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SIGNAL EXTRACTION AND
NON-CERTAINTY-EQUIVALENCE IN
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A standard result in the literature on monetary policy rules is that of certainty-equivalence:
Given the expected values of the state variables of the economy, policy should be
independent of all higher moments of those variables. Some exceptions to this rule have
been pointed out in the literature, including restricting the policy response to a limited
subset of state variables, or to estimates of the state variables that are biased. In contrast,
this paper studies fully optimal policy rules with optimal estimation of state variables. The
rules in this framework exhibit certainty-equivalence with respect to estimates of an
unobserved state variable (“excess demand”) X , but are not certainty-equivalent when
(i) X must be estimated by signal extraction and (ii) the optimal rule is expressed as a
reduced form that combines policymakers’ estimation and policy-setting stages. I find that
it is optimal for policymakers to attenuate their reaction to a variable about which
uncertainty has increased, while responding more aggressively to variables about which
uncertainty has not changed.
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1. INTRODUCTION

Increased uncertainty about the current growth rate of productivity, potential out-
put, and the natural rate of unemployment has led to questions about how monetary
policy should be altered in the face of this uncertainty. The question is extremely
important from a practical point of view (What should the Federal Reserve do
today?), as well as being of particular theoretical interest (What are the various
types of uncertainty faced by policymakers, and what effects should each of these
have on optimal policy?).
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28 ERIC T. SWANSON

A natural place to begin the investigation of these difficult questions is within the
framework of monetary policy rules, such as those put forward by Taylor (1993).
The advantage of these rules is that they are explicit, well defined, and simple
functions of variables within a completely specified economic model. Different
types of uncertainty within the model can then be specified and their effects studied.
The fact that Taylor-type rules have matched the historical behavior of the Federal
Reserve for the past 15–20 years also lends support to their use as an analytical
laboratory for the investigation of these issues.

A typical setup involves an economy that is linear in all of its variables, and
policymakers who minimize an expected discounted sum of squared deviations
of goal variables from their respective targets. The following backward-looking
model serves as an example1:

(yt − y∗) = ϕ(yt−1 − y∗) − α(rt − r∗) + εt , (1a)

πt = πt−1 + β(yt − y∗) + νt , (1b)

where yt , πt , and rt refer to output, inflation, and the real interest rate in period t ;
y∗ and r∗ denote the levels of potential output and the “natural” rate of interest
consistent with long-run equilibrium, respectively; and rt is set by policymakers
at the beginning of period t on the basis of information available through the end
of period t − 1. A typical specification of policymakers’ preferences is

min(1 − δ)Et

∞∑
s=t

δs−t [(πs − π∗)2 + γ (ys − y∗)2], (2)

a simple discounted sum of expected squared deviations of output from potential
and inflation from its target, π∗, with weight γ placed on the output gap. The case
γ = 0 corresponds to pure inflation targeting by policymakers, but does not neces-
sarily prevent current or past values of the output gap from entering policymakers’
optimal reaction function, since these variables may help forecast future values
of inflation. Note that it is assumed in the model for simplicity that policymakers
have control over the short-term real interest rate, rt .

This is a simple, discrete-time dynamic programming problem with quadratic
objective and linear constraints, the solution of which is well known [Sargent
(1987)]:

rt − r∗ = a(yt−1 − y∗) + b(πt−1 − π∗), (3)

where a and b are constants, determined by the parameters of the model. The form
of equation (3) and the values of a and b are the same no matter what the variances
of ε and ν—policymakers behave in a certainty-equivalent fashion regardless of
the variance associated with the laws of motion of the economy.

A major implication of this finding is that uncertainty about the level of poten-
tial output, y∗, should have no effect on the monetary policy rule. If at time t we
have y∗ = ŷ∗ + η, where η is a mean-zero stochastic disturbance and ŷ∗ ≡ Et y∗,
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then the form of equations (1a) and (1b) is essentially unchanged, with y∗ replaced
by ŷ∗, εt replaced by ε̃t ≡ εt − (1 − ϕ)η, and νt replaced by ν̃t ≡ νt − βη. Then,
as before, the variances of ε̃t and ν̃t , and hence the variance of η, have no effect
on the optimal policy rule—one simply replaces y∗ with ŷ∗ in equation (3) and
acts as if this estimate ŷ∗ were known with certainty. This result is emphasized by
Estrella and Mishkin (1999), and is standard in the literature on monetary policy
rules.

To be sure, not all types of uncertainty are sterile when it comes to their ef-
fects on optimal policy. For example, if policymakers are unsure about the effects
of their control variable rt on the economy, so that α is stochastic, the optimal
choice of rt will depend on the degree of uncertainty underlying the parameter
α [Brainard (1967), Sack (2000)]. Here, the uncertainty is multiplicative with
respect to the control variable, rather than being simply additive.2 In this paper,
however, I abstract away from multiplicative uncertainty for a number of rea-
sons. First, it is well known that certainty-equivalence does not hold in the pres-
ence of multiplicative uncertainty. Second, the effects of multiplicative uncertainty
on policymakers’ optimal response function (3) are ambiguous in sign (when more
than one coefficient is stochastic), and found by several authors to be quantitatively
small in simulations [Estrella and Mishkin (1999), Rudebusch (2001)].3 Finally,
the uncertainty with which policymakers seem to have been the most concerned
recently is primarily additive: Has there been a structural break in the growth rate
of productivity, potential output, and the level of the natural rate of unemployment?
These are questions about the state variables of the economy themselves, and not
about the effects of choice variables on the economic state.

The main point of this paper is that additive uncertainty can have important
effects on optimal policy, even within a linear-quadratic framework. Suppose,
for example, that the state of the economy is Xt , an unobserved, possibly large,
vector.4 Suppose further that the output gap and inflation are functions of this
unobserved state of the economy Xt . Policymakers will behave in a certainty-
equivalent fashion with respect to Et Xt , the expected value of Xt , but will use the
output gap and inflation to help infer the value of Et Xt . This inference stage of
the problem, because it is one of signal extraction, is sensitive to the amount of
uncertainty that is present in the indicator variables of the system. In particular,
as the noise in the output gap, yt − y∗

t , increases relative to the signal about Xt ,
it is optimal to decrease the coefficient on yt − y∗

t in the estimation of Et Xt , and
to increase the coefficient on inflation in that estimation. Thus, the optimal policy,
when expressed as a reduced-form function of the output gap and inflation, rather
than Et Xt , is not invariant to the degree of additive uncertainty in the former
variables. Note that both the rule itself and policymakers’ estimate Et Xt are fully
optimal in this framework—at every time t , policymakers’ interest-rate choice and
estimate of state variables are globally optimal and cannot be improved upon in
any way. Note also that the output gap need not be directly observable to be an
indicator variable in this framework—an unbiased estimate of the output gap is all
that is required.
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1.1. Previous Literature

Previous studies of non-certainty-equivalence with additive uncertainty have fol-
lowed either Smets (1998) or Orphanides (1998). Smets (1998) points out that
certainty-equivalence fails to hold when policymakers are constrained to respond
to only a limited subset of the state variables of the system, so that the policy rule
is a constrained optimum, rather than a global optimum. [This restriction makes
sense, in particular, when the size of the state space is large, as in Orphanides
et al. (2000), who work with the Federal Reserve Board’s macro model.] Uncer-
tainty about any of the variables in the policymakers’ simple rule will then lead
the optimal coefficients of the simple rule to change.5

Orphanides (1998) focuses on the fact that the data, such as the output gap
and inflation rate, are observed only imperfectly in real time. By the certainty-
equivalence principle, policymakers’ optimal response in this case is to formulate
best estimates of the output gap, Et (yt − y∗

t ), and inflation, Etπt , and act as if
these estimates were known with certainty. Orphanides and others [Aoki (1999),
Rudebusch (2001, 2002)] bring about non-certainty-equivalence in this framework
by constraining policy to react to the actual real-time data, rather than to the best
estimates above. This naturally raises the question as to why the actual real-time
data are not (real-time) best estimates of the true values.

