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Moving contact lines in liquid/liquid/solid
systems

By Y U L I I D. S H I K H M U R Z A E V†
Institute of Mechanics, Moscow University, 119899 Moscow, Russia

(Received 13 December 1994 and in revised form 17 June 1996)

A general mathematical model which describes the motion of an interface between
immiscible viscous fluids along a smooth homogeneous solid surface is examined in
the case of small capillary and Reynolds numbers. The model stems from a conclusion
that the Young equation, σ1 cos θ = σ2−σ3, which expresses the balance of tangential
projections of the forces acting on the three-phase contact line in terms of the surface
tensions σi and the contact angle θ, together with the well-established experimental
fact that the dynamic contact angle deviates from the static one, imply that the surface
tensions of contacting interfaces in the immediate vicinity of the contact line deviate
from their equilibrium values when the contact line is moving. The same conclusion
also follows from the experimentally observed kinematics of the flow, which indicates
that liquid particles belonging to interfaces traverse the three-phase interaction zone
(i.e. the ‘contact line’) in a finite time and become elements of another interface –
hence their surface properties have to relax to new equilibrium values giving rise to
the surface tension gradients in the neighbourhood of the moving contact line. The
kinematic picture of the flow also suggests that the contact-line motion is only a
particular case of a more general phenomenon – the process of interface formation
or disappearance – and the corresponding mathematical model should be derived
from first principles for this general process and then applied to wetting as well as
to other relevant flows. In the present paper, the simplest theory which uses this
approach is formulated and applied to the moving contact-line problem. The model
describes the true kinematics of the flow so that it allows for the ‘splitting’ of the
free surface at the contact line, the appearance of the surface tension gradients near
the contact line and their influence upon the contact angle and the flow field. An
analytical expression for the dependence of the dynamic contact angle on the contact-
line speed and parameters characterizing properties of contacting media is derived
and examined. The role of a ‘thin’ microscopic residual film formed by adsorbed
molecules of the receding fluid is considered. The flow field in the vicinity of the
contact line is analysed. The results are compared with experimental data obtained
for different fluid/liquid/solid systems.

1. Introduction
In the present paper we consider the moving contact-line problem for a general

liquid/liquid/solid system, i.e. in the situation where two immiscible viscous liquids
are in contact with a solid surface and one of the liquids displaces the other so that

† Present address: Department of Applied Mathematical Studies, University of Leeds, Leeds
LS2 9JT, UK.
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Figure 1. Definition sketches of the flow in the neighbourhood of the contact line with interfaces
shown as layers of finite thickness. Views (c) and (d) correspond to the situation where the advancing
fluid ‘rolls over’ and the receding fluid ‘unrolls from’ the solid surface, respectively. Asymptotic
regions 1, 2, 3 are associated with characteristic length scales 1, ε and εCa, respectively; 4 is the
microscopic residual film; 5 is the microscopic (or actual) contact angle θact ; θd and θapp are the
macroscopic and apparent contact angle, respectively; O is the three-phase interaction zone (the
‘contact line’). The plane polar coordinate system (r, θ) is fixed with respect to the contact line.
Subscripts 1 and 2 refer to the advancing and receding fluid, respectively.

the contact line (where the liquid–liquid interface intersects the solid boundary) is
constrained to move across the solid surface. The problem is important both from a
purely theoretical and a practical point of view and attracts the attention of many
investigators.

Experiments show the following. (i) One of the liquids (which one depends on
the viscosity ratio and the dynamic-contact-angle value) undergoes so-called rolling
motion (figure 1) so that a liquid element initially adjacent to the free surface becomes
adjacent to the liquid–solid interface (or vice versa) in a finite time while in the other
liquid the flow has a ‘jet-like’ structure with the bulk velocity directed from (or
towards) the contact line (the liquid–liquid interface ‘splits’ at the contact line, see
Dussan V. & Davis 1974; Dussan V. 1979 for details). (ii) The dynamic contact angle
θd measured through the advancing liquid increases as the contact-line speed grows
(Elliott & Riddiford 1967; Blake & Haynes 1969; Hansen & Toong 1971; Gutoff &
Kendrick 1982; Fermigier & Jenffer 1991).

A theoretical analysis of the liquid–liquid displacement on the basis of the classical
approach, with the no-slip boundary conditions for velocities of both liquids on the
solid surface, the capillarity equation and continuity of tangential velocity and stress
on the free surface, encounters a fundamental difficulty. Consideration of the flow
field in the neighbourhood of the moving contact line shows that in the general case
the problem has no solution, while if the capillarity equation is dropped and the free-
surface shape is prescribed, then a solution appears but it contains a non-integrable
singularity in the shear stress at the contact line resulting in a divergent integral for
the drag force experienced by the solid wall. This problem is known in the literature
as the ‘moving contact-line problem’.
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Mathematical models proposed for resolving the moving contact-line problem may
be conventionally classified from the point of view of the characteristic length scale
they are dealing with. The works devoted to the microhydrodynamics of wetting
consider the flow in the neighbourhood of the contact line on the length scale
comparable with the thickness of interfacial layers, and therefore must explicitly
take into account the diffuse nature of interfaces and, in particular, the forces of
a non-hydrodynamic origin which act on such length scales (see de Gennes 1985;
Starov 1992 for reviews). However, the forces of a non-hydrodynamic origin (such
as, for example, the van der Waals forces) are unable to eliminate the shear-stress
singularity in the general formulation of the moving contact-line problem, i.e. if the
Navier–Stokes or Stokes equations are used without simplifications to describe the
flow in the bulk; this is clear, for example, from the analysis carried in Dussan V.
& Davis (1974). At the same time, if the problem is considered in the framework of
the lubrication approximation, which in itself simplifies the singularity and reduces it
to the singularity of the bulk pressure, then the singularity can be suppressed by a
proper choice of an additional, also singular, pressure caused by non-hydrodynamic
forces. It should be pointed out however that, strictly speaking, the lubrication
approximation (which is simply a mathematical tool for obtaining an approximation
of the exact solution) should not become a remedy for singularities caused by the
physical nature of the problem: it may be applied only if the non-simplified problem
has a regular solution. Microhydrodynamic models usually deal either with the case
of perfectly wetting fluids, where the solid surface is assumed to be covered by a
precursor film hyperbolically decaying to zero (and hence there is no actual contact
line and no stress singularity) or with the case of a partially wetting fluid, where,
as was pointed out above, the singularity cannot be removed with the introduction
of intermolecular forces only, and the fundamental difficulty is the same as in
conventional hydrodynamics. On microhydrodynamic length scales (see, for example,
Hocking 1995) the long-range intermolecular forces strongly influence both the flow
field and the apparent contact angle – an auxiliary concept used for interpreting
experimental observations.

Macrohydrodynamics of wetting deals with flows on length scales large compared
not only with the interfacial layer thickness but also with characteristic dimensions
of surface roughness elements or chemical inhomogeneities (Hocking 1976; Huh &
Mason 1977a; Jansons 1985, 1986, 1988; Joanny & Robbins 1990). The main goal of
macrohydrodynamics is to reduce the problem of the wetting of an actual rough solid
surface to consideration of an ‘effective’ contact-line motion across some ‘effective’
smooth boundary. Details of the actual flow over the surface roughness elements are
either not considered or assumed to be known. This problem has much in common
with the corresponding problem of the mechanics of multiphase systems (Jansons
1985).

The present paper as well as most others (see Dussan V. 1979; Shikhmurzaev 1993a
and §9 of the present paper for reviews) consider the hydrodynamics of the liquid–
liquid displacement, i.e. the flow on length scales large compared with the interfacial
layer thickness over the actual (not ‘effective’) surface of a solid. Very often in this case
it is convenient to illustrate the properties of a model by considering the flow over a
perfectly smooth chemically homogeneous solid surface. This case is also of practical
importance since, from the point of view of fluid mechanics, some surfaces, such as
for example freshly cleaved mica and crystal faces, may be regarded as smooth, and
they are widely used in experiments and applications. Another example of smooth
surfaces are those produced by the vacuum deposition technique.
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In the present paper, a model proposed for the description of the moving con-
tact line in gas/liquid/solid systems (Shikhmurzaev 1991a, 1993a, 1994, 1996†) is
generalized and applied to the liquid–liquid displacement process. The scope is to
present a model which includes the previously developed model as a particular case,
eliminates the shear-stress singularity at the contact line, describes the qualitative
features of phenomena (i), (ii), and is in reasonable quantitative agreement with
experimental data. The theory is formulated on the basis of the following physical
ideas.

(a) According to the true kinematics of the flow (see (i)), liquid elements which form
the interfaces traverse the three-phase interaction region (the ‘contact line’) in a finite
time, and therefore their surface properties (such as, for example, the surface tension)
have to relax to new equilibrium values giving rise to surface tension gradients in the
immediate vicinity of the contact line.

(b) The deviation of the dynamic contact angle away from the static one (see (ii))
together with the tangential momentum balance law expressed by the classical Young
equation also imply that the surface tensions of contacting interfaces in the vicinity
of the moving contact line are not in equilibrium.

(c) The surface tension relaxation time is a macroscopic quantity (see, for example,
Kochurova, Shvechenkov & Rusanov 1974 and references therein) so that relaxation
occurs not within the three-phase interaction zone (which is described as the ‘contact
line’ on the hydrodynamic length scale) but along the interfaces, as also follows from
the arguments given above.

(d) The surface tension gradients along the interfaces in the vicinity of the moving
contact line are caused by the flow and will have the reverse influence upon the flow
which caused them (the flow-induced Marangoni effect).

These ideas indicate that the moving-contact-line problem is only a particular case
of a more general phenomenon – the process of interface formation or disapperance
– which should be described from first principles. The simplest self-consistent model
of this process was derived in Shikhmurzaev (1993a,b). In the present paper, we will
illustrate how the model can be applied to the moving-contact-line problem for a gen-
eral fluid/liquid/solid system. In §2 a general formulation of the problem applicable
to flows at finite capillary and Reynolds numbers is presented. Section 3 is devoted
to the simplifications which become possible in the case of small relaxation lengths,
capillary and Reynolds numbers. In §4 analytical expressions for the dependence of
the drag force and the dynamic contact angle on the contact-line speed and other
parameters of the problem are derived, and §5 is devoted to their analysis. In §6 we
consider different definitions of the dynamic contact angle and, in particular, discuss
correlations between the present theory and an approach which uses the concept of
‘apparent contact angle’ for interpretation of experiments. Preliminary quantitative
comparison of the theory with experimental data is carried out in §7. Section 8
deals with the flow field in the vicinity of a moving contact line. In §9, existing
hydrodynamic theories are briefly reviewed and compared with the present model.
It is shown in particular that the ‘seeds’ of the model developed in this paper are
present in many of the earlier theories. In §10 we briefly discuss limitations of the
theory and possible ways to eliminate them.

† Note a misprint in the sign of the surface pressure gradient in equation (6). The subsequent
formulae are correct.
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2. General formulation of the problem
We will consider a flow in the neighbourhood of a moving contact line formed at

the intersection of an interface between two immiscible viscous liquids and an ideally
smooth chemically homogeneous solid surface. The characteristic dimensions of the
flow are assumed to be large compared with the thickness of the interfacial layers
so that these layers may be described as geometrical surfaces of zero thickness. In
the subsequent sections we will use the subscripts 1 and 2 to mark parameters of the
advancing and receding liquid respectively, but in the present section the problem will
be formulated in a symmetrical form so that the problem statement can be applied
for an arbitrary direction of the contact-line motion. The superscript s refers to the
surface parameters which describe properties of interfaces such as, for example, the
surface tension. The flow is considered in the coordinate frame fixed with respect to
the contact line.

If ρi, ui, pi and µi are the density, velocity, pressure and viscosity of the ith liquid
and I is the metric tensor, then in the absence of gravity effects the bulk flow is
described by

∇ · ui = 0, ρi

(
∂ui
∂t

+ ui · ∇ui
)

= ∇ · P i,

P i = −piI + µ
(
∇u+ (∇u)T

)
, i = 1, 2.

 (2.1)

The effects of gravity could be readily taken into account: then (2.1) are still valid so
long as p1 and p2 are interpreted as the excess pressure over hydrostatic.

General boundary conditions for both liquids (i = 1, 2) on the solid surface which
were formulated in Shikhmurzaev (1993a) include the following.

