
In (b) Θ characterizes the initial upstream location of a fluid element outside the flow–gradient plane.


z = 
y tan Θ, (4.2)

where Kap/o, Ktp/o and Klp/o are aspect-ratio-dependent stresslet coefficients defined in
table 2. The integral in (4.1) is evaluated numerically, and is a function of the spheroid
aspect ratio (κ), the orbit constant (C) and φj0; the case of a tumbling spheroid may be
obtained by setting θj = π/2(C = ∞). On account of the radial nature of the dipolar field,
the dominant displacement of the pathline occurs when the fluid element is at a distance
of O(y−∞) or smaller from the gradient–vorticity plane. Since this corresponds to a time
interval of O(γ̇ −1), independent of y−∞, the far-field lateral displacements exhibit a decay
of (y−2

−∞) which is the same as that of the dipolar field. In light of this decay, in figure 10,
we plot the rescaled lateral displacements, y2−∞
y, for pathlines in the flow–gradient
plane, for tumbling prolate and oblate spheroids. Owing to the simple relationship
between the two lateral displacements in (4.1), in figure 11 we plot the re-scaled total
lateral displacement, y2−∞
r = y2−∞

√

y2 + 
z2 = y2−∞
y sec Θ , for pathlines outside

the flow–gradient plane (corresponding to Θ = π/9), again for tumbling prolate and
oblate spheroids. Figure 12 shows the re-scaled total lateral displacements for off-plane
fluid elements (Θ = π/9), and for prolate and oblate spheroids in a non-tumbling orbit
(C = 10). Note that for this generic case, it is necessary to consider φj0 in the larger interval
(0, π), with the displacements in the interval (π, 2π) again obtained via a reflection
transformation. In all cases (figure 10, 11 and 12), the numerical displacement curves
approach the analytical far-field ones in the limit ( y2−∞ + z2−∞)1/2 → ∞.

4.1.2. The separatrix of a tumbling spheroid
We end this subsection on the regular pathlines by analysing the approach of the
separatrices, marked in red in figure 7, towards the flow axis – the approach occurs in
both the upstream and downstream directions for φj0 = 0, π/2, and in either of these
two directions for other φj0 values. For the spinning spheroid, as seen from the analytical
asymptote in figure 6, the rate of approach of the far-field separatrix (y ∝ x−3/2) remains
identical to that of a sphere, with only a pre-factor that is a function of aspect ratio. The
analysis for the analogously defined separatrices in figure 7 is more involved owing to the
spheroid rotation. In the far field (r 
 1), one may, however, exploit a separation of time
scales, with the fast scale corresponding to the Jeffery period (of O(γ̇ −1) for κ ∼ O(1))
and the slow time scale characterizing the rate of change of position of the fluid element.
Note that, unlike the regular pathlines for large y−∞ analysed above, where this latter time
scale remains O(γ̇ −1), for the separatrices, the approach towards the flow axis implies
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Kap = 4

15ξ3
0 ((3ξ2

0 − 1) coth−1(ξ0) − 3ξ0)
Kao = − 4

15ξ3
0 (3

√
ξ2

0 − 1 + (2 − 3ξ2
0 ) csc−1(ξ0))

Ktp = − 4(ξ2
0 − 1)

5ξ2
0 (2ξ2

0 − 1)(−3ξ2
0 + 3(ξ2

0 − 1)ξ0 coth−1(ξ0) + 2)
Kto = −

4
√

ξ2
0 − 1

5(2ξ3
0 − ξ0)(−3ξ2

0 + 3
√

ξ2
0 − 1ξ2

0 csc−1(ξ0) + 1)

Klp = 8(ξ2
0 − 1)

5ξ3
0 (−3ξ3

0 + 3(ξ2
0 − 1)2 coth−1(ξ0) + 5ξ0)

Klo = 24

5(9ξ5
0 csc−1(ξ0) − 3ξ0

√
ξ2

0 − 1(3ξ2
0 + 2))

Table 2. The aspect-ratio-dependent stresslet coefficients that appear in the far-field stresslet disturbance (see (4.1) in the text).
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Figure 10. Lateral displacements in the gradient direction for fluid elements in the flow–gradient plane, as
a function of the initial spheroid orientation (φj0). (a) A prolate spheroid (ξ0 = 1.01(κ = 7.12)), and (b) an
oblate spheroid (ξ0 = 1.01(κ = 0.14)); both spheroids are in the tumbling orbit. The lateral displacement for
φj0 ∈ (π/2, π) may be obtained as 
y(φj0) = −
y(π − φj0).
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Figure 11. The total lateral displacements for off-plane fluid elements (Θ = π/9) as a function of the initial
spheroid orientation (φj0). (a) A prolate spheroid (ξ0 = 1.01(κ = 7.12)), and (b) an oblate spheroid (ξ0 =
1.01(κ = 0.14)); both spheroids are in the tumbling orbit. The lateral displacement for φj0 ∈ (π/2, π) may be
obtained as 
y(φj0) = −
y(π − φj0).
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Figure 12. The total lateral displacements for off-plane fluid elements (Θ = π/9) as a function of the initial
spheroid orientation (φj0). (a) A prolate spheroid (ξ0 = 1.01(κ = 7.12)), and (b) an oblate spheroid (ξ0 =
1.01(κ = 0.14)). Both spheroids are in a Jeffery orbit with C = 10. The lateral displacement for φj0 ∈ (π, 2π)

may be obtained as 
y(φj0) = −
y(2π − φj0).

that y is asymptotically small and the time scale of convection by the ambient shear is
therefore correspondingly large. Note also that the magnitude of this slow time scale,
being a function of y, is not known a priori. Keeping this in mind, we write the governing
equations as

dx
dT

= u(x, p(τ )), (4.3)
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An anisotropic particle in a simple shear flow

dp
dτ

= ω · p + κ2 − 1
κ2 + 1

(E · p − p (E : pp)) , (4.4)

where we have (formally) identified τ and T as the fast and slow time variables,
respectively. The identification implies that p only evolves on the fast time scale, while
x is a function of both τ and T . One may expand x in the usual manner x(T, τ ) =
X (T, τ ) + x̃(X , T, τ ) with the fast variable satisfying 1/Tj

∫ Tj
0 x̃ dτ = 0, with T fixed, and

Tj being the Jeffery period. The slow and fast contributions of x may further be expanded
in the following manner: X (T, τ ) = X 0(T) + X 1(T, τ ) + · · · and x̃ = x̃0 + x̃1 + · · · ,
respectively, where we have anticipated the leading-order position to only evolve on the
slow time scale. Since there is not a readily available estimate of the slow time scale
a priori, we do not introduce ε above, but nevertheless assume the higher-order terms
in the above expansions to be asymptotically smaller; thus, x̃ 	 X , X 1 	 X 0, and so
on. We restrict ourselves to calculating the leading-order slow contribution X 0(T) below
(although, note that x̃0 is responsible for the small-scale wiggles on the separatrices seen
in figure 8 and 13.)

The far-field form may now be obtained by recalling the approximations used in the
context of the spinning spheroid in appendix A. Thus, in the far field at leading order,
we only retain the ambient flow in the x-component, and the octupolar contribution in the
y-component. One may now write the scalar components of the two-time-scale equations
as

dX0

dT
+ ∂ x̃0

∂τ
= Y0 + ỹ0 (4.5)

dY0

dT
+ ∂ ỹ0

∂τ
= −15

4
d5ξ3

0 L2
cκ

2(κ2 − 1)

[
(Kap/o − 2Ktp/o + Klp/o)κ

2

+ 2(Ktp/o − Kap/o) cot2
(

κτ

κ2 + 1

)] [
κ2 + cot2

(
κτ

κ2 + 1

)]−3

X−4
0 , (4.6)

where Lc = ξ0(ξ0) for a prolate (an oblate) spheroid. Averaging (4.6) and (4.7) over τ ,
with T fixed, and using the periodicity of the fast contributions, one obtains the equations
governing X0 and Y0 as

dX0

dT
= Y0 (4.7)

dY0

dT
= − d5ξ3

0 L2
c

32X4
0(1 + κ)2

κ[Kap/o(−3 − 30κ + 9κ2)

+ Klp/o(7 − 5κ(2 + κ)) − 4Ktp/o(5 + κ(−2 + 5κ))]. (4.8)

The analytical far-field form may now be obtained by taking the ratio of (4.7) and (4.8).
Reverting to the original notation, one obtains the far-field separatrices (without the
superimposed small-scale wiggles) in the following form:

yp/o = 4κ fp/o

√
(Kap/o(−9κ2+30κ+3) + 4Ktp/o(κ(5κ−2)+5) + Klp/o(5κ(κ + 2) − 7))

3(κ + 1)2x3

(4.9)

again exhibiting a far-field decay of x−3/2, with fp/o = −1/2(1/2). Figure 13 shows the
comparison between both fore–aft symmetric (for φj0 = π/2) and asymmetric (for φj0 =

913 A2-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1139


M.R. Banerjee and G. Subramanian

10–2

10–1 100

x x

101

10–1y

100

10–2

10–1 100 101

10–1

100

10–2

10–1 100 101

10–1

y

100

10–2

10–1 100 101

10–1

100

Numerical separatrix
Numerical backward separatrix

Analytical asymptote

Numerical forward separatrix

Analytical asymptote

(b)(a)

(c) (d )

Figure 13. Comparison between the numerical and analytical separatrix branches for a tumbling prolate
spheroid with ξ0 = 1.15(κ = 2.025): (a) φj0 = π/2 (fore–aft symmetric); (b) φj0 = π/3 (fore–aft asymmetric)
and for an oblate spheroid with ξ0 = 1.15(κ = 0.49); (c) φj0 = π/2 (fore–aft symmetric), (d) φj0 = π/6
(fore–aft asymmetric). For the asymmetric cases, one of the separatrix branches approaches a finite gradient
offset at infinity.