For example, if y∗
t denotes the level of potential output, and y∗

t |t the real-time
estimate of the level of potential output, one would normally expect that

y∗
t = y∗

t |t + ηt , (4)

where ηt is a mean-zero random variable. In this case, y∗
t |t = Et y∗

t , and so, the real-
time data are the real-time best estimates! The constraint that policymakers react
only to the real-time data is then not really a constraint at all, and the certainty-
equivalence principle holds.

It is only because Orphanides formulates the real-time data problem as one of
signal extraction, with

y∗
t |t = y∗

t + ηt , (4′)

where y∗
t (the true value underlying the data, or signal) and ηt (the noise) are

orthogonal random variables, that the certainty-equivalence principle is circum-
vented. Note that in (4′), the real-time data y∗

t |t has the property that y∗
t |t �= Et y∗

t ,
so that it is no longer an unbiased estimate. When the problem is modified in
this manner, an increase in the variance of ηt now does have an effect on the
best estimate Et y∗

t —in particular, if y∗
t and ηt are normally distributed around

zero, then Et y∗
t = [σ 2

y∗/(σ 2
y∗ + σ 2

η )]y∗
t |t in the univariate case. Although the opti-

mal policy is still a certainty-equivalent function of policymakers’ best estimate
Et y∗

t , expressing the policy as a function of the real-time y∗
t |t now leads to ef-

fects of additive uncertainty ηt on the coefficients in the optimal rule. It is in this
respect that Orphanides (1998) finds an exception to the certainty-equivalence
principle.

https://doi.org/10.1017/S1365100504020279 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100504020279


SIGNAL EXTRACTION AND NON-CERTAINTY-EQUIVALENCE 31

It should be clear from the above analysis that the use of real-time data per se
has nothing to do with the non-certainty-equivalence demonstrated in Orphanides
(1998). Instead, it is the introduction of a signal extraction problem into the poli-
cymakers’ inference step that drives the result. The general implications of formu-
lating policymakers’ inference problem in this way is the aim of the present paper.
In addition, the policies that are emphasized by Orphanides (1998), Orphanides
et al. (2000), and Rudebusch (2001, 2002) are not fully optimal, so that it is diffi-
cult in those papers to distinguish between the effects of uncertainty itself and the
effects of uncertainty interacting with a substantially constrained policy response
function. In the present paper, all policy rules and all estimation are fully optimal.

A recent paper by Svensson and Woodford (2000) also considers several of the
same issues as the present paper. There are two main contributions of the present
paper that differentiate it from theirs. First, I show how the results of this paper are
applicable to indicator variables that are estimated (such as the output gap), rather
than simply indicator variables that are directly observed (output, unemployment,
inflation, money growth, etc.). Second, I consider the effects of a structural break
in uncertainty about an indicator variable, rather than an increase in the level of
uncertainty about an indicator that stretches back into the infinite past. The latter is
merely a thought experiment, whereas the former corresponds to situations faced
by actual policymakers in practice, such as the (possible) structural break in U.S.
productivity growth in the late 1990’s.

The remainder of the paper proceeds as follows. Section 2 develops the re-
lationship between signal extraction and non-certainty-equivalence in a simple
descriptive model of the economy, under both naive and rational expectations.
Section 3 extends these results to the general linear-quadratic-Gaussian frame-
work and proves the coefficient attenuation result for the general case. Section 4
extends the basic model forward in time to allow for the dynamic propagation of
uncertainty, and proves that the results of Section 2 are robust to this extension.
Section 5 discusses the results and concludes.

2. BASIC MODEL

Policymakers have preferences over inflation and output of the form

min(1 − δ)Et

∞∑
s=t

δs−t [(πs − π∗)2 + γ (ys − y∗)2], (5)

whereπ∗ denotes policymakers’ long-run target for the inflation rate and y∗ denotes
the level of “potential” output consistent with long-run equilibrium.6 The case
γ = 0 corresponds to pure inflation targeting, but does not necessarily preclude
current or past values of the output gap from entering policymakers’ optimal
reaction function, since they may help forecast inflation.

For the purposes of this section, the unobserved “signal” variable Xt is taken
to be a scalar. The interpretation in this case is that the true underlying state of
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the economy is scalar, or that Xt is an index of inflationary pressures or “excess
demand.” Xt is assumed to evolve according to

Xt = ϕXt−1 − α(rt − r∗) + εt (6a)

with the output gap and inflation being observable functions of this unobserved
state:

(yt − y∗) = Xt + ηt , (6b)

πt = π e
t + β Xt + νt . (6c)

Here, r∗ denotes the “natural” rate of interest, consistent with long-run equilibrium
in the model; and α, β, and ϕ are known positive parameters with ϕ < 1. The
stochastic disturbances εt , ηt , and νt are independent of each other, over time,
and of current and prior values of X , y, and π ; and are normally distributed with
constant variances σ 2

ε , σ 2
η , and σ 2

ν , respectively. The variable Xt (and its past
values) are never observed by policymakers and must be inferred from previous
observations of output and inflation. Equations (6b) and (6c) represent the signal
extraction aspect of the problem, with ηt and νt denoting noise disturbances that
are orthogonal to the underlying signal Xt .

One may assume that y∗ is observed with certainty or, alternatively, that it is
stochastic.7 Letting y∗ = ŷ∗ + ζ , where ζ is a random variable, one can rewrite
equation (6b) as

(yt − ŷ∗) = Xt + η̃t , (6b′)

where η̃t ≡ ηt + ζ .8 From the point of view of policymakers’ decision at time t ,
this is equivalent to simply increasing the variance of ηt in equation (6b), and
so, the analysis is simplified, without loss of generality, by restricting attention to
that equation and studying the effects of an increase in σ 2

η . In this way, policy-
makers’ signal extraction problem when the indicator variables are uncertain or
estimated (as the output gap is here) is not fundamentally different from the signal
extraction problem they would face when all the indicator variables are perfectly
observed.9

Economic agents’ prior expectation of the inflation rate, π e
t , can be either a

rational expectation (π e
t ≡ Etπt , where Et denotes the expectation at the beginning

of period t , before shocks are realized), or a naive expectation (π e
t ≡ πt−1), without

altering the results below (see the solution in the Appendix).10 In either case, π e
t

is known to policymakers and fixed at the beginning of period t .
The timing of policymakers’ observations and actions is as follows. At the

beginning of period t , policymakers update their beliefs about Xt−1 based on
observations of yt−1, πt−1, and the earlier choice of rt−1. On the basis of these
updated beliefs, policymakers then choose a value of rt that minimizes the expected
loss function (5). Shocks to the economy (εt , ηt , and νt ) are then realized and the
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values yt and πt are observed. Thus, policymakers’ information set at time t is

It ≡
{
α,β, γ, δ, ϕ, σ 2

ε , σ 2
η , σ 2

ν , E0 X0, Var0 X0, π
∗, r∗, y∗, π e

t , π e
s , πs, rs, ys |s<t

}
,

(7)

where E0 X0 and Var0 X0 denote the mean and variance of policymakers’ prior
(time 0) distribution on X0, which is assumed to be Gaussian.11

Policymakers update beliefs about Xt−1 via Kalman filtering. Because
(εt , ηt , νt ) is multivariate normally distributed, this is the optimal inference pro-
cedure (in the sense of minimizing the mean-squared error of the estimate), and is
equivalent to Bayesian updating.