(i) The generalization of the Navier boundary condition

n · P i · (I − nn)− 1
2
∇psi = βi(ui −U ) · (I − nn), (2.2)

where n is an outward normal to the solid surface (so that n · P i · (I − nn) is the
shear stress exerted on the liquid–solid interface by the ith liquid), psi is the surface
pressure (i.e. a two-dimensional pressure in a thin layer of the liquid adjacent to the
solid surface which is caused, as is the surface tension on the free surface, by the
asymmetric action of intermolecular forces from bulk phases), βi is the coefficient of
sliding friction (Lamb 1932, p. 586; Bedeaux, Albano & Mazur 1976), and U is the
velocity of the solid.

(ii) The surface equation of state

psi = γi(ρ
s
i − ρsi0), (2.3)

which is given here in the simplest form describing only the dependence of the surface
pressure on the surface density ρsi (γi is a phenomenological coefficient, and ρsi0 is the
surface density corresponding to zero surface pressure).

(iii) The surface mass balance equation

∂ρsi
∂t

+ ∇ · (ρsivsi ) = −ρ
s
i − ρsis
τi

, (2.4)

where ρsis is the equilibrium surface density determined by the nature of contacting
media; vsi is the surface velocity, and τi is the relaxation time.

(iv) Equations of the Darcy type which relate components of the surface velocity vsi
to components of the bulk velocities evaluated on the opposite sides of the liquid–solid
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interface and the surface pressure gradient

vsi · (I − nn) = 1
2
(ui +U ) · (I − nn)− αi∇psi ,

(vsi −U ) · n = (ui − vsi ) · n = 0,

}
(2.5)

where αi is a phenomenological coefficient, which characterizes in an integral form
the influence of the surface pressure gradient on the velocity distribution across the
interfacial layer.

The right-hand side of (2.4) describes the interface formation process. In the present
model, the surface density is actually not a measure of inertial properties of interfaces
(see (2.5)), and it is used simply as a parameter which characterizes the current state
of the interface (see (2.3)) and in principle can be excluded from the set of boundary
conditions by means of (2.3). Some possible ways for the experimental determination
of the surface equation of state are discussed in Shikhmurzaev (1996).

Obviously, mass exchange between the interface and the bulk may be neglected in
the boundary conditions for the bulk velocity (see (2.5)). Experiments show (see, for
example, Posner & Alexander 1949; Kochurova et al. 1974) that, both for solutions
and pure liquids, a characteristic time of relaxation of interface properties is rather
large (∼ 10−3 s), and hence the surface tension relaxation ‘tail’ should be surprisingly
long. The experimental values of τi slightly exceed those estimated from an order-of-
magnitude analysis in Shikhmurzaev (1993a). Some possible ways of generalizing the
theory are discussed also in Shikhmurzaev (1994).

Our modelling of the free surface will take into account that the interfacial layer
between immiscible liquids is composed by two sublayers (figure 1c,d) each having
its own surface properties so that, for example, the total surface pressure, defined
as a quantity equal in value and opposite in sign to the surface tension, is given by
ps = ps1 + ps2, where psi and ρsi are related by the equations of state (2.3).

General boundary conditions on the interface between immiscible viscous liquids
derived in the same way as (2.2)–(2.5) (see Shikhmurzaev 1993b) include the following.

(i) The momentum balance equation for a free surface element

∇ · Ps + n · (P1 − P2) = 0, (2.6)

where a unit normal vector n points from liquid 2 to liquid 1, and

Ps = −(ps1 + ps2)(I − nn).
(ii) The surface mass balance equations

∂ρsi
∂t

+ ∇ · (ρsivsi ) = −
ρsi − ρsif
τi

, (2.7)

where ρsif (i = 1, 2) are the equilibrium surface densities of components in the
sublayers.

(iii) Equations, analogous to (2.5), which relate components of the surface velocities
with the bulk velocities evaluated on the opposite sides of the interface

vsi · (I − nn) = 1
2
(ui + vs) · (I − nn)− αi∇psi , (vsi − vs) · n = (ui − vs) · n = 0 (2.8)

(here vs is the velocity on the surface separating the sublayers).
(iv) Equations which relate the difference between bulk velocities on the opposite

sides of the interface with the surface pressure gradients and shear stresses experienced
by the interface (a generalization of (2.2))

(−1)i+1n · P i · (I − nn)− 1
2
∇psi = βi(ui − vs) · (I − nn). (2.9)
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(v) The angular momentum equation for a free surface element

∇ps1 = ∇ps2. (2.10)

The normal projection of (2.6) gives the well-known equation of capillarity; the
tangential projection relates the difference between the shear stresses acting on the
opposite sides of the interface with the surface tension gradient (the Marangoni effect).
It is evident that in the ‘outer’ region associated with the limit εi ≡ Uτi/L→ 0 (i = 1, 2)
with µi/(βiL) = o(1) (L is the characteristic length scale of the flow domain), the
relationships (2.2)–(2.10) for the main terms of asymptotic expansions in εi become
the classical boundary conditions usually formulated for the Navier–Stokes equations,
i.e. the no-slip condition on solid boundaries and the equation of capillarity, zero
normal velocities and continuity for tangential velocities and stresses on free surfaces.
An analysis of the orders of magnitude for the coefficients involved in (2.6)–(2.10)
can be found in Shikhmurzaev (1993a, b). Relationships (2.2), (2.4), (2.5) and the
corresponding formulae for the liquid–gas interface (Shikhmurzaev 1993a, 1994,
1996) can be obtained from (2.6)–(2.10) as the limiting cases.

For stationary processes the time derivatives in (2.4), (2.7) (as well as in (2.1))
disappear, while if we were to consider the interface formation processes, which take
place, for example, when two media are instantaneously brought in contact, the time
derivatives would be necessary and initial distributions of the surface densities (or the
surface tensions) should be prescribed.

The distributions of the surface parameters must be linked by some boundary
conditions at the contact line. We will attribute no line parameters to the contact line
(e.g. a line density, line tension, etc) though in certain cases such a generalization may
be of interest (see Marmur 1983 for a discussion). The boundary conditions at the
contact line include (a) the mass balance equations for the fluxes of both components
into and out of the contact-line region; (b) the balance condition for the tangential
forces acting on the contact line (the Young equation for the dynamic condition).

The mass balance condition at the contact line should take into account one
peculiarity of the liquid–liquid displacement process: the moving contact line in
liquid/liquid/solid systems may be followed by a microscopic residual film (figure 1c,d)
formed by adsorbed molecules of the displaced liquid (Teletzke, Davis & Scriven 1988).
We will consider the case of a microscopic film thin compared with the interfacial
layer thickness (ρsres � ρs1s, ρ

s
2s, where ρsres is the surface density of the residual film)

so that its influence on boundary conditions (2.2)–(2.5) may be neglected. At the
same time, if ρsres ∼ ρsif − ρsis, (i = 1, 2), then the microscopic residual film (if present)
must be taken into account in the mass balance condition at the contact line. The
sensitiveness of the macroscopic characteristics of the moving-contact-line problem
in the case of gas/liquid/solid systems to the surface mass fluxes due to microscopic
residual films is shown in Shikhmurzaev (1996). A possible way of generalizing the
theory for the case of a ‘thick microscopic’ residual film is discussed in §10.

Thus, the mass balance conditions at an arbitrary point r0 of the contact line in a
reference frame where the contact-line speed is zero may be written down for both
components in a unified form as follows:

(ρsiv
s
i )|r→r0 , r∈Σ · ef + (−1)i(ρsiv

s
i )|r→r0 , r∈S · eg + kiρ

s
resU · eg = 0 (i = 1, 2). (2.11)

Here ρsres is the surface density of the (‘thin’) microscopic residual film formed by
molecules of the receding liquid; k1 = 1, k2 = 0 if U · eg > 0 and k1 = 0, k2 = −1 if
U · eg < 0 (this can be formally expressed in terms of the Heaviside function ϑ(x) as
ki = 1− i+ ϑ(U · eg) for i = 1, 2); Σ and S denote the liquid–liquid and liquid–solid
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interface, respectively; the notation r → r0, r ∈ Σ(or S ) is used to denote the limit of
a function as r tends to r0 along Σ(or S ); ef and eg are the unit vectors normal to
the contact line and directed along the free surface and the interface between liquid 2
and the solid, respectively. The dynamic contact angle θd measured through liquid 1
is defined by

cos θd = −ef · eg.
It should be pointed out that (2.11) allows for ‘splitting’ of the liquid–liquid interface
at the contact line and therefore makes possible the rolling motion of at least one of
the liquids over the solid surface (see (i) in §1).

The momentum balance condition for an element of the contact line projected on
the direction normal to the contact line and tangential to the solid surface takes the
usual form of the Young equation

(ps1 + ps2)|r→r0 , r∈Σef · eg = (ps1|r→r0 , r∈S + ps2S )− (ps2|r→r0 , r∈S + ps1S ). (2.12)

Here for the sake of symmetry we have decomposed the component of the reaction
force acting on the contact-line element tangential to the solid surface from the solid
psS into two parts

psS = ps1S − ps2S , (2.13)

which represent the forces experienced by liquid 1 and liquid 2 in the three-phase
interaction zone. A simple order-of-magnitude analysis shows that for non-singular
surface densities the convective momentum fluxes may be neglected and so the terms
of the form ρsvs2 do not appear in (2.12). Naturally, if the contact line is moving, the
surface pressures psi (i = 1, 2) change due to the surface density variations according
to (2.2)–(2.5). The Young theory implies that the component normal to the solid
boundary of the force acting along the free surface is always balanced by a reaction
force from the solid.

The system (2.1)–(2.13) must be completed by some boundary conditions far from
the contact line and initial conditions if a non-stationary process is considered. It is
evident that (2.2) guarantees the absence of the shear stress singularity at the contact
line, and (2.11) allows the rolling motion of the liquids. It should be pointed out
that the first term on the left-hand side of (2.2) may be regarded as a ‘payment’ for
the simplification of the flow domain shape adopted. The present model tolerates a
reformulation which preserves its macroscopic properties and makes the shear stress
in (2.2) unimportant (see Shikhmurzaev 1991a,b; Shikhmurzaev 1994, p. 55 and §9
of the present paper). In the next section we consider the conditions for determining
which liquid, advancing or receding, undergoes the rolling motion, and in §8 analyse
the flow field in the vicinity of the contact line.

Boundary conditions (2.2)–(2.13) include those proposed for describing the motion
of an interface between a viscous liquid and a viscous or inviscid gas (Shikhmurzaev
1993a, 1994, 1996) as a particular case. In that case, the interface consists only
of material particles of the liquid so that all the ‘surface parameters of the gas’
vanish.

3. Small relaxation lengths, capillary and Reynolds numbers
We will consider the case of a steady flow when the velocity components parallel

to the contact line are zero. It is assumed that the Reynolds and capillary numbers
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for the two liquids are small,

Rei ≡
ρiUL

µi
� 1, Cai ≡

µiU

σ
� 1 (i = 1, 2), (3.1)

σ ≡ −(ps1(ρ
s
1f) + ps2(ρ

s
2f)), (3.2)

and the relaxation lengths l1 ≡ Uτ1 and l2 ≡ Uτ2 are much smaller than a macroscopic
length scale L which characterizes the geometry of the flow domain (the capillary
gap, the dimension of a droplet, etc). In this case, the moving contact-line problem
may be considered as local (see Cox 1986 for details), and the left-hand side of
the second equation (2.1) may be neglected everywhere (Rei � 1). Since the set of
equations (2.1)–(2.13) is singularly perturbed as εi ≡ li/L→ 0 and Cai → 0 (i = 1, 2),
we may study the problem using the technique of matched asymptotic expansions.
As ε1 → 0 and Ca1 → 0 with kτ ≡ τ2/τ1 and kµ ≡ µ2/µ1 fixed, we may distinguish
the following three asymptotic regions: the ‘outer’ region associated with the length
scale L; the ‘intermediate’ region with the characteristic length scale ε1L; the ‘inner’
(or ‘viscous’) region with the length scale ε1Ca1L.

Solutions in these regions must be asymptotically matched. The union of the
‘inner’ and ‘intermediate’ regions will be called the ‘slip’ region since in this region
the deviation from the classical no-slip boundary conditions takes place. Below
only the terms of O(1) as Re, Ca, ε → 0 are considered, and we will assume that
Ca ln(ε−1) = o(1) as Ca → 0, ε → 0 so that the solutions in the ‘outer’ and ‘slip’
asymptotic regions can be matched directly (see Cox 1986 and §6 for more details).
Since kτ and kµ are assumed to be of O(1), we will drop the subscript i where this will
not cause misunderstandings).