π/3(π/6 for oblate)) separatrices obtained numerically, and the analytical predictions
above. The numerical separatrices are obtained by choosing an initial location (y0) on the
gradient axis, and progressively refining this based on the final outcome of the integrated
trajectory (escape to x → ±∞, or crossing of the flow axis at a finite x). Notwithstanding
the small-scale wiggles that decrease in amplitude with increasing x, a good comparison
is obtained with (4.9).

4.2. The singular pathlines
Thus far, we have dealt with the regular open pathlines, which are (except for φj0 = 0, π/2)
fore–aft asymmetric generalizations of the open streamlines around a sphere. That these
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do not constitute the entire set of pathlines may be seen from the fact that all of the
in-plane separatrices in figure 7 intersect the gradient axis at an ordinate value (say, ysep

0 )
greater than ymin, the value corresponding to the intersection of the spheroid surface with
x = 0; the ymin value depends on φj0, and ranges between ξ̄0/ξ0 and unity, these limiting
values corresponding to flow and gradient-aligned prolate spheroids, respectively. In-plane
pathlines spanning the interval (ymin, ysep

0 ) have therefore not been accounted for; a similar
argument may be made for the off-plane pathlines. The pathlines in these intervals are the
analogues of closed streamlines for the sphere case, and the naive expectation is perhaps
that the strictly periodic closed streamlines for a sphere would transform to aperiodic but
bounded pathlines for a non-spinning spheroid. Interestingly, as will be seen below, this is
not the case.

To examine pathlines in the interval (ymin, ysep
0 ), we consider the case φj0 = π/2

( ymin = 1). The regular (in-plane) pathline configuration analogous to that shown in
figure 7, but for a prolate spheroid with ξ0 = 2(κ = 1.15), is shown in figure 14(a). The
regular pathlines are bounded below by a fore–aft symmetric separatrix that asymptotes
to the flow axis at upstream and downstream infinity, and intersects the gradient axis at
ysep

0 ≈ 1.11621. As seen in figure 14(b–e), the pathlines ‘below’ the separatrix that intersect
the gradient axis in the interval (1, ysep

0 ) are again open, in that they eventually asymptote
to finite y values in the upstream and downstream directions, but loop around the spheroid
a certain number of times before doing so. Importantly, there appears to be no pattern to
the number of loops; this number varies in a seemingly random (but sensitive) fashion
as y0 is decreased below ysep

0 even by a very small amount. For instance, the number
of loops for the pathlines in figure 14(b) and 14(c) is 2, but that in figure 14(d) is 23,
while that in figure 14(e) is again 2; the dramatic increase in the number of loops in
figure 14(d) occurs despite a change in y0 that is O(10−5)! The fact that the pathlines
crossing the gradient axis below the separatrix nevertheless asymptote to finite gradient
offsets at upstream and downstream infinity obviously implies a crossing of the separatrix
at some point. This crossing does not violate uniqueness since the spheroid orientation,
at the time of crossing, is different for the separatrix and any of these looped trajectories
(which we term the singular open pathlines); an argument along the same lines also shows
that such looped trajectories, asymptoting to different upstream and downstream gradient
offsets, is not inconsistent with the reversibility of the Stokes equations either.

4.2.1. The residence-time distributions
To characterize this seemingly random dependence of the number of loops of the pathlines
above, we define an appropriate residence time (Dt), taken to be the total time that a fluid
element spends in a certain neighbourhood of the spheroid. Unless otherwise specified,
this neighbourhood is taken to be the x-interval (−20, 20) in the figures to follow; the
qualitative nature of the findings reported below is independent of the particular choice
of neighbourhood, provided the x-value chosen is large enough compared to the spheroid
dimensions. Figures 15(a) and 15(b) depict the variation in the residence time defined
above. The residence times are plotted as a function of y0, over a range that brackets ysep

0 ,
for both a tumbling prolate spheroid (with φj0 = π/2) and a spinning one. In the former
case, we see a discontinuous change in the nature of the residence-time curve as one moves
across the separatrix. The value of Dt exhibits an initial smooth increase for the regular
pathlines corresponding to y0 > ysep

0 , but there is an abrupt transition to a seemingly
random dependence for the singular pathlines with y0 < ysep

0 . Figure 15(b) shows the
analogous residence-time plot for the spinning spheroid, in which case the residence
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Figure 14. The open pathline configuration for a tumbling prolate spheroid (ξ0 = 2.0(κ = 1.15)) with φj0 =
π/2. (b–e) Correspond to singular open pathlines that cross the gradient axis just below the separatrix (shown
in red in graph (a), with y0 = ysep

0 ) at four different y0 values: (b) y0 = ysep
0 − 10−5; (c) y0 = ysep

0 − 4 × 10−5;
(d) y0 = ysep

0 − 10 × 10−5; (e) y0 = ysep
0 − 20 × 10−5.

time varies in a smooth manner with y0, attaining a maximum at the closed streamline
(corresponding to y′

0 in the inset) that exactly spans the x-interval under consideration.
The subsequent decrease for y0 < y′

0 corresponds to choosing Dt as half the period of the
closed streamlines that no longer span the chosen x-interval, but instead intersect the flow
axis at a pair of points, within the interval (−20, 20), and symmetrically placed about the
origin.

We now examine the irregular variation of the residence time encountered in figure 15(a)
in greater detail. For this purpose, we consider the same spheroid as in figure 14, again in
its tumbling orbit (θj = π/2). The near-unity aspect ratio (ξ0 = 2; κ = 1.15) chosen serves
the additional purpose of illustrating the singular nature of the spherical particle limit
from the perspective of the streamline/pathline topology. Figure 16(a) shows the variation
of the residence time of the singular open pathlines which pass through the negative
x-axis within the interval x0 ∈ (−9.5, −3). The residence time is obtained in the manner
defined above, via forward and backward time integrations starting from a specific initial
point in the aforementioned interval, and until the pathline leaves the interval (−20, 20).
Similar to figure 15(a), the extremely irregular dependence of the residence time on x0
is readily apparent (note that each of the pathlines intersects the x-axis multiple times,
and in principle, it is possible that a pair of chosen initial conditions end up being part of
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Figure 15. Variation of the residence time of a fluid element for a prolate spheroid (ξ0 = 2.0(κ = 1.15)):
(a) in the tumbling orbit with φj0 = π/2, (b) in the spinning mode; the ordinate of the separatrix ysep

0 is shown
by the dashed line; y′

0 corresponds to the closed orbit spanning the x-interval (−20, 20).

the same singular pathline, although this should, in principle, occur with an infinitesimal
probability; we have verified that this is not the case by monitoring the upstream and
downstream coordinates, and ensuring that these are different for each of the initial points
chosen). The plots that follow in figure 16(b–e) show the variation in the residence time at
progressively finer resolutions by focussing on increasingly small subsets of the x0-interval
considered above. These figures correspond to 1000 initial conditions in the x0-intervals
(−4, −3), (−3.1, −3), (−3.01, 3) and (−3.001, 3), respectively. Thus, in going from
figure 16(a to 16e), the length scale of the interval under consideration has decreased
by four orders of magnitude, but the irregular dependence of the residence time clearly
persists down to the smallest scales. This fractal dependence of the residence-time measure
is a signature of chaotic scattering, and is suggestive of the existence of a chaotic saddle
in the region around the spheroid (Aref & Pomphrey 1980, 1982; Bleher, Ott & Grebogi
1989; Bleher et al. 1990; Aref & Stremler 1999; Faisst & Eckhardt 2004).

For the hyperbolic case, the chaotic saddle above would include an infinite number
of unstable periodic orbits (and bounded aperiodic ones), whose stable and unstable
manifolds intersect to form a Cantor-like set. The existence of single-looped periodic orbits
may, for instance, be inferred by considering two neighbouring pathlines, integrated over
the approximate duration of a single loop, as shown in figure 17(a) and 17(b). The pair of
initial points in the figures correspond to x0 = −3.2217088 and x0 = −3.2214089 on the
negative x-axis, and one observes the subsequent intersections with the (negative) x-axis to
occur opposite sides of the initial point in the two cases, implying that the pair of pathlines
shown bracket a single-loop closed orbit between them. This argument may be extended
in an obvious manner to show the existence of closed pathlines with multiple loops. Note
that, from the perspective of a Poincaré map (which gives the dynamics strobed at intervals
of Tj), these closed pathlines are examples of bounded aperiodic orbits since their periods
are not integer multiples of Tj.