The optimal solution to policymakers’ problem (5), given the structure of the
economy (6) and information set (7), is

rt = r∗ + aEt Xt−1 + b
(
π e

t − π∗), (8)

where a and b are positive constants determined by the parameters of the system,
given in the Appendix. Note that a and b are completely invariant to σ 2

ε , σ 2
η , σ 2

ν , and
Vart Xt−1 (policymakers’ time t prior variance on Xt−1, derived recursively from
Var0 X0 by the Kalman filtering algorithm). In this respect, the linear-quadratic
problem with signal extraction displays certainty-equivalence.

In forming the optimal estimate Et Xt−1, however, policymakers do respond to
the amount of uncertainty in the problem. Their prior (time t − 1, i.e., before values
of yt−1 and πt−1 are observed) distribution on (Xt−1, yt−1 − y∗, πt−1 − π e

t−1) is
given by(

Xt−1, yt−1 − y∗, πt−1 − π e
t−1

)

∼ N





 ϕEt−1 Xt−2 − α(rt−1 − r∗)

ϕEt−1 Xt−2 − α(rt−1 − r∗)
βϕEt−1 Xt−2 − βα(rt−1 − r∗)


,




σ 2
x σ 2

x βσ 2
x

· σ 2
x + σ 2

η βσ 2
x

· · β2σ 2
x + σ 2

ν





,

where I have let σ 2
x denote Vart−1 Xt−1, policymakers’ prior, time t − 1, variance

on Xt−1. Their posterior distribution on Xt−1, after observing yt−1 and πt−1, then
has mean

Et Xt−1 = ϕEt−1 Xt−2 − α(rt−1 − r∗) + σ 2
x

(
β2σ 2

x + σ 2
ν

)−(
βσ 2

x

)2

�

× [(yt−1 − y∗) − ϕEt−1 Xt−2 + α(rt−1 − r∗)] + −βσ 4
x + βσ 2

x

(
σ 2

x + σ 2
η

)
�

× [(
πt−1 − π e

t−1

) − βϕEt−1 Xt−2 + βα(rt−1 − r∗)
]
, (9)

where � ≡ (σ 2
x + σ 2

η )(β2σ 2
x + σ 2

ν ) − (βσ 2
x )2 = σ 2

x σ 2
ν + β2σ 2

x σ 2
η + σ 2

η σ 2
ν .

Equation (9) is analogous to the simpler formula for signal extraction with
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one observable variable, Et Xt−1 = Et−1 Xt−1 + [σ 2
x /(σ 2

x + σ 2
η )][(yt−1 − y∗) −

Et−1(yt−1 − y∗)], with additional terms in the coefficients that take into account
the covariance between output and inflation.12

Grouping terms in (9) yields

Et Xt−1 = σ 2
η σ 2

ν

�
[ϕEt−1 Xt−2 − α(rt−1 − r∗)]

+ σ 2
x σ 2

ν

�
(yt−1 − y∗) + βσ 2

x σ 2
η

�

(
πt−1 − π e

t−1

)
, (10)

where the Et−1 Xt−2 term can be cascaded backward and expressed as a function
of lagged observations of the output gap, the inflation surprise, and interest rates,
to the point where the original distribution on X0 is negligible, as it is multiplied
by a large power of ϕ.

Note that, even though policymakers’ optimal reaction function (8) is certainty-
equivalent in terms of the estimate Et Xt−1, when the optimal policy is expressed
as a function of present and past indicator variables (the output gap, inflation
surprise, and interest rates), certainty-equivalence in the reduced form no longer
holds. The variances of the additive disturbance terms enter into the coefficients
of (10).

For example, consider the effects of a sudden increase in uncertainty surround-
ing potential output y∗ on equation (10). As shown in note 8, this can be regarded
as an increase in σ 2

η , holding σ 2
ν and σ 2

x constant. As σ 2
η increases, the quantity

� increases, but less than proportionately. This implies that the coefficient on
yt−1 − y∗ in (10) decreases in magnitude, so that policymakers place less weight
on the noisy output gap in forming their inference about the underlying state of
the economy. Thus, we have an example of coefficient attenuation on the noisy or
uncertain variable. In addition, the coefficients on each of the other variables in
equation (10) increase in absolute value: Policymakers place more weight on those
variables about which they are relatively more certain. In this sense, policymak-
ers become “less proactive and more reactive,” responding less forcefully to the
current output gap, and more forcefully to the current inflation surprise, and past
output gaps and inflation surprises, because these variables provide more reliable
information about the current state of the economy.13

These conclusions are not idiosyncratic to an increase in the variance of the
additive disturbance ηt . For example, an increase in σ 2

ν , instead of σ 2
η , leads to a

decrease in the coefficient on (πt−1 − π e
t−1) in equation (10), and an increase in

the coefficients on the other variables in that equation. Exactly analogous results
(lower coefficient on the noisy variable, higher coefficients on the others) obtain
in response to an increase in σ 2

x , the policymakers’ prior variance on Xt−1. Thus,
the result described above is robust, and derives not from any special assumptions
surrounding the model, but rather from the general principle that in linear regres-
sion, or statistical projection, less weight is given to observations that have higher
variance.
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Obviously, as with linear regression and statistical projection, the covariances
between the different variables matter for the coefficients in (10). So far, I have ab-
stracted away from this problem by assuming that the disturbances are orthogonal
to each other, and to policymakers’ prior for the variable Xt−1, but I show below
for the general case, with arbitrary covariances, that the coefficient attenuation re-
sult still holds: An increase in the uncertainty surrounding a given variable causes
policymakers to assign less weight to that variable in forming their best estimate
of the underlying state of the economy, Et Xt−1. Moreover, the amplification of the
coefficients on inflation and its lags in (10) is also quite robust, and holds for mod-
els more general than that of the present section. For example, Section 4 proves this
result for the case in which increased uncertainty about potential output extends
backward any number of periods, is correlated across time, and is correlated with
policymakers’ priors about the unobserved state of the economy Xt−1, in a manner
that is consistent with policymakers learning about potential output over time.

2.1. Signal Extraction vs. Imperfect Observation of State Variables

Note that the above results hinge crucially on setting up model (6) as one involving
signal extraction, rather than one simply involving imperfect observation of state
variables. For example, replacing (6b) with

Xt = (yt − y∗) + ηt (6b†)

or, with an uncertain potential output,

Xt = (yt − ŷ∗) + η̃t , (6b‡)

where y∗ ≡ ŷ∗ + ζ and η̃t ≡ ηt − ζ , the non-certainty-equivalence results described
above are completely eliminated. In both (6b†) and (6b‡), the policymakers’ opti-
mal estimate of the underlying state of the economy, Et Xt−1, is simply (yt−1 − y∗)
in the first case, and (yt−1− ŷ∗) in the second. Plugged into the certainty-equivalent
structural response in equation (8), the reduced-form policy response thus retains
the certainty-equivalence property.