3.1. The ‘outer’ region

Relationships (2.2)–(2.10) for the main terms of asymptotic expansions in ε1 as ε1 → 0
with r/L fixed (r is the value of a position vector) and µi/(βiL) = o(1), i = 1, 2, reduce
to the classical boundary conditions for the bulk parameters and give that the surface
quantities have their equilibrium values. Considering the normal projection of (2.6)
in the limit Ca1 → 0 with kµ = O(1), one obtains that the free surface is locally
plane for sufficiently small r/L (so long as we consider terms of O(1) as ε,Ca → 0).
The asymptotic form of the velocity field as r/L → 0 can be obtained by defining
stream functions ψ1(0) and ψ2(0) such that uir(0) and uiθ(0), the radial and transverse
components of ui (i = 1, 2) in a plane polar coordinate system (r, θ) with the origin
coincident with the projection of the contact line on the flow plane and the axis θ = 0
directed along the free surface (figure 1), are

uir(0) =
1

r

∂ψi(0)

∂θ
, uiθ(0) = −∂ψi(0)

∂r
(i = 1, 2). (3.3)

The subscript 0 in parentheses hereafter refers to the functions representing the inner
limit of the outer solution.

Substituting (3.3) in (2.1) with the inertial terms neglected and eliminating the
pressure, one obtains biharmonic equations for the stream functions,

∇4ψi(0) = 0 (i = 1, 2). (3.4)

In the ‘outer’ region, equations (2.2) and (2.5) reduce to the usual no-slip boundary
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conditions on the solid wall, which give

ψ1(0) = 0,
∂ψ1(0)

∂θ
= rU on θ = −θd; (3.5)

ψ2(0) = 0,
∂ψ2(0)

∂θ
= −rU on θ = π − θd. (3.6)

Here U is the speed of the solid in the chosen coordinate frame and θd is the dynamic
contact angle measured through the advancing liquid; the value of θd is a priori
unknown. In the ‘outer’ region conditions (2.8) and the tangential projection of (2.6)
take the form

ψ1(0) = ψ2(0) = 0,
∂ψ1(0)

∂θ
=
∂ψ2(0)

∂θ
, µ1

∂2ψ1(0)

∂θ2
= µ2

∂2ψ2(0)

∂θ2
on θ = 0. (3.7)

The solution of (3.4) which satisfies (3.5)–(3.7) is given by

ψi(0) = rUgi(θ), (i = 1, 2), (3.8)

g1 = C1(θ − θ1) sin θ + C2θ sin(θ − θ1),

g2 = C3(θ − θ2) sin θ + C4θ sin(θ − θ2),

where constants Ci (i = 1, . . . , 4) are determined as follows:

C1 =
cos θ1K(θ2)− kµ [π(sin θ1 + θ1 cos θ1) + cos θ1K(θ1)]

kµ(θ2 − sin θ2 cos θ2)K(θ1)− (θ1 − sin θ1 cos θ1)K(θ2)
,

C2 =
1

θ1

(1− C1 sin θ1),

C3 =
θ2

K(θ2)

(
π sin θ1

θ1θ2

+ C1

K(θ1)

θ1

)
,

C4 = − 1

θ2

(1 + C3 sin θ2),

θ1 = −θd, θ2 = π − θd, kµ =
µ2

µ1

, K(θ) = θ2 − sin2 θ.

Obviously, the inner limit of the outer solution (3.8) is common for different models
of the contact-line motion (see, for example, Cox 1986), and we present it here in a
symmetric dimensional form giving no preference to parameters of one of the liquids.
This solution implies that no other boundaries or/and sources of motion are located
close to the contact line. A detailed analysis of (3.8) is given in Huh & Scriven
(1971). Below, we will use the notation ur(0)(θd, kµ) for the radial component of the
free-surface velocity associated with the inner limit of the outer solution.

Resolving the equation ur(0)(θd, kµ) = 0 with respect to kµ and making use of (3.8),
one can introduce a function

k∗µ(θd) = − (θ2
2 − sin2 θ2)(θ1 cos θ1 − sin θ1)

(θ1
2 − sin2 θ1)(θ2 cos θ2 − sin θ2)

, (3.9)

which determines the boundary at which the character of the flow changes (Huh &
Scriven 1971): if kµ < k∗µ(θd), the advancing liquid rolls over the solid (ur(0) < 0, see
§1), while kµ > k∗µ(θd) corresponds to the situation where the receding liquid unrolls
from the solid boundary, ur(0) > 0.

It should be emphasized that equations (3.4) and the classical boundary conditions
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(3.5)–(3.7) simply provide an accumulation of the results of numerous experiments
with Newtonian liquids under different conditions, and hence (3.8), (3.9) reflect
general features of the mutual displacement of Newtonian fluids irrespectively of the
particular model proposed for the contact-line motion.†

3.2. The ‘intermediate’ region

Now let us consider the ‘slip’ region. We will make the variables dimensionless using
the following scaling quantities: l1, U, µ1U/l1 (the characteristic bulk pressure),
σ, ρsi0 (the characteristic surface density for the ith liquid). Making use of the normal
projection of (2.6), we immediately obtain that the free surface in the ‘intermediate’
region is planar so long as we deal with the terms of O(1) as ε,Ca→ 0.

For a stationary process equations (2.1), boundary conditions (2.2), (2.9), the
tangential projection of (2.6), (2.10), (2.4), (2.7), (2.5), (2.8), rewritten using (2.3), take
the form (here the terms of O(Ca) are held in order to demonstrate the structure of
the equations and make clear the subsequent analysis)

∇ · u1 = 0, ∇2u1 − ∇p1 = 0 (r > 0, −θd < θ < 0), (3.10)

∇ · u2 = 0, kµ∇2u2 − ∇p2 = 0 (r > 0, 0 < θ < π − θd), (3.11)

(−1)i−1 2Cai
λi(1 + 4Ai)

1

r

∂uir

∂θ
− dρsi

dr
= 4kτ

1−iVi
2(vsi − (−1)i−1) on θ = θi, (3.12)

(−1)i
2Cai

λi(1 + 4Ai)

1

r

∂uir

∂θ
− dρsi

dr
= 4kτ

1−iVi
2(vsi − vs) on θ = 0, i = 1, 2; (3.13)

2∑
i=1

(
λi

dρsi
dr

+ (−1)i−1 Cai
r

∂uir

∂θ

)
= 0, λ1

dρs1
dr

= λ2

dρs2
dr

on θ = 0, (3.14)

d

dr
(ρs1v

s
1) = −(ρs1 − ρs1j) (j = f on θ = 0; j = s on θ = θ1), (3.15)

kτ
d

dr
(ρs2v

s
2) = −(ρs2 − ρs2j) (j = f on θ = 0, j = s on θ = θ2), (3.16)

uir = 2vsi − (−1)i−1 +
2Aikτ

i−1

(1 + 4Ai)Vi
2

dρsi
dr

on θ = θi, i = 1, 2, (3.17)

uir = 2vsi − vs +
2Aikτ

i−1

(1 + 4Ai)Vi
2

dρsi
dr

on θ = 0, i = 1, 2, (3.18)

uiθ = 0 on θ = 0, θi; i = 1, 2, (3.19)

† Striking experimental results recently reported by Savelski et al. (1995) do not seem to be
sufficient evidence to invalidate the results of all previous experimental studies accumulated in
(3.8), (3.9), as well as previous experiments on wetting itself, for the following reasons at least: (i)
information about how the continuous variation of the parameters could link the data with the
(opposite) results of early experiments is absent, and one has to guess about the changes in the
experimental conditions which give rise to the surprising behaviour of the flow; (ii) the values of
the capillary and Reynolds numbers corresponding to each experimental point are not given, and
the only argument for comparing the results with (3.8), (3.9) – the model ‘should give at least a
qualitatively accurate physical picture’ (p. 125) – seems poorly convincing; (iii) interpretation of
unsteady experiments requires a detailed analysis of inertial effects.
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where the same notation is used for dimensionless variables, and

λi =
γiρ

s
i0

σ
, Ai = αiβi, Vi =

(
βi

ρsi0(1 + 4αiβi)

)1/2

U (i = 1, 2).

The conditions (2.11), (2.12) at the moving contact line may be rewritten as

(ρsi v
s
i )|r→0, θ=0 + (ρsi v

s
i )|r→0, θ=θi

+ (i− 1)ρsres = 0 (i = 1, 2), (3.20)

(ps1 + ps2)|r→0, θ=0 cos θd = ps2|r→0, θ=θ2
− ps1|r→0, θ=θ1

+ psS (i = 1, 2), (3.21)

where psi are defined by the dimensionless equations (2.3), namely

psi = λi(ρ
s
i − 1) (i = 1, 2). (3.22)

Matching conditions for the zeroth-order terms take the form

uir → uir(0), uiθ → uiθ(0) as r →∞ (i = 1, 2), (3.23)

vsi → ur(0), ρ
s
i → ρsif on θ = 0 as r →∞ (i = 1, 2), (3.24)

vsi → (−1)i−1, ρsi → ρsis on θ = θi as r →∞ (i = 1, 2). (3.25)

In equilibrium, the total surface pressure at the liquid–liquid interface is given by
(see (3.2), (3.22))

ps1(ρ
s
1f) + ps2(ρ

s
2f) ≡ λ1(ρ

s
1f − 1) + λ2(ρ

s
2f − 1) = −1, (3.26)

and the Young equation (3.21) rewritten for statics relates psS with the static contact
angle θs and the equilibrium surface densities ρsis (i = 1, 2):

cos θs = λ1(ρ
s
1s − 1)− λ2(ρ

s
2s − 1)− psS . (3.27)

As Ca1 → 0, kµ = O(1), the system (3.10)–(3.25) is singularly perturbed, and the
application of the technique of matched asymptotic expansions in Ca ‘splits’ the ‘slip’
region into the ‘intermediate’ and ‘inner’ regions associated with the limits Ca1 → 0
with r fixed and Ca1 → 0 with r̃ ≡ r/Ca1 fixed, respectively. In the ‘intermediate’
region, the terms proportional to Ca in (3.12)–(3.14) disappear; then (3.14) can be
integrated and, using (3.24), (3.26), we obtain

ρsi ≡ ρsif for i = 1, 2 on θ = 0 (3.28)

so that

λ1(ρ
s
1 − 1) + λ2(ρ

s
2 − 1) ≡ −1 on θ = 0. (3.29)

Using (3.28), we obtain from (3.13), (3.15), (3.16), (3.24) that

vsi ≡ ur(0) for i = 1, 2 on θ = 0. (3.30)

The distribution of the surface parameters along the liquid–solid interface in the
‘intermediate’ region can be found from (3.15), (3.16) for j = s, θ = θ1, θ2 and (3.12),
rewritten for the parameters in the ‘intermediate’ region, as

dρsi
dr

= 4kτ
1−iVi

2((−1)i−1 − vsi ) on θ = θi (i = 1, 2), (3.31)

completed by matching conditions (3.25) and some boundary conditions for the inner
limits of the solution, which appear as the result of considering the ‘inner’ solution
and matching the solutions in the ‘intermediate’ and ‘inner’ regions. It is important
to emphasize that (3.15), (3.16) and (3.31) are independent of the solution in the
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bulk. The distribution of the bulk velocities along the interfaces can be found then
from (3.17)–(3.19) so that they become the boundary conditions for the bulk flow
equations. In the case of finite capillary numbers, the ‘slip’ region could not be split
into the above-described asymptotic subregions, the free surface would be no longer
locally planar, the inner limit of the outer solution would become strongly dependent
on the overall flow, and the distribution of the surface parameters in the ‘slip’ region
would become interrelated with the bulk flow.

3.3. The ‘inner’ region

We will mark the parameters in the ‘inner’ region with a tilde (∼) and use for
parameters in the ‘intermediate’ region the same notation as before. Using the inner
variable

r̃ =
r

Ca1

in (3.10)–(3.22), we readily obtain from (3.12), (3.13), (3.15), (3.16) that

ρ̃si , ṽ
s
i ≡ const (θ = 0, θi; i = 1, 2), (3.32)

i.e. so long as terms of O(1) as Ca1 → 0 are considered, ρ̃si (and hence p̃si , see
(3.22)) and ṽsi are independent of r̃. Taking this into account and having in mind the
matching conditions of the terms of O(1) of the asymptotic expansions in Ca of the
solutions in the ‘inner’ and ’intermediate’ regions,

lim
r̃→∞

φ̃ = lim
r→0

φ, (3.33)

we conclude that conditions (3.20), (3.21) are valid for the terms of O(1) of the solution
in the ‘intermediate’ region, and so we obtain the missing boundary conditions for
the inner limits of the solution determined by (3.15), (3.16) for j = s, θ = θ1, θ2, (3.28),
(3.30), (3.31).