Having established the signatures of chaotic scattering in the residence time plot for
a tumbling spheroid, in figure 18(a–d), we consider analogous residence-time plots for
the spheroid in other finite-C precessional orbits. The spheroid is the same as that in
figure 16, and the orbits chosen correspond to C = ∞ (already shown), 5, 0.5, 0.2 and
0.05, respectively, with the initial point again restricted to the interval (−9.5, −3) on
the negative x-axis. The plots appear to show a progressive decrease in the extent of
irregularity with decreasing C. One reason for this decrease is that, for lower C values,
there appear regular intervals between those that correspond to chaotic scattering, and
this interlacing behaviour will be seen in more detail in the next section; note that this
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Figure 16. The sensitive dependence of the residence time of a fluid element, for a tumbling prolate spheroid
(ξ0 = 2.0(κ = 1.13)) with φj0 = 0, plotted as a function of the ‘initial condition’ (defined as a point on the
negative x-axis). Panel (a) depicts the dependence in the entire interval (−9.5, −3), while panels (b–e) show the
dependence of the residence time in the intervals (−4, −3), (−3.1, 3), (−3.01, 3) and (−3.001, 3), respectively.

interlacing tendency is, in fact, already present for C = ∞, although not evident owing to
the much smaller scale (see the inset of figure 18a) which presents a magnified view).
The decrease in irregularity is also because, for the smaller C values, an increasing
fraction of pathlines do not open for the duration of the numerical integration (tmax =
8000Tj); examples of such bounded pathlines are shown in figure 18(d,e). Such bounded
pathlines, arising as an artifact of the finite integration duration, begin to populate an
upper horizontal plateau with residence times equal to the maximum integration time;
in fact, figure 18(d) for C = 0.05 consists entirely of pathlines that do not open over
the duration of the integration. However, as shown in figure 19, the fraction of initial
conditions leading to bounded pathlines for the case C = 0.2 decreases perceptibly for
an integration duration (tmax = 32 000Tj) four times the one chosen for figure 18. Thus,
the fraction of bounded pathlines appears to depend on the duration of the numerical
integration. Although impossible to ascertain by numerical means, the limiting integrable
case of a spinning spheroid (C = 0) appears to be a singular one, with a spheroid rotating
in an orbit with C small but finite nevertheless leading to chaotic scattering; the associated
large residence times are, however, inaccessible to numerics.
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Figure 17. Existence of periodic pathlines for the tumbling prolate spheroid (ξ0 = 4.0(κ = 1.03) for a
single-loop periodic orbit with an approximate period of 40Tj: (a) final point (xf ) displaced to the left of
the initial point (−3.2214088, 0) and (b) final point displaced to the right of the initial point (−3.2214089, 0).

4.2.2. Local graphs of the invariant manifolds and the chaotic saddle
Graphical representations of the unstable and stable manifolds of the chaotic saddle are
another qualitative signature of chaos. Here, we numerically evolve an initially circular
blob of ‘dye’ located along the negative x-axis on account of being advected by the
fluid motion induced by the rotating spheroid. The numerical protocol is motivated by
an experiment demonstrating chaotic scattering, albeit in a different geometric setting
(Gouillart et al. 2009). A forward integration in time must trace out the unstable manifold
of the chaotic saddle for sufficiently long times, while a backward-in-time integration
yields the stable manifold. Figure 20 compares the evolution of the aforementioned circular
blob (made up of 106 randomly distributed initial points) for a sphere and for a (nearly
spherical) prolate spheroid with ξ0 = 4(κ = 1.03); the spheroid is chosen to rotate in a
Jeffery orbit with C = 20(φj0 = 0). Figures 20(a) and 20(b) show that the blob for the
case of a sphere, although significantly distorted for large times owing to differential
convection, has, nevertheless a finite spatial extent – the distorted blob lies within the
interval (−6, 6) for all time. This is because the initial blob has been chosen to lie entirely
within the region of closed streamlines, and is therefore always bounded by the largest
closed streamline that passes through one of the initial points on its periphery. In contrast,
figure 20(c) and 20(d) show that the blob, for a spheroid, is sheared out to arbitrarily
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Figure 18. Sensitive dependence of the residence time of fluid pathlines, on initial conditions, for a prolate
spheroid (ξ0 = 2.0(κ = 1.13)) in finite-C precessional orbits; (a) C = ∞, (b) C = 5.0, (c) C = 0.5, (d) C =
0.05 and (e) C = 0.2. The insets in (e) shows that the highest residence times (plateau points) correspond
to bounded pathlines, while those off the plateau lead to pathlines that open up over times shorter than the
integration time (8000Tj); the insets in (d) confirm that all of the pathlines for this case are bounded.
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Figure 20. The evolution of an initially circular blob of radius = 0.03, located at (−5, 0, 0) (shown in the
inset) for a sphere (a,b) and a prolate spheroid (c,d) with κ = 1.03(ξ0 = 4.0) rotating in a Jeffery orbit with C =
20: (a,c) forward-in-time integration; (b,d) backward-in-time integration. For (a) t = 2000Tj, (b) t = −2000Tj,
(c) t = 2000Tj, (d) t = −2000Tj.

large distances in the flow direction as time goes to plus and minus infinity on account
of the singular open pathlines discussed above (note the differing horizontal scales in
figure 20(a,b), and in figure 20(c,d)). While figure 20 highlights the singular role of
non-sphericity with regard to the long-time temporal evolution of a blob, which in turn
has implications for the rate of mass/heat transport from the spheroid (see conclusions
section), it is figure 21 that highlights the striking differences between the sphere and
spheroid cases even for finite times. The magnified views in figure 21 clearly show the
fine-scaled features (wiggles) that emerge in the evolving blob, only for the spheroid, on
account of the convoluted nature of the underlying unstable manifold of the chaotic saddle.
In fact, in figure 21( f ), the finite initial distribution of points has been sheared out to an
extent that the small-scale wiggles associated with the underlying chaotic saddle are no
longer well resolved.

Figure 22 shows evolving blobs for spheroids of different aspect ratios, and here, the
scale of the aforementioned wiggles is seen to become larger with increasing aspect
ratio. Further, the horizontal extent of the sheared blob, for large times, also increases
substantially for high aspect ratio spheroids, implying a decrease in the ‘loopiness’ of the
singular open pathlines. In the next section we will see a similar behaviour emerge from a
different perspective, wherein the dependence of the residence time (of fluid pathlines)
is analysed from the point of view of an ‘impact parameter’, defined as the gradient
and/or vorticity coordinates of a fluid element far upstream. Finally, in figure 23, we
give a representation of the invariant chaotic saddle, its projection onto the flow–gradient
plane and in the neighbourhood of the rotating spheroid, obtained in the following manner.
The representation corresponds to a near sphere, with ξ0 = 4(κ = 1.03), and it therefore
makes sense to relate this representation to an invariant set for a sphere; an example of
the latter is a region contained within any of the closed streamlines. With this in mind, we
initialize 34 million fluid elements uniformly distributed in a rectangular domain spanning
the intervals (−5, 5) and (−1, 1) in the x and y-directions, and integrate these over a
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Figure 21. A comparison of the evolution of an initially circular blob for a sphere and a prolate spheroid
(ξ0 = 4(κ = 1.03)) in a precessional orbit with C = 20. The evolving blob, for the spheroid, traces out the
unstable manifold, of the underlying chaotic saddle, for large times; (a) t = 50Tj, (b) t = 68Tj, (c) t = 200Tj,
(d) t = 50Tj, (e) t = 68Tj, ( f ) t = 200Tj.

duration of 1000Tj both forward and backward in time. Those initial points that remain
within a closed streamline that spans the interval (−5, 5) are plotted in the said figure. The
fine-scaled structure evident in figure 23 is a representation of the invariant set responsible
for the chaotic scattering signatures detailed above. Further, the emergent non-trivial
foliated structure is also indicative of the singular nature of the spherical limit. For a
sphere, the invariant set would be the closed streamline above with the region between
the streamline and sphere uniformly filled in, since fluid elements within this streamline
remain so regardless of the duration of integration. Finally, note that figure 23 denotes
(approximately) the intersection of the saddle with the region inside the aforementioned
closed streamline. As evident from figure 21 and 22, the saddle will also have a fine-scaled
structure ‘radiating’ out of the closed streamline, but resolving this appears to require
excessively long integration times.