Note that this analysis implies that it is not real-time data per se that justify
caution on the part of policymakers in Orphanides (1998) and Rudebusch (2001).
If the real-time data are unbiased forecasts of the true values, analogous to (6b†)
or (6b‡), then certainty-equivalence holds, and the amount of uncertainty surround-
ing these real-time estimates (σ 2

η ) is completely irrelevant for optimal policy. Cer-
tainty equivalence only fails to hold in their framework if the real-time data are
realizations of true values plus noise (and thus are biased estimates of the true
values), so that estimation of the true values involves a signal extraction problem,
as in (6b).

This naturally raises the question as to whether the real-time data are better
modeled as rational estimates or as noise-contaminated observations. Orphanides
(1998, 2001) presents figures demonstrating that the output gap, in particular, has
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been badly mismeasured by policymakers in real time. However, both the size of
these errors and their serial correlation were not evident until several years after
the fact, and so, it is not clear that these real-time estimates of the output gap were
not rational at the time. To take the position that policymakers were deliberately
irrational in their real-time estimates seems unwarranted without a more rigorous
analysis to support this point of view.

Rigorous analysis of the performance of real-time data and official forecasts has
been undertaken by a number of authors, albeit with data that are more readily
observable than the output gap, such as real GDP and inflation. Mankiw and
Shapiro (1986) analyze whether the real-time real GNP data produced by the BEA
are better modeled as a rational forecast or as a realization with noise of the “true”
(i.e., “final release”) value. They find that the real-time data appear to be unbiased
and efficient rational forecasts. McNees (1995) looks at the official forecasts of
real GNP/GDP and inflation published by the CBO and Federal Reserve System
(as presented in “Humphrey-Hawkins” reports) and finds that they perform at
least as well, if not better, than private-sector forecasts in terms of mean-squared
error. Romer and Romer (2000) find that not only are the Federal Reserve Board’s
internal “Greenbook” forecasts of output and inflation unbiased and efficient, they
completely dominate private-sector forecasts, in the sense that the private-sector
forecast should be thrown out entirely if the Board’s forecasts were to be made
public.

These results might at first seem to contradict Rudebusch’s (2001) finding of a
significant, irrational “noise” component in the real-time inflation data (as mea-
sured by either the GNP/GDP deflator or fixed-weight price index). However, as
in Orphanides (1998, 2001), Rudebusch’s “final” data are from the perspective of
the late 1990’s, and thus include definitional revisions to GNP and changes in base
year. In contrast, all of the papers cited above take particular care to evaluate the
performance of the forecasts with respect to a final measure of the statistic on a def-
initionally consistent basis. For example, it seems unfair to evaluate the rationality
of policymakers’ 1970 estimate of real GNP and inflation using today’s estimates
of 1970 GDP in chain-weighted 1996 dollars, yet this is exactly what Orphanides
and Rudebusch do. Thus, it is likely that the “noise” found by Rudebusch (2001)
reflects nothing other than definitional changes in the data rather than deviations
from rationality in policymakers’ estimates.14

The case for biased real-time data is thus somewhat uncompelling from an em-
pirical as well as a theoretical standpoint. This implies that models incorporating
only real-time data uncertainty should be certainty-equivalent. However, framing
policymakers’ inference problem about the state of the economy as one of signal
extraction more generally, as is done in this paper, is still quite plausible. The inter-
pretation of policymakers’ estimation process in this case is one of an unobserved
state of the economy that must be inferred using (possibly a large number of)
economic indicators. For example, Alan Greenspan of the Federal Reserve Board
is renowned for looking at a vast array of economic indicators in an attempt to
infer the current state of the economy and its future course. When policymakers
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face a signal extraction problem such as this, a strong case for caution in the face
of uncertainty can still be made.

2.2. Coefficient Attenuation, Simple Rules, and Robust Control

The implications of this paper contrast in an interesting way with those from the
literature on “simple rules” and “robust control.” In particular, the signal extraction
framework of the preceding section found that an increase in uncertainty surround-
ing a given indicator variable should be met with an attenuation in policymakers’
response coefficient to that variable, and an amplification of their response coeffi-
cients on all other indicators, about which uncertainty has not changed.

The literature on “simple rules,” in contrast, generally finds that policymakers
should attenuate their response coefficients on all variables in their reaction func-
tion, even if the increase in uncertainty surrounds only a single variable.15 This
literature, typified by Smets (1998), considers optimal policy within a class of rules
that react to only a limited subset of state variables in the model. Because these
simple rules are not globally optimal, they typically do not possess the certainty-
equivalence property. Thus, observation error on a variable, even of the type in
(6b†) and (6b‡), will generally lead to non-certainty-equivalent behavior in these
constrained-optimal rules.

For example, Smets (1998) restricts policymakers to rules involving only one
lag of output, the four-quarter average inflation rate, and one lag of the interest rate
as arguments, and finds that the optimal coefficients on all of these variables are
attenuated by an increase in uncertainty surrounding the output gap. Orphanides
et al. (2000), investigating a similarly constrained class of rules within the Federal
Reserve Board’s FRB/US model, also find that attenuating the coefficients on
every variable in the rule is the best response to increased uncertainty surrounding
the output gap.16 The reason that these findings differ from those of the present
paper can be explained as follows. The optimal rule in all of these models is a
function of multiple lags of the output gap, inflation, and interest rates (and, in the
FRB/US model, many other variables as well). To the extent that these variables are
omitted, those that enter the simple rule serve partially as proxies for the variables
that have been excluded. If the four-quarter average inflation rate enters negatively
into an estimation equation for some of these other terms (such as past values of
the interest-rate), then the desired amplification in coefficients on current and past
inflation that I find will be offset by the desired amplification in the coefficients
on these additional lagged output, inflation, and interest-rate terms, making the
overall effect on the inflation coefficient ambiguous.17

Finally, the emerging literature on robust control arrives at just the opposite
conclusion: Policymakers ought to respond more aggressively to every variable in
their reaction function when faced with model uncertainty. This literature, typified
by Onatski and Stock (2000), chooses coefficients of a policy rule to minimize the
maximum loss over all possible values for a given parameter within a given range;
thus, the policymaker is guaranteed not to make mistakes that are extremely costly
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for parameters within this range. This approach is clearly very different from the
maximization-of-expected-value approach that I have taken here, and so, it is not
surprising that the results differ. Intuitively, their findings are driven by the fact that
a bad draw on the effectiveness of the policy tool (the parameter α in my model)
can result in very large losses if the rule’s responsiveness is not sufficiently great.
However, it is not clear that an increase in additive uncertainty about potential
output would lead to the same conclusions.