Thus, the set of equations (3.15), (3.16) for j = s, θ = θ1, θ2, (3.28), (3.30), (3.31)
and boundary conditions (3.20), (3.21), (3.25) is closed, and it allows one to find the
dependence of θd and, as will be shown below, the force acting between the liquids
and the solid in the neighbourhood of the moving contact line, on the parameters of
the problem by considering the solution in the ‘intermediate’ region. Equation (3.27)
relates the parameters of the problem with the static and dynamic contact-angle
values.

4. Macroscopic characteristics
4.1. The drag force

The momentum balance equation for the liquid–solid interface is analogous to the
first equation (2.6) derived for the liquid–liquid interface (Shikhmurzaev 1993b, 1994).
The force exerted on the liquid–solid interface by the solid is equal to

dpsi
dr

+ (−1)i
Cai
r

∂uir

∂θ
on θ = θi, i = 1, 2. (4.1)

Here the force density is made dimensionless using σ/(Uτ1) as a scale.
In the ‘intermediate’ region, the second term in (4.1) is of O(Ca), and so there for

the main terms of asymptotic expansions in Ca we have

fi(r) =
dpsi
dr

on θ = θi, i = 1, 2, (4.2)
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while in the ‘inner’ region both terms are of the same order, and the main terms of
the force density are given by

f̃i(r̃) =
d˜̃p

s

i

dr̃
− (−kµ)i−1 1

r̃

∂ũir

∂θ
on θ = θi, i = 1, 2. (4.3)

Here a double tilde marks the second term of the asymptotic expansion of psi in
Ca1 as Ca1 tends to zero in the ‘inner’ region. As was shown in §3, the first term, p̃si ,
is independent of r̃.

Recall that (4.1)–(4.3) give expressions for the force density in the plane polar
coordinate system. Let us determine the main approximation for the projection of the
total drag force on the direction of the solid wall velocity in a Cartesian coordinate
system. In this case, the total drag force F calculated using a uniformly valid solution
is given by

F =

2∑
i=1

(−1)i−1

∫ ∞
0

[fi(r) + f̃i(r/Ca1)− fi(0)] dr + O(Ca)

=

2∑
i=1

(−1)i−1

(∫ ∞
0

fi(r) dr + Ca1

∫ ∞
0

[f̃i(r̃)− fi(0)] dr̃

)
+ O(Ca)

=

2∑
i=1

(−1)i−1[psi (ρ
s
is)− psi (ρsi (0))] + O(Ca) as Ca→ 0. (4.4)

It is not difficult to show by considering the solution in the ‘inner’ region that
both terms on the right-hand side of (4.3) are finite and the integrals in (4.4) are
convergent.

From a physical point of view, the relationship (4.4) is obvious. Indeed, though the
force density in the ‘inner’ region is finite, and the contribution of the shear stress
is of the same order as that of the surface pressure gradient, the dimensions of this
region are small (of O(Ca)) compared with those of the ‘intermediate’ region, and,
therefore, the contribution of the ‘inner’ region to the total force may be neglected
so long as we consider the leading terms of the asymptotic expansions in Ca. In
the ‘intermediate’ region, the force density is also finite, but there the contribution
to the total force due to the shear stress is of O(Ca) and therefore may be neglected
compared with the contribution due to the surface tension gradients, which is of O(1)
as Ca → 0. Thus, the main contribution to the force between the liquid and the
solid in the neighbourhood of the moving contact line is due to the surface tension
gradient in the ‘intermediate’ region and not to the shear stress.

Combining (4.4), (3.21), (3.22), (3.27) and (3.29), we finally obtain

F = cos θs − cos θd. (4.5)

Thus, we have derived a well-known empirical correlation between the total drag
force acting on the liquid in the vicinity of the contact line and the dynamic contact
angle. This derivation makes clear the conditions of applicability of (4.5).

4.2. The dynamic contact angle

The set of equations and boundary conditions (3.15), (3.16) for j = s, θ = θ1, θ2,
(3.28), (3.30), (3.31), (3.20), (3.21), (3.25) is independent of the distribution of bulk
parameters and includes only ordinary differential equations, which could be easily
solved numerically, as it was done, for example, in Shikhmurzaev (1993a) for the case
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of gas/liquid/solid systems. However, here we will derive an approximate analytical
expression describing the dependence of θd on parameters of the problem. Our analysis
is based on the fact that for most liquids the parameter λ ≡ γρs0/σ is much greater
than unity (see Shikhmurzaev 1993a for an order-of-magnitude analysis). Physically,
it means that liquids cannot be considerably compressed even by intermolecular
forces and do not tolerate considerable rarefaction so that the averaged density of a
thin layer which contributes to the surface tension (the surface density) only slightly
differs from the density of a corresponding layer in the bulk (this fact is also briefly
mentioned in a well-known review by Dussan V. 1979).

So we may consider δ = λ1
−1 as a small parameter and use perturbation methods

as δ → 0 with kλ ≡ λ2/λ1 fixed. The same approach was applied in Shikhmurzaev
(1994, 1996) to derive analytical expressions for θd in the case of gas/liquid/solid
systems.

Expanding the functions in power series in δ as δ → 0 and substituting these
expansions in (3.31) and (3.15), (3.16) (for j = s, θ = θ1, θ2), we obtain that, as
expected, the leading terms of asymptotic expansions in δ which satisfy (3.25) are the
same as in the case of a gas/liquid/solid system (Shikhmurzaev 1994) namely

ρsi = ρsis + δBi exp(−qir), (4.6)

vsi = (−1)i−1 +
δqikτ

i−1Bi

4Vi
2

exp(−qir) on θ = θi; i = 1, 2; (4.7)

where

qi = 2kτ
1−i Vi

(ρsis)
1/2

((
Vi

2

ρsis
+ 1

)1/2

+ (−1)i
Vi

(ρsis)
1/2

)
≈ 2kτ

1−iVi
(
(Vi

2 + 1)1/2 + (−1)iVi
)
, i = 1, 2.

Here B1 and B2 are the constants of integration, which can be determined by
substituting (4.7) into (3.20):

B1 =−λ1(ρ
s
1s + ρs1fur(0)(θd, kµ))

(
q1

4V1
2

+ 1

)−1

,

B2 = λ1(ρ
s
2s − ρs2fur(0)(θd, kµ)− ρsres )

(
q2kτ

4V2
2
− 1

)−1

.

 (4.8)

Then, substituting (4.7) into (3.21) and using (4.8) and (3.27), we can finally obtain
an equation describing the dependence of the dynamic contact angle on the contact-
line speed and other parameters:

cos θs − cos θd =
2λ1(ρ

s
1s + ρs1fur(0)(θd, kµ))

(1 + 1/V1
2)1/2 + 1

+
2λ2(ρ

s
2s − ρs2fur(0)(θd, kµ)− ρsres )

(1 + 1/V2
2)1/2 − 1

. (4.9)

Equation (4.9) includes the corresponding equations derived for gas/liquid/solid
systems (Shikhmurzaev 1994, 1996) as well as some empirical relationships known in
the literature as particular cases (see Hayes & Ralston 1993 for a review).

Equation (4.9) involves the following eleven non-negative parameters:

θs, λ1, λ2, ρ
s
1s, ρ

s
2s, ρ

s
1f, ρ

s
2f, ρ

s
res , V1, V2, kµ, (4.10)

which satisfy one constraint – (3.26). Besides this, ρs2s and ρsres appear in (4.9) as a
combination ρs2s − ρsres , which therefore may be formally regarded as one parameter.
Using (3.27), we may replace one of the first five parameters of (4.10) by psS .
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Figure 2. The free-surface velocity versus the dynamic contact angle for different viscosity ratios.
Curves 1–9 correspond to kµ = 10−3, 10−2, 10−1, 0.5, 1, 2, 10, 102, 103, respectively. Dashed lines are
obtained for kµ = 0,∞.

It should be emphasized that the present model in its general formulation does not
imply any particular relationship between the dynamic contact angle and the contact-
line speed. Equation (4.9) holds under the conditions listed above and also under
an implicit assumption that the inner limit of the outer solution is given by (3.8). If
(3.8) is not valid (for example, when the flow near the contact line is influenced by
other closely located boundaries), the theory will lead to the so-called hydrodynamic
assist of wetting – the effect observed experimentally by Blake, Clarke & Ruschak
(1994).

5. Analysis
In this section we will briefly analyze some properties of (4.9).
The two terms on the right-hand side of (4.9) describe the contributions of the

parameters of the two fluids resulting in the deviation of θd away from its static value
θs. We will begin the analysis starting from the simplest case where the receding fluid is
a viscous gas to reveal the role of the viscosity ratio only. The corresponding equation
for the velocity dependence of θd may be formally obtained, for example, by setting
λ2 = 0 in (4.9). Comparing the result with the formula derived in Shikhmurzaev
(1994) for the case of an ideal gas (the latter case for the problem considered here
physically corresponds to a vacuum/liquid/solid system), we see that, as should be
expected, the viscosity ratio kµ appears only in the expression for the velocity of the
free surface ur(0)(θd, kµ) represented by the classical solution (3.8).

In the case of a viscous gas/liquid/solid system, the dynamic contact angle depends
only on the following five parameters

θs, V1, ρ
s
1f, p

s
1S , kµ, (5.1)

where for convenience ρs1s is replaced by ps1S using (3.27) and (2.13) with ps2S = 0, while
λ1 becomes equal to 1/(1− ρs1f) from (3.26). The role of the first four parameters in
(5.1) is analysed in Shikhmurzaev (1993a).

Figure 2 shows ur(0) as a function of θd for different viscosity ratios (this figure is
identical with figure 6 in Cox (1986) since the inner limit of the outer solution is the
same for different models). As the dynamic contact angle grows and one moves along
a curve in the (θd, ur(0))-coordinate plane starting from a point corresponding to some
prescribed values of kµ and θs, the flow character changes from the rolling motion of
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Figure 3. The velocity dependence of the macroscopic contact angle formed by an interface between
a viscous gas and a liquid with a solid surface for different viscosity ratios. Curves 1–4 correspond
to kµ = 0, 10−4, 10−3, 10−2, respectively (θs = 30◦, ρs1f = 0.99, psS = 0); 5, θs = 60◦, kµ = 10−2;

6, ρs1f = 0.999, kµ = 10−3. Dashed lines correspond to branches which have no physical meaning.

the advancing fluid (ur(0) < 0) to that of the receding one. For low and high values
of kµ, the corresponding curve in the (θd, ur(0))-plane deviates from the dashed lines
obtained for kµ = 0,∞ only at the values of θd very close to 180◦ and 0◦, respectively,
i.e. when the domain occupied by the low-viscosity fluid is so thin that the viscosity
of the fluid, however small, cannot be neglected.

Figure 3 presents the dynamic-contact-angle dependence on the contact-line speed
in gas/liquid/solid systems for different values of kµ. Curve 1 corresponds to a
vacuum–liquid system, i.e. kµ = 0. The most important feature of the curves is that a
solution of (4.9) exists only up to a certain finite value of V1 = V1max (dashed lines
in figure 3 show the branches which have no physical meaning). Strictly speaking,
the presence of a maximum contact-line speed in the formulation, which assumes a
steady motion of a straight contact line, means at least that either the contact line
is no longer straight or that the motion is no longer steady. In this connection, it is
reasonable to look at what happens in the experiments when a steady motion of a
straight contact line breaks down. Experiments (Blake & Ruschak 1979) show that the
breakdown of steady motion of a straight contact line corresponds to the onset of gas
entrainment: the contact line takes a ‘sawtooth’ form, and small bubbles start to come
off the angular points of the contact line and go into the bulk of the spreading liquid.
Blake & Ruschak advanced the idea of a maximum speed of wetting V∗, according
to which, if a liquid is forced to spread with a speed greater than V∗, the contact line
takes a ‘sawtooth’ shape to make the normal component of the contact-line velocity
equal to V∗. This concept of a ‘maximum speed of wetting’ excellently described the
observed behaviour of the contact-line shape. It seems reasonable to associate V1max

with the maximum speed of wetting and the onset of gas entrainment. This may be
called a ‘severe’ mechanism of the gas entrainment since one may also expect a ‘soft’
mechanism due to the hydrodynamic instability of the free surface.

As was shown in Shikhmurzaev (1993a, 1994), in a vacuum/liquid/solid system,
a maximum speed of wetting may also exist but only either if psS > 0 (in this case,
it corresponds to θd = 180◦) or if (2.5) is replaced by a more complicated equation
of state. In a general situation, both factors will modify V1max . It should be pointed
out that the maximum contact-line speed was also obtained by Cox (1986), who
considered the apparent contact angle (see the next section for details) assuming that
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Figure 4. The velocity dependence of θd in liquid–liquid systems for different viscosity ratios, λ1

and λ2. ρs1f = ρs2f = 0.99. 1, λ1 = λ2 = 50, arbitrary kµ; 2, λ1 = 90, λ2 = 10; 3, λ1 = 10, λ2 = 90;

(2, 3, kµ = 10−2); 4, λ1 = 90, λ2 = 10; 5, λ1 = 10, λ2 = 90; (4,5, kµ = 102); other parameters:
θs = 90◦, kV = 1, ρs1s = ρs2s = 1, psS = 0, ρsres = 0.