4.2.3. The uncertainty dimension of the chaotic saddle
The chaotic saddle may be characterized quantitatively in terms of its fractal dimension.
While there are quite a few ways by which one may obtain such a dimension, herein we
adopt the methodology of Bleher et al. (1990) by determining the uncertainty dimension.
In this method a large number (N0) of initial conditions are chosen randomly, and each
of these conditions is perturbed by a small amount (ε), and is marked uncertain if the
corresponding output states are markedly different. In the present case, we choose 5000
pairs of original and ε-perturbed upstream gradient offsets in the interval 0 � y−∞ <

ysep
−∞, with x = −20, z−∞ = 0 and φj,−∞ = 0, the latter corresponding to the spheroid

phase, in a particular Jeffery orbit, at x = −20. We then check if the integrated pair of
final states have similarly signed y-components, implying that both initial members of
the chosen pair asymptote to either upstream (negative y) or downstream (positive y)
infinity. If not, the pair is deemed uncertain, and one then calculates the uncertainty ratio as
f (ε) = N/N0, N being the number of uncertain pairs. For the number of initial pairs chosen
above, N is O(103) even for the smallest ε values examined, ensuring statistical accuracy.
Figures 24(a) and 24(b) show the variation of the uncertainty ratio with aspect ratio
for tumbling prolate spheroids, and with orbit constant (C) for a given prolate spheroid
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Figure 22. A comparison of evolving blobs for prolate spheroids in a precessional orbit with C = 20: (a–c)
ξ0 = 8.0(κ = 1.008), (d–f ) ξ0 = 6.0(κ = 1.01) and (g–i) ξ0 = 4.0(κ = 1.03). The scale of the wiggles, and
the horizontal spread of the distorted blob, increase with increasing aspect ratio. For (a) t = 50Tj, (b) t = 68Tj,
(c) t = 200Tj, (d) t = 50Tj, (e) t = 68Tj, ( f ) t = 200Tj, (g) t = 50Tj, (h) t = 68Tj, (i) t = 200Tj.

with ξ0 = 1.05(κ = 3.28), respectively. An algebraic scaling, f (ε) ∼ εα , for sufficiently
small ε, is observed in all cases over the range of ε values examined (down to O(10−8)).
The uncertainty dimension is then defined as Dc = D − α, where we take D = 3 since
fractality is only observed is along the gradient direction; in § 6, it is shown that the
non-trivial interlacing of the regular and chaotic scattering intervals persists for all values
of the vorticity coordinate. For a spinning spheroid, as already shown (see figure 15b)
there is a unique value of the separatrix offset. For this case alone, one expects f (ε) ∝ ε,
so that α = 1 and Dc = 2, consistent with the fact that the separatrix is a regular surface
embedded in three dimensions. However, as already implied by the results in figure 18,
the spinning spheroid appears to be a singular limit, and this is reinforced by the results of
figure 24(b), where Dc does not approach 2 even as C decreases to 0.01. Finally, it needs
mention that despite the algebraic scaling obtained in figure 24, as will be seen later, the
probabilities densities of residence times show algebraic rather than the exponential tails
familiar from much of the literature (Bleher et al. 1989, 1990; Jánosi et al. 1997; Faisst &
Eckhardt 2004; Eckhardt et al. 2007). The implications of this finding are discussed briefly
in the next section.

5. Transition from regular to chaotic pathlines: boundary of the chaotic saddle

Having established the signatures of chaotic scattering for the fluid pathlines around any
non-spinning spheroid, we now proceed to analyse the pathlines from the perspective used
in earlier efforts (for instance, see Bleher et al. 1989, 1990). This is done by plotting the
output variable, which is still the residence time, as a function of an appropriate input
one, the focus being on the singular regions corresponding to apparent divergences of the
residence time. Such regions would appear scale dependent in a numerical investigation,
on account of the true divergences being localized on a Cantor set of vanishing measure
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Figure 23. A representation of the intersection of the invariant chaotic saddle with the region contained within
a closed streamline (for a sphere); the graphs shown are for a prolate spheroid with ξ0 = 4(κ = 1.03) in a
Jeffery orbit with C = 20. (a) Full view; (b) and (c) correspond to magnified views of the left- and right-hand
portions, respectively. The dashed curves denote the closed streamline of choice (note that the central part of
the saddle is truncated at the top and bottom, being limited by the width of the initial rectangular region).

(Jung, Tél & Ziemniak 1993; Ziemniak, Jung & Tél 1994; Skufca, Yorke & Eckhardt 2006;
Eckhardt et al. 2007). The input variable must correspond to the analogue of the impact
parameter used in the chaotic scattering literature (Bleher et al. 1990). In our case, this is
the upstream gradient offset (y−∞) of a fluid element in the plane of shear; or, both the
gradient and vorticity offsets (y−∞ and z−∞) of an element off the flow–gradient plane. In
addition, one needs to specify the particular Jeffery orbit, and the phase of rotation (within
a given orbit) at the initial instant; the latter is again done via the azimuthal angle which is
now denoted as φj−∞ (already used in § 4.2.3 above). Note that these upstream offsets have
already been used to analyse the regular open pathlines above. The difference here is that
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Figure 24. Plot of the uncertainty ratio f (ε) of the chaotic saddle for (a) prolate spheroids of different aspect
ratios in the precessional orbit of C=20 and (b) a prolate spheroid of ξ0 = 1.05 in different Jeffery orbits
(C = 0.01, 0.07, 0.5 and 1).

the offsets are used as a common basis to analyse both the regular and singular pathlines;
the latter group of pathlines was examined earlier, only as a function of their points of
intersection with the flow axis, in order to establish the signatures associated with chaotic
scattering. One may now analyse the transition from the regular to the singular open
pathlines, as a function of the aforementioned upstream offsets, and thereby, analyse the
boundary of the chaotic saddle (what has been termed ‘the edge of chaos’ in the literature;
see Skufca et al. 2006). The latter has been the subject of earlier investigations in the
context of two-dimensional Hamiltonian problems (Jung & Ziemniak 1992).

In figure 25 and 26 we plot the residence time as a function of y−∞(z−∞ =
0) for tumbling prolate spheroids with ξ0 = 2.0(κ = 1.13) and ξ0 = 1.05(κ = 3.28),
respectively; φj,−∞ = 0 for both cases. The residence-time curves exhibit a small-scale
modulation superposed on an underlying monotonic increase with decreasing y−∞. The
reason for the latter increase is obvious. The modulation leading to a non-monotonic
dependence on y−∞ arises owing to the spheroid orientation being a function of time. For
y−∞ values not too different, a fluid element crossing the gradient–vorticity plane, at the
instant that the spheroid is close to a vertical orientation, will do so at a higher y0, leading
to a reduced residence time. With decreasing y−∞, the residence time, for a given change
in y−∞, changes by a greater amount relative to the fixed Jeffery period. This leads to the
wavelength of the modulation in figure 25 and 26 (and the ones thereafter) decreasing with
y−∞. Note that the absolute wavelength scales in proportion to the Jeffery period, and is
therefore greater for the larger aspect ratio spheroid (ξ0 = 1.05). The red vertical line in
each plot denotes the ordinate of the separatrix (ysep

−∞) that demarcates the regular regions
from those that exhibit intervals of chaotic scattering; this demarcation is evident from the
magnified views in figure 25(b) and 26(b), which clearly contrast the smooth peak(s) for
y−∞ > ysep

−∞ with the irregular dependence that ensues for y < ysep
−∞. Note that it is φj,−∞

that is now fixed at 0, and the value of φj0 emerges during the course of the integration;
one finds φj0 = 111.8◦ and 168.6◦ for the separatrices corresponding to ξ0 = 2.0 and
ξ0 = 1.05, respectively. Thus, the separatrices marked by the red vertical lines in figure 25
and 26 correspond to fore–aft asymmetric separatrices with finite upstream offsets –
keeping in mind the pathline configurations in figure 7, these separatrices correspond to
φj0 ∈ (π/2, π), and are obtained from those in figure 7 by reflecting about the gradient
axis. Similar to figure 15(a), the dependence for y−∞ values less than ysep

−∞ is not entirely
irregular. Instead, there are intervals of regular dependence separated by chaotic ‘bursts’,
with the relative sizes of the regular and chaotic intervals being clearly sensitive to the
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Figure 25. The residence time for a tumbling prolate spheroid (ξ0 = 2.0(κ = 1.13)), with φj,−∞ = 0, as a
function of the upstream gradient offset of the fluid pathline (‘upstream’ here corresponds to x = −20); panels
(a–c) correspond to increasing levels of magnification. The red vertical line in all figures denotes the separatrix
(ysep

−∞) that separates the regular (y−∞ > ysep
−∞) region from the one that includes intervals of chaotic scattering

(y−∞ < ysep
−∞).

aspect ratio. Figures 25(b,c) and 26(b,c) correspond to magnified views, with each view
corresponding to 104 initial conditions (y−∞ values), and highlight the interlacing of
regular and chaotic intervals down to the smallest (numerically) resolved scales; in other
words, what appears as an interval of chaotic dependence at a given coarse resolution
contains smaller intervals of regular intervals within, and this appears to continue ad
infinitum. Figures 25(c) and 26(c) suggest qualitatively different transitions from regular
to chaotic scattering for the two aspect ratios. The transition for the spheroid with a
near-unity aspect ratio (ξ0 = 2) in figure 25(c) appears to be discontinuous, with Dt
approaching a finite limit for y−∞ → ysep+

−∞ , but appearing to diverge for y−∞ → ysep−
−∞ ; in

contrast, the transition for the larger aspect ratio spheroid appears to involve a divergence
of the residence time regardless of the direction of approach towards the separatrix offset.
Despite this difference in appearance, one expects limy−∞→ysep+

−∞
Dt to be finite, since

this corresponds to the finite residence times of the fore–aft asymmetric separatrices
mentioned above in the interval (−20, 20) – the inset in figure 26(c) shows this to be
the case.

