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We propose a nonparametric test of conditional independence based on the
weighted Hellinger distance between the two conditional densities, f ~ y 6x, z! and
f ~ y6x!, which is identically zero under the null+We use the functional delta method
to expand the test statistic around the population value and establish asymptotic
normality under b-mixing conditions+ We show that the test is consistent and
has power against alternatives at distance n�102h�d04+ The cases for which not
all random variables of interest are continuously valued or observable are also
discussed+ Monte Carlo simulation results indicate that the test behaves reason-
ably well in finite samples and significantly outperforms some earlier tests for a
variety of data generating processes+ We apply our procedure to test for Granger
noncausality in exchange rates+

1. INTRODUCTION

We investigate a nonparametric test of the conditional independence of Y and Z
given X, i+e+,

Y � Z 6 X+ (1.1)

This is related to the more familiar hypothesis that Y is independent of Z, but
neither implies the other in general ~see Phillips, 1988!+ Moreover, this hypoth-
esis is important in both econometrics and statistics, in that many important
concepts can be formalized using conditional independence ~see Dawid, 1979!+

Our first motivation is testing Granger noncausality+ As Florens and Mou-
chart ~1982! and Florens and Fougere ~1996! show, Granger noncausality is a
form of conditional independence+ The hypothesis of distributional Granger
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~1980! noncausality for two stationary ergodic time series $Yt % and $Zt % is as
follows+ Given lags p and q, $Zt % does not Granger cause $Yt % if

Yt � ~Zt�1, + + + , Zt�q ! 6 ~Yt�1, + + + ,Yt�p !+ (1.2)

To test Granger noncausality, early studies often specified linear vector auto-
regressive ~VAR! models+A serious problem with a linear approach is that such
tests have low power in detecting nonlinear alternatives+ Bell, Kay, and Malley
~1996! propose a procedure using nonparametric additive models but do not
provide distribution theory+ In contrast, Baek and Brock ~1992! use the corre-
lation integral to detect nonlinear alternatives in independent and identically
distributed ~i+i+d+! data+ Hiemstra and Jones ~1994! modify Baek and Brock’s
approach to allow weak stochastic dependence+

Our second motivation concerns specifying the semiparametric binary choice
model

Y � 1$G~X,b!� «%, (1.3)

with 1${% the indicator function, G a function known up to a parameter b ~e+g+,
G~X,b!� X 'b!, and « an unobservable error+ The literature divides according
to whether « is assumed independent of X or only median independent+ The
latter condition, imposed by Manski ~1975! and Horowitz ~1992!, accommo-
dates conditional heteroskedasticity of unknown form but precludes estimating
b at the usual Mn rate+ In contrast, if « is independent of X, one can estimate at
the Mn rate; see Klein and Spady ~1993!+ As independence between X and «
implies conditional independence of observables,

Y � X 6G~X,b!, (1.4)

it suffices to assume the weaker condition ~1+4! when specifying model
~1+3!+ This permits the dispersion of « to depend on X and still permits an Mn -
consistent estimator+ This approach holds generally for transformation models,
including binary choice, duration, and censored regression models+ It also extends
to panel models+ ~See Linton and Gozalo, 1997+!

The next example concerns sample selection+ A huge literature has devel-
oped from the work of Heckman ~1974! and Gronau ~1974!, who consider the
following selection problem: each population member has a triple ~X, Y, Z!,
with vectors X and Y and Z � 1 or 0 ~e+g+, Y is log offered wage, X is worker
attributes, and Z � 1 if the worker has a job and Z � 0 otherwise!+ A researcher
always observes ~X, Z! but observes Y only when Z � 1+ The researcher is inter-
ested in

P~Y 6X ! � P~Y 6X, Z � 1!P~Z � 16X !� P~Y 6X, Z � 0!P~Z � 0 6X !+

The sample is uninformative about P~Y 6X, Z � 0!, and so early researchers
often assumed
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Y � Z 6 X+ (1.5)

Given that P~Y 6 X, Z � 1! is identified, ~1+5! identifies P~Y 6X !+ Since the 1970s,
economists have used latent-variable models of the form

�Y � g1~X !� «1,

Z � 1$g2~X !� «2 � 0%,

with g1 and g2 real-valued functions and «1 and «2 unobserved errors+ The early
literature assumes «1 � «26X, implying ~1+5! and the absence of selection bias+
For more, see Angrist ~1997!+

In each of these three examples it is of interest to test whether the condi-
tional independence hypothesis is true+ This brings us to our contribution+ There
are many nonparametric tests of independence for continuous random vari-
ables, starting with Hoeffding ~1948!, including empirical distribution–based
methods such as Blum, Kiefer, and Rosenblatt ~1961! and Skaug and Tjøs-
theim ~1993!, smoothing-based methods such as Rosenblatt ~1975!, Robinson
~1991!, and Hong and White ~2005!, and others, e+g+, Brock, Dechert, Scheink-
man, and LeBaron ~1996!+ Nevertheless, practical nonparametric tests for
conditional independence are not as well developed+1 Using empirical pro-
cess theory, Linton and Gozalo ~1997! give a nonparametric test of condi-
tional independence using a generalized empirical distribution, and Delgado
and González-Manteiga ~2001! give an omnibus test of conditional indepen-
dence using the weighted difference of the estimated conditional distributions
under the null and the alternative+ Nevertheless, both tests are for the i+i+d+
case, and neither is asymptotically pivotal+ In contrast, we build on the large
literature on kernel-based omnibus testing of restrictions on nonparametric
curves, initiated by Bickel and Rosenblatt ~1973! and Rosenblatt ~1975!+ We
give a test for conditional independence based on a weighted version of Hell-
inger distance under weak data dependence+ A main advantage is that our
statistic is asymptotically pivotal+ Despite its inability to detect local alterna-
tives at rate n�102 like the tests of Linton and Gozalo and Delgada and
González-Manteiga, it turns out to be more efficient in the direction of certain
high-frequency alternatives such as those of Rosenblatt ~1975! and Horowitz
and Spokoiny ~2001!+

Among other things, our test applies to test for Granger noncausality with no
need to specify a linear or nonlinear model+ Also, it applies to cases where not
all variables are continuous or observable+

The paper is organized as follows+ In Section 2, we give the basic frame-
work, assuming no parameter estimation and that all random variables are con-
tinuous+ Section 3 studies the asymptotic null distribution of our statistic and
global and local power properties+ Section 4 treats discrete variables, param-
eter estimation, and bootstrap approximation+ We report a Monte Carlo study
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and an application in Section 5 and conclude in Section 6+ We relegate techni-
cal details to Appendixes A–D+

2. BASIC FRAMEWORK

We wish to know if Y and Z are independent given X, where X, Y, and Z are
d1-, d2-, and d3-vectors, respectively+We have n identically distributed, weakly
dependent observations ~Xt , Yt , Zt !, t � 1, + + + , n+

The joint density ~resp+ cumulative distribution function! of ~Xt , Yt , Zt ! is f
~resp+ F! + We reference marginal densities of f ~x, y, z! simply using the list of
their arguments—e+g+, f ~x, y!� � f ~x, y, z! dz, f ~x, z!� � f ~x, y, z! dy, and f ~x!�
� f ~x, y, z! dy dz, where � integrates on the full range of its arguments+ This
notation is compact and, we hope, sufficiently unambiguous+

Let f ~{6{! be the conditional density of one random vector given another+
Formally, the null is

H0 : Pr $ f ~ y 6X, Z! � f ~ y 6X !%� 1 ∀ y � R
d2, (2.1)

equivalent to f ~x, y, z! f ~x!� f ~x, y! f ~x, z!, for all ~x, y, z! in the support of f+
The alternative is

H1 : Pr $ f ~ y 6X, Z! � f ~ y 6X !% � 1 for some y � R
d2+ (2.2)

Our test statistic is based on the weighted Hellinger distance between
f ~x, y, z! f ~x! and f ~x, y! f ~x, z!:

G~ f,F! [ ��1 � � f ~x, y! f ~x, z!

f ~x, y, z! f ~x!
�2

a~x, y, z! dF~x, y, z!, (2.3)

with a~{! a specified nonnegative weighting function with compact support
A � R

d, d [ d1 � d2 � d3+
The weighting function is crucial+ It truncates integration at the extremes,

where precise estimation of densities is quite hard+ Thus, we only detect devi-
ations between f ~x, y, z! f ~x! and f ~x, y! f ~x, z! on A+ One can also assume com-
pact support for ~X,Y, Z! and use Hellinger distance ~a [ 1!+

Other statistics can be constructed using entropy ~e+g+, Robinson, 1991;
Fernandes, 2000; Hong and White, 2005! or using the L2 distance between
f ~x, y, z! f ~x! and f ~x, y! f ~x, z!+ It is well known that entropy- or Hellinger-
based statistics have better small-sample performance than L2-based statistics
when testing serial independence+ Theoretically, Hellinger distance has some
advantages over distances based on the Lq norm, e+g+, q � 1,2, or `+ Let f1 and
f2 be densities+ Then: ~1! The L1 or L2 norm of f1 � f2 equally weights identical
differences between f1 and f2 regardless of whether the smaller of the two is
large or small, whereas L` only weighs the extreme distance between f1 and f2+
~2! Like L ,̀ L1 is analytically awkward+ ~3! None of the Lq norms, q � 1, 2, or
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`, are invariant to continuous monotonic transformation+ In contrast, like Shan-
non entropy, Hellinger distance does not have these problems+ In particular, it
is invariant to continuous monotonic transformation, which is important in appli-
cations+We use Hellinger distance instead of entropy as only the former yields
a second-order theory à la White and Hong ~1999! in the presence of the weight-
ing function a+ See Pitman ~1979, Ch+ 2! for more on distances between prob-
ability measures+

To define our test statistic, we first introduce kernel estimators for the
unknown densities+ For a kernel function2 K and bandwidth h[ h~n!, we define

Kh~u! [ h�dK~u0h!, (2.4)

where u has dimension d+We use the standard Nadaraya–Watson ~NW! density
estimator,

Zf ~x, y, z! [
1

n �
t�1

n

Kh~x � Xt , y � Yt , z � Zt !; (2.5)

estimators for f ~x, y!, f ~x, z!, and f ~x! are analogous+ Let ZF be the empirical
cumulative distribution function ~c+d+f+! of ~X,Y, Z!+ Our test statistic is a sam-
ple analogue of ~2+3!,

ZG [ G~ Zf, ZF! [ �
A
�1 � � Zf ~x, y! Zf ~x, z!Zf ~x, y, z! Zf ~x!

�2

a~x, y, z! d ZF~x, y, z!

�
1

n �
t�1

n �1 � � Zf ~Xt ,Yt ! Zf ~Xt , Zt !

Zf ~Xt ,Yt , Zt ! Zf ~Xt !
�2

a~Xt ,Yt , Zt !+

We show that the properties of ZG follow from the properties of G+ Two obser-
vations are important: ~1! the first-order terms in the expansion of G~ Zf,F! around
G~ f,F! degenerate under the null;3 and ~2! the distance between G~ Zf, ZF! and
G~ Zf,F! is asymptotically negligible+ The latter is important as it is easier to
study the asymptotic behavior of G~ Zf,F!+ The former is important as it implies
that the usual Mn -asymptotics ~e+g+, Robinson, 1991! do not apply; different
normalizations must be used ~e+g+, White and Hong, 1999; Hong and White,
2005!+

3. THE ASYMPTOTIC DISTRIBUTION OF THE TEST STATISTIC

We now treat testing conditional independence for a continuously distributed
stochastic process+
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3.1. Asymptotic Null Distribution

Our assumptions are as follows+ See Appendix A for definitions and other tech-
nical material+

Assumption A.1 (Stochastic process).