3. SIGNAL EXTRACTION IN THE GENERAL LQG FRAMEWORK

The analysis of the preceding section can be generalized to a standard linear-
quadratic-Gaussian framework [e.g., Bertsekas (1987)]. In this case, the underlying
state of the economy Xt is permitted to be a vector, and Xt evolves according to a
linear function of one lag of itself and a vector of policy instruments rt :

Xt = AXt−1 + Brt + εt , (11)

where A and B are known matrices of the appropriate dimensions. Any constants
can be incorporated by defining one component of Xt to be a vector of ones. I
denote the observable variables of the system by Zt . These may be a subset of the
variables in Xt , noisy realizations of a linear function of variables in Xt , or some
combination of the two. Thus,

Zt = CXt + ηt , (12)

where C is a known matrix of appropriate dimension, with every observable rela-
tionship among the elements of Xt corresponding to a row in (12). The noise vector
ηt may have some components that are always zero, corresponding to elements
of Xt that are actually observed. Other components of Xt , which are not directly
observed, must be inferred from observations of Zt .18 Note that (12) has been
set up as a signal extraction problem rather than one of imperfect observation (in
which case Xt would be a function of the observable variables Zt plus disturbance
terms). The latter would exhibit certainty-equivalence; the former does not (with
respect to the observable variables).

The stochastic disturbances εt and ηt are assumed to be independent of each
other, over time, of current and past values of r , X , and Z , and are (multivari-
ate) normally distributed with constant variance-covariance matrices �ε and �η,
respectively.19 In practice, these assumptions are not as restrictive as it might seem
because serial correlation and cross correlation of ηt and εt can be introduced by
including lags of these variables as elements of Xt , and redefining the disturbances
in (11) and (12) to be orthogonal innovations to these processes.20 Correlation
between ηt and Xt can be introduced in a similar fashion.
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Policymakers minimize a quadratic loss function:

min(1 − δ)Et

∞∑
s=t

δs−t X ′
s DXs, (13)

where D is a positive semidefinite matrix. Note that this specification does not
preclude policymakers’ preferences from depending on observables Z , since X
can be expanded to include elements of Z as needed. Past values of r can also be
incorporated into X and Z .

Policymakers choose a value for the vector of instruments rt at the beginning of
each period t , conditional on all information available through the end of period
t − 1. After rt is chosen, the shocks εt and ηt are realized, and the value of the
vector Zt is observed. Policymakers’ information set at the beginning of period t
is thus

It ≡ {A, B, C, D, δ, �ε, �η, E0 X0, Var0 X0, Zs | s < t}, (14)

where E0 X0 and Var0 X0 denote the mean and variance of policymakers’ prior
(time 0) distribution on X0, which is assumed to be normal.

Policymakers update beliefs about Xt via Kalman filtering, which is the optimal
inference procedure, given the assumptions of normality above. Letting �s|t denote
Vart Xs , the variance of Xs conditional on information available at the beginning
of period t , we have the recursive equations

Et−1Xt−1 = AEt−1Xt−2 + Brt−1, (15a)

Et−1Zt−1 = C Et−1Xt−1, (15b)

Et Xt−1 = Et−1Xt−1 + �t−1|t−1C ′(C�t−1|t−1C ′ + �η)
−1(Zt−1 − Et−1Zt−1),

(15c)

�t−1|t−1 = A�t−2|t−1 A′ + �ε, (16a)

�t−1|t = �t−1|t−1 − �t−1|t−1C ′(C�t−1|t−1C ′ + �η)
−1C�t−1|t−1. (16b)

Note that the variance �t |t evolves deterministically over time, as is typical in the
LQG framework. In particular, the variances of policymakers’ future estimates are
unaffected by their choice of the current instrument rt .21 This leads to separability
between the estimation and control stages of policymakers’ problem, and hence
to the certainty-equivalence result of the following proposition.

PROPOSITION 1. The optimal solution to policymakers’ problem (13), subject
to the law of motion (11), observation equation (12), and information set (14) is
given by

rt = −(B ′V B)−1 B ′V A Et Xt−1, (17)

where V is the “value” matrix, defined to be the unique negative semidefinite
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solution to the Riccati equation

V = −D + δA′V A − δA′V B(B ′V B)−1 B ′V A. (18)

Proof. See Bertsekas (1987, pp. 292–293). �

Equation (17) is certainty-equivalent with respect to the state variable Xt−1.
However, as should be clear from the preceding section, certainty-equivalence
generally will not hold with respect to the observable variables Zt−1. The following
proposition demonstrates this fact by proving the coefficient attenuation result
from the preceding section for the general LQG framework. Note that by holding
�t−1|t−1 fixed in what follows, the model is consistent with the interpretation that
a structural break in the degree of uncertainty surrounding the indicator variables
has occurred in the previous period.

PROPOSITION 2. Suppose that the variance of the first component of ηt−1
in (12) is increased, in the sense that element (1, 1) of �η is increased while all
other elements of �η, and all elements of �t−1|t−1 in (15) and (16), are held
fixed. Then, policymakers’ optimal response to observables, obtained by substi-
tuting (15) into (17), exhibits an attenuation in the response of all elements of
policymakers’ instrument rt to the first component of Zt−1.

Proof. Recall that rt is a vector of instruments; hence the proposition states that
the optimal setting of each of these is attenuated with respect to the first component
of Zt−1. This is intuitive because the ordering of the elements of rt is arbitrary.

Let M denote the positive-definite matrix C�t−1|t−1C ′ + �η in equation (15),
and partition M into [

M11 M12

M21 M22

]
,

where M11 is a scalar, M21 a column vector, and M12 = M ′
21. Letting N denote

M−1 and partitioning N in accordance with M , we have

N =
[ |M22|/|M | −M−1

11 M12 N22

−M−1
22 M21 N11 M−1

22 + M−1
22 M21 N11 M12 M−1

22

]
. (19)

Let M11 be multiplied by a factor λ > 1, corresponding to the increase in �η.
Then, |M | increases in magnitude because, expanding along the first row or col-
umn, |M | = M11|M22| + S, where S is a sum of element-cofactor products not
involving M11, and M11, |M22|, and |M | are positive. Thus, N11 is attenuated, and
it follows from (19) that N21 is attenuated in the same proportion, say, by the factor
µ < 1. Thus, the first column of N is attenuated by the factor µ.

Inspection of (18) reveals that V is invariant to the change in �η, and by the
invariance of the other parameters in (15), (16), and (17), it follows that the first
column of −(B ′V B)−1 B ′V A�t−1|t−1C ′(C�t−1|t−1C ′ + �η)

−1 is attenuated by
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the same factor µ. These are exactly the coefficients in question, completing the
proof.

One would like to be able to increase the covariances among the components
of ηt as well, but unfortunately, completely general statements in this case cannot
be made.

4. SIGNAL EXTRACTION DYNAMICS IN THE BASIC MODEL

The analysis of the preceding sections has been essentially static in nature, in
that a structural break in uncertainty was known to have occurred in the previous
period. It is not clear, then, that the results still apply if the increase in uncertainty
occurs several periods earlier, particularly when we take into account the fact that
uncertainty about potential output is typically serially correlated, and feeds through
to increased uncertainty about subsequent estimates of X , the unobserved state of
the economy.

The analysis of this section thus focuses on the dynamic effects of a structural
break in uncertainty surrounding y∗—that is, how optimal policy is affected as
this uncertainty propagates forward through time. Again, this is in contrast to
Svensson and Woodford (2000), who consider only counterfactual experiments in
which uncertainty about an indicator is increased going back into the infinite past.