θd ≡ θs. In his theory, the maximum contact-line speed corresponds to the apparent
contact angle equal to 180◦.

It should be mentioned that in experiments with gas/liquid/solid systems the
viscosity ratio is usually very small (e.g. in a well-known work of Hoffman 1975, kµ
ranges from 10−5 to 10−8) so that the curves obtained for kµ = 0 may be used to
describe experimental data in a wide range of contact-line speeds. Nevertheless, even
in this case, if the small-capillary-number approximation remains valid, the critical
contact-line speed is determined by the viscosity ratio.

Now let us consider the behaviour of θd in liquid/liquid/solid systems. The param-
eters V1 and V2 may be interpreted as the contact-line speed made dimensionless by
means of characteristic parameters of the advancing and receding liquid, respectively.
We will use one of these parameters, say, V1 as the dimensionless contact-line speed
and a ratio

kV =
V2

V1

≡
[
β2ρ

s
10(1 + 4α1β1)

β1ρ
s
20(1 + 4α2β2)

]1/2

instead of V2.
As is clear from (4.9), only some parameters strongly effect the velocity dependence

of θd. Indeed, λ1 and λ2 play the roles of the relative ‘weights’ of the two terms of the
right-hand side of (4.9), and kµ strongly affects the radial free-surface velocity ur(0),
whilst the influence of the dimensionless equilibrium surface densities, which only
slightly differ from unity, as well as of ρsres � 1 should be relatively small.

In figure 4 the velocity dependence of θd for different kµ, λ1 and λ2 is given. For
a vivid illustration it is convenient to consider the case where ρs1f = ρs2f (=0.99),
θs = 90◦, psS = 0, so that (3.26), (3.27) give ρs1s = ρs2s = 1. The values of other
parameters are given in the figure caption. Curve 1 corresponds to a symmetrical
situation (λ1 = λ2) and an arbitrary value of kµ. Thus, if the surface parameters of the
two fluids are equal, the velocity dependence of θd is not affected by the viscosity ratio.
The situation changes when λ1 6= λ2. If λ1 6= λ2 and kµ � 1, then even the qualitative
behaviour of the curve θd = θd(V1) becomes dependent on the ratio kλ = λ2/λ1 (see
curves 2 and 3): for small kµ and kλ, like in the case of a gas/liquid/solid system,
the curve θd = θd(V1) has a maximum contact-line speed corresponding to θd < 180◦,
while small kµ and large kλ give a completely different velocity dependence of θd.
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Figure 5. Dynamic contact angle versus contact-line speed for different λi and ρsif (i = 1, 2). 1,
λ1 = λ2 = 50; 2, λ1 = 10, λ2 = 90; 3, λ1 = 90, λ2 = 10 (ρs1f = ρs2f = 0.99 for curves 1–3); 4, λ1 = 50,

λ2 = 5× 102; 5, λ1 = 5× 102, λ2 = 50; 6, λ1 = 50, λ2 = 5× 103; 7, λ1 = 5× 103, λ2 = 50 (for curves
1, 4–7 we have λ1(ρs1f − 1) = λ2(ρs2f − 1)). Other parameters: θs = 30◦, kV = 1, kµ = 1, ρs2s = 1,
psS = 0, ρsres = 0.

If kµ � 1, then the curves in the (V1, θd)-coordinate plane corresponding to small
and large values of kλ (curves 4, 5) behave in a similar manner (typical of the receding
liquid flow in gas/liquid/solid systems with the contact angle measured through the
gas (Shikhmurzaev 1996a)), though the values of the maximum contact-line speed
at which θd = 180◦ may differ considerably. Comparing curves 1–5 in figure 4,
we see that interchanging the roles of the fluids can lead to qualitative changes in
the dynamic contact-angle behaviour if λ1 6= λ2. Thus, the dynamic contact angle
is strongly influenced not only by the viscosity ratio but also by the free-surface
structure.

Figure 5 illustrates the role of the free-surface structure. For simplicity we use
kµ = 1. It is interesting to know if the curves in the (V1, θd)-coordinate plane depend
on the relative contribution of the two fluids to the surface tension of the fluid–
fluid interface (see (3.26)) or only on the values of λi (i = 1, 2). For λ1 = λ2 and
ρs1f 6= ρs2f (which implies different contributions of the fluids to the surface tension)
the corresponding curves coincide with curve 1 within the graphical accuracy, as
should be expected from (4.9). However, if λ1 6= λ2 and the contributions of the fluids
to the surface tension of the fluid–fluid interface are either equal (curves 1, 4–7) or
different (curves 2, 3), then the velocity dependence of θd is strongly influenced by
the direction of the fluid–liquid displacement. The intersection of different curves
corresponds to the value of θd satisfying the equation ur(0)(θd, kµ) = 0.

Figure 6 presents the behaviour of θd(V1) for different values of kV and θs. For
small kV (curves 2, 5), a maximum displacement speed corresponds to θd < 180◦. This
is not surprising since the case of a gas/liquid/solid contact line, where θd(V1max ) is
always less than 180◦ (see figure 3), can be formally obtained also by setting kV = 0.
For large kV (curves 3, 6), the increase of θd(V1) is not so rapid, and θd(V1max ) = 180◦.

The qualitative behaviour of the curves in the (V1, θd)-coordinate plane is the
same for different static-contact-angle values (curves 4–6), but the value of V1max

considerably decreases as θs grows.
Variations of psS and ρsres as well as of the equilibrium surface densities, which

satisfy (3.26) and (3.27) for given λi (i = 1, 2) and θs, produce very small quantitative,
and do not lead to any qualitative, changes of the curves in the (V1, θd)-coordinate
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Figure 6. Dynamic contact angle versus contact-line speed for different kV and θs. 1, 4, kV = 1; 2,
5, kV = 0.1; 3, 6, kV = 10; 1–3, θs = 30◦; 4, θs = 60◦; 5, 6, θs = 120◦. Other parameters: kµ = 1,
ρs1f = ρs2f = 0.99, λ1 = λ2 = 50, ρs2s = 1, ρsres = 0, psS = 0.

plane. Recall that only the case of a ‘thin’ microscopic film is considered so that we
may use values of ρsres much less than unity.

Thus, the main features of the velocity dependence of the dynamic contact angle
in fluid/liquid/solid systems are the following: the dynamic contact angle measured
through the advancing fluid increases as the contact-line speed grows; for non-zero
values of the viscosity ratio, there exists a finite maximum contact-line speed; the
dynamic contact angle corresponding to the maximum contact-line speed may be
equal to or less than 180◦, and it is always less than 180◦ if the displaced fluid is a
viscous gas.

Since in a number of experimental works the authors have reported the observed
maximum contact-angle value equal to 180◦ for different fluid–liquid pairs and even
for gas/liquid/solid systems, it is relevant to discuss the concept of ‘contact angle’
and the relations between the values of the contact angle defined in different ways in
theoretical works and those measured in experiments.

6. Microscopic, macroscopic, apparent and effective contact angles
The term ‘dynamic contact angle’ is commonly used in the literature with different

meanings, for example to describe processes of liquid–fluid displacement correspond-
ing to essentially different characteristic dimensions of the flow domain, and here
we will give more precise definitions of the concept and consider conditions of their
applicability and peculiarities associated with the mathematical modelling of the
liquid–fluid displacement on different length scales.

6.1. Microscopic contact angle

If the characteristic length scale (L) is comparable with the thickness of the interfacial
layers (h), where the properties of contacting media strongly differ from those of the
bulk due to the non-symmetrical action of intermolecular forces from the bulk
phases experienced by molecules which form the interfacial layers, one may define
a microscopic (or actual ) contact angle θact (see figure 1c). This definition implies
that the continuum mechanics approach remains applicable on such length scales,
though the description of the three-phase interaction zone and the interfaces should
take into account their diffuse nature: if L ∼ h, then the usual ‘interface’, instead of
being a geometrical surface with a surface tension, becomes the ‘bulk’ from the point
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of view of continuum mechanics, and the forces of non-hydrodynamic origin should
be explicitly taken into consideration. In this case, the main difficulty is to formulate
the set of bulk hydrodynamic equations and, in particular, the equations describing
the microscopic force field in the three-phase interaction zone. This problem in
itself is extremely difficult so that the analysis of the liquid–fluid displacement in the
framework of the new (microscopic) bulk equations becomes only an element of this
general problem of microhydrodynamics. At present, only some aspects of wetting
on the microscopic level are investigated (see de Gennes 1985 and Starov 1992 for
reviews).

It should be pointed out that just the microscopic contact angle is usually obtained
as a result of molecular dynamics simulation, where the macroscopic parameters are
calculated using a length scale of averaging comparable with characteristic lengths
associated with intermolecular interaction forces (Thompson & Robbins 1990).

6.2. Macroscopic contact angle

If L � h, then the usual hydrodynamic approach is applicable so that the interfaces
may be modelled as geometrical surfaces of zero thickness possessing some intrinsic
‘surface’ properties, and the three-phase interaction zone becomes a structureless
‘contact line’ (figure 1b). In this case, the angle formed at the intersection of the
tangent plane to the free surface at the contact line and the solid boundary may be
called the macroscopic dynamic contact angle θd (figure 1a, b) since just θd is used
as a geometric boundary condition for the macroscopic hydrodynamic equations
determining the free-surface shape. The macroscopic contact angle is exactly the one
considered by the Young equation, and just this angle is investigated in the present
paper.

This angle is also studied in some works on wetting in the framework of the
approach of chemical kinetics (Cherry & Holmes 1969; Blake & Haynes 1969; Blake
1993), which use the Young equation and relationship (4.5) for the driving force.

6.3. Apparent contact angle

If we are interested in an angle formed by the solid wall and the tangent plane to the
free surface at a certain distance from the contact line, we come to the concept of
an apparent contact angle θapp (figure 1a). Although θapp is not a characteristic of a
model applied to describe the flow associated with moving contact lines, this angle is
often used as an auxiliary concept in interpreting the results of experimental studies.
The main idea is to consider bending of the free surface due to viscous stresses and
relate the angle between the tangent plane to the free surface at a distance R from
the contact line and the solid boundary with the macroscopic contact angle θd and
the length scale s, on which details of how the shear-stress singularity is removed are
essential (Dussan V. 1976), as

ε ≡ s

R
→ 0.

In the case of finite capillary numbers, θapp becomes dependent on the overall flow
while if Ca → 0 and the flow in the vicinity of the contact line is not influenced
by other closely located boundaries, one can obtain a universal relationship between
θapp , θd, Ca, and ε. This procedure for particular flows was considered by many
authors (see, for example, Dussan V. 1976; Voinov 1976, 1978; Huh & Mason 1977b;
Hocking 1977, 1981; Hocking & Rivers 1982) and in its most complete and general
form has been reported by Cox (1986). Here we will briefly discuss how, if necessary,
Cox’s results could be connected with those obtained in the present paper.
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Cox has shown that if

Ca ln(ε−1)→ 0 as Ca→ 0, ε→ 0, (6.1)

then the asymptotic expansions in the ‘outer’ and ‘slip’ regions can be matched directly
giving

θapp = θd + O(Ca ln(ε−1)), (6.2)

while if

Ca ln(ε−1) = O(1) as Ca→ 0, ε→ 0, (6.3)

then an asymptotic region associated with coordinates (r̂ = Ca ln(εr̃), θ) should be
introduced between the ‘outer’ and ‘slip’ regions, and matching with three asymptotic
regions gives

g(θapp , kµ) = g(θd, kµ) + Ca ln(ε−1) + O(Ca), (6.4)

where

g(θ, k) =

∫ θ

0

dθ

f(θ, k)
,

f(θ, k) =
2 sin θ{k2(θ2 − sin2 θ) + 2k[θ(π − θ) + sin2 θ] + [(π − θ)2 − sin2 θ]}

k(θ2 − sin2 θ)[(π − θ) + sin θ cos θ] + [(π − θ)2 − sin2 θ](θ − sin θ cos θ)

and the last terms on the right-hand sides of (6.2) and (6.4) depend on the particular
geometry of the flow (e.g. spreading drop, meniscus in a tube, etc) and therefore show
the relevance of considering the contact-line motion as a closed local problem. Here
as before we are dealing with the leading terms of asymptotic expansions in ε and
Ca as ε→ 0, Ca→ 0.