~a! $Wt [ ~Xt
' ,Yt
' , Zt
'!' � R

d1�d2�d3 [ R
d, t � 0% is a strictly stationary

b-mixing process with coefficients bm � O~rm! for some 0 � r � 1+
~b! Wt [ ~Xt

' ,Yt
' , Zt
'!' has joint distribution F and joint density f such that f

has continuous partial derivatives of order r � 4, bounded and integra-
ble on R

d + The joint density f is bounded away from zero on the com-
pact support A of a~{!, i+e+, infw�A f ~w! [ b � 0, and satisfies a Lipschitz
condition: 6 f ~w � u! � f ~w!6 � D~w!7u7, where D has finite ~2 � h!th
moment for some h � 0 and 7{7 is the euclidean norm+

~c! The joint probability density function ~p+d+f+! ft1, + + + , tl ~{, + + + ,{! of
~W0 ,Wt1 , + + + ,Wtl ! ~1 � l � 5! is bounded and satisfies a Lipschitz condi-
tion: 6 ft1, + + + , tl ~w0 � u0, + + + ,wl � ul ! � ft1, + + + , tl ~w0 , + + + ,wl !6 � Dt1, + + + , tl
~w0 , + + + ,wl !7u7, where u [ ~u0, + + + ,ul ! and Dt1, + + + , tl is integrable and
satisfies �Dt1, + + + , tl ~w0 , + + + ,wl !7w72j dw � RM � ` and �Dt1, + + + , tl
~w0 , + + + ,wl ! ft1, + + + , tl ~w0 , + + + ,wl ! dw � RM � ` for some j � 1+

Assumption A.2 (Kernel). For some even integer r � 4, the kernel K is a
product kernel of the bounded symmetric kernel k :R r R satisfying
�R uik~u! du � di0 ~i � 0,1, + + + , r � 1!, C0[ �R urk~u! du � `, �R u2k~u!2 du �
`, and k~u! � O~~1 � 6u 6r�1�d!�1! for some d � 0, where dij is Kronecker’s
delta+

Assumption A.3 (Bandwidth). As n r 0, the bandwidth sequence h r 0,
such that

~a! nh 2d0~ ln n!g r ` for some g � 0;
~b! nh d02�2r r 0+

Remark 1. Assumption A+1~a! is standard for application of a central limit
theorem ~CLT! for U-statistics for weakly dependent data ~e+g+, Fan and Li,
1999a!+ It is satisfied by many well-known processes such as linear stationary
autoregressive moving average ~ARMA! processes and a large class of pro-
cesses implied by numerous nonlinear models, including bilinear, nonlinear auto-
regressive ~NLAR!, and autoregressive conditional heteroskedastic ~ARCH! type
models ~see Fan and Li, 1999b!+ Assumptions A+1~b! and ~c! are primarily
smoothness conditions like those imposed by Li ~1999!+Assumption A+2 requires
a higher order kernel, which is common in the literature ~see Robinson, 1988;
Fan and Li, 1996; and Li, 1999!+ Assumption A+3 restricts the bandwidth
sequence+ Although we allow different bandwidths for different kernel density
estimators, we in fact use the same bandwidth h+ This makes certain bias terms
cancel each other under the null+ For more on bandwidth choice, see Chen,
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Linton, and Robinson ~2001!+ Assumption A+3~a! is explicitly used in the proof
of Lemma B+7 in Appendix B+ It is stronger than the common assumption
nh d0~ ln n!g r 0 for some g � 0, which suffices for Lemmas B+2–B+6+ We
conjecture that one can use the weaker assumption at the expense of highly
technical argument to show asymptotic negligibility of the remainder in
Lemma B+7+ If so, as a referee comments, one can use a second-order positive
kernel ~r � 2! for the important case d � 3+4

To state the result and give the derivation, let5 w � ~x, y, z! and define the
following notation:

B1 [ ~C1!
d�

A

a~w! dw,

B2 [ ~C1!
d�1C2 �

i�1

d �
A

1

2
~]2 f ~w!0]wi

2!a~w!0f ~w! dw,

B3 [ ~C1!
d1�d2�

A

a~w! f ~w!0f ~x, y! dw,

B4 [ ~C1!
d1�d3�

A

a~w! f ~w!0f ~x, z! dw,

B5 [ ~C1!
d1�

A

a~w! f ~w!0f ~x! dw,

s 2 [ ~C3 !
d�

A

a~w!2 dw,

where C1[ �R k~u!2 du, C2[ �R u2k~u!2 du, and C3[ �R~�R k~u � v!k~u! du!2

dv+ For a kernel satisfying Assumption A+2, the Ci ’s can be calculated explic-
itly; e+g+, when k~u! � ~3 � u2!w~u!02 with w~u! the standard normal p+d+f+,
we have C1 � 270~32Mp!, C2 � 150~64Mp!, and C3 � 7,8810~8,192M2p!+We
can now state our first result+

THEOREM 3+1+ Under Assumptions A.1–A.3 and under H0, if d � 7 and
d1 � 4 � d3 � d2 � 4 � d1, then

nh d02$4 ZG� n�1h�dB1 � n�1h�d�2B2 � n�1h�~d1�d2 !B3

� n�1h�~d1�d3 !B4 � n�1h�d1B5 %
d
&& N~0,2s 2 ! .

The proof relies on a functional expansion of G~{,F!, as in Aït-Sahalia, Bickel,
and Stoker ~2001!, and some preliminary U-statistic results in Tenreiro ~1997!+
In studying goodness-of-fit tests for kernel regression, Aït-Sahalia et al+ derive
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the functional expansion for the sum of squared departures between restricted
and unrestricted regressions+ Similarly, we take a second-order expansion, as
the first-order term vanishes under the null+

Not all the bias correction terms, Bi , i � 1, + + + ,5, may be necessary+ For exam-
ple, if d � 3 ~implying d1 � d2 � d3 � 1!, both B2 and B5 are asymptotically
negligible+ If d2 � d3 � d1, B5 is not needed+ If d3 � d1 � d2 ~resp+ d2 � d1 �
d3! then B3 ~resp+ B4! is unnecessary+ If d � 5, as the “curse of dimensionality”
requires for realistic applications, the restriction d1 � 4 � d3 � d2 � 4 � d1 is
redundant+

To implement, we consistently estimate the last four bias terms at certain
rates as

ZB2 [
~C1!

d�1C2

n �
t�1

n

�
i�1

d 1

2
$ Zfi
~2!~Wt !a~Wt !0 Zf ~0! ~Wt !

2 %,

ZB3 [
~C1!

d1�d2

n �
t�1

n

$a~Wt !0 Zf ~Xt ,Yt !%,

ZB4 [
~C1!

d1�d3

n �
t�1

n

$a~Wt !0 Zf ~Xt , Zt !%,

ZB5 [
~C1!

d1

n �
t�1

n

$a~Wt !0 Zf ~Xt !%,

where, e+g+, Zfi
~2!~w! [ n�1h1

�~d�2!�t�1
n k~2!~~wi � Wt, i !0h1!Pj�i

d k~0!~~wj � Wt, j !0
h1!, Zf ~0!~w! [ n�1h1

�d �t�1
n Pj�1

d k~0!~~wj � Wt, j !0h1!, k~v! is the kernel of order
~v, p! for estimating the vth partial derivative of a univariate density, h1 is a
bandwidth sequence, and Wt, i is the ith element of Wt , i � 1,2, + + + ,d+ Follow-
ing Gasser, Müller, and Mammitzsch ~1985!, we assume 0 � v � p � 2, where
v� 0 or 2 and p is even+ The choice of k~v! ~v� 0,2! is crucial to estimate the
second-order partial derivatives effectively+ For brevity, we refer the reader
to Gasser et al+ ~1985! and Singh ~1987!+6 It is not hard to show that
h ~d3�d1�d2 !02~ ZB3 � B3!, h ~d2�d1�d3 !02~ ZB4 � B4!, and h ~d2�d3�d1!02~ ZB5 � B5! are
op~1! by Assumptions A+1–A+3+ We show in Appendix D that, for i � 1, + + + ,d,

h 2�d02 � 1

n �
t�1

n Zfi
~2!~Wt !a~Wt !

Zf ~0! ~Wt !
��

A

]2 f ~w!

]wi
2

a~w!

f ~w!
dw� � op~1!, (3.1)

given h 2�d02h1
�2yn � o~1!, with yn[ n�102h1

�d02~ ln n!g � h1
p for g � 0, and so

h 2�d02~ ZB2 � B2! � op~1!+
Then the estimation errors for the bias terms are asymptotically negligible,

and we can compare
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Tn [ nh d02$4 ZG� n�1h�dB1 � n�1h�d�2 ZB2 � n�1h�~d1�d2 ! ZB3

� n�1h�~d1�d3 ! ZB4 � n�1h�d1 ZB5 %0M2s 2 (3.2)

to the critical value za from the N~0,1! distribution, i+e+, z0+05 � 1+645 and z0+10 �
1+282, as the test is one-sided, and we reject the null when Tn � za+

3.2. Consistency and Local Power Properties

We now study the consistency and local power properties of our test+ Our con-
sistency result is as follows+

PROPOSITION 3+2+ Suppose that d � 7, d1 � 4 � d3 � d2 � 4 � d1, and
h 2�d02h1

�2yn � o~1! . Under Assumptions A.1–A.3, the test based on the statis-
tic (3.2) is consistent for F such that G~ f,F! � e � 0.

Note that the preceding proposition is equivalent to saying that the test is
consistent when a~x, y, z!$1 � Mf ~x, y! f ~x, z!0@ f ~x, y, z! f ~x!#%� 0 in a region
of positive density mass+ In theory, we should require the support A of a~{! to
be as large as possible+ In practice, we often have that A � A1 	 A2 	 A3 �
R

d1 	 R
d2 	 R

d3, A1 � $x � R
d1 : x � @ PX � 2 ZSX , PX � 2 ZSX #%, with PX and ZSX

the sample average and standard deviation of X, respectively; and A2 and A3

are defined analogously+7 Note that the support A chosen in this way is depen-
dent on n, but this has no asymptotic impact on the distribution of our statistic+

To define local alternatives we follow the notation of Gouriéroux and Ten-
reiro ~2001! and consider a sequence of d-dimensional strictly stationary pro-
cesses ~Wnt , t � 0!+

Assumption A.1*. ~a! $Wnt [ ~Xnt
' ,Ynt

' , Znt
' !' � R

d1�d2�d3 [ R
d, t �

1, + + + , n; n � 1,2, + + +% is a strictly stationary b-mixing process with coeffi-
cients bm

n satisfying

bm [ sup
n�N

bm
n � O~rm ! for some 0 � r � 1+

Let f @n#~x, y, z! be the joint density of Xnt ,Ynt , and Znt + Let an r 0 as
n r `+ We first examine the power of our test against the sequence of local
alternatives

H1~an ! : f @n# ~ y 6x, z! � f @n# ~ y 6x!@1 � anD~w!� o~an !Dn~w!# , (3.3)

where f @n#~ y 6x, z! and f @n#~ y 6x! are conditional densities derived from
f @n#~x, y, z! and D~w! and Dn~w! are specified in Assumption A+4+
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Assumption A.4 (Local alternatives).

~a! 1 � anD~w! � o~an!Dn~w! � 0 for all w � R
d and all n � N+

~b! �R
d D~w! f @n# ~x, y! f @n# ~z 6x! dw � 0 and �R

d Dn~w! f
@n# ~x, y! f @n# ~z 6x!

dw � 0 for all n � N+
~c! �A6D~w!62f @n#~w!a~w! dw � RM and �A6Dn~w!62f @n#~w!a~w! dw � RM for

some RM � ` for all n � N+
~d! limnr` f @n#~{! exists and f ~w! � limnr` f @n#~w!+

Assumptions A+4~a! and ~b! ensure that f @n#~x, y, z! is a valid p+d+f+ for all
n � N+ Assumption A+4~c! ensures that the remainder term o~an!Dn~w! has no
impact on the asymptotic distribution of the statistic Tn and anD~w! is at dis-
tance O~an! from the null+ Also, we modify Assumptions A+1~b! and ~c! as
follows+

Assumption A.1*. ~b! and ~c! Assumptions A+1~b! and ~c! hold with f @n#

and F @n# replacing f and F, respectively+

PROPOSITION 3+3+ Suppose that d � 7, d1 � 4 � d3 � d2 � 4 � d1, and
h 2�d02h1

�2yn � o~1! and that an � n�102h�d04 in H1~an! . Then under Assump-
tions A.1* and A.2–A.4, Pr~Tn � za6H1~an!! r 1 � F~za � d0~M2s!!, where
d [ �A a~w!D~w!2f ~w! dw.

Remark 2. Proposition 3+3 indicates that our test statistic Tn has nontrivial
power against H1~an! with an � n�102h�d04 whenever d� 0+ The rate n�102h�d04

is slower than n�102 , as h r 0+ In contrast, the Linton and Gozalo ~1997! and
Delgado and González-Manteiga ~2001! tests have nontrivial power in the direc-
tion of alternatives converging to the null at rate n�102 + Thus, the latter tests
would be more powerful than ours against local alternatives such as ~3+3!+

Next, consider the following high-frequency alternatives of the type consid-
ered by Rosenblatt ~1975! and, more recently, by Horowitz and Spokoiny ~2001!:

H1, h~ln ,gn ! : f @n# ~ y 6x, z!

� f @n# ~ y 6x!@1 � lnL~~w � w0 !0gn !� o~ln !Ln~~w � w0 !0gn !# , (3.4)

where w0 � A � R
d1�d2�d3 with a~w0! � 0, ln and gn r 0 as n r `+

Assumption A.4* (Local alternatives).

~a! 1 � lnL~~w � w0!0gn!� o~ln!Ln~~w � w0!0gn!� 0 for all w � R
d and

all n � N+
~b! �R

d L~~w � w0!0gn! f @n#~x, y! f @n#~z 6x! dw � 0 and �R
d Ln~~w � w0!0gn!

f @n#~x, y! f @n#~z 6x! dw � 0 for all n � N+
~c! �A6L~w!62 dw � RM and �A6Ln~w!62 dw � RM for some RM � ` for all

n � N+
~d! f @n#~{! is bounded R

d , limnr` f @n#~{! exists, and f ~w!� limnr` f @n#~w!+
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PROPOSITION 3+4+ Suppose that d � 7, d1 � 4 � d3 � d2 � 4 � d1, and
h 2�d02h1

�2yn � o~1! . Suppose H1, h~ln,gn! hold with nhn
d02ln

2 gnr C � ~0,`# .
Then under Assumptions A.1*, A.2, A.3, and A.4*, Pr~Tn � za6H1, h~ln,gn!! r
1 � F~za � Nd0~M2s!!, where Nd [ Ca~w0! f ~w0!�L~w!

