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The instability of the shear layer separating from
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(Received 17 April 1996 and in revised form 16 September 1996)

Notwithstanding the fact that the instability of the separated shear layer in the
cylinder wake has been extensively studied, there remains some uncertainty regarding
not only the critical Reynolds number at which the instability manifests itself, but
also the variation of its characteristic frequency with Reynolds number (Re). A large
disparity exists in the literature in the precise value of the critical Reynolds number,
with quoted values ranging from Re = 350 to Re = 3000. In the present paper, we
demonstrate that the spanwise end conditions which control the primary mode of
vortex shedding significantly affect the shear-layer instability. For parallel shedding
conditions, shear-layer instability manifests itself at Re ≈ 1200, whereas for oblique
shedding conditions it is inhibited until a significantly higher Re ≈ 2600, implying
that even in the absence of a variation in free-stream turbulence level, the oblique
angle of primary vortex shedding influences the onset of shear-layer instability, and
contributes to the large disparity in quoted values of the critical Reynolds number. We
confirm the existence of intermittency in shear-layer fluctuations and show that it is
not related to the transverse motion of the shear layers past a fixed probe, as suggested
previously. Such fluctuations are due to an intermittent streamwise movement of the
transition point, or the location at which fluctuations develop rapidly in the shear
layer.

Following the original suggestion of Bloor (1964), it has generally been assumed
in previous studies that the shear-layer frequency (normalized by the primary vortex
shedding frequency) scales with Re1/2, although a careful examination of the actual
data points from these studies does not support such a variation. We have re-
analysed all of the actual data points from previous investigations and include our
own measurements, to find that none of these studies yields a relationship which is
close to Re1/2. A least-squares analysis which includes all of the previously available
data produces a variation of the form Re0.67. Based on simple physical arguments
that account for the variation of the characteristic velocity and length scales of the
shear layer, we predict a variation for the normalized shear-layer frequency of the
form Re0.7, which is in good agreement with the experimental measurements.

1. Introduction
The separated shear layer is one of the three fundamental ingredients which

constitutes the flow past a bluff body, the other two being the wake and the boundary
layer. The focus of the present study is the instability of the shear layer separating from
the sides of a circular cylinder. Although a number of investigations have addressed
this instability, there remains some uncertainty regarding the critical Reynolds number

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

43
26

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096004326


376 A. Prasad and C. H. K. Williamson

at which the instability first manifests itself, and the variation of its characteristic
frequency with Reynolds number, both of which have a surprising scatter in the
literature.

The separating shear layer from a cylinder becomes unstable for Reynolds numbers
(Re) of the order of 1000. The primary wake instability, which commences at the
much lower Reynolds number of about 49, results in the classical von Kármán vortex
street configuration and develops three-dimensionalities for Re > 190 (see Williamson
1996a for a comprehensive review). The primary wake instability, now known to be
the result of a Hopf bifurcation, scales with the cylinder diameter. On the other
hand, the shear-layer instability which develops by the action of a Kelvin–Helmholtz
mechanism, scales with the thickness of the separating shear layer, which is generally
a small fraction of the cylinder diameter. Consequently, the length and time scales
of the shear-layer instability are much smaller than those of the wake instability.
The ensuing small-scale vortices which form within the separated shear layer, visually
appear similar to those found in the plane mixing layer between co-flowing streams
of unequal velocity. Nevertheless, some distinct differences are found due to the
spatial restriction imposed by the formation of the large-scale Kármán vortices: in
order to be visible, the shear-layer instability necessarily needs to develop and to
then undergo significant amplification before the shear layer rolls up to form the
primary Kármán vortex. These ideas were used by Roshko (1993) and Williamson
(1996a) in a simple analysis to suggest a value for the Reynolds number below which
shear-layer instability would not be perceived. However, by artificially suppressing
primary vortex formation, further similarities emerge between the separated shear
layer and plane mixing layers. Using a ‘splitter plate’ (Roshko 1954) to inhibit the
roll-up of primary vortices, Unal & Rockwell (1988b) found that the shear-layer
instability exhibits significant amplification at the 1/2 -subharmonic of the naturally
occurring shear-layer frequency, and suggested that this is due to the coalescence of
small-scale vortices, as is observed in other free shear layers. By moderating Kármán
vortex formation with the use of permeable wake splitter plates, Cardell (1993) also
observed the development of the 1/2 -subharmonic. In addition, he found that the
separating shear layers exhibit self-similarity far downstream, as is observed in plane
mixing layers. However, in the present study, we focus on the instability of the
naturally evolving separated shear layer.