The model here is essentially the same as in Section 2. Policymakers’ preferences
have the form

min(1 − δ)Et

∞∑
s=t

δs−t
(
π2

s + γ y2
s

)
, (20)

where, for ease of notation, πs now denotes the deviation of inflation from poli-
cymakers’ target and ys denotes the output gap, both at time s. The economy
follows:

Xt = ϕXt−1 − αrt + εt , (21a)

yt = Xt + ηt , (21b)

πt = π e
t + β Xt + νt , (21c)

where Xt denotes the unobserved state of the economy, rt the deviation of the real
interest rate from its “natural” value, and π e

t agents’ expectation of inflation, as
before.

The error term η is now allowed to be persistent:

ηt = θηt−1 + ξt , (21d)

where θ can be regarded as the degree of persistence of shocks to potential output.
The normally distributed disturbances εt , νt , and ξt are assumed to be orthogonal
to each other, across time, and to all other variables in the system.
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The timing of policymakers’ observations and actions is the same as in Section 2,
with information set

It ≡ {
α,β, γ, δ, θ, ϕ, σ 2

ε , σ 2
ν , σ 2

ξ , E0 X0, Var0 X0, π
e
t , π e

s , πs, rs, ys | s < t
}
. (22)

Policymakers’ optimal solution to (20), subject to (21) and (22), is given by

rt = aEt Xt−1 + bEtηt−1 + cπ e
t , (23)

where a, b, and c are constants invariant to the uncertainty surrounding X and η

(see the Appendix). In contrast to Section 2, policymakers now care about past
values of η as well as X . Note that because yt−1 = Xt−1 + ηt−1, we can rewrite
(23) as

rt = ãEt Xt−1 + byt−1 + cπ e
t , (24)

where ã ≡ a − b.
As values of y and π are observed, policymakers update their beliefs about X

and η by Kalman filtering. Letting σ 2
xt

, σ 2
ηt

, and σxηt denote Vart Xt , Vartηt , and
Covt (Xt , ηt ), respectively, policymakers’ best estimate of Xt−1 at time t is given
by

Et Xt−1 = σ 2
ν

(
σ 2

ηt−1
+ σxηt−1

)
�t−1

Et−1 Xt−1 + σ 2
ν

(
σ 2

xt−1
+ σxηt−1

)
�t−1

yt−1

+ β
(
σ 2

xt−1
σ 2

ηt−1
− σ 2

xηt−1

)
�t−1

(
πt−1 − π e

t−1

)
, (25)

where �t ≡ β2(σ 2
xt
σ 2

ηt
− σ 2

xηt
)+ σ 2

ν (σ 2
xt

+ 2σxηt + σ 2
ηt
) for all t . Equation (25) was

derived exactly as was policymakers’ estimation equation (10) in Section 2. The
Et−1 Xt−1 term can be written as ϕEt−1 Xt−2 − αrt−1 and cascaded backward, as
before.

Given an exogenous increase in uncertainty about ηs at the beginning of period
s < t , we must begin by tracing out its effects on subsequent values of σ 2

η , σ 2
x ,

and σxη. The interpretation of the exogeneity of the increase in σ 2
ηs

is that of a
structural break in uncertainty surrounding potential output in period s. The case in
which uncertainty about η increases exogenously in several periods s1, s2, . . . , sk ,
although perhaps more interesting, is simply a positive linear combination of the
effects given below, and thus does not need to be considered separately.

A straightforward computation [using equations (16) from the preceding sec-
tion] shows that policymakers’ variances evolve according to22

[
σ 2

xt+1
σxηt+1

σxηt+1 σ 2
ηt+1

]
= σ 2

ν

(
σ 2

xt
σ 2

ηt
− σ 2

xηt

)
�t

[
ϕ2 −ϕθ

−ϕθ θ2

]
+

[
σ 2

ε 0

0 σ 2
ξ

]
. (26)
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For notational convenience, define

Nt ≡ σ 2
ν

(
σ 2

xt
σ 2

ηt
− σ 2

xηt

)
�t

, (27)

which is the key term in (26). Totally differentiating Nt with respect to σ 2
ηs

, us-
ing (26), yields

d Nt

dσ 2
ηs

= σ 4
ν

�2
t

[
θ
(
σ 2

xt
+ σxηt

) + ϕ
(
σ 2

ηt
+ σxηt

)]2 d Nt−1

dσ 2
ηs

, (28)

which is a recursive sequence terminating with

d Ns

dσ 2
ηs

= ∂ Ns

∂σ 2
ηs

= σ 4
ν

�2
s

(
σ 2

xs
+ σxηs

)2
. (29)

The first equality in (29) follows from the assumption that the increase in uncer-
tainty about ηs in period s is exogenous, whereas the covariance σxηs and vari-
ance σ 2

xs
, which derive from uncertainty about η and X in prior periods, are held

fixed.
Note that equations (28) and (29) imply d Nτ /dσ 2

ηs
≥ 0 for all τ ≥ s. This fact,

together with the relations implied by (26), helps us assess the effects of the break
in uncertainty about ηs on the coefficients in the period-t estimation equation (25).

For example, the coefficient on the most recent inflation surprise, (πt−1 −π e
t−1),

unambiguously increases in (25). This follows from the fact that

d

dσ 2
ηs

β
(
σ 2

xt−1
σ 2

ηt−1
− σ 2

xηt−1

)
�t−1

= β

σ 2
ν

d Nt−1

dσ 2
ηs

> 0

and the coefficient on the inflation surprise in (25) is positive. Thus, the finding of
an amplification of the coefficient on inflation in Section 2 is robust to extending
the increase in uncertainty about the output gap backward any number of periods.

Similarly, the coefficient on the most recent output gap, yt−1, is necessarily
attenuated, under the assumption that θ > ϕ (which corresponds to assuming
shocks to potential output are more persistent than movements in the output gap):

d

dσ 2
ηs

σ 2
ν

(
σ 2

xt−1
+ σxηt−1

)
�t−1

= σ 2
ν

�2
t−1

[
(ϕ − θ)σ 2

ν − β2
(
θσ 2

xt−1
+ ϕσxηt−1

)]

× [
θσ 2

xt−1
+ (θ + ϕ)σxηt−1 + ϕσ 2

ηt−1

]d Nt−2

dσ 2
ηs

= − σ 2
ν

�2
t−1

[
(θ − ϕ)σ 2

ν + β2θσ 2
ε

](
θσ 2

ε + ϕσ 2
ξ

)d Nt−2

dσ 2
ηs

< 0.

https://doi.org/10.1017/S1365100504020279 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100504020279


44 ERIC T. SWANSON

Thus, this finding from Section 2 is also robust, no matter when the structural break
in uncertainty occurred.23

The coefficient on the lagged estimate of the state variable, Et−1 Xt−1, may either
increase or decrease in (25), according to

d

dσ 2
ηs

σ 2
ν

(
σ 2

ηt−1
+ σxηt−1

)
�t−1

= σ 2
ν

�2
t−1

[
(θ − ϕ)σ 2

ν − β2
(
ϕσ 2

ηt−1
+ θσxηt−1

)]

× [
θσ 2

xt−1
+ (θ + ϕ)σxηt−1 + ϕσ 2

ηt−1

]d Nt−2

dσ 2
ηs

= σ 2
ν

�2
t−1

[
(θ − ϕ)σ 2

ν − β2ϕσ 2
ξ

](
θσ 2

ε + ϕσ 2
ξ

)d Nt−2

dσ 2
ηs

,

which is positive if and only if (θ − ϕ) > β2ϕσ 2
ξ /σ 2

ν .24 Coefficients on lags of in-
flation and the output gap, obtained by cascading the expectational term backward
in (25), may thus also go either way, depending on the sign of the derivative above.
For example, if (θ − ϕ) > β2ϕσ 2

ξ /σ 2
ν , then the coefficient on Eτ Xτ increases for

every τ ≥ s. It then follows that the coefficient on the lagged inflation surprise
(πτ − π e

τ ) also increases for every τ ≥ s (although the change in coefficient on
lags of the output gap, yτ , is not clear for s ≤ τ ≤ t − 2). If (θ − ϕ) < β2ϕσ 2

ξ /σ 2
ν ,

then the coefficient on Eτ Xτ decreases for every τ ≥ s, the coefficient on yτ also
decreases for every τ ≥ s, and the change in coefficient on (πτ −π e

τ ) now becomes
analytically unclear for s ≤ τ ≤ t − 2.