2 dw.

Remark 3. Proposition 3+4 indicates that our test statistic Tn has nontrivial
power against H1, h~ln,gn! for certain sequences of ln and gn+ For example, if
we choose ln � ~nh d02!�103 and gn � ~nh d02!�103~ ln ln n!g for some g� 0, one
can easily see that the condition on ln and gn in the preceding proposition is
met+ Noticing that lngn � o~n�102!, it is known that in this case the powers of
the Linton and Gozalo ~1997! and Delgado and González-Manteiga ~2001! tests
converge to zero as nr `+ Therefore, our test is more powerful than the latter
tests for certain high-frequency alternatives of the form ~3+4!+

4. EXTENSIONS AND DISCUSSION

In the preceding discussion we treat a stochastic process that has continuously
valued realizations+Although this case suffices for many empirical applications
~e+g+, nonparametric testing of Granger noncausality!, our testing procedure is
applicable to a much wider range of situations+ We now discuss two cases that
generalize the preceding basic results+Also, we propose a bootstrap approxima-
tion to the distribution of our statistic+

4.1. Discrete Random Variable

Our test can be modified to incorporate the case in which one of the random
variables in ~X,Y, Z! is discretely valued+ For notational convenience, we explic-
itly assume that Z is a binary variable+8

Let f1~x, y! [ f ~x, y!P~Z �16x, y! be the joint density of ~X,Y, Z! with respect
to the product of Lebesgue measure on R

d1�d2 and counting measure+ Simi-
larly, one defines f1~x! [ f ~x!P~Z �16x!, f0~x! [ f ~x!P~Z � 0 6x!, and f0~x, y! [
f ~x, y!P~Z � 0 6x, y!+ The test is based on the functional

G1~ f,F! [ ��1 � � f ~x, y! f1~x!

f1~x, y! f ~x!
�2

a~x, y! dF1~x, y!

���1 � � f ~x, y! f0~x!

f0~x, y! f ~x!
�2

a~x, y! dF0~x, y!, (4.1)

where a~x, y! is a nonnegative weighting function that can be understood as
our previous a~x, y, z! restricted to R

d1�d2, dF1~x, y! [ f ~x, y!P~Z � 16x, y!
dx dy, and dF0~x, y! [ f ~x, y!P~Z � 0 6x, y! dx dy+ Clearly, under the null that
Y � Z 6 X, G~ f,F ! � 0+ It is easy to show that under suitable conditions,
a normalized version of the sample analogue of G1~ f,F ! is asymptotically
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normally distributed, and the dimension d3 does not affect the convergence rate+
For brevity, we do not report the theoretical result here; it is available in the
working paper version of this paper at http:00www+econ+ucsd+edu0;lsu0+

4.2. Conditional Independence Testing with Estimated Variables

Now consider the case in which W � ~X ',Y ', Z '!' is not observed directly but
can be estimated+Asymptotic results for this case are useful when a conditional
independence test is conducted using residuals or other estimated random vari-
ables+ Let $Mt � R

k, t � 0% be the observed process+ Of interest are certain
functions calculated from M, i+e+, W~M,u! [ ~X~M,u!',Y~M,u!', Z~M,u!'!' �
R

d1�d2�d3 [ R
d, where the parameter u � Q � R

p+ The null is, for some
unknown u0 � Q,

H0 : Y~M,u0 ! � Z~M,u0 ! 6 X~M,u0 !+ (4.2)

Denote the p+d+f+s of W~M,u! and its subvectors by f ~w;u!, f ~x, y;u!, f ~x, z;u!,
and f ~x;u!, respectively+ Let F~w;u! be the c+d+f+ of W~M,u!+ Under the null,
we have

G2~ f,F;u0 ! [ ��1 � � f ~x, y;u0 ! f ~x, z;u0 !

f ~w;u0 ! f ~x;u0 !
�2

a~w;u0 ! dF~w;u0 !� 0, (4.3)

where a~w;u! [ a~w~u!! is a nonnegative weighting function that depends on
u only through w and is otherwise the same as a~w! used in Section 3+ We
suppose that there exist estimates Zu of u0 that are Mn -consistent under the null+
To implement the test, we replace G2~ f,F;u0! by its sample analogue

G2~ Zf, ZF; Zu! �
1

n �
t�1

n �1 � � Zf ~Xt ~ Zu!,Yt ~ Zu!! Zf ~Xt ~ Zu!, Zt ~ Zu!!

Zf ~Wt ~ Zu!! Zf ~Xt ~ Zu!!
�2

a~Wt ~ Zu!!,

where, e+g+, Wt~ Zu! [ W~Mt , Zu! and Zf ~w;u! is the standard NW density esti-
mator of f ~w;u! that uses “observations” $Wt~u!,1 � t � n%+ Under mild reg-
ularity conditions, we can show by applying results of Andrews ~1995! that
estimation of Zu does not affect the asymptotics, as

G2~ Zf, ZF; Zu! � G2~ Zf, ZF;u0 !� op~n
�1h�d02 !+ (4.4)

4.3. Smoothed Local Bootstrap

Generally speaking, the basic problems for the bootstrap are how to impose
the null in the resampling scheme and accommodate the dependence structure
in the data+ We stress the fact that the theorems obtained in this paper are
based on asymptotic considerations+ As Neumann and Paparoditis ~2000! noted,
to get an asymptotically correct estimator of the null distribution of Tn, it is
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not necessary to reproduce the whole dependence structure of the stochastic
processes generating the original observations+ Simple resampling from the
empirical distribution of Wt � ~Xt

' ,Yt
' , Zt
'!' will not impose the null restric-

tion+ Paparoditis and Politis ~2000! propose a local bootstrap procedure for
nonparametric kernel estimators under general dependence conditions+We essen-
tially do the same thing here, except that our conditioning variables are not
necessarily lagged dependent variables+ Let W [ $Wt %t�1

n + We draw bootstrap
resamples $Xt

*,Yt
*, Zt

*%t�1
n based on the following smoothed local bootstrap

procedure: ~1! Draw a bootstrap sample X * [ $Xt
*%t�1

n from the smoothed ker-
nel density Df ~x! � n�1 �t�1

n Lb~Xt � x!, where Lb~x! � b�d1L~x0b! with L~{!
a product kernel of a univariate density l, and b � 0 the resampling band-
width+ ~2! For t � 1, + + + , n, given Xt

*, draw Yt
* and Zt

* independently from
the smoothed conditional density Df ~ y 6Xt

*! � �s�1
n Lb~Ys � y!Lb~Xs � Xt

*!0
�r�1

n Lb~Xr � Xt
*! and Df ~z 6Xt

*! � �s�1
n Lb~Zs � z!Lb~Xs � Xt

*!0�r�1
n Lb

~Xr � Xt
*!, respectively, and denote Wt

* [ ~Xt
*' ,Yt

*' , Zt
*'!' and W q* [

$Wt
*%t�1

n + ~3! Compute a bootstrap statistic Tn
* in the same way as Tn, with W *

replacing W+ ~4! Repeat steps ~1! and ~2! B times to obtain B bootstrap test
statistics $Tnj

*%j�1
B + Paparoditis and Politis ~Rmk+ 2+1! explain how to generate

the bootstrap replicates computationally+
Let Pr* denote probability conditional on the sample W+ The level a critical

values Ica are computed as an approximate solution to Pr* @Tn
* � Ica# � a+ The

bootstrap p-value is then given by p* [ B�1 �j�1
B 1~Tnj

* � Tn!+ Several facts are
worth mentioning: ~1! Conditionally on W, the bootstrap replicates Wt

* and
Ws
* are independent for t � s, and they have the same distributions; ~2! condi-

tionally on W, Yt
* and Zt

* are independent given Xt
*+ We shall use these facts

repeatedly in the proof of Theorem 4+1 in Appendix C+
To show that the smoothed local bootstrap procedure works, we impose the

following conditions on L~{! and b+

Assumption A.5 (Bootstrap kernel and bandwidth).

~a! The kernel L is a product kernel of a bounded symmetric kernel density
l :R r R

� such that �R uil~u! du � di0 ~i � 0,1!+
~b! l is r times continuously differentiable such that �R u jl ~r!~u! du � 0 for

j � 0,1, + + + , r � 1 and �R url ~r!~u! du � `+
~c! As n r `, b r 0, and nbd�2r0~ ln n!g r C � ~0,`# for some g � 0+

Assumption A+5~a! is standard+ We impose Assumptions A+5~b! and ~c! to
ensure that the smoothed kernel densities Df ’s are well behaved, e+g+, the r th
derivatives of Df ~x! are bounded uniformly on a compact set with probability
approaching 1 as n r `+ When r � 4, l � w, the standard normal density,
satisfies A+5~b!+

THEOREM 4+1+ Suppose Assumptions A.1–A.3 and A.5 hold; if d � 7 and
d1 � 4 � d3 � d2 � 4 � d1, then
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(i) Tn
* d
&& N~0,1! conditionally on W;

(ii) P~Tn � Tn
*! r 1 provided that G~ f,F! � « � 0.

Theorem 4+1~i! shows that the smoothed local bootstrap provides an asymp-
totic valid approximation to the null limit distribution of Tn ~i+e+, N~0,1!!+ This
holds as long as we generate the bootstrap data by imposing the null hypoth-
esis+ Theorem 4+1~ii! implies that the test Tn based upon the bootstrap critical
value is consistent against every global alternative for which f ~ y 6x, z!� f ~ y 6x!
does not hold almost everywhere+ That is, Tn r ` with probability approach-
ing 1 under H1+We will compare the finite-sample performance of the smoothed
local bootstrap with that of the asymptotic normal approximation in our
simulation+

5. NUMERICAL RESULTS

5.1. Monte Carlo Simulations

We now present Monte Carlo experiment results that illustrate the finite-sample
performance of our test+ First, we consider the following data generating pro-
cesses ~DGPs!:

DGP1s: Wt � ~«1, t ,«2, t ,«3, t !
', where $«1, t , «2, t , «3, t % are i+i+d+ N~0, I3!+

For DGPs 2s–4s and DGPs 1p–5p, which follow, Wt � ~Yt�1,Yt , Zt�1!
', where

Zt � 0+5Zt�1 � «2, t , $«1, t , «2, t % are i+i+d+ N~0, I2!, and

DGP2s: Yt � 0+5Yt�1 � «1, t ;
DGP3s: Yt � Mht«1, t , ht � 0+01 � 0+5Yt�1

2 ;
DGP4s: Yt � Mh1, t«1, t , Zt � Mh2, t«2, t , h1, t � 0+01 � 0+9h1, t�1 � 0+05Yt�1

2 ,
h2, t � 0+01 � 0+9h2, t�1 � 0+05Zt�1

2 ;
DGP1p: Yt � 0+5Yt�1 � 0+5Zt�1 � «1, t ;
DGP2p: Yt � 0+5Yt�1 � 0+5Zt�1

2 � «1, t ;
DGP3p: Yt � 0+5Yt�1 Zt�1 � «1, t ;
DGP4p: Yt � 0+5Yt�1 � 0+5Zt�1«1, t ;
DGP5p: Yt � Mht«1, t , ht � 0+01 � 0+5Yt�1

2 � 0+25Zt�1
2 +

DGP6p: Wt � ~Yt�1,Yt , Zt�1!
', where Yt � Mh1, t«1, t , Zt � Mh2, t«2, t , h1, t �

0+01 � 0+1h1, t�1 � 0+4Yt�1
2 � 0+5Zt�1

2 , h2, t � 0+01 � 0+9h2, t�1 � 0+05Zt�1
2 ,

and $«1, t , «2, t % are i+i+d+ N~0, I2!+

DGPs 1s– 4s allow us to examine the level of the test, whereas DGPs 1p– 6p
are used to study power properties+ These DGPs cover a variety of linear and
nonlinear stochastic processes commonly studied in time series analysis+ In par-
ticular, we have Granger causality in the mean ~resp+ variance! in DGPs 1p–3p
~resp+ DGPs 4p– 6p!+ DGPs 3s and 4s and 5p and 6p specify processes of
~G!ARCH type+
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We use a fourth-order kernel in estimating all required densities: k~u! �
~3 � u2 !w~u!02+ The weighting function a~w! is given in note 7+ Thus,
�R

3 a~w! dw � 1 and �R
3 a~w!2 dw � 1

27
_ + As it is difficult to specify the opti-

mal bandwidth sequence, we take h � cn�108+5 for a variety of c’s+
To implement our test, we rescale the data so that each variable has sample

mean zero and variance 1+ For each of DGPs 1s– 4s, we choose c � 1 in calcu-
lating Tn and make a comparison between the asymptotic normal and bootstrap
approximations to the distribution of Tn, with n � 100+ For the bootstrap approx-
imation, we choose B � 1,000, b � n�105, and l the standard normal p+d+f+ In
Figure 1, the solid line ~Hel! denotes the sample distribution of Tn obtained
over 2,000 simulations+ The dashed line ~Normal! denotes the normal approx-
imation and the dotted line ~Helb! the bootstrap approximation+ For each of
DGPs 1s– 4s, the bootstrap approximation is better than the normal approxima-
tion in the right tail+ As Härdle and Mammen ~1993! remark, the inaccuracy of
the normal approximation increases with the dimension of ~X,Y, Z!, and so we
recommend the use of the bootstrap in applications+