Over the past several decades, a number of investigations have addressed diverse
aspects of shear-layer instability, some of which we highlight here. Linke (1931) and
Schiller & Linke (1933) appear to be the first to have recognized that turbulence
develops in the separated shear layers from a cylinder. They suggested, from their
measurements of mean quantities, that the rapid increase in the base ‘suction’ coeffi-
cient (negative of base pressure coefficient) in the range Re = 103–105 is associated
with the point of transition in the shear layers moving upstream as Re increases.
However, it was not until much later that Bloor (1964) made the first systematic mea-
surements of the characteristic frequency associated with the shear-layer instability.
She labelled this the ‘transition’ frequency, in analogy with the instability observed
in wall boundary layers. Subsequent investigators have used a variety of terminology
including the ‘Bloor–Gerrard’ frequency, the ‘Kelvin–Helmholtz’ frequency and the
‘secondary’ frequency. However, we prefer to simply label it the shear-layer frequency
(fSL). Conventionally, fSL is normalized by the Kármán vortex shedding frequency
(fK). Based on parameter variations similar to those of laminar boundary layers,
Bloor (1964) suggested that fSL/fK should scale with Re1/2. Since her pioneering
work, other investigators including Smith, Moon & Kao (1972), Wei & Smith (1986),
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Kourta et al. (1987) and Norberg (1987) have measured the shear-layer frequency.
Many of these investigators attempted to fit their data to an Re1/2-variation, although
an examination of their actual data points does not support such a variation. Wei &
Smith (1986) found that the normalized shear-layer frequency varies as Re0.77 from
hot-wire measurements and as Re0.87 from flow visualization. They surmised that
the former technique of measurement would inherently result in lower values of the
shear-layer frequency, because the intermittent shear-layer fluctuations (induced by
the transverse motion of the shear layer past a fixed probe), when transformed into the
frequency domain produce spurious peaks in the spectrum. From his measurements,
Norberg (1987) suggested that a single power law may not represent the variation of
fSL/fK over the entire Re -range up to Re = 105 and found that a local maximum in
the exponent occurs at Re = 5000. It therefore appears from the above discussion that
the variation of the normalized shear-layer frequency with Re, remains an unresolved
question.

A further pertinent question concerns the critical Reynolds number (Rec) at which
the shear-layer instability is first observed. It is evident from a survey of the literature
that there exists a surprisingly large discrepancy in quoted values of Rec, as the
following examples illustrate: Gerrard (1978) suggested that Rec ≈ 350; Bloor (1964)
detected the instability only for Re > 1300 from her hot-wire measurements; Unal &
Rockwell (1988a) found, from their hot-film and flow visualization studies, that the
instability could not be perceived for Re < 1900; more recently, Wu et al. (1996) have
suggested that the critical Reynolds number can lie anywhere between Re = 1000 and
Re = 3000, and that its precise value depends on background disturbance conditions.
Although it is known that Rec can depend on the level and spectral content of
background disturbances (Unal & Rockwell 1988a), it appears that this large disparity
may not be explained solely by this source, since much of the variation occurs under
similar turbulence conditions. One may then suggest that three-dimensional near-wake
phenomena would influence the development of the separated shear layer.

Three-dimensional wake phenomena such as parallel and oblique shedding can
be controlled in the laminar shedding regime (49 < Re < 190) through the use of
spanwise end manipulation (see review in Williamson 1996a). In a recent study, Prasad
& Williamson (1995, 1997) have shown that the end boundary conditions can similarly
be used to control parallel and oblique vortex shedding over long spanlengths, for
Re > 260 and at least up to Re ∼ 104, which is relevant to the present study. Several
characteristic parameters measured in the wake display distinct differences between
parallel and oblique shedding end conditions. One naturally questions whether the
end conditions, which affect the primary vortex shedding, also affect the instability of
the separated shear layer. This question, which was partially addressed in Prasad &
Williamson (1996), forms the starting point of the present paper.