Note that I use the terminology “not clear,” rather than “ambiguous,” here be-
cause the change in coefficients may be theoretically unambiguous, but compu-
tation of the analytical derivatives and a further sign check of the result would
be required to ascertain this fact, and these computations quickly become very
burdensome. For example, it can be shown analytically that the coefficient on the
second lag of the inflation surprise, (πt−2 − π e

t−2), also necessarily increases for
θ > ϕ (no matter what the value of β2ϕσ 2

ξ /σ 2
ν ), further corroborating the finding

that policymakers should react more aggressively to inflation.

5. CONCLUSIONS

A standard result in the literature is that optimal monetary policy in a linear-
quadratic framework is certainty-equivalent. It was emphasized in this paper that
optimal policy is not certainty-equivalent with respect to indicator variables when
policymakers face a signal extraction problem in their estimation of the economic
state. For example, the state of the economy could be an unobserved aggregate
concept such as “excess demand” or “inflationary pressure,” with policymakers
using many measures of output, employment, capacity utilization, and inflation
to help them infer the actual level of excess demand or inflationary pressure, as
in Stock and Watson (1998, 2000) and Bernanke and Boivin (2002). It should be
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emphasized that the results of the present paper apply to indicator variables that
are estimated (such as the output gap) as well as those that are directly observed
(such as output, unemployment, and inflation).

This paper shows that increased uncertainty about an indicator variable causes
policymakers’ optimal responsiveness to that indicator to be attenuated. It also
shows, fairly generally, that it is optimal for policymakers to amplify their re-
sponsiveness to all other economic indicators, about which uncertanity has not
changed.

The signal extraction framework is crucial to the above results. If, instead,
policymakers simply observe an unbiased estimate X̂ of the state of the economy
X , then certainty-equivalence holds, even when policy is expressed in terms of the
observable estimate X̂ .

This last observation has important implications for the real-time data litera-
ture of Orphanides (1998, 2001), Rudebusch (2001, 2002), and others. In those
papers, if the real-time data were unbiased estimates of the true state of the econ-
omy X , then the optimal policy would still be certainty-equivalent, even when
expressed as a function of the real-time data, X̂ . Orphanides and Rudebusch only
find coefficient attenuation because they assume, perhaps unrealistically, that the
real-time data are noisy indicators (rather than rational expectations) of the under-
lying true values of the data. Policymakers thus face a signal extraction problem in
their estimation of the true data X , leading to a non-certainty-equivalent policy in
terms of the noisy indicators (the observable data). The results in Orphanides and
Rudebusch are thus completely in line with those of the present paper, given their
assumptions.

Whether one regards the insights of the present paper as valuable in practice
depends on the extent to which one believes policymakers use the signal extrac-
tion framework. For example, models of the economy that have a large number of
macroeconomic indicators but a relatively smaller number of fundamental, unob-
served state variables fit this framework very well. Alternatively, economic models
in which every single variable is important to the law of motion for the economy
are generally not well represented by the signal extraction framework of this paper.
It is not clear in practice which type of model provides the better representation of
the actual economy, or which type of model is used by policymakers; thus, both
frameworks should be of some interest.

NOTES

1. I consider rational expectations models in the main body of the paper.
2. Uncertainty about r∗, yt−1, and πt−1 is also additive with respect to the control variable rt , and

thus also has no effect on the optimal policy in (3).
3. Sack (2000), however, finds larger effects of parameter uncertainty within a monthly VAR frame-

work.
4. Some components of Xt can be observed without altering the results.
5. Uncertainty about any state variables not in the policymakers’ simple rule will have no effect;

this will be obvious from the discussion of the results in Section 2.
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6. For simplicity, I assume from now on that y∗ is constant, rather than growing over time, but this
assumption is not essential.

7. I assume that π∗ and r∗ are known with certainty, although in principle these restrictions, too,
could be dropped.

8. I assume here that the error ζ is orthogonal to current and past values of X and all other variables
of the system. This is the case, for example, when the uncertainty surrounding y∗ is due to a regime
change that has been known to occur in the previous period, so that y∗, which was previously known
with certainty, is suddenly uncertain. The more general case, where ζ is correlated with Xt , is not
difficult, and is solved in Sections 3 and 4. The results there are essentially identical to those presented
here.

9. See note 8. The separation of estimation and control in this model [Bertsekas (1987, p. 292)]
implies that the optimal policy [equation (8), below] is unaffected even as policymakers learn about
y∗ and revise their estimates over time. (One should think of the state of the economy in this case as
being [y∗, Xt ]′, with policymakers learning about y∗ as well as Xt .)

10. The special linear-quadratic structure of the problem is lost unless π e
t is either a rational

expectation or a fixed linear combination of finitely many lags of observable variables, but the general
results of this paper apply as long as one of these two conditions is met. Note also that the exact process
by which agents’ expectations are formed has no effect on policymakers’ period t estimation problem
regarding Xt . It is only because of the control aspects of policymakers’ problem that assumptions about
agents’ expectations are required at all.

11. Meyer et al. (2001) and Swanson (2001) consider the case of optimal estimation and control
when policymakers’ priors are not normally distributed. We can also drop the assumption of normality
within the framework of the present paper if we restrict policymakers to linear (as opposed to fully
optimal) estimates of the unobserved state Xt , since Kalman filtering is the optimal linear inference
procedure.

12. Given the normality assumption, the formula for the best predictor Et Xt−1 is the theoretical
regression/projection

Et Xt−1 = Et−1 Xt−1 + Covt−1(Xt−1, Zt−1)(Vart−1 Zt−1)
−1(Zt−1 − Et−1 Zt−1),

where

Zt−1 ≡
[ yt−1 − y∗

πt−1 − π e
t−1

]
.

This yields

Et Xt−1 = Et−1 Xt−1 +
[
σ 2

x βσ 2
x

][ σ 2
x + σ 2

η βσ 2
x

· β2σ 2
x + σ 2

ν

]−1

(Zt−1 − Et−1 Zt−1),

which is the expression given in (9).
13. This “less proactive” result could be emphasized by setting up the model with an additional lag

in equation (6c),

πt = π e
t + β Xt−1 + νt (6c′)

so that current output is more closely related to future than to current inflation. This is the timing used
by Svensson (1997); however, it complicates the analysis by making the signal extraction problem a
function of two lags of the variable Xt instead of only one, which is why this approach was not taken
here.