Linton and Gozalo ~1997! base their tests of conditional independence on
the functional An~w! � $n�1 �t�1

n 1~Wt � w!% 	 $n�1 �t�1
n 1~Xt � x!% �

$n�1 �t�1
n 1~Xt � x! 1~Yt � y!%$n�1 �t�1

n 1~Xt � x!1~Zt � z!%, where w �
~x, y, z!+ Specifically, their test statistics are of the Cramér–von Mises
and Kolmogorov–Smirnov types: CMn � �t�1

n An
2~Wt !, KSn � Mn max1�t�n

6An~Wt !6+ Delgado and González-Manteiga ~2001! base their tests of condi-
tional independence on the functional Ln~w! � n�1 �t�1

n $1~Yt � y! �
EFn~ y 6Xt !% Df ~Xt !1~Xt � x!1~Zt � z!, where for bandwidth h2 and kernel K2,
EFn~ y 6Xt ! [ n�1h2

�d1 �s�1
n 1~Ys � y!K2~~Xt � Xs!0h2!0 Df ~Xt ! and Df ~Xt ! [

n�1h2
�d1 �s�1

n K2~~Xt � Xs!0h2!+ We denote their two test statistics as SCMn �
�t�1

n Ln
2 ~Wt ! and SKSn � Mn max1�t�n 6Ln~Wt !6+ We choose K2 to be the stan-

dard normal p+d+f+ and let h2 � n�103 in our simulation+ Note that both the Lin-
ton and Gozalo and Delgado and González-Manteiga tests were developed for
i+i+d+ data+ To implement their tests here, we replace their bootstrap procedures
by the preceding local bootstrap to account for data dependence+ To compare
the performance of these tests with ours, we implement our test with c � 1, 1+5,
and 2+ To save computation time, we use B � 200 and 250 repetitions unless
otherwise stated+

Tables 1 and 2 report the estimated levels and powers for the 5% and 10%
tests+Also reported in the tables are the standard linear Granger causality results
~LINn! with 1,000 repetitions, where we examine whether Zt�1 should enter
the regression of Yt on Yt�1 linearly+ From Table 1, we see that the levels of all
tests behave reasonably well despite the fact that the both the Delgado and
González-Manteiga ~2001! test and our test ~for small values of c! tend to be
oversized for small sample sizes+ From Table 2, we see that except for DGP1p,
where the linear Granger causal relation is true, the standard linear Granger
causality test performs worse than all other tests in all cases and SKSn in some
cases+ It is not surprising that the CMn and SCMn tests beat the KSn and SKSn
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Figure 1. Comparison of a symptotic and bootstrap approximations to the distribution of Tn+
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tests, respectively, as this has been seen in several other studies+ Also, the CMn

test tends to complement the SCMn test whereas the KSn test tends to dominate
the SKSn test in power+ As far as our test is concerned, the CMn and SCMn

tests are more powerful than our test in detecting linear Granger causality in
the mean for small values of c whereas for other cases, our test outperforms+

Next, we consider high-frequency alternatives of the form

Yt � 0+5Xt � 4tw~Zt 0t!� 0+5«t ,

where $Xt , Zt , «t % are i+i+d+ N~0, I3! and as before w is the standard normal
p+d+f+ We consider t � $0,0+5,1,2% , where Yt � 0+5Xt � 0+5«t for t � 0, and
we denote the corresponding DGPs as DGP1h–DGP4h+ In this case, Wt �
~Xt ,Yt , Zt !

'+ We also check whether Zt should enter the regression of Yt on Xt

linearly and denote the resulting t-test statistic as LINn+
Table 3 reports the rejection frequency for various tests+ For t� 0 ~DGP1h!,

the null hypothesis is true, and all tests tend to be undersized for small n+
When t � 0, the powers of the Linton and Gozalo ~1997! and Delgado and
González-Manteiga ~2001! tests are significantly lower than the power of
our test, as expected+ Also, for some values of t, the Linton and Gozalo
and Delgado and González-Manteiga tests are beaten even by the simple test
LINn+

Table 1. Level comparison of the tests

DGP1s DGP2s DGP3s DGP4s DGP1s DGP2s DGP3s DGP4s

n � 100, 5% n � 100, 10%
LINn 0+044 0+061 0+050 0+060 0+095 0+121 0+110 0+106
CMn 0+054 0+058 0+060 0+048 0+094 0+100 0+132 0+120
KSn 0+042 0+056 0+056 0+040 0+100 0+112 0+140 0+108
SCMn 0+076 0+060 0+084 0+064 0+108 0+080 0+156 0+116
SKSn 0+064 0+056 0+088 0+068 0+128 0+108 0+124 0+148
Tn, c � 1 0+096 0+060 0+048 0+072 0+176 0+152 0+120 0+148
Tn, c � 1+5 0+068 0+056 0+052 0+056 0+124 0+120 0+120 0+124
Tn, c � 2 0+072 0+036 0+072 0+048 0+136 0+072 0+120 0+084

n � 200, 5% n � 200, 10%
LINn 0+043 0+053 0+042 0+050 0+840 0+109 0+101 0+090
CMn 0+044 0+056 0+060 0+048 0+095 0+100 0+108 0+112
KSn 0+068 0+053 0+048 0+084 0+096 0+088 0+104 0+124
SCMn 0+048 0+060 0+064 0+068 0+092 0+100 0+124 0+140
SKSn 0+056 0+028 0+064 0+072 0+092 0+084 0+112 0+132
Tn, c � 1 0+064 0+052 0+080 0+080 0+100 0+140 0+136 0+140
Tn, c � 1+5 0+064 0+056 0+048 0+036 0+120 0+128 0+120 0+092
Tn, c � 2 0+044 0+060 0+056 0+048 0+092 0+144 0+084 0+096
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5.2. Application to Exchange Rate Data

Over the last two decades many studies have reported that foreign exchange
rates exhibit nonlinear dependence, but researchers often neglect this when test-

Table 2. Power comparison of the tests

DGP1p DGP2p DGP3p DGP4p DGP5p DGP6p

n � 100, 5%
LINn 0+999 0+337 0+213 0+126 0+163 0+153
CMn 0+920 0+548 0+504 0+412 0+384 0+188
KSn 0+780 0+404 0+380 0+288 0+292 0+156
SCMn 0+924 0+464 0+352 0+500 0+224 0+196
SKSn 0+728 0+236 0+288 0+340 0+120 0+112
Tn, c � 1 0+668 0+756 0+388 0+860 0+828 0+680
Tn, c � 1+5 0+888 0+940 0+512 0+924 0+952 0+812
Tn, c � 2 0+952 0+944 0+576 0+940 0+988 0+912

n � 200, 5%
LINn 1+000 0+354 0+250 0+113 0+172 0+143
CMn 0+992 0+748 0+788 0+680 0+476 0+360
KSn 0+952 0+552 0+660 0+532 0+336 0+284
SCMn 0+980 0+648 0+620 0+720 0+352 0+280
SKSn 0+964 0+324 0+512 0+552 0+148 0+136
Tn, c � 1 0+900 0+960 0+596 0+992 0+968 0+880
Tn, c � 1+5 0+980 1+000 0+808 0+992 0+972 0+972
Tn, c � 2 1+000 1+000 0+864 1+000 1+000 0+996

n � 100, 10%
LINn 1+000 0+436 0+284 0+175 0+239 0+233
CMn 0+964 0+652 0+644 0+480 0+472 0+304
KSn 0+868 0+492 0+496 0+428 0+408 0+232
SCMn 0+960 0+564 0+488 0+612 0+324 0+300
SKSn 0+876 0+372 0+400 0+436 0+176 0+212
Tn, c � 1 0+772 0+840 0+532 0+932 0+912 0+776
Tn, c � 1+5 0+948 0+972 0+692 0+964 0+972 0+896
Tn, c � 2 0+976 0+988 0+712 0+964 0+992 0+928

n � 200, 10%
LINn 1+000 0+442 0+327 0+176 0+253 0+209
CMn 1+000 0+856 0+904 0+752 0+592 0+508
KSn 0+988 0+676 0+756 0+676 0+484 0+404
SCMn 0+988 0+732 0+728 0+812 0+480 0+424
SKSn 0+984 0+468 0+604 0+664 0+276 0+232
Tn, c � 1 0+944 0+984 0+712 0+996 0+976 0+936
Tn, c � 1+5 0+984 1+000 0+896 0+992 0+984 0+996
Tn, c � 2 1+000 1+000 0+936 1+000 1+000 0+996
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ing Granger causality+ One exception is Hong ~2001!, who proposes a test for
volatility spillover and applies it to study the volatility spillover between two
weekly nominal U+S+ dollar exchange rates, Deutschemark ~DM! and Japanese
yen ~YEN!+

In this application, we apply our nonparametric test to examine the causal
relationship between DM and YEN and that between DM and the British pound
~PD!, and we compare this to some previous tests+ The data are obtained from
Datastream for the sample period from 19 January 1994 to 19 January 2004,
with 2,609 observations total+ The exchange rates are the local currency against
the U+S+ dollar+ As is standard, we let DM, YEN, and PD stand for the natural
logarithm of the preceding three exchange rates multiplied by 100+ The aug-
mented Dickey–Fuller test indicates that there is a unit root in all three level
series but not in the first-differenced series, DDM, DYEN, and DPD+ Johan-
sen’s likelihood test indicates that DM is not cointegrated with YEN or PD+
Therefore, both the linear and nonlinear Granger causality tests will be con-
ducted on the first differenced data+

For conciseness, we only consider the dynamic interaction between exchange
rates at the one-day lag+ For example, for testing whether YEN Granger-
causes DM linearly, we check whether b � 0 in DDMt � a0 � aDDMt�1 �
bDYENt�1 � «t ; for testing whether YEN Granger-causes DM nonlinearly,
we check H0,NL: DDMt � DYENt�16DDMt�1+

The results are summarized in Table 4+ The linear Granger causality test ~LIN!
does not reveal a Granger causal relationship between DM and YEN or PD at a

Table 3. Comparison of tests for high-frequency alternatives

DGP1h DGP2h DGP3h DGP4h DGP1h DGP2h DGP3h DGP4h

n � 100, 5% n � 100, 10%
LINn 0+045 0+055 0+133 0+190 0+100 0+115 0+187 0+267
CMn 0+020 0+160 0+280 0+128 0+064 0+276 0+428 0+248
KSn 0+024 0+128 0+176 0+112 0+072 0+256 0+316 0+172
SCMn 0+012 0+088 0+180 0+080 0+036 0+168 0+288 0+120
SKSn 0+036 0+156 0+196 0+116 0+072 0+220 0+292 0+152
Tn, c � 1 0+028 0+696 0+948 0+764 0+072 0+808 0+968 0+876
Tn, c � 1+5 0+044 0+828 0+980 0+892 0+068 0+916 0+984 0+948
Tn, c � 2 0+020 0+596 0+976 0+936 0+044 0+708 0+992 0+968

n � 200, 5% n � 200, 10%
LINn 0+047 0+059 0+124 0+202 0+094 0+115 0+207 0+286
CMn 0+068 0+444 0+708 0+332 0+100 0+580 0+816 0+536
KSn 0+056 0+284 0+524 0+220 0+104 0+448 0+680 0+336
SCMn 0+024 0+196 0+356 0+104 0+036 0+272 0+488 0+196
SKSn 0+044 0+204 0+356 0+140 0+096 0+336 0+476 0+236
Tn, c � 1 0+040 0+980 1+000 0+964 0+072 0+988 1+000 0+988
Tn, c � 1+5 0+028 0+988 0+992 0+996 0+064 0+996 0+992 0+996
Tn, c � 2 0+020 0+972 1+000 0+996 0+080 0+988 1+000 0+996
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one-day lag, similar to the Linton and Gozalo ~1997! and Delgado and González-
Manteiga ~2001! tests+ In contrast, our nonparametric test reveals unidirec-
tional Granger causality from DM to YEN and from PD to DM+ This suggests
that at a one-day lag the exchange rates across countries interact strongly with
each other+ One obvious reason for the failure of the linear Granger causality
test and the Linton and Gozalo and Delgado and González-Manteiga tests in
detecting such causal linkages is that exchange rates exhibit unambiguously
nonlinear dependence across markets+ The volatility spillover between exchange
rates is a special case of such nonlinear dependence+

6. CONCLUSION

This paper develops asymptotic distribution theory for a nonparametric test of
conditional independence under weak dependence conditions+ The test is directly
applicable to testing Granger non-causality+ It also applies to cases where not
all variables are continuous or observable+ Monte Carlo experiments indicate
that the our test outperforms the Linton and Gozalo ~1997! and Delgado and
González-Manteiga ~2001! tests significantly in a variety of DGPs+ An applica-
tion to exchange rate data demonstrates the power of our test in detecting non-
linear Granger causal relationships+

To improve the asymptotic approximation to the finite-sample distribution of
our test statistic, one can consider higher order refinements+ If the distributions
of our test statistic and its bootstrap analogue admit Edgeworth expansion, we
conjecture that the bootstrap distribution approximates the null distribution of
the test statistic with an error rate that can be arbitrarily close to O~n�102!, and
this will significantly improve the normal approximation rate of O~h d2 � h d3 !+
Recently, Nishiyama and Robinson ~2000! and Linton ~2002! have established

Table 4. Applications to Deutschemark ~DM!, Japanese yen ~YEN!, and Brit-
ish pound ~PD!