Equation (6.4) (or (6.2) as the particular case) is a universal characteristic of the
current state of the system since it does not require any specification of the model in
the ‘slip’ region and involves only two parameters, which determine the shape of the
flow domain in this region (θd) and the relative length corresponding to a non-classical
boundary condition (ε). The accuracy of (6.4) has been verified numerically (Zhou &
Sheng 1990).

However, if one is going to interpret (6.4) (or especially (6.2)) not as a characteristic
of the current state with prescribed θd and ε but as the dependence of θapp on the
dimensionless contact-line speed (i.e. Ca), then some assumptions concerning the
velocity dependence of θd and ε should be made or a specific model for the flow in
the ‘slip’ region determining these parameters should be formulated.

In a number of works it is assumed that

θd ≡ θs, ε ≡ const. (6.5)

These assumptions combined with (6.2) give that θapp is always equal to θs inde-
pendently of the contact-line speed, and this is in clear conflict with experimental
observations, while substituting (6.5) into (6.4), one obtains θapp as an increasing
function of Ca. The latter case was thoroughly investigated by Cox (1986).

However, different authors (Zhou & Sheng 1990; Foister 1990; Stokes et al. 1990;
Fermigier & Jenffer 1991), who compared (6.4), (6.5) with experimental data, have
clearly shown that (6.5) are not suitable assumptions for the systems examined, and
at least the velocity dependence of θd should be allowed. As has been emphasized by
Zhou & Sheng (1990), who investigated numerically the dynamics of immiscible-fluid
displacement in a capillary tube using two different specific models for the flow in
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the ‘slip’ region, “any significant variation of θapp observed at Ca < 10−2.7 can be
attributed to the variation of θd away from its static value”. To obtain satisfactory
agreement between (6.4) and experimental data, different authors involve different
adjustable relationships instead of or in addition to (6.5), thus in fact using (6.4) only
as a starting point for semiempirical correlations.

The general formulation given in §2 of the present paper makes it possible to solve
a wetting problem as a whole so that the solution will allow one to obtain Cox’s
formulae for the apparent contact angle, when this quantity is of interest. So there is
a natural way of combining Cox’s results with those obtained in the previous sections
of the present paper for the case of small ε and Ca. Indeed, the present theory
describes in particular the flow in the ‘slip’ region, so we may use (4.9) with the
corresponding expression for ur(0) and ε1 = Uτ1/R instead of (6.5). The dimensionless
contact-line speed V1 is related to Ca1 by

V1 = Ca1Yu, Yu =

[
στ1β1

λ1µ
2
1(1 + 4α1β1)

]1/2

, (6.6)

and ε1 can be rewritten as

ε1 = Ca1E, E =
στ1

µ1L
. (6.7)

The parameters Yu and E depend only on characteristics of the advancing fluid and
one easily measurable parameter of the liquid–liquid interface (σ). Certainly, (4.9),
(6.6), (6.7) also include (6.5) as a particular case. Thus (4.9), (6.4), (6.6), (6.7) give a
combination of the present theory with Cox’s results and make it possible to calculate
the apparent contact angle θapp in the case when the macroscopic contact angle θd is
velocity-dependent.

6.4. Effective contact angle

Thus far we have considered different definitions of the dynamic contact angle for
the immiscible-fluid displacement on a perfectly smooth chemically homogeneous
solid surface, and the definitions were associated with different ratios of the two
lengths, h and L. If one considers a rough or/and chemically inhomogeneous solid
surface, then even in the simplest case there appears at least one more length scaleL,
which characterizes the size of the solid surface inhomogeneities. On the length scale
large compared to L it becomes desirable to replace the (unsteady) flow over the
actual rough or/and chemically inhomogeneous solid surface by the flow over some
‘effective’ smooth and homogeneous boundary with suitably reformulated boundary
conditions on it. The contact angle which is involved in this formulation may be
called the effective dynamic contact angle θeff . Particular cases of the solid surface
inhomogeneities were considered in Hocking (1976), Huh & Mason (1977a), Jansons
(1985, 1986, 1988), Joanny & Robbins (1990) on the basis of different models for the
flow in the vicinity of the actual contact line.

The model developed in the present paper can also be used for the effective contact
angle calculation (since we must come to the case of a perfectly smooth chemically
homogeneous solid surface as L → 0 and face all the problems described in the
previous subsections), though it looks as if for sufficiently rough surfaces and high
flow rates the structure of inhomogeneities plays much more important role than the
underlying model of the flow in the immediate vicinity of the actual contact line.
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Figure 7. Comparison of the theory with experiments by Fermigier & Jenffer (1991) for a silicone–air
interface in a capillary tube (θs = 12◦, kµ = 3.6× 10−6: open circles, 47V5000 oil–air interface in a
precision bore tube; filled circles, 47V5000 oil–air interface in a standard capillary tube; solid line,
theoretical curve (log(Yu) = −0.58).

7. Comparison with experimental data
In this section we will compare the theory with experimental data using (4.9),

i.e. assuming that (6.1) is valid. In this case, (6.2) makes it possible to neglect the
difference between θapp and θd. This will allow us to understand if the velocity
dependence of θd alone can be responsible for the variation of the experimentally
measured contact angle away from its static value. Obviously, to use (6.4) instead
of (6.2), we would only extend the set of theoretical curves and add one more (yet
unknown and therefore adjustable) parameter.

All the parameters involved in the present theory have clear physical meanings and
can be either directly or indirectly measured or calculated on the basis of a micro-
scopic theory. For example, the relaxation times can be measured in other situations
where interface formation or disappearance takes place (Bohr 1910; Kochurova et
al. 1974). Using (2.3), we can also express the equilibrium surface densities in terms
of the corresponding surface pressures, which are easily measurable quantities. A
possible way of verifying or determining the surface equation of state is described in
Shikhmurzaev (1996). However, at present the lack of information about some pa-
rameters does not allow us to carry out a comparison of the theory with experimental
data using independently measured theoretical constants, and here we shall use some
of them as adjustable parameters. Certainly, in this case, the comparison may be
regarded as not more than preliminary, and we may speak only about the possibility
of describing experimental data by (4.9). Below we will discuss how the number of
adjustable parameters can be reduced.

In the case of gas/liquid/solid systems the situation is rather simple (Shikhmurzaev
1993a, 1994): since changes of ρs1f lead to the same shifts of a theoretical curve in
the semilogarithmic coordinates along the horizontal axis (figure 3) as the transition
of coordinates from (log(V1), θd) to (log(Ca1), θd), we may fix the value of ρs1f (say,
equal to 0.99) and use log(Yu) as the only adjustable constant to describe the whole
experimental curve (Yu stands for ‘yet unknown’). The value of psS becomes important
only as θd approaches 180◦, the value of λ1 in this case is equal to (1 − ρs

1f
)−1 (see

(3.26)); ρs1s can be calculated from (3.27). As shown in figure 7, the theory excellently
fits to the experimental data obtained by Fermigier & Jenffer (1991) for a silicone
oil–air interface in a capillary tube. Since both parameters ρs1f and Yu are independent
of the solid surface material, the same values of these parameters must be applicable
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for the spreading of the same liquid over different solids (see Shikhmurzaev 1993a,
where the theory is compared with the data for different gas/liquid/solid systems, for
more details).

In the case of a liquid–liquid interface the situation is more complicated: we have
four parameters, Yu, λ1, λ2 and kV , each either producing a horizontal shift of a
theoretical curve in the semilogarithmic coordinate plane or influencing, though very
slightly, its slope (figures 4–6). At the same time all these parameters depend only
on the liquid–liquid pair and should remain the same for different solid surfaces.
So we will use two adjustable constants, Yu and kλ, trying to fit simultaneously two
theoretical curves to experimental data obtained for two different solid surfaces and
the same liquid–liquid system. In order to eliminate the uncertainty in the remaining
parameters it is reasonable to fix those which lead to the same horizontal shifts as
Yu and propose some correlations between the others on the basis of some physical
arguments consistent with the background of the present theory.

It is necessary to emphasize that the parameters involved in the present model
are phenomenological by derivation, so that their values can be obtained either
experimentally or from a more detailed structural theory. The correlations used
below are not an essential part of the theory, and we invoke them simply to make
the comparison of (4.9) with the data more restrictive.

So, let us fix, for example, ρs1f and ρs2f (say, ρs1f = ρs2f = 0.99) – then (3.26) will
impose one constraint on λ1 and λ2, making possible only variations of kλ.

An order-of-magnitude analysis of the coefficients involved in the theory, similar
to that carried out in Shikhmurzaev (1993b) on the basis of a two-layer model of an
interface, allows one to propose the following correlation between kλ, kV and kµ:

kV ∝
k

1/2
µ

kλ
G, G =

γ2

γ1

[
ρ2(1 + 4α1β1)

ρ1(1 + 4α2β2)

]1/2

.

Here we have assumed that βi ∝ µi/hi, ρ
s
i0 ∝ ρihi (i = 1, 2), where hi is the thickness

of the interfacial sublayer in the ith liquid (figure 1c, d). The same estimates give
αi ∝ hi/µi, and inferring that the bulk parameters of the liquids are of the same order
of magnitude, we will assume simply that

kV =
k

1/2
µ

kλ
(7.1)

and use this relationship to eliminate the uncertainty in the value of kV . It should be
pointed out that theoretical curves become insensitive to kλ and kV as the value of kµ
increases.

In figures 8 and 9 we have shown the results of comparing the theory with exper-
imental data reported by Fermigier & Jenffer (1991) for a capillary flow of different
glycerin–silicone oil systems in two different glass tubes. Since they examined liquid–
liquid pairs which include the same advancing liquid and a series of homologous
liquids of increasing viscosities as receding fluids we have claimed the requirement
that kλ behaves in a systematic way as the receding fluid viscosity grows as an
additional constraint.

As is clear from figure 8 and 9, the theoretical curves described by (4.9) are in
good agreement with the experimental data. It should be pointed out also that the
present theory fits these experiments much better than (6.4), (6.5) even if the curves
obtained from (6.4), (6.5) are shifted by a quantity corresponding to multiplying Ca
by a suitably chosen factor (see Fermigier & Jenffer 1991 for details).
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Figure 8. Comparison of the theory with experiments by Fermigier & Jenffer (1991) for a
glycerin–47V2 oil interface in a capillary tube (kµ = 1.35 × 10−3): triangles, a precision bore tube
(θs = 71◦); circles, a standard capillary tube (θs = 104◦); solid lines 1, 2, the present theory
(log(Yu) = 0.1, kλ = 1/9 for both curves).
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Figure 9. Comparison of the theory with experiments by Fermigier & Jenffer (1991) for different
glycerin–silicone oil systems in a capillary tube: circles, glycerin–47V100 oil interface (kµ = 1.0×10−1)
in a standard tube (θs = 144◦); open squares, glycerin–47V100 oil interface (kµ = 1.0 × 10−1) in a
precision bore tube (θs = 115◦); filled squares, glycerin–47V1000 interface (kµ = 9.0 × 10−1) in a
precision bore tube (θs = 98◦); solid lines, the present theory (log(Yu) = −0.55, kλ = 4 for curves 1
and 2; log(Yu) = −1.15, kλ = 9 for curve 3).

It is noteworthy also that a large static-contact-angle hysteresis observed in the
cited experiments was attributed by the authors either “to a nonhomogeneous glass
surface composition, or to the adsorption of a microscopic liquid film on the solid
surface”. While the former reason would lead to considerable discrepancy between
the results obtained for a liquid–air interface in the same tubes and to the static-
contact-angle hysteresis of the same order (but it is not so, see figure 7), the latter
is in complete agreement with the present theory: though the presence of a ‘thin’
microscopic residual film can strongly affect the static contact angle (see (3.27)), its
direct influence on the dynamic contact angle is very small (see (4.9) and §5).

In figure 10 we have shown the results of comparing the theory with experiments
performed by Gutoff & Kendrick (1982) using a tape plunging into a pool of water
with different immiscible oils as the upper (receding) fluid. A possible explanation of
the discrepancy between curve 2 and the experimental data may be the rapid increase
of ρsres similar to that observed in the receding contact-line motion in gas/liquid/solid
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Figure 10. Comparison of the theory with experiments by Gutoff & Kendrick (1982) for a
gelatine-subbed polyester tape moving across an interface between water and different oils: filled
squares, water/castor oil (θs = 74◦, kµ = 1021); open circles, water/mineral oil (θs = 68◦, kµ = 185);
solid lines, the present theory (1, log(Yu) = 1.8; 2, log(Yu) = 2.1; kλ = 1 for both curves).

systems (see Shikhmurzaev 1996 for a discussion). Some ways of generalizing the
theory to take this effect into account will be briefly described in §10.