14. The problem of definitional revisions to output and inflation does raise an interesting
theoretical issue: Whereas it is fairly clear that the rationality of a forecast should be evaluated
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using definitionally consistent realizations of the statistic, it is not so obvious that this is the correct
approach when we start to consider policymakers’ welfare. For example, it is possible that the post-
definitional-change statistic is a better measure of the loss that policymakers, and society, actually
experienced.

I would, however, take the following view. Policymakers’ losses are a function of the true underlying
state of the economy. The various aggregate statistics are generally poor reflections of this state. A
definitional change in one of the aggregate statistics changes the relationship between the true state of
the economy and the given aggregate statistic, but does not change the true state of the economy itself.
Thus, the optimal coefficients in policymakers’ signal extraction problem should change in response to
the definitional revision, but there is not any irrational “noise” in the real-time data or in policymakers’
losses.

15. Drew and Hunt (2000) provide one exception to this rule, but their model and findings are
idiosyncratic for a number of reasons. First, the Reserve Bank of New Zealand’s macro model is
significantly nonlinear, so that certainty-equivalence would fail to hold even with a fully optimal rule.
Second, and more important, policymakers’ estimate of potential output is irrational, using an HP filter
that yields estimates that are significantly correlated with the business cycle. Policymakers thus have
a strong incentive to react aggressively to the output gap estimated in this way, since it will generally
be smaller than the true output gap that enters their loss function.

16. Orphanides et al. (2000) do find that under some circumstances an amplification in the coefficient
on the inflation rate is optimal. However, this only occurs when they increase the relative weight on
the output gap in policymakers’ loss function to high levels (0.75 or above).

17. There are some other minor differences at work as well. For example, Smets (1998) evaluates
the effects of increases in the variance of the output gap that go back into the infinite past, whereas
the experiment considered in this section has been one of a change in regime or structural break
at a given point in time t . However, I show in Section 4 that the results of this paper continue to
hold when uncertainty about the output gap extends backward any number of periods. Also, Smets
(1998) and Orphanides et al. (2000) constrain their simple policy rules to be functions of inflation
deviations from target [the four-quarter moving average of (πt−1 − π∗)] rather than the inflation
surprise (πt−1 − π e

t−1), which would be closer to the optimal inference procedure that I derive in
equation (10).

18. Note that equations in (12) that are redundant, or are not informative about Xt , in the sense
that policymakers’ prior variances on the corresponding elements of Zt are zero, should be dropped
from (12). Intuitively, realizations of these components of Zt contain no new information, and thus are
irrelevant for updating policymakers’ beliefs about Xt . Mathematically, this ensures that the matrix
C�t−1|t−1C ′ + �η is nonsingular in the updating equations that follow.

19. No difficulties arise when one allows �ε and �η to vary over time, as long as this variation is
independent of the policy instrument.

20. Aoki (1967, pp. 38–39), for example, makes this observation.
21. The policymaker’s choice of rt does not affect the signal extraction aspects of the problem—

neither the variance of ηs nor the variance of Xs for any s ≥ t—because it is assumed that the coefficient
matrices A and C are known with certainty. This is in marked contrast to the “experimentation” motive
that is present in Wieland (1998), where policymakers’ choice of rt helps to resolve the Brainard
uncertainty about the multiplicative parameters of the model.

22. Note that Xt and ηt are correlated since ηt−1 = yt−1 − Xt−1. Hence, Covt (Xt−1, ηt−1) =
−Vart Xt−1 and Covt (Xt , ηt ) = −ϕθ Vart Xt−1.

23. Technically, this is only attenuation under the assumption that policymakers’ total response to
the output gap, b + σ 2

ν (σ 2
xt−1

+ σxηt−1 )/�t−1, is positive. This assumption seems warranted (it can be
shown that b > 0, for instance).

24. The coefficient on Et−1 Xt−1 in (25) is necessarily positive, assuming again that θ > ϕ (and one
can show that ã > 0 in any case).

25. This is not suprising since setting πt = π∗ and (yt − y∗) = 0 in expectation is the global
optimum, and this was achieved even under discretion.
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APPENDIX: SOLUTION TO THE BASIC MODEL

Here I solve the basic model of Section 2 under both naive expectations (π e
t ≡ πt−1) and

rational expectations (π e
t ≡ Etπt ). Recall that the model’s basic equations are given by

Xt = ϕXt−1 − α(rt − r∗) + εt , (A.1)

(yt − y∗) = Xt + ηt , (A.2)

πt = π e
t + β Xt + νt . (A.3)

The solution under naive expectations is standard [e.g., Sargent (1987)], and is given by

rt = r∗ + aEt Xt−1 + b(πt−1 − π∗), (A.4)

where

[ a b ] = −(B ′V B)−1 B ′V A, A ≡
[

ϕ 0

βϕ 1

]
, B ≡

[ −α

−βα

]
(A.5)

and V is the unique negative semidefinite solution to the Riccati equation:

V = −D + δA′V A − δA′V B(B ′V B)−1 B ′V A, D ≡
[

γ 0

0 1

]
. (A.6)

In particular, the solution (A.4) is certainty-equivalent, in that a and b are invariant to the
second and higher moments of the stochastic parameters of the system.

For the solution under rational expectations, it is easiest to think of replacing (A.3) with

πt = λπ e
t + β Xt + νt (A.3′)

and consider the limit as λ tends to one. Under both discretion and commitment, the dynam-
ics of the problem in this case are trivial because it has no persistence (policymakers can set
Xt up to a stochastic disturbance term, and πt is a jump variable). Policymakers’ problem in
period t thus reduces to minimizing the period-t loss function Et [(yt − y∗)2 +γ (πt −π∗)2].

When policymakers are short-sighted (“discretionary”), taking π e
t as fixed, it is easy to

show that optimization and rational expectations lead to

Etπt = β2

β2 + γ (1 − λ)
π∗, Et (yt − y∗) = β(1 − λ)

β2 + γ (1 − λ)
π∗, (A.7)

which converge to π∗ and 0, respectively, as λ → 1.
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Alternatively, when policymakers are far-sighted (“committed”), optimization and ratio-
nal expectations lead to

Etπt = β2

β2 + γ (1 − λ)2
π∗, Et (yt − y∗) = β(1 − λ)

β2 + γ (1 − λ)2
π∗, (A.8)

which likewise converge to π∗ and 0 as λ → 1.25

Thus, under rational expectations, we can regard policymakers as solving the following
more standard linear-quadratic problem:

Xt = ϕXt−1 − α(rt − r∗) + εt , (A.9)

(yt − y∗) = Xt + ηt , (A.10)

πt = π∗ + β Xt + νt , (A.11)

for which the optimal solution is

rt = r∗ + aEt Xt−1 + b(π∗ − π∗), (A.12)

where a and b are given by equation (A.5), exactly as before. Obviously, the (π∗ − π∗)
term can be dropped, but leaving it facilitates comparison to (A.5) and the single solution
given in the main body of the text,

rt = r∗ + aEt Xt−1 + b
(
π e

t − π∗
)
. (A.13)

It is then not hard to solve explicitly for V in (A.6) and show that a and b are necessarily
positive.

The same methods can be applied to the slightly more complicated model of Section 4.
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