DM and YEN DM and PD

Tests0H0 DYEN n0 DDM DDM n0 DYEN DPD n0 DDM DDM n0 DPD

LINn 0+219 0+431 0+997 0+234
CMn 0+915 0+790 0+900 0+320
KSn 0+915 0+625 0+785 0+365
SCMn 0+710 0+865 0+925 0+340
SKSn 0+620 0+905 0+770 0+635
Tn, c � 1 0+185 0+020 0+005 0+105
Tn, c � 1+5 0+385 0+025 0+020 0+110
Tn, c � 2 0+450 0+020 0+065 0+200

Note: The notation n0 means “does not Granger cause+” The central entries are the p-values for each test+ Band-
width sequences and kernels are chosen as in the simulations+
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the validity of Edgeworth expansion for a degenerate U-statistic with variable
kernel+ This suggests that a rigorous proof establishing the validity of Edge-
worth expansion in our context should be possible+ Also, such an expansion
will offer a solution to the choice of optimal bandwidth; we leave this for future
research+

Other interesting directions for future research are to accommodate nonsta-
tionary processes and to extend our test to the case in which some of the ran-
dom variables are nonparametrically estimated+

NOTES

1+ For categorical data there are numerous tests of independence and conditional independence;
see Rosenbaum ~1984! and Yao and Tritchler ~1993!, among others+

2+ We adopt the same notational convention for the kernel K as for the density f, namely, to
indicate the kernel by the list of its arguments or by specifying the dimension of its arguments+

3+ Fernandes and Flores ~2000! employ a generalized entropy measure that includes Hellinger
distance as a special case to test conditional independence+ The first-order terms of their functional
expansion are also degenerate, and so they use a weight function to avoid the degeneracy, which
unfortunately results in poor small-sample performance+

4+ In simulations we find that for some DGPs, there is about a 0+1% chance that Zf ~x, y! Zf ~x, z!0
@ Zf ~x, y, z! Zf ~x!# takes negative values when ~x, y, z! lies two standard deviations from the sample
mean of ~X,Y, Z!+ To avoid negative density estimates, we recommend replacing Zf ~{! by max~ Zf ~{!,
0+10n! 1$ Zf ~{! � 0% � Zf ~{!1$ Zf ~{! � 0% ; this change does not affect the asymptotic theory+

5+ For the vector argument in a function, we find it convenient to assume that every vector is a
row vector to avoid proliferation of transposes+

6+ We thank a referee who kindly brought to our attention these two references+
7+ Alternatively, one can use the Bartlett kernel function ~or other density-form function! as

the weighting function a+ For example, if the ith element of W, Wi , has mean zero and standard
deviation one ~perhaps after being recentered and rescaled!, for i � 1, + + + ,d, one can use a~w! �
Pi�1

d @~ 12
_ � 1

4
_ wi !1$�2 � wi � 0% � ~ 12

_ � 1
4
_ wi !1$0 � wi � 2%# +

8+ If Y is a binary variable, one can exchange the role of Y and Z because Y � Z 6 X if and only
if Z � Y 6 X+ The case for which both Y and Z are discretely valued is treated in Rosenbaum ~1984!+
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APPENDIX A: Some Useful Definitions,
Lemmas, and Theorems

Here we provide a definition, two lemmas, and one theorem that are used in the proofs
of the main theorems and propositions in the text+
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DEFINITION A+1+ Let $Ut , t � Z % be a d-dimensional strictly stationary stochastic
process and let Fs

t denote the s-algebra generated by ~Us, + + + ,Ut ! for s � t. The pro-
cess is called b-mixing or absolutely regular, if as m r `,

bm � sup
s�N

E� sup
AeFs�m

`
$6P~A6F�`

s !� P~A!6%�r 0.

For a sequence of d-dimensional strictly stationary processes ~Unt , t � Z ! , denote by
bm

n the b-mixing coefficient of process ~Wnt , t � Z !:

bm
n � E� sup

AeFn,m
`
$6P~A6Fn,�`

0 !� P~A!6%� ,

where Fn,m
` (resp. Fn,�`

0 ) is the s-algebra generated by Unt , t � m (resp. Unt , t � 0).

LEMMA A+2 ~Yoshihara, 1976!+ Let $Ut , t � 0% be a d-dimensional stochastic pro-
cess satisfying Assumption A.1(a) in the text. Let h~v1, + + + , vk! be a Borel measurable
function on R

kd such that for some d � 0 and given j, M [ max$�R
kd 6h~v1, + + + , vk !61�d

dF~v1, + + + , vk !,��R
kd 6h~v1, + + + , vk !61�d dF ~1! ~v1, + + + , vj ! dF ~2! ~vj�1, + + + , vk!% exists. Then

6�R
kd h~v1, + + + , vk ! dF~v1, + + + , vk ! � ��R

kd h~v1, + + + , vk ! dF ~1! ~v1, + + + , vj ! dF ~2! ~vj�1, + + + ,
vk !6 � 4M 10~1�d!bm

d0~1�d! , where m [ ij�1 � ij , F, F ~1!, and F ~2! are distributions of
random vectors ~Ui1 , + + + ,Uik ! , V1[ ~Ui1 , + + + ,Uij ! , and V2[ ~Uij�1

, + + + ,Uik ! , respectively;
and i1 � i2 � {{{ � ik.

LEMMA A+3 ~Yoshihara, 1989!+ Let h be defined as before; then E6E@h~V1,V2!6V1#�
EV1

h~V1,V2 !6 � 4M 10~1�d!bm
d0~1�d! , where EV1

h~V1,V2 ! [ H~V1! with H~v1! [
E@h~v1,V2!# .

Now let gn~{! and hn~{,{! be Borel measurable functions on R
d and R

d 	 R
d, respec-

tively+ Suppose E@gn~U0!# � 0, E@hn~U0, v!# � 0, and hn~u, v! � hn~v,u! for all ~u, v! �
R

d 	 R
d+ Define Gn [ n�102 �i�1

n gn~Ui ! and Hn [ n�1 �1�i�j�n@hn~Ui ,Uj ! �
Ehn~Ui ,Uj !# + Clearly, Gn and Hn are degenerate U-statistics of respective orders 1 and 2+
Let p � 0 and let $ PUt , t � 0% be an i+i+d+ sequence where PU0 is an independent copy of
U0+ Define

un~ p! [ max� max
1�i�n

7hn~Ui ,U0 !7p , 7hn~U0 , PU0 !7p� ,
vn~ p! [ max� max

1�i�n
7Gn0~Ui ,U0 !7p , 7Gn0~U0 , PU0 !7p� ,

wn~ p! [ 7Gn0~U0 ,U0 !7p ,

zn~ p! [ max
0�i�n

max
1�j�n

$7Gnj ~Ui ,U0 !7p , 7Gnj ~U0 ,Ui !7p , 7Gnj ~U0 , PU0 !7p %,

where Gn, i~u, v! [ E@hn~Ui ,u!hn~U0, v!# and 7{7p [ $E6{6 p%10p+

THEOREM A+4 ~Tenreiro, 1997!+ Using the preceding notation, suppose there exist
d0 � 0, g0 � 1

2
_ , and g1 � 0 such that
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(i) 7gn~U0!74 � O~1!;
(ii) E@gn~Ui !gn~U0!# � ci � o~1! , i � 0,1,2, + + + ;

(iii) un~4 � d0! � O~ng0 !;
(iv) vn~2! � o~1!;
(v) wn~2 � d002! � o~n102!;

(vi) zn~2!n
g1 � O~1!;

(vii) E@hn~U0, PU0!#
2 � 2 Is2

2 � o~1! .

Then ~Gn,Hn! is asymptotically normally distributed with mean zero and covariance
matrix � Is1

2 0
0 Is2

2� , where Is1
2 [ c0 � 2 �i�1

` ci .

APPENDIX B: Proof of Theorem 3+1

We begin by expanding the functional G~ Zf,F! using the functional delta method+ The
only difference between G~ Zf,F! and ZG [ G~ Zf, ZF! is that the latter is an average over the
empirical distribution function ZF instead of F+ We will show in Lemma B+6 that this
difference is asymptotically inconsequential+ To bound the remainder term in the func-
tional expansion of G~ Zf,F!, we define the sup norm, 7g7 [ supu�A�R

p 6g~u!6+ In what
follows, the dimension p of u will be d, d1 � d2, d1 � d3, or d1, depending on which
subset of w[ ~x, y, z! we are referring to ~in this Appendix all vectors are row vectors!+
Define Vi [ $g :R pi r R, g is bounded, �g � 0, and 7g7 � b02%, with pi � d, d1 � d2,
d1 � d3, and d1, for i � 1, + + + ,4, respectively+ Throughout this Appendix, C denotes a
generic constant that may vary from one place to another+ The bar notation denotes an
i+i+d+ copy of the corresponding processes, independent of that process+ For example,
$ RWt , t � 0% is an i+i+d+ sequence having the same marginal distributions as $Wt , t � 0%+
See Lemmas B+4 and B+6 for details+

One of the main ingredients in the proof is the functional expansion of G, summa-
rized as follows+

LEMMA B+1+ Let F be a c.d.f. on R
d. Let gxyz, gxy, gxz, and gx belong to Vi , i �

1, 2,3, and 4, respectively. Then under Assumption A.1(b) and H0, G~{,F! has the fol-
lowing expansion:

G~ f � g;F! �
1

4
�� gxyz

f ~x, y, z!
�

gxy

f ~x, y!
�

gxz

f ~x, z!
�

gx

f ~x!
�2

a~w! dF~w!� R~g,F! ,

where sup $6R~g,F!60~7gxyz73 � 7gxy73 � 7gxz73 � 7gx73! : ~gxyz, gxy, gxz, gx ! � V1 	V2 	
V3 	 V4% � `.

Proof. Define

C~t! ���1 � � ~ f ~x, y!� tgxy !~ f ~x, z!� tgxz !

~ f ~x, y, z!� tgxyz !~ f ~x!� tgx !
�2

a~w! dF~w!,

where ~gxyz, gxy, gxz, gx ! are such that ~tgxyz,tgxy,tgxz,tgx ! � V1 	 V2 	 V3 	 V4 for
all 0 � t � 1+ From the explicit expression for C~t! and the properties of the f ’s and
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g’s, it follows that C is three times continuously differentiable in t on @0,1# + Applying
Taylor’s formula with Lagrange remainder to C, we get

C~t! � C~0!� tC '~0!� t2C ''~0!02 � t3C '''~t* !06,

where 0 � t* � t+ Note that C~0! � 0 under H0+ Define w1~t,w! [ @ f ~x, y! � tgxy#
@ f ~x, z! � tgxz# , w2~t,w! [ @ f ~x, y, z! � tgxyz# @ f ~x! � tgx # + It is immediate that

C '~t! ���1 � �w2~t,w!

w1~t,w!
�

	 � ]w1~t,w!0]t

w2~t,w!
�
w1~t,w!]w2~t,w!0]t

w2~t,w!2
� a~w! dF~w!+ (B.1)

Under the null, C '~0! � 0+ That is, the first-order term vanishes in the expansion of
C~t! around t � 0+

Next, we have

C ''~t! �
1

2
��w1~t,w!

w2~t,w!
� w2~t,w!]w1~t,w!0]t

w1~t,w!2
�
]w2~t,w!0]t

w1~t,w!
�

	 � ]w1~t,w!0]t

w2~t,w!
�
w1~t,w!]w2~t,w!0]t

w2~t,w!2
� a~w! dF~w!

� ��1 � �w2~t,w!

w1~t,w!
�

	 � ]2w1~t,w!0]t2

w2~t,w!
�

2]w1~t,w!0]t]w2~t,w!0]t

w2~t,w!2
+

�
w1~t,w!]2w2~t,w!0]t2

w2~t,w!2
�

2w1~t,w!~]w2~t,w!0]t!2

w2~t,w!3
� a~w! dF~w!+

Note that under H0, at t � 0, the second term in the last expression vanishes and that
]w1~0,w!0]t � gxy f ~x, z! � gxz f ~x, y!, ]w2~0,w!0]t � gxyz f ~x! � gx f ~x, y, z!, and so
we can easily obtain that under H0,

C ''~0! �
1

2
�� gxyz

f ~x, y, z!
�

gxy

f ~x, y!
�

gxz

f ~x, z!
�

gx

f ~x!
�2

a~w! dF~w!+

Further, notice that ]2w1~t,w!0]t2 � 2gxygxz and ]2w2~t,w!0]t2 � 2gxyzgx , both of which
are free of t+ One can characterize the remainder term by first computing C '''~t!+ The
explicit formula for C '''~t! is lengthy+ By the Cauchy–Schwartz inequality and Assump-
tion A+1~b!, we can bound this remainder by a factor of ~7gxyz73 � 7gxy73 � 7gxz73 �
7gx73!+ Consequently, for t � 1, we obtain that under H0

854 LIANGJUN SU AND HALBERT WHITE

https://doi.org/10.1017/S0266466608080341 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080341


C~1! �
1

4
�� gxyz

f ~x, y, z!
�

gxy

f ~x, y!
�

gxz

f ~x, z!
�

gx

f ~x!
�2

a~w! dF~w!