The separatrix offsets in figure 25 and 26 arise for φj,−∞ = 0. A different offset will
result for another choice of φj,−∞. To access all possible separatrices, one needs to choose
φj,−∞ values spanning the interval (0, π) for a given large negative x. The maximum
among all such separatrix offsets would then determine the onset of chaotic scattering
in the flow–gradient plane. The restriction of a large negative x is necessary so that the
aforementioned maximum separatrix offset is independent of x; although, this maximum
will occur at an x-dependent φj,−∞. Thus, in order to characterize the onset of chaotic
scattering in the flow–gradient plane, one ought to have a plot, as depicted in figure 27,
of the residence-time surface as a function of both y−∞ and φj,−∞. The onset of chaotic
scattering is demarcated by a critical curve ysep

−∞(φj,−∞) in this plane. The residence-time
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Figure 26. The residence time for a tumbling prolate spheroid (ξ0 = 1.05(κ = 3.28)), with φj,−∞ = 0, as a
function of the upstream gradient offset of the fluid pathline (‘upstream’ here corresponds to x = −20); panels
(a–c) correspond to increasing levels of magnification. The red vertical line in all figures denotes separatrix
(ysep

−∞) that separates the regular (y−∞ > ysep
−∞) region from the one that includes intervals of chaotic scattering

(y−∞ < ysep
−∞).

surface is smooth on one side of this separatrix curve, but one expects a jagged irregular
distribution of peaks on the other side; the latter irregular dependence has indeed been
observed in the context of the laminar–turbulent transition (Eckhardt et al. 2007). Note
that, provided x is sufficiently large, the set of ysep

−∞ values is invariant to a change in x.
Instead, and as mentioned above, each ysep

−∞ now corresponds to a different φj,−∞, the
relation between the two φj,−∞ values being determined by the angle through which the
spheroid rotates as the fluid element translates from the first to the second value of x (this
translation is almost entirely due to the ambient simple shear). This ‘juggling’ of ysep

−∞
values will, of course, change the separatrix curve in the y−∞ − φj,−∞ plane. In both
figure 27(a) and 27(b), the separatrix curve has a step discontinuity; as will be seen below,
this jump arises due to the abrupt appearance of a chaotic burst on a previously regular
peak.

Having characterized the residence-time surface, we return to the specific case of
φj,−∞ = 0, and now compare the manner in which the signatures of chaotic scattering
disappear as one approaches the limit of an integrable system (note that the term
‘integrable’ is used here in a loose sense, to denote the regular nature of the trajectories,
and the resulting smooth dependence on initial conditions; the problem of a spheroid in a
simple shear flow is evidently non-Hamiltonian). The two limiting integrable cases are that
of a spinning spheroid of any aspect ratio, the streamline topology for which has already
been discussed in detail in § 3 (and appendix A), and an infinitely slender prolate spheroid
(κ → ∞ or ξ0 → 1) in any of the finite-C Jeffery orbits. We examine the latter limit first.
The integrability in this case arises because viscous slender body theory (Batchelor 1970)
shows that the time dependent disturbance velocity field associated with a slender fibre
(responsible for the non-integrability of the governing system (2.11)–(2.13)), in a region
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Figure 27. Residence-time surfaces on the y−∞ − φj,−∞ plane, for tumbling spheroids with (a) ξ0 =
1.05(κ = 3.28)) and (b) ξ0 = 2(κ = 1.15)); ‘−∞’ here corresponds to x = - 20. The red separatrix curves
mark the transition from regular to chaotic scattering in both cases.

around it of order its length, scales as the inverse of the logarithm of its (large) aspect ratio.
Thus, at leading logarithmic order, a fluid element is merely convected by the ambient
simple shear flow. Such an approximation has been earlier used to analyse the effect
of polymeric stresses on fibre motion in simple shear flow; in particular, to analyse the
viscoelasticity-induced drift across (meridional) Jeffery orbits for large Deborah numbers
(Harlen & Koch 1993). In this limit, the polymeric stress at a point is approximated based
on the integrated effect of velocity gradients experienced by a fluid element (containing
polymer molecules) along an ambient flow streamline that convects the element up to the
point of interest. Figure 28(a–e) show a comparison of the residence-time distributions
for tumbling prolate spheroids of increasing aspect ratio, approaching the slender fibre
limit; κ ranges from 2.4 (ξ0 = 1.1) in figure 28(a) to 70.7 (ξ0 = 1.0001) in figure 28(e).
Note that the length scale characterizing the undulations in the residence-time curves,
induced by the spheroid orientation dynamics, increases with increasing κ . As mentioned
earlier, this is due to an increase in the Jeffery period. Each of the residence-time curves
is overlaid on a smooth curve that plots the residence time estimated based on convection
by the ambient shear alone and that is therefore proportional to 1/y−∞. For the smaller
aspect ratios, notwithstanding the chaotic bursts, the ambient-flow-based estimate, ends up
overestimating the residence time. This is because accounting for the disturbance velocity
field leads to the fluid element being advected to larger y in the vicinity of the rotating
spheroid, in turn leading to a faster (local) convection by the ambient flow. For the largest
aspect ratios (figure 28d,e), the ambient-flow-based estimate is quite accurate, validating
to some extent a slender-body-theory-based analysis that neglects of the disturbance
velocity field as far as the fluid pathlines is concerned. From figure 28(d) and 28(e), it
is also evident that the separatrix offset, ysep

−∞, that marks the onset of the chaotic bursts,
eventually decreases with increasing aspect ratio, again emphasizing the dominance of
the ambient flow, and thence, the approach towards an integrable limit (κ = ∞). This
approach is, however, a singular one, with the intermittent chaotic bursts corresponding
to large departures of the residence time from the O(1/y−∞) ambient-flow-based estimate
even for the largest κ shown. As shown in figure 28(e), these departures correspond to
a ‘trapping’ of the fluid pathline for a long time in the vicinity of the rotating spheroid.
Such trapped pathlines execute a large number of loops around the spheroid; in contrast,
the pathlines above the separatrix, and those in the regular intervals for y−∞ < ysep

−∞,
are open. Interestingly, for the largest κ , the dips of the residence-time curve below the
ambient-flow-based estimate correspond to regular reversing pathlines that do not loop
around the spheroid (see inset in figure 28e). Finally, note that the signatures of chaotic
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Figure 28. Variation of the residence time for tumbling prolate spheroids with ξ0 =
1.1, 1.05, 1.01, 1.001, 1.0001(κ = 2.4, 3.28, 7.12, 22.68, 70.7)) with φj,−∞ = 0. The red vertical line
separates the regular and chaotic regions, the magenta curve denotes the 1/y−∞ estimate based on the ambient
simple shear flow. The insets in (e) show sample pathlines for upstream offsets less and greater than that of the
separatrix (ysep

−∞); those below the separatrix, and within the chaotic burst intervals, loop around the spheroid
a large number of times (the two insets on the left), while the other pathlines are open (the insets on the right).

scattering are also not readily apparent for the largest κ . Thus, although we have marked a
separatrix offset in this case, it is possible that the irregular dependence of the residence
time, in a manner resembling the smaller κ values, now occurs on scales smaller than those
resolved.

Based on the residence-time distributions shown in figure 28, and those for other aspect
ratios, figure 29(a) plots the upstream (gradient) offset of the separatrix (ysep

−∞), marking
the onset of chaotic scattering, as a function of the spheroid aspect ratio. Although
the separatrix offset appears to eventually decrease monotonically for the largest aspect
ratios with ysep

−∞ ∼ κ−4.5, for κ → ∞, the variation for moderately large aspect ratios
is non-monotonic on account of a series of seemingly discontinuous jumps in ysep

−∞ at
certain aspect ratios (similar to the jumps in the separatrix curves seen in figure 27a,b).
To examine this further, we plot in figure 29(b) the residence-time distributions for a pair
of aspect ratios on either side of a particular ysep

−∞ jump. It is seen from the distributions
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Figure 29. (a) The upstream gradient offset of the separatrix, ysep
−∞, for tumbling spheroids, as a function of

the spheroid aspect ratio, (b) residence-time plots for the (circled) aspect ratios κ = 20.18 and 20.099, in the
close vicinity and on either side of a ysep

−∞ jump.

that the jump arises from the sudden appearance of a chaotic burst in a previously smooth
peak (located just above the separatrix) with increasing aspect ratio. Note that, even for
a slender fibre, there would still be fluid elements that approach the fibre to within a
distance of order its diameter, and which would then suffer a strong interaction (since
the disturbance field is not small in this region). But, the fraction of fluid elements that
undergo such a strong interaction must approach zero as κ−1, owing to the smallness of
the ‘collisional’ cross-section which scales as the product of the fibre length and diameter.
Thus, the upstream gradient offset of fluid elements that undergo a strong interaction is
expected to scale as κ−1. While ysep

−∞ in figure 29(a) asymptotes to zero more rapidly, as
κ−4.5, the numerical values of the offsets remain larger than the spheroid diameter for
the largest aspect ratios examined. We have verified that the separatrix offsets for oblate
spheroids exhibit a similar series of jumps for κ decreasing to zero (not shown). Unlike
the prolate case, the oblate spheroid disturbance field remains finite in the limit κ → 0,
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Figure 30. Variation of the residence time, for prolate spheroid with ξ0 = 1.05(κ = 3.28) in Jeffrey orbits
C = 1.0, 0.5, 0.07, 0.04, 0.01 with φj,−∞ = 0. The red vertical line in each figure separates the regular and
chaotic regions, the magenta curve denotes the residence time for the spinning (C = 0) spheroid, with the
magenta vertical line denoting the separatrix for the spinning orbit: (a) C = 1, t = 4000Tj; (b) C = 0.5, t =
4000Tj; (c) C = 0.07, t = 10 000Tj; (d) C = 0.04, t = 10 000Tj; (e) C = 0.01, t = 20 000Tj.

and one might therefore expect the separatrix offset for a flat disk to also remain finite.
Over the range of aspect ratios examined, however, we find separatrix offsets for oblate
and prolate spheroids to remain comparable in magnitude.