In § 3, the influence of end conditions on the instability of the shear layer is
presented. We will show that the end conditions can significantly affect the critical
Reynolds number for shear-layer instability. It also appears that shear-layer fluc-
tuations display an intermittency, which we further characterize in § 4. Frequency
measurements presented in § 5, show that a power law of the form Re0.67 accurately
represents the Re -variation of fSL/fK , when one considers data from all the inves-
tigators who have measured the shear-layer frequency. This is followed, in § 6, by
an analysis, based on simple physical arguments, which suggests why one should
naturally expect a power-law exponent larger than 0.5. We predict a Re -variation for
the normalized shear-layer frequency, which compares well with the experimentally
determined variation. Following this, we present a brief discussion and conclusions.
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2. Experimental details
The experiments were performed in an open-circuit suction wind tunnel. The free-

stream turbulence was less than 0.08% and flow uniformity better than 0.3% in the
12 in. × 12 in. test section, measured over the range of velocity from 0.5 to 14 m s−1;
the free-stream turbulence level was measured using an RMS meter with a frequency
range of 10 Hz to 10 MHz. Cylinders of diameter 0.318, 0.635, 1.27 and 2.54 cm
were mounted near the upstream end of the test section. The Reynolds number is
defined as Re = U∞D/ν, where U∞ is the free-stream velocity and D is the cylinder
diameter. Circular endplates (of diameter = 10D) were fitted on the cylinders to
produce aspect ratios of 20–80; however, the cylinder of largest diameter, which was
not fitted with endplates, delivered an aspect ratio of 12. The hot-wire measurements
were performed on the cylinders of aspect ratio 40–80, with the cylinders of aspect
ratio 12–20 being used solely for flow visualization. To produce parallel vortex
shedding across the entire span, each endplate was positioned with its leading edge
inclined inwards about 12◦. By inclining each endplate in the same direction, oblique
vortex shedding was induced. In the present paper, these endplate configurations are
referred to as the parallel and oblique shedding conditions respectively.

The origin of the wake coordinate system is fixed on the axis of the cylinder. The
x-axis is directed downstream, the y-axis is perpendicular (defined as transverse) to
the flow direction and the cylinder axis, and the z-axis lies along the axis of the
cylinder (defined as spanwise).

Wake velocity measurements were made, at the midspan of the cylinder, using
a miniature hot-wire probe in conjunction with a two-channel anemometer system.
Most of the single-point measurements were made near the outer edge of the shear
layer, at x/D = 1.0, except where indicated. A Stanford Research Systems SR760
spectrum analyser was used for the spectral measurements. Long-time-averaged
velocity spectra were produced by averaging measured spectra for time durations in
excess of 10 000 vortex shedding cycles. Fluctuating RMS velocities at the vortex
shedding frequency and the shear-layer frequency were calculated using amplitudes of
the corresponding spectral peaks determined from long-time-averaged spectra. The
total velocity fluctuation intensity was measured on a Hewlett–Packard 3400A true-
RMS meter. Time traces were recorded on a computerized data-acquisition system
with a sampling rate of 100 kHz.

Flow visualization was conducted using a vertical smoke-wire system, as originally
described by Corke et al. (1977). A GenRad 1540 Strobolume provided the intense
illumination required to capture photographic images on ISO 400/27◦ film with a
Nikon F3 camera.

3. Influence of end conditions on the development of shear-layer
fluctuations

We focus, in this section, on the effect of the spanwise end boundary conditions
on the development of the separated shear layer. One may approximate reasonably
well the mean velocity profile across the shear layer by the error function, as shown
in figure 1 for parallel shedding conditions. The error function profile is selected
in preference to the more frequently used hyperbolic-tangent profile because δω/θ
(δω = shear-layer vorticity thickness, θ = shear-layer momentum thickness) for the
former matches better the experimentally determined value, an observation also made
by Cardell (1993). We shall use the mean profile later to estimate the extent of
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Figure 1. Mean velocity distribution across the shear layer at Re = 2000. The data for parallel
shedding at x/D = 1.0 are presented for the cylinder of diameter 0.318 cm. The error function,
shown by the solid line, approximates the profile accurately.