It is necessary to point out that for small wetting rates (4.9) gives a linear dependence
of cos θs−cos θd on V1. The same dependence results from the chemical-kinetics theory
proposed by Blake & Haynes (1969) (see also its generalization in Blake 1993) and
correlates with their experimental data. This is not surprising since both theories are
based on closely related physical grounds.

Summing up the results presented in figures 7–10 we may conclude that the
simplest theory formulated on the basis of the surface tension relaxation analysis is
in reasonable agreement with experimental data.

8. Flow field
A general scheme of the flow near the moving contact line was considered in Huh

& Scriven (1971) and Dussan V. & Davis (1974). Below we will investigate the fine
structure of the flow in the ‘intermediate’ region in the framework of the present
model for liquid–liquid displacement and focus our attention on the transition from
the rolling motion of one liquid to that of another. An analysis of the flow in the
liquid in the case of a gas/liquid/solid system can be found elsewhere (Shikhmurzaev
1996).

Substituting (4.7), (4.8) into (3.17) and using (3.28), (3.30) to simplify (3.18), one
obtains the distributions of the radial components of velocities along the interfaces
in the ‘intermediate’ region, and (3.19) gives the transversal ones:

uir(r, θi) = (−1)i−1 +
δqiBik

i−1
τ

2V 2
i (1 + 4Ai)

exp(−qir) (i = 1.2),

u1r(r, 0) = u2r(r, 0) = ur(0)(θd, kµ) (i = 1, 2),

uiθ(r, θ) ≡ 0 on θ = 0, θi; i = 1, 2,

 (8.1)

where θd is the solution of (4.9). The velocity distribution in the bulk can be computed
from (3.10), (3.11), (8.1).

A convenient way of calculating the flow field is to rewrite (3.10), (3.11), (8.1)
in terms of the stream functions and by using the Mellin transform reduce the
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Figure 11. A typical example of the flow field shown as a series of magnified views. The numbers
correspond to the stream function values. The curves are obtained for θs = 30◦, kµ = 1, ρsres = 0,
ρs1f = ρs2f = 0.99, kV = 1, kλ = 1, A1 = A2 = 0.1, kτ = 1, psS = 0.

problem to a standard boundary-value problem for two linear ordinary differential
equations of the fourth order with constant coefficients, which can be easily solved
analytically. Then the velocity field can be calculated after overcoming the usual
difficulties inherent in the numerical inverse Mellin transform.

As is seen from (8.1) and illustrated in figures 11–13, generally there are two points
on the liquid–solid interface where ur = 0. Indeed, if

2
(
ρsis + (−1)i−1ρsifur(0) + (1− i)ρsres

) (1 + V 2
i )1/2 + (−1)iVi

(1 + V 2
i )1/2 − (−1)iVi

− (1 + 4Ai) > 0 (i = 1, 2),

(8.2)

then on the interface between the i th liquid and the solid, there is a stagnation point
located at a distance

r0i =
1

qi
ln(Di), Di = (−1)i

δqik
i−1
τ Bi

2V 2
i (1 + 4Ai)

(i = 1, 2) (8.3)

from the origin. The fulfillment of (8.2) in the rolling liquid means that a vortex
appears (figures 11, 13) due to the flow-induced Marangoni effect, i.e. the reverse
influence of the surface tension gradient caused by the flow on the bulk velocity
distribution. The same situation takes place in gas/liquid/solid systems at low
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Figure 12. The transition of the flow regime. The radial velocity of the free surface is zero. The
values of the parameters are the same as in figure 11.
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0

Figure 13. The receding liquid is rolling. The vortex in the advancing fluid has disappeared.

contact-line speeds and small contact angles for the advancing interface and at high
speeds for the receding one (Shikhmurzaev 1996).

If (8.2) is met for the non-rolling liquid, then the separatrix of the flow field begins
from a point located in the ‘intermediate’ region (figures 11, 13); otherwise it comes
from the origin. We should remember that for the ‘intermediate’ region, the inner
limit of the bulk velocity is not equal to zero and depends on the direction along
which the point approaches the origin, and the term ‘origin’ means the ‘inner’ region.
This multi-valuedness of the velocity at the origin in the ‘intermediate’ region (and
hence the stress singularity) is eliminated in the ‘inner’ region, where the first terms
on the left-hand sides of (2.2) and (2.9) cannot be neglected.

As the contact-line speed increases, θd approaches the value at which the transition
of the flow regime takes place. We used kµ = 1 for the flow pattern given in figures 11–
13 so that this value is equal to 90◦. The transition corresponds to zero radial velocity
of the points on the free surface and gives rise to a pair of co-rotating vortices near
the origin (figure 12). The tendency to vortex formation in the receding fluid is clearly
seen in figure 11. Then the region of closed streamlines in the advancing fluid ‘opens’
and its bounding streamline becomes the separatrix (figure 13). In figure 13 we can
see the ‘traces’ of the former vortex.
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9. The present model and existing theories

In this section we will try to address the following questions which may be of
interest both to experts in the field and to potential users of the theory. What is
the relationship of the present model, and in particular of the coefficient of sliding
friction β, to other models which include slip? Is the introduction of ‘extra’ physical
constants a serious drawback of the model? What are the advantages of the model
compared to previous theories? And finally, is the model too complicated to be useful
for engineering applications?

To answer these questions we have first to describe in brief existing hydrodynamic
approaches to the wetting phenomenon, which allow one to consider it theoretically
as a well-posed mathematical problem. A hydrodynamicist who faces the moving
contact-line problem has to decide (A) how to describe the behaviour of the macro-
scopic contact angle (see §6 for the definition) and (S) how to remove the shear-stress
singularity. In the literature devoted to the subject, one can find the following
approaches to Problem A:

(A1) θd ≡ θs (Dussan V. 1976; Hocking 1977, 1981, 1992; Huh & Mason 1977b;
Davis 1980; Hocking & Rivers 1982; Cox 1986; Durbin 1988; Zhou & Sheng
1990)

(A2) U = k(θd−θs), where k is an empirical constant (Greenspan 1978; Greenspan
& McCay 1981; Davis 1980; Hocking 1990; Haley & Miksis 1991).

(A3) U = k(θd−θs)m, where k and m are either purely empirical constants (Ehrhard
& Davis 1991; Haley & Miksis 1991) or, developing the simple arguments of Tanner
(1979), the results of an assumption concerning the asymptotic behaviour of the
dynamic contact angle (Goodwin & Homsy 1991; Braun et al. 1995).

(A4) θd is prescribed, and its dependence on the contact-line speed and other
parameters is not specified (Lowndes 1980; Levine et al. 1980; Tilton 1988; Finlow,
Kota & Bose 1996).

(A5) θd ≡ 180◦ (Benney & Timson 1980; Pismen & Nir 1982; Pukhnachev &
Solonnikov 1982; Baiocchi & Pukhnachev 1990)

One can also find a generalization of (A2)–(A3), which takes into account the
hysteresis of the static contact angle (Davis 1980; Hocking 1990).

The case (A5), artificial from the physical point of view though rather interesting
mathematically, can be considered without relaxing the no-slip boundary condition
[Benney & Timson 1980; Pukhnachev & Solonnikov 1982. See also Pismen & Nir
(1982), which, taking account of a remark in Ngan & Dussan V. (1984) concerning
the sign of the curvature, should be associated with the receding contact-line motion]
implying that the other fluid is inviscid.

For θd 6= 180◦ one has to replace the no-slip boundary condition near contact to
get rid of the shear-stress singularity. The following approaches to the problem have
been proposed:

(S1) n · P · (I − nn) = β(u − U ) – the classical Navier boundary condition (Lamb
1932, p. 586), where for the coefficient of sliding friction one may use

(S1a) β = const (Hocking 1977, 1981, 1990, 1992; Huh & Mason 1977b;
Davis 1980; Lowndes 1980; Levine et al. 1980; Hocking & Rivers 1982; Zhou
& Sheng 1990; Ehrhard & Davis 1991; Haley & Miksis 1991).
(S1b) β = β(h), where h is the distance between the free surface and the solid
boundary (Greenspan 1978; Greenspan & McCay 1981; Goodwin & Homsy
1991; Haley & Miksis 1991; Braun et al. 1995).
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(S1c) β = 0 if r 6 Uτ and β = ∞ for r > Uτ (‘slip-stick’ condition), where
r is the distance from the contact line and τ is the relaxation time (Huh &
Mason 1977b).
(S1d) β = ∞ if |n ·P ·(I−nn)| < T∗ and β = T∗/|u−U | otherwise (‘yield-stress’
condition), where T∗ is the yield stress (Durbin 1988).

(S2) Prescribed the distribution of the fluid velocity along the solid surface (l is the
slip length)

(S2a) u = Ur/(l + r) (Dussan V. 1976),
(S2b) u = Ur2/(l2 + r2) (Dussan V. 1976),

(S2c) u = Ur1/2/(l1/2 + r1/2) (Dussan V. 1976),
(S2d) u = U(1− exp(−r/l)) (Zhou & Sheng 1990; Finlow et al. 1996).

(S3) u = U for r > l while for r < l the distribution of the velocity of the fluid along
the solid surface is the one which provides the minimum for the entropy production
in the bulk (Baiocchi & Pukhnachev 1990).

To complete the picture of existing hydrodynamic theories we have to mention
semiempirical approaches which either cut off the neighbourhood of the contact line
together with the shear-stress singularity, which is attributed to the breakdown of
continuum mechanics modelling, and prescribe the value of the contact angle at the
cut-off distance from the contact line (Voinov 1976, 1978, 1995; Boender, Chesters
& Zanden 1991) or, understanding the existing difficulty, replace the analysis of
what happens in the vicinity of the contact line by introducing the apparent contact
angle at a certain distance from the contact line as an empirical function of the
contact-line speed and other parameters of the problem (Kafka & Dussan V. 1979;
Ngan & Dussan V. 1989; Dussan V., Ramé & Garoff 1991). Although semiempirical
approaches may be a good tool for a particular experiment, they of course provide
no understanding of the phenomenon. It is also worth mentioning that according to
recent experiments (Chen, Ramé & Garoff 1995), the free-surface slope at a certain
distance from the contact line as a function of the contact-line speed is not sufficient
to describe the free-surface shape since as the contact-line speed increases, the hydro-
dynamics of the flow in the vicinity of the contact line ‘appears in the field of view’
(as should be expected from the present theory, where the relaxation length l = Uτ
increases with the contact-line speed).

A schematic review of purely empirical correlations can be found in Hayes &
Ralston (1993).

There is also a great number of works which assume the existence of a film ahead
of the spreading liquid thus removing the singularity together with the contact line
itself. For obvious reasons those works are not reviewed here.

As we see from the picture given above, the existing theories treat problems A and
S separately and therefore require two independent assumptions about the dynamic
contact angle and the way to remove the singularity so that in principle every combi-
nation of A’s and S’s will give a new theory! The situation is obviously unsatisfactory,
and probably therefore some authors are employing different A–S models simultane-
ously trying to point out their common or specific features (Dussan V. 1976; Huh &
Mason 1977b; Davis 1980; Zhou & Sheng 1990; Haley & Miksis 1991) or use purely
empirical approaches (Kafka & Dussan V. 1979; Ngan & Dussan V. 1989; Dussan V.
et al. 1991).

In contrast to the A–S models, the present theory is based on the consideration of
a more general phenomenon – the interface formation process – and, being derived
from first principles, provides a solution of the moving contact-line problem as a by-
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product so that both sides of this problem, description of the dynamic-contact-angle
behaviour and elimination of the shear-stress singularity, appear to be related.

An essential feature of the A–S models is that they have either to use the assump-
tion (A1), which is in conflict with experimental observations (see §6 and references
therein), or to include purely empirical constants (see (A2) and (A3)) or even func-
tions (see (A4), which implies a prescribed velocity-dependence of θd on U and
other parameters). Obviously, the presence of empirical constants or functions con-
siderably reduces the predictive power of a model and excludes the possibility of
determining parameters of the model from independent experiments not associated
with wetting. In contrast, the present theory includes only physical constants with
clear physical meanings (Shikhmurzaev 1993a, b). These constants can be measured
with the help of different experimental methods involving interface formation or
disappearance, not necessarily associated with wetting. One such method is that
of an oscillating jet, which originates from Bohr’s (1910) formula and allows one
to determine the dynamic surface tension (Kochurova et al. 1974). Some possible
ways of determining the parameters of the model are discussed also in Shikhmurzaev
(1996).