Next, in figure 30, we present a comparison of the residence-time distributions as
a function of the orbit constant C, for a prolate spheroid of ξ = 1.05(κ = 3.28). The
sequence of orbit constants chosen is C = 1, 0.5, 0.1, 0.04, 0.01, and thus approaches the
other integrable limit (a spinning spheroid: C = 0) mentioned above. Similar to figure 28,
and for purposes of comparison, we plot the residence-time distribution corresponding to a
spinning spheroid, of the same aspect ratio, in each of the panels. For a spinning spheroid,
and for the finite x-interval (−20, 20) under consideration, the residence time remains
finite regardless of y−∞. Since closed streamlines correspond to an infinite residence time,
the spinning-spheroid curve shown terminates at the separatrix (ysep(spin)

−∞ ); this is unlike
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Figure 31. The gradient offset of the separatrix, ysep

−∞, plotted as a function of the Jeffery orbit constant C, for
a prolate spheroid with ξ0 = 1.05(κ = 3.28).

figure 15(b) where it was continued to the closed orbits within, by taking the residence
time to be equal to the orbital half-periods. Although for the aspect ratio examined in
figure 30, there remains a large difference between the offsets of the actual separatrix
(ysep

−∞) and the spinning-spheroid separatrix (ysep(spin)
−∞ ) down to the smallest C values, the

location of the separatrix for the smallest C values nevertheless begins to correlate with a
rather abrupt increase in the residence times, in a manner resembling the spinning-spheroid
distribution. Unlike the slender fibre limit examined above, figure 31 shows that the
separatrix offset starts from an order-unity value (specific to κ = 1.05) for large C, and
decreases monotonically for C going to zero, implying a similar decrease of the size of the
chaotic region as one approaches the spinning-spheroid limit.

Figure 32 shows the residence-time probability densities for tumbling prolate spheroids
of decreasing aspect ratios: κ(ξ0) = 22.38(1.001), 7.12(1.01), 3.28(1.05), 2.4(1.1), 1.15(2)
and 1.03(4). Rather surprisingly, and in contrast to much of the literature on chaotic
scattering, the probability densities for all cases examined appear to have algebraic rather
than exponential tails (Bleher et al. 1989, 1990; Jánosi et al. 1997; Faisst & Eckhardt 2004;
Eckhardt et al. 2007). The lower figure on the right shows the invariance of the algebraic
tail to the interval of upstream offsets considered. The top figure on the right shows three
probability densities corresponding to regular pathlines in (ysep

−∞, y−∞), singular pathlines
in (0, ysep

−∞) and all of the pathlines in (0, y−∞). The tail, corresponding to asymptotically
long residence times, is seen to be entirely controlled by the singular pathlines; an
increase in y−∞ only amounts to considering a greater number of regular pathlines, with
shorter residence times, leaving the tails unaffected. An important implication of the
algebraic tails in figure 32 is the absence of a characteristic escape time, and the related
possibility of a scale dependent structure of the underlying chaotic saddle, in turn implying
that the spheroid may be a non-hyperbolic scatterer (Lau, Finn & Ott 1991). Despite
the aforementioned evidence of non-hyperbolicity, however, we find algebraic scaling
behaviour for the uncertainty ratio, as seen in figure 24, and as is expected for a hyperbolic
scatterer. Further, successively magnified views of the residence-time plots do not reveal
an obviously denser distribution of chaotic scattering intervals on the smaller scale. Thus,
ascertaining the nature of the scatterer (non-hyperbolic or otherwise) requires a more
detailed numerical investigation with an emphasis on scales (the ε values in figure 24)
much smaller than those examined here.
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Figure 32. The main figure shows the residence-time probability densities for tumbling prolate spheroids of
different aspect ratios; the slopes of the algebraic tails appear within brackets. The top figure on the right shows
the total probability density for ξ0 = 2, and the component densities corresponding to regular (ysep

−∞, y−∞) and
singular (0, ysep

−∞) pathlines. The bottom figure on the right demonstrates the insensitivity of the tail to the
interval of upstream offsets considered.

6. Discussion and conclusions

6.1. Summary of main results
In this study, we have examined the topology of the fluid pathlines induced by freely
rotating neutrally buoyant spheroids, both prolate and oblate, and of an arbitrary aspect
ratio, in simple shear flow. The fluid pathline configuration is analysed as a function
of the particular spheroid orbit, as defined by the orbit constant C. In the spinning or
log-rolling (C = 0) orientations, one has a steady scenario, and the fluid pathlines are
the same as streamlines. Further, the topology of the streamline configuration is identical
to that already known for the limiting cases of a sphere or a cylinder. There are two
distinct groups of streamlines, open and closed, and these are separated by a surface of
limiting streamlines, termed separatrices, that ‘closes at infinity’. For spinning prolate
spheroids, various measures relating to the streamline configuration, including the size of
the closed-streamline region, the orbital periods of the individual closed streamlines, etc,
are bounded between those for a sphere and a cylinder (see figure 5).

On the other hand, when the spheroid is in any of the precessional orbits, including the
tumbling one (0 < C � ∞), almost all pathlines are open, in that they come from and
eventually go to infinity. Nevertheless, the open pathlines may be divided into two groups.
The first group are the regular open pathlines which come from and go to infinity without
looping around the precessing spheroid. The residence time for these pathlines, in a certain
neighbourhood of the spheroid, is a smooth function of their initial coordinates defined
as their offsets, far upstream, in the gradient and vorticity directions. One may therefore
regard these regular pathlines as trivial generalizations of the open pathlines around a
sphere or a cylinder. In general, these pathlines are fore–aft asymmetric (with respect to
the gradient–vorticity plane), and may therefore be characterized via the net displacements
in the gradient or vorticity directions (see figure 7). For the most slender spheroids, there
is the appearance of regular reversing pathlines that are absent for a torque-free sphere or
a cylinder.

The most important results of this manuscript concern the second group of open
pathlines, the singular ones, that loop around the precessing spheroid on their way from
upstream to downstream infinity. These differ in a profound manner from the closed
pathlines around a freely rotating cylinder or a sphere. It is observed that the number of
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Figure 33. The gradient offset of the separatrix, ysep

−∞, plotted as a function of the vorticity offset z−∞, for
a prolate spheroid with ξ0 = 1.05(κ = 3.28), with the sample residence time distributions for z−∞ = 0.1
and 1.0

loops, or alternatively, the residence time of these pathlines in a certain neighbourhood of
the spheroid, has an extremely sensitive, seemingly random, dependence on the initial
offset, with this sensitivity persisting until the smallest (numerically) resolved scales.
Such a fractal dependence on initial coordinates is a defining characteristic of chaotic
scattering as investigated earlier in other scenarios that include the laminar-to-turbulent
transition in plane Couette flow (Skufca et al. 2006), pipe flow (Faisst & Eckhardt 2004;
Eckhardt et al. 2007; Schneider, Eckhardt & Yorke 2007), dynamics of point vortices (Aref
& Pomphrey 1980; Aref 1983; Eckhardt 1988), to name a few. The infinitely sensitive
variation of the residence time found here implies the existence of a chaotic saddle, and
thence, of a set of singularities on a Cantor-like set in the vicinity of the rotating spheroid;
for the particular case of simple shear flow examined here (see final paragraph below), this
singular set might extend to infinity along the flow axis. We have investigated the nature
of the unstable manifold by numerically mimicking the experiment of Gouillart et al.
(2009), whereby the underlying fractal structure is readily evident (figure 22); a partial
representation of the invariant chaotic saddle, for a near sphere, is shown in figure 23.
We have also investigated in detail the transition from regular to chaotic scattering as a
function of the underlying physical parameters that include the upstream gradient offset,
the orbit constant and the spheroid aspect ratio. This included looking at the nature of
approach to the known integrable limits – that of an arbitrary aspect ratio spheroid in the
spinning orbit (figure 31), and that of an infinitely slender prolate spheroid in any orbit
(figure 29). An aspect not investigated in detail is the variation in the spatial extent of the
chaotic saddle as one moves away from the flow–gradient plane, that is, as a function of
the upstream vorticity offset of the pathlines. Figure 33 presents the results of a limited
investigation along these lines, and shows that (i) the scenario, for a fixed non-zero z−∞,
remains similar to the in-plane case, and (ii) that the separatrix offset ysep

−∞ decreases with
increasing z−∞.

One needs to emphasize the distinction between Hamiltonian and non-Hamiltonian
settings here. In the former case, one can relate the onset of chaos to the onset of bound
orbit sequences that correspond to infinite yet non-recurring sequences of reflection from
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the Hamiltonian peaks (as indicated by Eckhardt 1988; Eckhardt & Aref 1988). It is also
not difficult to identify a critical energy level, based on the governing Hamiltonian, that
signals the onset of the aforementioned bound sequences. There does not seem to exist any
such analogy in our case, and thus, no obvious way to predict the offset of the separatrices
that mark the onset of chaotic scattering. The latter is true for the other non-Hamiltonian
problems too (the laminar–turbulent transition, for example). Finally, it is important to
mention that we have found the probability densities of residence times, for all cases
examined, to have algebraic rather than exponential details, suggesting that the underlying
scatterer has a non-hyperbolic character. The non-hyperbolic character has previously been
attributed to a no-slip boundary in the vicinity of the chaotic saddle (Gouillart et al. 2009),
but is more difficult to rationalize in the present problem, since the spheroid rotates at a
finite rate at all times.