� O~7gxyz73 � 7gxy73 � 7gxz73 � 7gx73 !,

and the lemma follows+ �

LEMMA B+2+ Under Assumptions A.1, A.2, and A.3(a), and H0, we have for any
c.d.f. F,

G~ Zf,F! �
1

4
�� Zf ~x, y, z!

f ~x, y, z!
�
Zf ~x, y!

f ~x, y!
�
Zf ~x, z!

f ~x, z!
�
Zf ~x!

f ~x!
�2

a~w! dF~w!

� Op~7 Zf ~x, y, z!� f ~x, y, z!7`
3 ! ,

where 7 Zf ~x, y, z! � f ~x, y, z!7` [ sup~x, y, z!�A6 Zf ~x, y, z! � f ~x, y, z!6.

Proof. We apply Lemma B+1 with gxyz � Zf ~x, y, z!� f ~x, y, z!, gxy � Zf ~x, y!� f ~x, y!,
gxz � Zf ~x, z! � f ~x, z!, and gx � Zf ~x! � f ~x!+ First note that the b-mixing condition in
Assumption A+1 implies a-mixing+ One can modify the proof of Theorem 4+3 in Lieb-
scher ~1996! with Assumption A+2 in place of his condition on the kernel function K and
get

7 Zf ~w!� f ~w!7` � Op~n
�102h�d02~ ln n!g06 � h r !� op~1! (B.2)

for some g � 0+ Similar expressions hold for 7 Zf ~u!� f ~u!7`, with u � ~x, y!, ~x, z!, or
x+ Let S [ $7 Zf ~w! � f ~w!7` � b02, 7 Zf ~x, y! � f ~x, y!7` � b02, 7 Zf ~x, z! � f ~x, z!7` �
b02, and 7 Zf ~x! � f ~x!7` � b02%+ Then Pr @S# r 0 so that Pr @~gxyz, gxy, gxz, gx ! � V1 	
V2 	 V3 	 V4# r 1+ Last, notice that 7 Zf ~w! � f ~w!7` dominates 7 Zf ~u! � f ~u!7` for
u � ~x, y!, ~x, z!, or x+ The result follows+ �

To facilitate the presentation, we introduce some new notation+ Let

In [ �� Zf ~x, y, z!f ~x, y, z!
�
Zf ~x, y!

f ~x, y!
�
Zf ~x, z!

f ~x, z!
�
Zf ~x!

f ~x!
�2

a~w! dF~w! [ �rn~w!
2a~w! dF~w!+

Then In � �@rn~w! � Ern~w!# 2a~w! dF~w! � 2 �@rn~w! � Ern~w!#Ern~w!a~w! dF~w! �
�@Ern~w!# 2a~w!dF ~w! and In � E @In# � 2 �@rn~w! � Ern~w!#Ern~w!a~w! dF ~w! �
�$@rn~w! � Ern~w!# 2 � E@rn~w! � Ern~w!# 2%a~w! dF~w!+ Throughout the rest of this
Appendix, we let w[ ~x, y, z! � R

d1 	 R
d2 	 R

d3, u[ ~x ', y ', z '! � R
d1 	 R

d2 	 R
d3,

and v [ ~ Ix, Iy, Iz! � R
d1 	 R

d2 	 R
d3+ Define

R~w,u! [
Kh~w � u!

f ~w!
�

Kh~x � x ' !Kh~ y � y ' !

f ~x, y!

�
Kh~x � x ' !Kh~z � z ' !

f ~x, z!
�

Kh~x � x ' !

f ~x!
[�

i�1

4

Ri ~w,u!,

ER~w,u! [ �i�1
4 @Ri ~w,u! � ERi~w,W !# [ �i�1

4 ERi ~w,u!, Gn~u! [ � ER~w,u!h�r

Ern~w!a~w! dF~w!, and Hn~u, v! [ h d02� ER~w,u! ER~w, v!a~w! dF~w!+ Note that we have
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suppressed the dependence of R~{,{!, Ri~{,{!, ER~{,{!, and ERi~{,{! on n+ Then we can
write

In � E@In # � 2n�102h r �n�102 �
i�1

n

Gn~Wi !�
� 2n�1h�d02 �n�1 �

1�i�j�n

@Hn~Wi ,Wj !� EHn~Wi ,Wj !#�

� n�1h�d02 �n�1 �
i�1

n

@Hn~Wi ,Wi !� EHn~Wi ,Wi !#�
[ 2n�102h rUn,1 � 2n�1h�d02Un,2 � n�1h�d02Un,3 + (B.3)

It is easy to verify that Un,3 � Op~n�102h�d02! � op~1! under Assumptions A+1–A+3+
We shall use Theorem A+4 to study the asymptotic normality of Un,1 and Un,2 with Gn~{!
and Hn~{,{! in place of gn~{! and hn~{,{! in the theorem, respectively+ Moreover, the
term involving Un,1 is asymptotically negligible given our restrictions on bandwidth and
kernel ~Lemma B+3!+ To get the asymptotic distribution of our test statistic, we need to
calculate both asymptotic variance ~Lemma B+4! and bias correction terms ~Lemma B+5!+

LEMMA B+3+ Let hr 0. Under Assumptions A.1 and A.2 and H0, Un,1
d
&& N~0, Is2! ,

where Is 2 [ Var~g~W0!! � 2 �t�1
` Cov~g~Wt !,g~W0 !! and g~{! is defined in equation

(B.4), which follows.

Proof. First, h�rErn~w! � h�rE@R~w,W !# � �n
r f ~w!0f ~w! � �n

r f ~x, y!0f ~x, y! �
�n

r f ~x, z!0f ~x, z! � �n
r f ~x!0f ~x! [ Jgn~w!, where

�n
r f ~w! [

~�1!r

~r � 1!! �
i1, + + + , ir�1

d �
R

d
ui1 + + +uir K~u!�

0

1 ] r f ~w � hut !

]wi1 + + +]wir

~1 � t !r�1 dt du,

and �n
r f ~x, y!,�n

r f ~x, z!, and �n
r f ~x! are defined analogously+ Because h r 0, by the

dominated convergence theorem and Assumption A+2, limnr` Jgn~w! � � rf ~w!0f ~w! �
� rf ~x, y!0f ~x, y! � � rf ~x, z!0f ~x, z! � � rf ~x!0f ~x! [ Jg~w!, where � rf ~w! [ ~~�1!r0
r!!C0 �i�1

d ] r f ~w!0]wi
r , C0 is defined in Assumption A+2, and � rf ~x, y!,� rf ~x, z!, and

� rf ~x! are defined analogously+
Notice that EGn~W ! � 0 by construction and supn�N supw�A6Gn~w!6 � ` under

Assumptions A+1~b! and A+2+ Now limnr`E @Gn~Wi !Gn~W0!# � � Jg~wi !a~wi ! Jg~w0!
a~w0!$1 � f ~ yi , zi 6xi ! � f ~zi 6xi , yi ! � f ~ yi 6xi , zi !%$1 � f ~ y0, z06x0! � f ~z06x0, y0! �
f ~ y06x0, z0!% fi ~w0,wi ! dwi dw0 � $� Jg~w!a~w! @1 � f ~ y, z 6x! � f ~z 6x, y! � f ~ y 6x, z!#
f ~w! dw%2 � Cov~g~Wi !,g~W0!!, where

g~w! [ a~w! Jg~w!@1 � f ~ y, z 6x!� f ~ y 6x, z!� f ~z 6x, y!# + (B.4)

Consequently, conditions ~i! and ~ii! in Theorem A+4 are satisfied, and thus Un,1
d
&&

N~0, Is2!+ �
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LEMMA B+4+ Under Assumptions A.1, A.2, and A.3(a) and H0, Un,2
d
&& N~0,s202! ,

where s 2 is defined before Theorem 3.1 in Section 3.1.

Proof. Note that Un,2 � n�1 �1�i�j�n@Hn~Wi ,Wj ! � EHn~Wi ,Wj !# + By construction,
Hn~u, v! � Hn~v,u!, and EHn~W0, v! � 0+ We verify conditions ~iii!–~vii! in Theo-
rem A+4+ First, Hn~Wi ,W0! � h d02� ER~w,Wi ! 	 ER~w,W0!a~w! dF~w! � �j�1

4 �k�1
4 h d02

� ERj ~w,Wi ! ERk~w,W0 !a~w! dF~w!, and so for p � 1, 7Hn~Wi ,W0!7p � �j�1
4 �k�1

4

7h d02� ERj ~w,Wi ! ERk~w,W0 !a~w! dF~w!7p � C7h d02� ER1~w,Wi ! ER1~w,W0!a~w! dF~w!7p [
C7Hn1~Wi ,W0!7p, where the first inequality is due to the triangle inequality for the Lp

norm and the second follows from the fact that 7Hn1~Wi ,W0!7p is the dominant term in
the double summation+ Notice that Hn1~u,v!� h d02�A Kh~w � u!Kh~w � v!a~w!0f ~w! dw �
O~h d02!, and by Assumptions A+1~b! and ~c!

E��
A

Kh~w � Wi !Kh~w � W0 !
a~w!

f ~w!
dw�

p

� h�dp�
R

d
�

R
d ��A

K~w!K�w �
u � v

h
	 a~u � hw!

f ~u � hw!
dw�

p

fi ~u, v! du dv

� h�d~ p�1! sup
w�A
�a~w!

b
	p

sup
i�N

sup
u, v�A

fi ~u, v!�
R

d
�

R
d
6K~u!K~u � v!6 p du dv,

and so we have 7Hn~Wi ,W0!7p � Ch d02h�d~ p�1!0p � C~h d!~10p�102!+
Letting RW0 be an independent copy of W0, one can show by similar argument that

7Hn~W0, RW0!7p � C~h d!~10p�102!+ Consequently, un~ p! � C~h d!~10p�102! for some C � 0+
Now we show vn~ p! � C ~h d !10p+ Note that Gn0~u, v! [ E @Hn~W0 ,u!Hn~W0 , v!# �
Gn0,1~u, v!~1 � o ~1!!, where Gn0,1~u, v! � h dE $�� ER1~w,W0! ER1~w,u! ER1~w ',W0!
ER1~w ', v!a~w!a~w '! dF~w! dF~w '!% � C �R

d �R
d �R

d K~w!K~w � w '!K~ Kw!K~ Kw � w ' �
~u � v!0h! dw dw ' d Kw � O ~h d !, and so 7Gn0,1~Wi ,W0!7p � C ~h d0p � h d !, and
7Gn0~Wi ,W0!7p � Ch d0p+ Similarly, one can show 7Gn0~W0, RW0!7p � Ch d0p, and thus
vn~ p! � C~h d!10p+

By the same argument, we have wn~ p! [ 7Gn0~W0,W0!7p � C and zn~ p! � Ch d+ For
some fixed d0 � 0, conditions ~iv! and ~v! in Theorem A+4 are satisfied by Assumption
A+3~a!+ By Assumption A+3~a!, ng1h d � ` for some g1 � ~0,1!, and so condition ~vi! in
Theorem A+4 is satisfied+ Now take g0 � ~2 � d0!0~8 � 2d0! � ~0, 12_ !; then condition
~iii! in Theorem A+4 is satisfied again by Assumption A+3~a!+ Finally, E@Hn~W0, RW0!

2#�
�A a~w!2 dw �R

d @�R
d K~u � v!K~u! du# 2 dv� o~1!� s2 � o~1!+ It follows that Un,2

d
&&

N~0,s202!+ �

LEMMA B+5+ Under Assumptions A.1–A.3 and H0, if d � 7 and d1 � 4 � d3 � d2 �
4 � d1, then

nh d02EIn � h�d02B1 � h�d02�2B2 � h ~d2�d1�d3 !02B3 � h ~d3�d1�d2 !02B4

� h ~d2�d3�d1!02B5 � o~1!.