It should be also emphasized that any particular relationship between the dynamic
contact angle and the contact-line speed excludes the possibility of describing the
hydrodynamic assistance of wetting (Blake et al. 1994) in principle, since, roughly
speaking, this effect means that there is no such relationship (see also a remark at
the end of §4).

A common feature of conditions (S1)–(S3), except (S2c), is that they describe the
fluid motion near the contact line as sliding†, thus implying that the contact line
always consists of the same material elements, while experiments show that it should
be rolling (see (i) in §1). The present model starts from and obviously preserves the
rolling character of the flow.

At the same time, although the present model was derived from the first principles
(Shikhmurzaev 1993a, b) and may seem distant from the early theories, we must
emphasize that the ‘seeds’ of this model are present in many of them. Indeed, (A2)–
(A4) replace the Young equation and – since the Young equation, being simply the
tangential momentum conservation law, remains of course valid – imply that the
surface tensions of a contacting interface near the contact line are not in equilibrium
when the contact line is moving. Consistently developing this idea, one would arrive at
a model similar to that described in the present paper. Furthermore, the exponential
velocity distribution postulated in (S2d) is a particular case of (8.1), where the length
l involved in (S2d) is specified (however, in the ‘inner’ asymptotic region, where the
first term on the left-hand side of (2.2) becomes important, the velocity distribution
will be of course different).

Logical development of the S3 model would also lead to a theory similar to or even
more general than the present one. Indeed, if in addition to the entropy production
in the bulk one were to take into account the corresponding contribution from
the interfaces (the latter component becomes more important as the contact line is
approached especially in the case of small capillary numbers), then the variations
of the surface energies, and hence the surface tensions, along the interfaces would
be involved in the analysis resulting in the consideration of the interface formation
process similar to that employed in the present paper.

† Sometimes, as in the case of (S1c), the actual flow field implied by a model is in conflict with
the physical idea which motivated the model derivation (see Dussan V. 1979 for details).
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The A1–S1a model requires special attention not only as the most popular but
in the current context because mathematically this model is the limiting case of the
present theory if τi = 0 (i = 1, 2). Indeed, if τi = 0, then the surface tension relaxation
occurs within the contact line and hence θd ≡ θs while the second term on the right-
hand side of (2.2) becomes zero and (2.2) coincides with (S1)-(S1a). Mathematically
β in (S1a) is equivalent to βi in (2.2). In both cases, this coefficient allows for slip
in the vicinity of the contact line and thus removes the shear-stress singularity at
the angular point of the flow domain. However, we have to emphasize two essential
points.

First, the physical backgrounds for the coefficient of sliding friction in (S1a) and in
the present theory are completely different. It is often supposed that “physical reasons
lying behind a condition like (S1)–(S1a) are probably connected with roughness of
the solid surface, either on a macroscopic or molecular level” (Hocking 1992). This
argument is applicable to a particular case of macrohydrodynamic ‘wetting’ of very
rough solid surfaces at high flow rates where the details of the actual contact-
line motion are not important, and the apparent ‘wetting’ is due to the free surface
bending so that the free surface successively passes over the surface roughness elements
thus producing the impression of the ‘effective’ contact line motion (Hocking 1976).
However, in a general case, roughness of the solid surface reduces slip even if perfect
slip is assumed on the microscopic level (Richardson 1973; Jansons 1988). The
idea of actual slip on the hydodynamic level is also in conflict with the results
of the molecular dynamics simulations (Koplik, Banavar & Willemsen 1988, 1989;
Thompson & Robbins 1989).

On the contrary, the present model, in agreement with the results of molecular
dynamics simulations, does not require any actual slip, and β characterizes the
properties of an interfacial layer (the layer which contributes to the surface tension)
and allows for apparent slip on the liquid-facing side of the interface. As is clear
from the order-of-magnitude analysis given in Shikhmurzaev (1993a), under usual
conditions the shear stress is unable to produce measurable slip of a viscous liquid on
a solid surface while the surface tension gradient can do this. It should be pointed out
also that in general the second term on the left-hand side of (2.2) is more important
and just this term is responsible for the deviation of the dynamic contact angle away
from the static value and, in the case of small Ca, for the force between the liquid
and the solid in the vicinity of the contact line (see (4.1), (4.5)).

The second point concerning (2.2) and (S1) is the bulk pressure singularity at the
contact line which becomes integrable when a slip boundary condition is applied but
still is not removed. Of course this singularity, due to its integrability, is not an
obstacle for practical applications of the models, but its origin should be understood.
The pressure singularity as well as the stagnation point at the edge of the flow
domain is inherent in every mathematical model which introduces the contact line
as a singularity in the curvature of the flow domain boundary. Of course, in nature,
every boundary, including an artificial surface separating the ‘interface’ and the ‘bulk’
is smooth as far as the continuum mechanics length scale is considered (see curve Q
in figure 4 in Shikhmurzaev 1994), and the boundary conditions along them vary
gradually, thus excluding any singularity. Introduction of a flow domain confined by
a simple piecewise smooth boundary with piecewise smooth boundary conditions is a
considerable simplification, which becomes possible at best at the expense of the bulk
pressure singularity if the shear-stress density has a non-zero limit as the contact line
is approached. This can be shown using the results of Kondrat’ev (1967) and Maz’ya
& Plamenevskii (1973).
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In this connection, an essential strong point of the present theory, in contrast
to (S1), is that in principle it allows one to smooth the angular point of the flow
domain boundary and drop the first term on the left-hand side of (2.2) everywhere
without changing its macroscopic characteristics (Shikhmurzaev 1991b; see also p. 55
in Shikhmurzaev 1994). Thus, introduction of the shear stress in (2.2) at small Ca
may be regarded simply as a ‘payment’ for the simplification of the shape of the
flow domain, though at large Ca, when θd approaches 180◦, this term can play an
important role.

Now let us consider the practical aspects of using the present theory. In the case
of gas/liquid/solid systems, which is most important for applications, the model is
very simple. There are only two non-dimensional parameters specific to the model,
namely the non-dimensional contact-line speed V1, which is related to Ca1 by (6.6),
and the surface density ρs1f characterizing the equilibrium state of the free surface,
plus the tangential component of the force acting on the contact line ps1S , which
will be common for all models employing the Young equation instead of empirical
correlations like (A2) or (A3). Those physical parameters can be determined from
independent experiments. Alternatively, one can use experiments on wetting and
determine those parameters from one experimental curve for a given liquid and
then apply the values obtained to describe a family of curves corresponding to the
spreading of this liquid over different solids (see figure 13 in Shikhmurzaev 1993a).
One can also use an algebraical equation relating θd to the contact-line speed and other
parameters both for the advancing and receding contact-line motion (Shikhmurzaev
1994, 1996). Application of the present model to a particular problem is illustrated
in Shikhmurzaev (1997).

The case of a liquid/liquid/solid system is much more complex since one has
to take into account the specific interaction of each liquid with the solid surface
as well as their interaction with each other, and of course it would be naive to
expect that such a complicated system with very rich behaviour can be described
by a few constants. In this case, the present theory characterizes the system by
eight independent non-dimensional constants specific to the model (see (4.10), (3.26)),
though, as is shown in §5, the flow is strongly influenced only by a few of them.
One can also use the simple algebraical equation (4.9), which relates θd to those
parameters, and equation (4.5) for the force between the liquids and the solid near
the contact line. It should be emphasized that the fact that the model contains only
physical (but not empirical) constants gives an important advantage since, as was
pointed out above, these constants can be determined with the help of experiments
not necessarily associated with wetting and used to describe other flows of the same
liquids where the classical approach leads to physically unacceptable singularities.

Finally, it should be noted, especially in connection with liquid–liquid displacement,
where sometimes even experimental results are rather contradictory (see, for example,
Dussan V. 1977; Brown, Jones & Neustadter 1980; Savelski et al. 1995), that
oversimplification of a mathematical model at the expense of its ability to describe
this very complex phenomenon seems hardly desirable.

10. Concluding remarks
10.1. Limitations of the theory

Natural limitations of the present theory are those inherent in the hydrodynamic ap-
proach itself. According to the definition of this approach (see §1), the intermolecular
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forces are hidden in the transport coefficients, relaxation times, etc, which appear
as averaged macroscopic quantities, and microhydrodynamic length scales associated
with those forces are neglected. These simplifications give important advantages for
considering particular macroscopic problems but at the same time impose limitations
on the applicability of hydrodynamic theories. If the characteristic dimensions of the
flow domain L or the ‘slip length’ Uτ become comparable with the interfacial layer
thickness h (which is nelected in hydrodynamics where the interfaces are treated as
geometrical surfaces of zero thickness), the present model becomes inapplicable and
a suitable generalization of it which provides a more detailed (structural) description
of interfaces must be used. This is also necessary when the dynamic contact angle
measured either through the advancing or receding liquid approaches zero since in
this limit every microhydrodynamic length, say, h introduces a macroscopic length
scale h/θd so that the three-phase interaction zone is no longer a one-dimensional
‘contact line’ from a hydrodynamic point of view. This argument is well-known in the
mechanics of thin films, where flows of the films may be considered in the framework
of conventional hydrodynamics, while the process of their rupture and the formation
of a hole or a dry spot is investigated taking into account long-range intermolecular
forces.

10.2. Generalization of the model

As is clear from its derivation (Shikhmurzaev 1993a, b), the above-described model
is the simplest one that can be derived using true kinematics of the flow and the
idea of relaxation of the surface tension as a physical basis. As is shown in the
previous sections, the model eliminates the shear-stress singularity and is in reasonable
agreement with experimental data.

Different possible ways of how the model may be generalized were briefly described
in Shikhmurzaev (1993a, 1994) for the case of liquid–gas displacement, and below we
will discuss some questions which are specific for liquid/liquid/solid systems.

First is the role of a microscopic residual film. In the present paper we assumed that
the film is ‘thin’ so that it was sufficient to take it into account only in the mass balance
condition for the surface phase (see (2.11) and (3.20)) and characterize it only by two
constants ρsres and psres . However, in the case of a ‘thick’ microscopic residual film, it
will influence not only the mass balance at the contact line but also the properties of
the interface between the advancing fluid and the solid. A ‘thick’ microscopic residual
film may be responsible for peculiarities of the velocity-dependence of the dynamic
contact angle observed in some experiments. A possible way of taking this film into
account is to introduce a two-layer model of the liquid–solid interface similar to that
applied for the free-surface description.

The second problem is associated with the influence of the structure of the three-
phase interaction zone on the flow. In the present paper we assumed that (i) there
are only surface mass fluxes along interfaces, thus neglecting possible mass exchange
between the three-phase interaction zone and the bulk, and (ii) there is no resistance
to ‘splitting’ of the liquid–liquid interface at the moving contact line and to the mass
transfer across the three-phase interaction zone. The two constraints imply a very
simple structure of the contact-line region. A study of the three-phase interaction
region would give more general conditions at the contact line. At the same time,
at present there are no indications concerning physical mechanisms which should be
additionally incorporated in the model.

Finally, we must make special remarks about the concept of the surface density and
the surface tension relaxation process. In the present model ρs is not used as a measure
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of inertia of an interface: it is considered simply as a quantity which characterizes the
state of the interface. Both the surface density and the surface tension are determined
by the non-symmetric action of intermolecular forces on the molecules of an interface.
We use (2.3) as the simplest possible surface equation of state. Certainly, we could
eliminate ρs using (2.3) and deal directly with the surface tension relaxation equation,
which may be proposed as a starting point of the theory. We could also interpret
ρs as the surface density of a surfactant if it is present in excess in the bulk and
determines the surface tension. One may propose more complicated surface equation
of state and include the influence of other parameters which characterize the interface
state, for example the ordering of molecules in the interfacial layer. At the same
time, on the basis of the analysis given in the previous sections we may conclude that
at present the simplest theory is able to describe experimentally observed features
of wetting phenomena, and we have to get additional information from experiments
which would allow us to generalize the model.

More important is the question about the value of τ, which characterizes the
interface formation time. In the present theory we assumed that τi are large enough
that the deviation of θd from the static contact angle takes place, and the surface
tension relaxation length becomes macroscopic. This assumption is supported not only
by experiments on wetting, which show that, indeed, θd 6= θs, but also by independent
measurements of the surface tension relaxation time (see Posner & Alexander 1949;
Kochurova et al. 1974 and references therein), which show that, both for solutions
and pure liquids, the interface formation time is macroscopic. In this connection,
experimental studies of the whole spectrum of flows, where interface formation or
disappearance take place, are desirable, and they could provide addtional information
about the characteristic time scale of the interface formation process.
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