6.2. Implications for transport in multiphase systems
As indicated in the Introduction, the findings of the present investigation might have
profound implications for transport problems in disperse multiphase systems. In what
follows, we briefly discuss three instances, in roughly increasing order of complexity.
The first is the transport of heat or mass from particles in shearing flows. As originally
shown by Acrivos (1971) and Poe & Acrivos (1976), the rate of scalar transport from a
freely rotating sphere in a planar linear flow has an exceptional character; planar linear
flows form a one-parameter subset of the general family of linear flows (see discussion
in the final paragraph below, for the values that this parameter takes), with the limiting
values of the parameter corresponding to planar extension and solid-body rotation. The
dimensionless rate of transport, as characterized by the Nusselt number (Nu), does not
increase indefinitely with the Péclet number (Pe). Such an increase would occur if, at
large Pe corresponding to the convectively dominant limit, the transport were to occur
via a thin boundary layer, as is the case for a translating sphere; see Acrivos & Goddard
(1965). Instead, Nu saturates at an order-unity value dependent on flow type, the saturation
arising due to the transport eventually being limited by diffusion across closed streamlines
that surround the sphere in all of the planar linear flows (except planar extension). The
singular alteration of the trajectory topology owing to a deviation of the particle from
sphericity, found here, must manifest as qualitatively different Nu v/s Pe curves for a
sphere and spheroid in a given planar linear flow. In contrast to a sphere, for large
enough Pe, one expects the transport from a freely rotating spheroid to be dominated
by the set of singular open pathlines which convect heat or mass away in an efficient
manner. This should avoid the diffusion limitation for a sphere, leading to a continued
growth of Nu with Pe, with the nature of this growth dependent on the residence-time
distributions of fluid elements obtained here (for instance, those shown in figure 25);
any scaling exponent characterizing the large-Pe asymptotics of Nu, would be a sensitive
function of aspect ratio via the residence time distributions. For spheroids with near-unity
aspect ratios (the weakly non-integrable cases), in particular, one expects Nu to exhibit an
intermediate plateau on account of diffusion limitation, similar to a sphere. For sufficiently
large Pe, however, Nu will increase in a manner determined by the fraction of fluid
pathlines with residence times shorter than a characteristic diffusion time through the
(hypothetical) envelope of closed streamlines. Recent efforts (Subramanian & Koch 2005,
2006b; Krishnamurthy & Subramanian 2018) have examined the singular effect of weak
inertia-induced convection on the originally diffusion-limited behaviour of Nu in the
Stokesian limit. The above discussion suggests that departure from sphericity again have
a singular effect, manifesting as a convective enhancement for large Pe. The convective
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flow in the inertial case may be derived using a straightforward perturbation expansion
in the particle Reynolds number, but that for the non-spherical case is non-trivial, and
would require the notion of lobe dynamics. The latter has been used earlier to describe the
efficient (non-diffusive) exchange of material between the irrotational volume entrained
by a vortex ring, or a pair of counter-rotating point vortices, and the ambient (Rom-Kedar,
Leonard & Wiggins 1990).

A second problem concerns the rheology of dilute viscoelastic suspensions of
anisotropic (axisymmetric) particles which sensitively depends on the orientation
dynamics of these particles in an imposed shear. The degenerate nature of the orientation
distribution, arising from the existence of closed (Jeffery) orbits in the Stokesian limit
(Leal & Hinch 1971; Dabade et al. 2015; Marath & Subramanian 2017) is well known, and
implies that the orientation distribution, in a viscoelastic suspending medium, crucially
depends on a viscoelasticity-induced drift across orbits. This drift is governed by the
polymeric stress field. For small Deborah numbers (De), the polymeric stress may be
determined using an ordered fluid expansion, and is therefore only a function of the
local velocity gradient associated with the Stokesian velocity field. But, for large De,
the relaxation times are long compared to the characteristic residence time of a fluid
element in the vicinity of the rotating particle, and one expects the polymeric stresses
to therefore arise from the integrated effects of the velocity gradients seen by a polymer
molecule as it is convected along a fluid pathline. For small polymer concentrations, these
pathlines will have a near-Newtonian (Stokesian) character, and the non-trivial pathline
topology identified here implies that the polymeric stress field, and thence the particle
drift, might be crucially influenced by the stresses that develop along the singular open
pathlines. In fact, on account of the non-integrable nature of the pathline topology, one
expects the spatial variation of polymeric stresses to have a singular character; that is to
say, the polymeric stresses at points located arbitrarily close to each other might differ
by a finite amount, on account of an analogous difference in the residence times of
fluid pathlines arriving at these points. This in turn points to a probabilistic (rather than
deterministic) formulation of the particle–polymer–molecule interaction where, rather
than determining the polymer stress field at each point in the domain, one attempts to
instead determine the probability distribution of polymeric stresses that develops in the
neighbourhood of a single point (within the domain influenced by the chaotic saddle). For
large aspect ratios, the above problem admits a well known simplification, on account of
the disturbance velocity field being logarithmically small (as discussed in § 5). For finite
De, this simplification allows one to approximate the polymeric stresses by integrating
a functional of the Stokesian velocity gradients along an ambient streamline instead of
the actual fluid pathline. This simplification has been exploited in earlier calculations (for
instance, see Harlen & Koch 1993). While such a simplification is certainly valid for steady
velocity fields, as for instance, the flow around a sedimenting spheroid with an unchanging
orientation in the Stokesian limit (see § 5 in Dabade et al. (2015) and Li, Thomases &
Guy (2019)), the scenario in an ambient shear flow might be more complicated even in
the slender fibre limit. As shown in figure 28, the approach to this limit has a singular
character – while the residence time, based on the convection by the ambient shear alone,
does give an accurate estimate for the regular intervals, for sufficiently large aspect ratios,
the occasional chaotic bursts nevertheless lead to very pronounced departures of the
residence time from the ambient-shear-based envelope. It would be of interest to examine
quantitatively the consequences of such departures for the polymeric stresses that develop
along the heavily looped pathlines.

The pathline topology found here is also relevant to inertio-elastic focussing of
anisotropic particles in microfluidic channels with applications towards shape sorting
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(Yang et al. 2011; Amini, Lee & Di Carlo 2014). The focusing arises due to transverse
migration driven by elasto-inertial lift forces. For small Reynolds number (Re) and
weakly elastic fluids, the contributions from the elastic and inertial nonlinearities will be
additive. The inertial lift force arises from the flow on length scales of order the channel
cross-sectional dimension, while the dominant contributions to the elastic lift force arise
from smaller length scales of order the particle size. Scaling arguments based on this
may be used to show that the inertial lift force is O(Re μUa3/H2), while the elastic lift
force must be O(De μUa4/H3) (see Ho & Leal 1974, 1976). As a result, a non-trivial
inertio-elastic equilibrium arising from a balance of the two lift force contributions
requires De to be O(Re H/a) where H/a 
 1 is the ratio of channel to particle size.
Thus, for Re ∼ O(1) or greater, calculating the elastic lift force will involve determining
polymeric stresses, for large De, along fluid pathlines along the lines mentioned above,
and this calculation will beset by the same issues.

The third problem which, in fact, motivated the examination of the fluid pathline
topology in the first place concerns pair-spheroid interactions. As mentioned in the
introduction, one expects the fluid pathline topology around a single particle to have some
bearing on the nature of pair-particle interactions. This is certainly true for a spherical
particle, where the streamline and pair-particle-pathline topologies are identical. Thus,
the findings here imply that pair-spheroid trajectories are likely to have a similar singular
character. As indicated in Marath, Dwivedi & Subramanian (2017), one would ideally
want to characterize pair-spheroid interactions via a phase-averaged scattering kernel
that would relate the pre- and post-interaction orbit constants. The findings here would,
however, imply that even an infinitesimal change in the input orbit constant would likely
lead to an order-unity change in the post-interaction orbit constant. In other words, the
scattering kernel would be singular (in fact, such singular kernels in the context of reacting
molecules constituted the very first pieces of evidence of chaotic scattering, see Gottdiener
1975; Noid, Gray & Rice 1986). Therefore, similar to the polymer-spheroid problem
above, instead of the exact pair-interaction kernel, one would again want to describe even
individual pair interactions in a probabilistic framework.