Proof. EIn � �A@Ern~w!# 2a~w! dF~w! � E�A@rn~w! � Ern~w!# 2a~w! dF~w! [ An,1 �
An,2+ From the proof of Lemma B+3, we obtain
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nh d02An,1 � nh d02�2r�
A

Jg~w!2a~w! dF~w!� o~nh d02�2r !� o~1!, (B.5)

where the last equality follows from Assumptions A+1~b! and A+3~b!+ Now write

An,2 � n�2 �
t�1

n

E��
A

ER~w,Wt !
2a~w! dF~w!�

� 2n�2 �
1�i�j�n

E��
A

ER~w,Wi ! ER~w,Wj !a~w! dF~w!�
� n�1h�d02 �EHn~W0 ,W0 !� 2n�1 �

1�i�j�n

EHn~Wi ,Wj !� +
We want to show

EHn~W0 ,W0 ! � h�d02B1 � h�d02�2B2 � h ~d2�d1�d3 !02B3 � h ~d3�d1�d2 !02B4

� h ~d2�d3�d1!02B5

� O~h d02 � h�d02�4 � h ~d3�d1�d2�4!02 � h ~d2�d1�d3�4!02

� h ~d2�d3�d1�4!02 ! (B.6)

and

Dn [ 2n�1 �
1�i�j�n

EHn~Wi ,Wj !� op~1!+ (B.7)

Now EHn~W0,W0! � E@h d02� ER~w,W0! ER~w,W0!a~w! dF~w!# � �i, j�1
4 h d02E$�Ri

~w,W0 !Rj ~w,W0 !a~w! dF~w!% � O~h d02! [ �i�1
10 Bn, i � O~h d02!, where Bn, i � h d02E

�Ri~w,W0!
2a~w! dF~w! for 1 � i � 4, Bn, i � h d02E�2R1~w,W0!Ri�3~w,W0!a~w! dF~w!

for 5 � i � 7, Bn, i � h d02E�2R2~w,W0!Ri�5~w,W0!a~w! dF~w! for 8 � i � 9, and Bn,10 �
h d02E�2R3~w,W0!R4~w,W0!a~w! dF~w!+ We can expand each term to the order of neg-
ligible asymptotic effects to obtain ~B+6!+ For example,

Bn,1 � h�d02�
R

d
K~u!2 du�

A

a~w! dw � h�d02�2�
R

d
K~u!2u1

2 du

	 �
i�1

d �
A

1

2

]2 f ~w!

]wi
2

a~w!

f ~w!
dw � O~h�d02�4 !+

To show Dn � op~1!, let m � @L log n# ~the integer part of L log n!, where L is a large
positive constant so that n4bm

d0~1�d! � o~1! for some d � 0 by Assumption A+1~a!+ ~For
example, for fixed d � 0, if r � 102+71828 in Assumption A+1~a!, B � 4~1 � d!0d
would suffice+! We consider two different cases for Dn: ~a! j � i � m and ~b! 0 � j �
i � m+We use Dn,a and Dn,b to denote these two cases+ For case ~a!, we use Lemma A+2
and the bound un~ p! � C~h d!10p�102 with p � 1 � d ~see the proof of Lemma B+4!
to obtain Dn,a � n�1 �j�i�m EHn~Wi ,Wj ! � Cn�1n2~h d !10~1�d!�102bm

d0~1�d! �
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o~nh�d02bm
d0~1�d!! � o~1!+ For case ~b!, use the bound un~1! � Ch d02 to obtain Dn,b �

n�1 �j�i�m EHn~Wi ,Wj !� Cn�1nmh d02 � O~mh d02!� o~1!+ Consequently, ~B+7! holds+
Last, given h � o~1! and the restrictions on di , i � 1,2,3, it is easy to verify

O~h d02 � h�d02�4 � h ~d3�d1�d2�4!02 � h ~d2�d1�d3�4!02 � h ~d2�d3�d1�4!02 ! � o~1!, (B.8)

where, e+g+, h ~d2�d3�d1�4!02 � o~1! because d � 7 implies d1 � 5+ Combining ~B+5!–
~B+8!, the conclusion follows+ �

LEMMA B+6+ Let DDn � G~ Zf, ZF!� G~ Zf,F! . Then under Assumptions A.1–A.3 and H0,
nh d02 DDn � op~1! .

Proof. By the same argument used to obtain the expansion of G~ Zf,F!, we obtain that
under H0,

G~ Zf, ZF! �
1

4
�� Zf ~x, y, z!

f ~x, y, z!
�
Zf ~x, y!

f ~x, y!
�
Zf ~x, z!

f ~x, z!
�
Zf ~x!

f ~x!
�2

a~w! d ZF~w!

� Op~7 Zf ~x, y, z!� f ~x, y, z!7`
3 !+

It thus suffices to show that

Dn [ �� Zf ~x, y, z!f ~x, y, z!
�
Zf ~x, y!

f ~x, y!
�
Zf ~x, z!

f ~x, z!
�
Zf ~x!

f ~x!
�2

a~w! d @ ZF~w!� F~w!#

� op~n
�1h�d02 !+

Write Dn � �A rn~w!2a~w! d @ ZF~w! � F~w!# � n�3 �j, k, l�1
n $R~Wl ,Wj !R~Wl ,Wk !a~Wl ! �

�R~w,Wj !R~w, Wk!a~w! dF~w!% � �i�1
4 Dn, i , where Dn,1 [ n�3 �l�j, k

n $R~Wl ,Wj !
R~Wl ,Wk !a~Wl ! � �R~w,Wj !R~w,Wk! a~w! dF~w!% is the summation of the centered
terms with l � j, l � k, and j � k, Dn,2 [ 2n�3 �j�k

n R~Wj , Wj !R~Wj ,Wk!a~Wj ! is the
summation of the terms with l � j � k, Dn,3[ n�3 �j�1

n R~Wj ,Wj !
2a~Wj ! is the summa-

tion of the terms with l � j � k, and Dn,4[�n�3 �j, k�1
n �R~w,Wj !R~w,Wk !a~w! dF~w!

is the summation of the centering terms for Dn,2 and Dn,3+
Dispensing with the simpler terms first, we have by Assumption A+3~a!, ~B+3!, the

remarks following ~B+3!, and Lemmas B+3 and B+4,

�Dn,4 � n�1In � n�1~In � EIn !� n�1EIn � n�2h�d02$nh d02~In � EIn !%

� n�1~h 2r � n�1h�d !

� Op~n
�2h�d02 !� O~n�1h�d02h d02�2r !� O~n�2h�d !� op~n

�1h�d02 ! (B.9)

and E6Dn,36 � n�3 �j�1
n E@R~Wj ,Wj !

2a~Wj !# � O~n�2h�2d! � o~n�1h�d02!+ Conse-
quently, by the Markov inequality,

Dn,3 � op~n
�1h�d02 !+ (B.10)

It is difficult to show that the other two terms are small+ Our strategy is to use Lem-
mas A+2 and A+3 repeatedly and show these terms are asymptotically negligible in that
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Dn, i � op~n�1h�d02!, i � 1 and 2+ For j � k, we can show that ~recall the bar notation
previously defined!

E@R~Wj ,Wj !R~Wj ,Wk !a~Wj !# � O~h�d ! (B.11)

and

E@R~ RWj , RWj !R~ RWj , RWk !a~ RWj !# � O~h r�d !+ (B.12)

To bound Dn,1 [ E~Dn,2! � 2n�3 �j�k
n E@R~Wj ,Wj !R~Wj ,Wk !a~Wj !# , we consider

two different cases for Dn,1: ~a! 6 j � k 6 � m and ~b! 6 j � k 6 � m+ We use Dn,1a and
Dn,1b to denote these two cases+ By Lemma A+2 and ~B+12!, Dn,1a � 2n�3

�6 j�k 6�m E @R~Wj ,Wj !R~Wj ,Wk!a~Wj !# � C $n�1h r�d � n�3n2~h�d !~1�2d!0~1�d!

bm
d0~1�d!% � O~n�1h�d02h r�d02! � o~n�1h�dbm

d0~1�d!! � o~n�1h�d02!+ By ~B+11!,
Dn,1b � 2n�3 �6 j�k 6�m E@R~Wj ,Wj !R~Wj ,Wk!a~Wj !# � Cn�3nmh�d � O~n�2mh�d! �
o~n�1h�d02!+ So Dn,1 � o~n�1h�d02!+

Let Dn,2 [ E~Dn,2!
2 � 4n�6 �t1�t2 �t3�t4 E$R~Wt1 ,Wt1 !R~Wt1 ,Wt2 !a~Wt1 !R~Wt3 ,Wt3 !

R~Wt3 ,Wt4 ! a~Wt3 !%+We consider two cases: ~a! for all i � $1,2,3,4%, 6 ti � tj 6 � m for all
j � i; and ~b! all the other remaining cases+ We will use Dn,2s to denote these cases
~s � a,b!+ Observe that by Lemma A+2 and ~B+11!, Dn,2a � ~Dn,1a!

2 � C~n�2

~h�d !~2�4d!0~1�d!bm
d0~1�d!! � o~n�2h�d!+ For all the other remaining cases, there exists

at least one i � $1,2,3,4%, such that 6 ti � tj 6 � m for some j � i+ The number of
such terms is of the order O~n3m!+ For t1 � t2 and t3 � t4 , one can bound
E6R~Wt1 ,Wt1 !R~Wt1 ,Wt2 !a~Wt1 !R~Wt3 ,Wt3 !R~Wt3 , Wt4 !a~Wt3 !6 by Ch�2d if $t1, t2% �
$t3, t4% � $t1, t2% and by Ch�3d otherwise+ Consequently, Dn,2b � C~n�6n3mh�2d �
n�6n2h�3d!� o~n�2h�d!+ So E~Dn,2!

2 � o~n�2h�d!, and by the Chebyshev inequality,
we have

Dn,2 � op~n
�1h�d02 !+ (B.13)

Now, we want to show

Dn,1 � op~n
�1h�d02 !+ (B.14)

Write Dn,1 � n�3 �l�j, k
n $R~Wl ,Wj !R~Wl ,Wk !a~Wl ! � E@R~Wl ,Wj !R~Wl ,Wk!a~Wl !6

Wj ,Wk#% � n�3 �l�j, k
n $E@R~Wl ,Wj !R~Wl ,Wk!a~Wl !6Wj ,Wk# � �R~w,Wj !R~w,Wk!

a~w! dF~w!% [ Dn,1,1 � Dn,1,2+ By Lemma A+3,

E6Dn,1,2 6 � n�3 �
l�j, k

n

E�E@R~Wl ,Wj !R~Wl ,Wk !a~Wl !6Wj ,Wk #

��R~w,Wj !R~w,Wk !a~w! dF~w!�
� C$@~h�d !2d0~1�d! � n�1~h�d !~1�2d!0~1�d! #bm

d0~1�d!� ~n�1m � n�2mh�d !%

� o~n�1h�d02 !,
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and by the Markov inequality

Dn,1,2 � op~n
�1h�d02 !+ (B.15)

Now let Sj, k, l[ R~Wl ,Wj!R~Wl ,Wk!a~Wl !� E@R~Wl ,Wj!R~Wl ,Wk!a~Wl !6Wj ,Wk#; then
Dn,1,1 � n�3 �l�j, k

n Sj, k, l with E~Dn,1,1!� 0 because E~Sj, k, l !� 0 for all l � j and l � k+
Denote

Dn,3 [ E~Dn,1,1!
2 � n�6 �

t1�t3 , t2�t3 , t3
�

t4�t6 , t5�t6 , t6

E$St1, t2 , t3 St4, t5 , t6 %+

We consider four different cases: ~a! for all i ’s, 6 ti � tj 6 � m for all j � i; ~b! for exactly
four different i ’s, 6 ti � tj 6 � m for all j � i; ~c! for exactly three different i ’s, 6 ti � tj 6 �
m for all j � i; ~d! all the other remaining cases+ Using Dn,3s to denote these cases
~s � a,b, c,d !, by Lemma A+2, one can show that 6Dn,3s6� o~n�2h�d! for s � a,b, c,d+
In sum, Dn,3 � o~n�2h�d!, and thus by the Chebyshev inequality

Dn,1,1 � op~n
�1h�d02 !+ (B.16)

Combining ~B+15! and ~B+16!, we have ~B+14!+ The conclusion follows+ �

LEMMA B+7+ Under Assumptions A.1–A.3, nh d027 Zf ~x, y, z! � f ~x, y, z!7`
3 � op~1! .

Proof. By ~B+2! and Assumption A+3, nh d027 Zf ~x, y, z! � f ~x, y, z!7`
3 � nh d02Op

~n�302h�3d02~ ln n!g02 � h 3r!� Op~n�102h�d~ ln n!g02 � nh d02�3r!� op~1!+ �

Putting Lemmas B+2–B+7 together, we have proved Theorem 3+1+

APPENDIX C: Proof of Theorem 4+1

Let Zf *~x!, Zf *~x, y!, Zf *~x, z!, and Zf *~x, y, z! be defined as Zf ~x!, Zf ~x, y!, Zf ~x, z!, and Zf ~x, y, z!
with W * replacing W+ Let Df ~w! [ Df ~x, y, z! denote the p+d+f+ of Wt

* � ~Xt
*' ,Yt

*' , Zt
*'!',

i+e+, Df ~x, y, z! [ Df ~ y 6x! Df ~z 6x! Df ~x!, and denote the corresponding c+d+f+ as EF~w!+ Let ZF *~w!
denote the empirical distribution of $Wt

*%+ We first state a lemma that is proved in
Appendix D+

LEMMA C+1+ Suppose that Assumptions A.1–A.3 and A.5 hold. Then

(i) supx�A�R
d1 6 Zf *~x! � Df ~x!6 � Op~n�102 h�d1 02~ ln n!g02 � h r!;

(ii) supx�A�R
d1�d2 6 Zf *~x, y! � Df ~x, y!6 � Op~n

�102h�~d1�d2 !02~ ln n!g02 � h r!;
(iii) supx�A�R

d1�d3 6 Zf *~x, z! � Df ~x, z!6 � Op~n
�102h�~d1�d3 !02~ ln n!g02 � h r!;

(iv) supx�A6 Zf *~x, y, z! � Df ~x, y, z!6 � Op~n�102 h�d02~ ln n!g02 � h r! .