transverse motion (sometimes referred to as ‘flapping’) of the shear layer. The error
function profile approximates the mean velocity for oblique shedding conditions as
well, implying that the gross features of the flow, in this vicinity, are not altered by
the primary vortex shedding angle. However, distinct differences between parallel and
oblique shedding are clearly observed in measurements of velocity fluctuation within
the shear layer. Long-time-averaged velocity spectra are shown in figure 2, for both
parallel and oblique shedding conditions, at Re = 1000 and Re = 1200. Both the
spectra obtained at Re = 1000 appear similar, with prominent peaks only at fK and
2fK . However, at Re = 1200, for parallel shedding conditions, an additional peak
appears at a frequency fSL ; in contrast, no such peak appears for oblique shedding
conditions at the same Reynolds number. A peak at fSL was defined to exist if the
level of energy at the peak exceeded the noise level at surrounding frequencies. It
appears that the critical Reynolds number to observe shear-layer instability is lower
in the case of parallel shedding.

Differences between parallel and oblique shedding are found to persist as Re
increases. Spectra at Re = 2700, shown in figure 3, indicate that for parallel shedding
conditions in (a) the spectral peak at fSL is very well-defined, whereas for oblique
shedding conditions in (b) the peak is barely visible. The spectral peak at fSL
appears to be relatively broad compared to the distinctly sharp peak at fK , as
seen clearly in figure 3(a). The sharp peak at fK is indicative of the existence of
an absolutely unstable process which is responsible for the relatively coherent and
energetic velocity fluctuations associated with Kármán vortex formation. In contrast,
the broad-band peak at fSL is consistent with the convectively unstable nature of
shear-layer instability. Evidence of such a broad-band peak at fSL is also found in the
theses of Norberg (1987) and Cardell (1993). Based on analogies with plane mixing
layers, Cardell (1993) suggested that one should naturally expect a broad peak at fSL,
because of the unsteady environment in which the shear-layer instability develops.
The most unstable frequency, fSL, scales with the velocity outside the separation
point and with the momentum thickness of the shear layer. Temporal variations in
the velocity scale arise due to the presence of large-scale Kármán vortex formation.
Furthermore, due to the slight oscillation of the point of separation (also caused
by Kármán vortex formation), one can expect some variability in the value of the
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Figure 2. Influence of end conditions on velocity spectra in the shear layer. The spectra at
Re = 1000, for parallel and oblique shedding conditions appear similar. However, at Re = 1200,
the spectrum for parallel shedding displays a broad peak at fSL, whereas no such peak is observed
for oblique shedding at this Re. The prominent spectral peaks indicated are the Kármán shedding
frequency, fK , its first harmonic, 2fK , and the shear-layer frequency, fSL. The measurements are
made at x/D = 1.0 and y/D ≈ 0.8.

momentum thickness as well. Both of these factors would contribute to a variation (in
time) of the most unstable frequency, and to the broad-band peak at fSL, in velocity
spectra.

Returning to figures 2 and 3, we observe that the peak at fSL is larger in magnitude
at Re = 2700 than it is at Re = 1200. This can be conveniently quantified as the
turbulence intensity at the shear-layer frequency, (u′rms/U∞)fSL , which is found to
increase with Re as one might expect, and shown in figure 4. Peterka & Richardson
(1969) also observed, from limited measurements, that the amplitude of fluctuation
at the shear-layer frequency increases in magnitude as Re increases. However, we
find that the increase for parallel shedding is markedly larger than it is for oblique
shedding, suggesting that the instability is, in some fashion, moderated by the oblique
shedding conditions. The data in figure 4 also permit us to determine the critical
Reynolds number for shear-layer instability, by extrapolating the curves to the noise
level in the spectrum when the peak at the shear-layer frequency disappears. It is
necessary to mention here that unlike the case of primary wake instability for which a
precise mathematical definition of critical Reynolds number exists, the present usage
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Figure 3. Comparison of spectra at Re = 2700. The peak at fSL is very well-defined in the case of
parallel shedding (a), whereas it is barely visible for oblique shedding in (b). The measurements are
made at x/D = 1.0 and y/D ≈ 0.8.

of the term for the case of shear-layer instability refers to the Reynolds number
below which a peak at the shear-layer frequency could not be measured in velocity
spectra. We find, for parallel shedding conditions, Rec ≈ 1200, whereas for oblique
shedding conditions a considerably larger value of Rec ≈ 2600 is found. It is well-
known that the level of free-stream turbulence can affect the value of the critical
Reynolds number (Unal & Rockwell 1988a). However, in the absence of a variation
in the free-stream turbulence level, we find that the critical Reynolds number can be
significantly affected by the end conditions on the cylinder, and indeed by the angle
at which the primary vortices are shed.