Although a canonical flow-type from the fluid mechanical viewpoint, owing to its
significance to rheology, for instance, the choice of simple shear flow does appear
inconvenient from the dynamical systems perspective. As is well known (for instance,
see Leal & Hinch 1971; Poe & Acrivos 1976), simple shear flow may be regarded as a
member of the aforementioned one-parameter family of planar linear flows. The parameter
here is α (say), with (1 + α)/(1 − α) being proportional to the ratio of extension to
vorticity. Simple shear, corresponding to α = 0, is then the threshold flow, with equal
magnitudes of extension and vorticity (leading to straight streamlines), separating the
hyperbolic planar linear flows with open streamlines (α > 0), from the elliptic ones with
closed streamlines (α < 0). If one now considers a spinning spheroid in a hyperbolic linear
flow, from the results of § 3, one expects, similar to a sphere, a trajectory topology where
separatrices demarcate the closed from the open streamlines; for instance, see figure 34(a)
above (figure 6 in Subramanian & Koch (2006c) which sketches the trajectory topology
for a sphere). Importantly, for a hyperbolic linear flow, the closed streamline region,
projected onto the flow–gradient plane, has a finite spatial extent for any spheroid aspect
ratio, and the aforementioned separatrices are now heteroclinic trajectories connecting
a pair of saddle points (see figure 34a). If the analogy with a sphere is exact, then the
closed-streamline envelope has a finite volume, and the saddle points will correspond to
the points of intersection, of a fixed-point curve, with the flow–gradient plane. All of these
fixed points have a saddle-like character, with the curve reducing to a fixed-point circle
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(a) (b)

CHAOTIC

SCATTERING

INTERVAL

CHAOTIC

SCATTERING

INTERVAL

Figure 34. Smooth and chaotic separatrix in the hyperbolic flow over a sphere (a) and a spheroid (b).

for the case of a sphere. The existence of such heteroclinic connections highlights the
structurally unstable trajectory topology for a spinning spheroid. One may now interpret
the deviation of the spheroid, from the spinning orbit to a precessional one corresponding
to a small but finite C, to constitute a perturbation that renders the system non-integrable.
Importantly, one expects the non-integrability of the perturbed system to manifest as
transverse intersections of the stable and unstable manifolds associated with the two
saddle points (see figure 34b), and the existence of such intersections can be rigorously
demonstrated via the construction of a Melnikov function (Wiggins 2003), as has been
done earlier in the fluid mechanical context (Kawakami & Funakoshi 1999; Angilella,
Vilela & Motter 2014). As sketched in figure 34, the implication of these intersections is
that intervals of chaotic scattering must replace the original separatrix for the spheroid
rotating in any precessional orbit. The trajectory topology in figure 34, although less
symmetric, nevertheless resembles the pathline topology analysed by Rom-Kedar et al.
(1990), wherein the non-integrability arose from the time dependence imposed by an
oscillatory planar extension acting on a counter-rotating vortex pair. Although related, the
emphasis in this work was not on the chaotic scattering aspects, but instead on the exchange
of fluid across the (infinitely) convoluted intersecting manifolds. Figure 34 suggests that,
from a dynamical systems viewpoint, the non-integrability for the simple shear flow
examined here is perhaps best interpreted as the singular limiting case, for α → 0+, of
a hyperbolic linear flow, when the saddle points recede to infinity. The nature of chaotic
scattering in hyperbolic linear flows, and its relation to the chaotic scattering in the simple
shear flow configuration examined here, will be taken up in a future communication.

Declaration of interests. The authors report no conflict of interest.
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Ganesh Subramanian https://orcid.org/0000-0003-4314-3602.

Appendix A. Separatrix of a spinning spheroid

The analytical form of the separatrix for a sphere is known and is given by y =√
1/3x−3/2 (Batchelor & Green 1972a); an implication of the rather slow approach of

the separatrix towards the flow axis is that an infinite volume of fluid is contained within
the axisymmetric separatrix envelope. To derive the far-field separatrix for an arbitrary
aspect ratio spheroid, we start from the multipole expansion for the velocity field induced
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by a spheroid in an ambient linear flow, given by (Brenner 1964a,b, 1966):

u(x) = Γ · x + S · ∇ 3
D

∂

∂D

[
sinh D

D

] G(x)

8πμ

= Γ · x + S · ∇
[

1 + 3.4
5!

D2 + 3.6
7!

D4 + · · ·
] G(x)

8πμ
, (A1)

where D2 = d2ξ0
2[∇2 + (κ2 − 1)pp : ∇∇](D2 = d2ξ2

0 [∇2 + (κ2 − 1)pp : ∇∇]) for a
prolate (an oblate) spheroid. In (A1), p = 1z, G is the Oseen–Burger’s tensor given by
Gij = δij/r + xixj/r3, and S is the stresslet induced by a force and torque-free spinning
spheroid in an ambient shear flow, which may be written as:

S = 20πμd3ξ3
0

3
Ktp/o

[
(δil − pipl)Elk(δkj − pkpj) + 1

2
(Eklpkpl)(δij − pipj)

]
. (A2)

In (A2), the stresslet coefficient Ktp/o is a different function of aspect ratio for prolate
and oblate spheroids (see table 2 in the main text), and characterizes the magnitude of the
stresslet response for a transverse planar extensional flow.

The dipole (ud) and octupole (uo) contributions correspond to the first and second terms
in (A1) and, for a prolate spheroid, are given by

ud
i = 1

8πμ
Sjk∂kGij = − 3

8πμ

Sjknjnk

r2 ni, (A3)

uo
i = d2ξ̄2

0
80πμr4 [−12Sijnj + 30ni(Sjknjnk) + (κ2 − 1){−3(4pi(Sjknjpk) + 2ni(Sjkpkpk))

+ 15(4ni( plnlSjknjpk) + 2pi( plnlSjknjnk) + ni(Sjknjnk))

− 105ni( plnl)
2(Sjknjnk)}], (A4)

where the unit radial vector n = x/r.
To derive the asymptotic form of the separatrix, one needs to account for the

higher-order octupole contribution, owing to the dipole field being purely radial, and
thereby, lacking a transverse (y) component along the flow axis. Using the above velocity
field in dx/dt = Γ · x + ud + uo, and considering the limit y → 0, x → ∞, one obtains
the following equations at leading order:

dx
dt

= lim
y→0

ux = y, (A5)

dy
dt

= lim
y→0

uy = −5y2d3ξ3
0 Kp

2x4 − d5ξ3
0 ξ0

2

2x4 Kp. (A6)

It is evident that the x-component of the velocity in (A5) is just the ambient flow (y) at
leading order, while the dominant contribution in (A6) is the octupolar contribution; that
this term of O(1/x4) is dominant over the dipole contribution of O( y2/x4) is easily seen
since y for the separatrix is asymptotically small in the far field. With the far-field forms in
place, the form of the separatrix may be obtained by taking the ratio of (A5) and (A6), and
integrating the resulting differential equation. One obtains y = 1/

√
3 d5/2ξ

3/2
0 ξ0K1/2

p x−3/2

which exhibits the same far-field decay as the sphere separatrix. For sufficiently large
aspect ratios (κ → ∞ or ξ0 → 1), the asymptotic form is readily obtained using scaling
arguments. uy ∼ O(1/x3), the octupole contribution in two dimensions, with ux again of
O( y), so that dy/dx ∼ 1/( yx3), which gives y ∼ x−1.
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Appendix B. Separatrix of a tumbling spheroid

The analysis of the separatrix of a tumbling spheroid again requires the expression for the
far-field disturbance velocity field due to a spheroid rotating in a precessional orbit. In
contrast to a spinning spheroid discussed in appendix A, a torque-free spheroid rotating in
a generic Jeffery orbit appears, at leading order, as a time-dependent stresslet. The stresslet
is now the sum of three distinct contributions, and may be written in the form

S = 20πμd3ξ3
0

3
(Kap/o Ea + Ktp/o Et + Klp/o El), (B1)

where the subscripts p and o denote prolate and oblate spheroids, respectively. Here, Ea,
Et and El are the rate of strain tensors associated with axisymmetric extension, transverse
and longitudinal planar extensions, respectively, that, in invariant form, are given by

Ea ij = (Eklpkpl)

[
pipj − δij

3

]
, (B2)

Et ij = (δil − pipl)Elk(δkj − pkpj) + 1
2(Eklpkpl)(δij − pipj), (B3)

El ij = piplElk(δkj − pkpj) + (δil − pipl)Eklpkpj. (B4)

There are only three distinct stresslet coefficients, despite the five independent canonical
velocity fields in table 1, since the responses of the spheroid are identical for the pair
of planar and transverse longitudinal extensions (owing to its circular cross-section;
see Marath & Subramanian 2017). The stresslet coefficients Kap/o, Ktp/o and Klp/o
are functions of aspect ratio, and the relevant expressions for both prolate and oblate
spheroids appear in table 2. Note that the time dependence of the stresslet in (B1) arises
from the spheroid orientation vector (p) being time dependent; p = sin θj cos φj 1x +
sin θj sin φj 1y + cos θj 1z, where the time evolution of the Jeffery angles is given by (2.12)
and (2.13). The lateral displacements may now be determined, using (B1), as


y =
∫ ∞

−∞
1y · ud dt, 
z =

∫ ∞

−∞
1z · ud dt, (B5a,b)

where ud = −(3/(8πμ))S : nnn/r2 is the leading-order dipolar term in the multipole
expansion (see (A3)), with S being defined by (B1). The distance r, between the fluid
element and the spheroid centre, is a function of time, and may be approximated as
r = [( y−∞t)2 + y2−∞(1 + tan2 Θ)]1/2, where the gradient and vorticity coordinates have
been replaced by their upstream values, and we have used that z−∞ = y−∞ tan Θ(see
figure 9b). Thus, r changes at leading order only due to convection by the ambient shear,
with the instant t = 0 corresponding to the fluid element being in the gradient–vorticity
plane, with φj = φj0 (see (2.12) and (2.13)). The unit radial vector is given by n = (t 1x +
1y + tan Θ 1z)/(1 + t2 + tan2 Θ)1/2 and its projections along the gradient and vorticity
directions, appearing in (B5a,b), may be written as ny = n · 1y = 1/(1 + t2 + tan2 Θ)1/2

and nz = ny tan Θ , respectively.
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