Let A1 � A � R
d1, A2 � A � R

d1�d2 , and A3 � A � R
d1�d3+ Define S1~C! �

$supx�A1
6 Df ~x! � f ~x!6 � C~n�102b�d1 02~ ln n!g02 � b2!, max1�i�d1

supx�A1
6] r Df ~x!0

] rxi 6 � C%+ Similarly, we define the random sets S2~C!,S3~C!, and S4~C! for Df ~x, y! [
Df ~ y 6x! Df ~x!, Df ~x, z! [ Df ~z 6x! Df ~x!, and Df ~x, y, z!, respectively+ A standard result gives

supx�A1
6 Df ~x! � f ~x!6 � Op~n

�102b�d1 02~ ln n!g02 � b2! ~e+g+, Fan and Yao, 2003!+ By
the proof of Lemma C+1 in Appendix D, supx�A1

6] r Df ~x!0] rxi 6� Op~1! for i � 1, + + + ,d1+
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So for any e � 0, there exists a sufficiently large constant C1 such that P~S1
c~C1!!� e04

for sufficiently large n, where S1
c is the complement of S1+ Similarly, for any e � 0,

there exists a sufficiently large constant Cj such that P~Sj
c~Cj !! � e04 for sufficiently

large n and for j � 2,3,4+ Let C � max1�i�4 Ci and S~C!� �i�1
4 Si~C!+ Then the Bon-

ferroni inequality implies that for any e � 0, there exists a sufficiently large constant C
such that P~S c~C!! � e+

To show ~i!, by the law of iterated expectations, we have

P~Tn
*� u 6W ! � P~Tn

*� u 6W � S~C!!P~S~C!!

� P~Tn
*� u 6W � S c~C!!P~S c~C!!+

Because the second term in the last expression can be made arbitrarily small for suffi-
ciently large n, it suffices to show P~Tn

* � u 6W � S~C!! r F~u! for all u � R, where
F~{! is the standard normal c+d+f+

Define

ZG * [ G~ Zf *, ZF * !� n�1 �t�1
n �1 � � Zf *~Xt

*,Yt
*! Zf *~Xt

*, Zt
*!

Zf *~Xt
*,Yt

*, Zt
*! Zf ~Xt

*!
�2

a~Xt
*,Yt

*, Zt
*!+

One can modify the proofs of Lemmas B+1 and B+2 to obtain

G~ Zf *, EF! �
1

4
�� Zf *~x, y, z!Df ~x, y, z!

�
Zf *~x, y!

Df ~x, y!
�
Zf *~x, z!

Df ~x, z!
�
Zf *~x!

Df ~x! �
2

a~w! d EF~w!

� Op~7 Zf *~x, y, z!� Df ~x, y, z!7`
3 !,

where

7 Zf *~x, y, z!� Df ~x, y, z!7` [ sup
~x, y, z!�A

6 Zf *~x, y, z!� Df ~x, y, z!6+

Let rn
*~w!, R*~w,u!, ER*~w,u!, In

*, Gn
*~u!, Hn

*~u, v! be defined as rn~w!, R~w,u!,
ER~w,u!, In, Gn~u!, Hn~u, v! with Zf *, Df, and EF replacing Zf, f, and F+ Throughout, let E*

denote the expectation with respect to the smoothed kernel density Df ~x, y, z! conditional
on W � S~C!+ Noticing that E*Gn

*~Wi
*!� 0 and E*Hn

*~Wi
*,Wj

*!� 0 for i � j, we have

In
*� E* @In

*# � 2n�102h r �n�102 �
i�1

n

Gn
*~Wi

*!� � 2n�1h�d02 �n�1 �
1�i�j�n

Hn
*~Wi

*,Wj
*!�

� n�1h�d02 �n�1 �
i�1

n

@Hn
*~Wi

*,Wi
*!� E*Hn

*~Wi
*,Wi

*!#�
[ 2n�102h rUn,1

* � 2n�1h�d02Un,2
* � n�1h�d02Un,3

* +

Conditional on W, $Wi
*% forms a triangular array of independent random variables,

and so do $Gn
*~Wi

*!% and $Hn
*~Wi

*,Wi
*!%+ It is easy to verify that Un,1

* � Op~1! and
Un,3
* � Op~n�102h�d02! � op~1! conditional on W � S~C! following the proof of

Lemma 5+2 in Paparoditis and Politis ~2000!+ By construction, Hn
*~u, v! � Hn

*~v,u!,
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and E*Hn
*~Wi

*, v! � 0+ Let Gn
*~u, v! � E*$Hn

*~W1
*,u! Hn

*~W1
*, v!%+ We verify that

E* @Hn
*2~W1

*,W2
*!# � s2 � o~1!, E* @Hn

*4~W1
*,W2

*!# � Ch�d and E* @Gn
*2~W1

*,W2
*!# �

Ch d, and thus $E* @Gn
*2~W1

*,W2
*!#� n�1E* @Hn

*4~W1
*,W2

*!#% 0$E* @Hn
*2~W1

*,W2
*!#%2 r 0+

Consequently, Un,2
* d
&& N~0,s202! conditional on W � S~C! by Theorem 1 of Hall

~1984!+
Next, we can show that nh d02E* @In

*# � E*Hn
*~W1

*,W1
*! � h�d02B1 � h�d02�2B2

* �
h ~d2�d1�d3 !02B3

*� h ~d3�d1�d2 !02B4
*� h ~d2�d3�d1!02B5

*� o~1!, where for i � 2,3,4,5, Bi
* is

defined as Bi with Df ’s replacing f ’s, e+g+, B5
*� C1

d1�A a~w! Df ~w!0 Df ~x! dw+ Let DDn
* � ZG * �

G~ Zf *, EF!+ We can show conditional on W � S~C! that DDn
* � op~n�1h�d02! with argu-

ments similar to but simpler than those used in the proof of Lemma B+6 because $Wt
*% is

an i+i+d+ sequence given W+ Let ZBi
*, i � 2,3,4,5, be defined as ZBi with $W *, Zf *% replac-

ing $W, Zf %, e+g+, ZB5
* [ ~C1!

d1n�1 �t�1
n $a~Wt

*!0 Zf *~Xt
*!%+ Applying Lemma C+1, we

can show that h 2�d02~ ZB2
* � B2

*!, h ~d3�d1�d2 !02~ ZB3
* � B3

*!, h ~d2�d1�d3 !02~ ZB4
* � B4

*!,
h ~d2�d3�d1!02~ ZB5

* � B5
*!, and nh d027 Zf *~x, y, z! � Df ~x, y, z!7`

3 are op~1! conditional on
W � S~C!+ The completes the proof of part ~i! of Theorem 4+1+

To show ~ii!, by the law of iterated expectations, it suffices to show that P~Tn �
Tn
* 6W ! r 1 with probability approaching 1 ~wpa+1! when G~ f,F! � « � 0+ Using the

notation defined previously, we only need to show P~Tn � Tn
* 6W � S~C!! r 1 wpa+1

provided that G~ f,F! � « � 0+ Conditional on W � S~C!, we still have by part ~i! that
Tn
* d
&& N~0,1!, which holds as long as we generate the bootstrap data by imposing the

null hypothesis+ Hence, Tn
*� Op~1! conditional on W � S~C!, and so P~Tn � Tn

* 6W �
S~C!! r 1 when G~ f,F! � « � 0 by Proposition 3+2+ �

APPENDIX D: Other Proofs

Proof of Proposition 3.2. The analysis is similar to that of Lemmas B+1 and B+6,
now keeping the additional terms that do not vanish under the alternative+ First, C~t!�
C~0!� tC '~0!� o~C '~0!!, where C~0!� G~ f,F! and C '~0! is obtained from ~B+1!+ So
G~ Zf,F! � G~ f,F! � C '~0! � o~C '~0!!+ Noticing that Lemma B+6 also holds under the
alternative ~i+e+, G~ Zf, ZF!� G~ Zf,F!� op~n�1h�d02!!, we have G~ Zf, ZF!� G~ f,F!�C '~0!�
o~C '~0!! � op~1!+ It is easy to show that n102C '~0! � Op~1! when G~ f,F! � 0+ Thus
Tn � 4nh d02G~ f,F!

M2s 2 � n102h d02Op~1!

p
&& ` if G~ f,F! � 0+ �

Proof of Proposition 3.3. First, for the double array stochastic process $Wnt ,0 �
t � n% , the functional expansion of G~ Zf @n#,F @n# ! and subsequent lemmas in Appendix B
continue to hold when accommodating the additional terms arising under the local alter-
native+ Under H1~an!, Tn � 4nh d02G~ f @n#,F @n# !

M2s 2 d

&& N~0,1!+ Moreover, under
H1~an!, G~ f @n#,F @n# ! � ~an

204!��~w!2a~w! dF @n# ~w! � o~an
2!+ For an � n�102h�d04,

4nh d02G~ f @n#,F @n# ! � ��~w!2a~w! dF @n#~w! r ��~w!2a~w! dF~w! [ d as n r `+
Consequently, Pr~Tn � za6H1~an!! r 1 � F~za � d0~M2s!!+ �

Proof of Proposition 3.4. Under H1, h~ln,gn!, Tn � 4nh d02G~ f @n#,F @n# !

M2s 2 d
&&

N~0,1!, and 4nh d02G~ f @n#,F @n# ! � nh d02ln
2 �L~~w � w0!0gn!

2a~w! dF @n#~w!$1 �
o~1!%� nh d02ln

2 gn a~w0 ! f ~w0 !�L~w!
2 dw $1 � o~1!%r Ca~w0! f ~w0!�L~w!2 dw[ Nd as

n r `+ Consequently, Pr~Tn � za6H1~an!! r 1 � F~za � Nd0~M2s!!+ �
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Proof of (3.1). To sketch the proof, first note that 7 Zf ~0!~w! � f ~w!7` � Op~yn! and
7 Zfi
~2!~w! � ]2 f ~w!0]wi

27` � Op~h1
�2yn !, where yn [ n�102h1

�d02~ ln n!g � h1
p for some

g � 0+ So

1

n �
t�1

n Zfi
~2!~Wt !a~Wt !

Zfh1
~Wt !

2
�

1

n �
t�1

n ]2 f ~Wt !

]wi
2

a~Wt !

f ~Wt !
2
$1 � h1

�2yn %+

By Assumption A+1~b!, jt [ ~]
2 f ~Wt !0]wi

2!a~Wt !0f ~Wt !
2 is a bounded random variable

with compact support A, and $jt % is a mixing process with the same mixing coefficients
as $Wt %+ One can thus apply a CLT for mixing processes to obtain

1

n �
t�1

n ]2 f ~Wt !

]wi
2

a~Wt !

f ~Wt !
2

��
A
� ]2 f ~w!

]wi
2 	 a~w!

f ~w!
dw � Op~n

�102 !+

It then suffices to ensure that h 2�d02h1
�2yn � o~1!, which holds by assumption+ �

Proof of Lemma C.1. We only prove part ~i!, because the proof of parts ~ii! and ~iii!
is analogous and part ~iv! follows from ~i!–~iii!+ Let A1 � A � R

d1+ Write

Zf *~x!� Df ~x! � $ Zf *~x!� E* @ Zf *~x!#%� $E* @ Zf *~x!#� Df ~x!% [ Vn~x!� Bn~x!,

where Vn~x! and Bn~x! contribute to the variance and bias of the estimate of Df ~x!, respec-
tively+ Let e � 0 and A1

e � $u : 6u � v6 � e for v � A1%+ By Assumptions A+1, A+2, and
A+5 and the uniform consistency of the kernel estimate of density derivatives on a com-
pact set ~cf+ Hong and White, 2005, p+ 899!,

sup
x�A1

� ]
r Df ~x!

]xi
r � � sup

x�A1
� ]

r Df ~x!

]xi
r

� E� ] r Df ~x!

]xi
r ��� sup

x�A1
�E� ] r Df ~x!

]xi
r ��

� Op~n
�102b�~d1�2r!02~ ln n!g02 !� O~1!� Op~1!,

where xi is the ith component of x+ Noting that E* @ Zf *~x!# � E* @Kh~Xt
* � x!# �

�R
d1 K~u! Df ~x � hu! du, by the r th-order Taylor expansion, the bias is

sup
x�A1

6Bn~x!6 � sup
x�A1

� �
R

d1

K~u!$ Df ~x � hu!� Df ~x!% du�

�
Ch r

r!
�

R
d1

6K~u!6 7u7r du sup
x�A1

e
�
i�1

d1

� ]
r

]xi
r
Df ~x!�� Op~h

r !+

Noting that conditional on W, $Xt
*% is an i+i+d+ sequence, standard arguments show

that supx�A1
6Vn~x!6 � Op~n

�102h�d1 02~ ln n!g02 ! ~e+g+, Newey, 1994, Lem+ B+1; Masry,
1996, Thm+ 2!+ Hence

sup
x�A1

6 Zf *~x!� Df ~x!6 � Op~n
�102h�d1 02~ ln n!g02 � h r !+

�
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