Since our wake measurements were made exclusively at midspan, there still remains
an important question regarding the spanwise structure of the shear-layer instability.
In particular, we ask whether the shear-layer instability waves are always parallel
to the axis of the cylinder, or if indeed they adopt the spanwise structure of the
Kármán vortices. Smoke-wire flow visualization, presented in figure 5, demonstrates
that the shear-layer instability is very nearly parallel to the cylinder axis, irrespective
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U∞
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Figure 4. Variation of the intensity at the shear-layer frequency, (u′rms/U∞)fSL , with Re. The intensity
which increases rapidly for parallel shedding conditions, however, increases only moderately for
oblique shedding conditions. It is possible to deduce that the instability sets in at Re ≈ 1200
with parallel shedding but is inhibited by oblique shedding till Re ≈ 2600, as indicated. The
measurements are made at x/D = 1.0 and y/D ≈ 0.8.

of whether the primary vortex shedding is parallel, shown in (a), or oblique as shown
in (b). We find that the instability of the separated shear layer is on the whole two-
dimensional along the span, in agreement with the suggestion of Braza, Chassaing
& Ha Minh (1990). It, therefore, appears that the most unstable mode in the shear
layer is two-dimensional, despite the fact that the base flow in the parallel shedding
case is different from the oblique shedding case, as we explain presently.

One naturally questions why the shear-layer instability is inhibited until Rec ≈
2600, for oblique shedding conditions. One suggestion may be made based on the
sensitivity of the separated shear layer to perturbations that occur near the separation
point. These perturbations, which are induced by primary vortex formation further
downstream, act on the shear layer by an ‘upstream influence’, a suggestion made by
Unal & Rockwell (1988a). Our measurements indicate that primary vortex shedding
is less energetic for oblique shedding than it is for parallel shedding, throughout
the velocity spectrum, and especially in the band of receptivity of the shear-layer
instability. The separated shear layer acts essentially as a selective amplifier of
perturbations. If the fluctuations induced by the upstream influence of primary
shedding are considered as its ‘input’, then it is clear that the amplitude of the shear-
layer instability measured at a fixed location will be higher in the parallel shedding
case, and hence will be elevated above the noise level at lower Re, than in the oblique
shedding case.

The upstream influence mentioned above, however, is not the sole contributor
to the difference observed in shear-layer fluctuations between parallel and oblique
shedding conditions. The perturbations that act on the region near the separation
point would act on different base flows in the two cases. For parallel shedding, since
vortex formation occurs in-phase along the span, the velocity at the separation point
is spanwise correlated, and the separated shear layer develops in a manner similar
to a two-dimensional mixing layer. However, in the case of oblique shedding since
the velocity at separation is not spanwise correlated, the separated shear layer can
no longer be described as two-dimensional. One can imagine that the growth rate of
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(a)

(b)

Figure 5. Spanwise flow visualization of the shear-layer instability for (a) parallel shedding end
conditions at Re = 4000 and (b) oblique shedding end conditions at Re = 5800. It appears that the
shear-layer instability is on the whole spanwise two-dimensional, irrespective of the particular end
boundary conditions on the cylinder. The smoke wire, which is parallel to the cylinder of diameter
1.27 cm, is positioned directly upstream of its front stagnation point, and the flow direction is
upwards.

disturbances in this three-dimensional shear layer is diminished in comparison to its
two-dimensional counterpart.

Another point which we will address in more detail in the following section concerns
our observation that the instability actually manifests itself only intermittently, despite
the fact that long-time-averaged velocity spectra show a distinct peak at the shear-
layer frequency. Such intermittency has been observed before, since some experimental
evidence of its presence can be found in the theses of Norberg (1987) and Cardell
(1993). The upper time trace in figure 6(a) clearly demonstrates this intermittency;
the ‘packets’ of high-frequency fluctuations correspond to the shear-layer instability.
For oblique shedding, no such intermittent fluctuations are observed at this particular
Re. Furthermore, the time traces demonstrate that when the shear-layer instability
does manifest itself in the parallel shedding case, its amplitude of fluctuation is much
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Figure 6. Velocity fluctuations within the shear layer at Re = 2500. In (a), we show time traces with
parallel and oblique shedding end conditions. ‘Packets’ of shear-layer fluctuations are observed for
parallel shedding, but not for oblique shedding at this Re. In (b), the solid square symbol represents
an estimate of the level of shear-layer fluctuations from the time trace in (a) had they occurred
continuously instead of intermittently. The measurements are made at x/D = 1.0 and y/D ≈ 0.8.

larger than fluctuations at the primary shedding frequency. This is, however, not
apparent from the long-time-averaged velocity spectra of figure 3(a). In order to
clarify this point, we have computed (from the trace in figure 6a) the level of shear-
layer fluctuations had they occurred continuously instead of intermittently, and this
is shown as the solid square symbol on the spectrum in figure 6(b). It is found to be
several times larger than the peak at fK , at the location of hot-wire measurement.
Therefore, the broad-band peak at fSL appears diminished in long-time-averaged
velocity spectra, because the shear-layer instability is intermittently manifested.

The inception of instability in the shear layers would naturally be expected to
have an impact on characteristic near-wake parameters. It is observed from figure
7(a) that the fluctuation intensity at the shedding frequency, (u′rms/U∞)fK , measured
in the shear layer at x/D = 1.0, develops an upward trend for Re > 1200 with
parallel shedding, but not with oblique shedding in this range of Reynolds number.
These trends are consistent with similar variations in (u′rms/U∞)fK measured further
downstream at x/D = 10 by Prasad & Williamson (1995, 1997). Interestingly, the
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Figure 7. Characteristic parameters in the near wake. In (a), the variation of (u′rms/U∞)fK for
parallel shedding develops an upward trend for Re > 1200, although not so for oblique shedding.
The measurements are made at x/D = 1.0 and y/D ≈ 0.8. In (b), measurements show that the
base suction coefficient also demonstrates a broad minimum at Re ≈ 1200. The data from Norberg
(1994) were measured under conditions which effectively promoted parallel shedding.

careful measurements of Norberg (1994) demonstrate that the coefficient of base
suction also develops an upward trend for Re > 1200, included here in figure 7(b).
The base suction coefficient is defined by

−CPB = − pB − p∞
1
2
ρU2
∞
,

where pB is the pressure at the base of the cylinder and p∞ is the static pressure
in the free stream. His (−CPB ) measurements were made under conditions which
inadvertently promoted parallel shedding, therefore producing the observed variation.
These upward trends occur because the development of instability in the shear layers
creates an increase in the cross-sectional (−u′v′) Reynolds stress, which is balanced
in the mean recirculation region of the wake by an increase in the coefficient of base
suction.

It appears from the above discussion that the main effect of oblique shedding
conditions is to moderate the shear-layer instability, thereby producing a higher
critical Reynolds number in comparison with parallel shedding conditions. In what
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Re = 4000

Re = 6000

Re = 8000

0 5 10 15 20 25

Shedding periods

Figure 8. Time traces show that as Re increases, the packets of fluctuation corresponding to the
shear-layer instability become more frequent. The measurements are made at a fixed point in the
shear layer near its outer edge, at x/D = 1.0.

follows, our attention will be directed only to the case of parallel shedding end
conditions.

4. Intermittency of shear-layer fluctuations
We would now like to focus our attention on the intermittency of shear-layer

fluctuations, with the aim of understanding the cause for this intermittency, using
measurements which characterize its variation with Reynolds number, and with
streamwise distance. With increasing Re, we find that the packets of shear-layer
fluctuation occur more frequently, as shown in figure 8. The measurements are made
with the hot-wire probe fixed at a location near the outer edge of the shear layer. It is
also evident, from figure 8, that the maximum amplitude of the shear-layer fluctuations
increases with Re, which is in agreement with measurements presented in figure 4. In
order to quantify the variation observed in figure 8, we define an intermittency factor
(γ) as that fraction of total time when the high-frequency oscillations are present.
Figure 9 shows that γ increases rapidly towards unity as Re increases; to obtain an
unprejudiced estimate of γ, its value at each Re has been calculated from time traces
spanning 25 primary shedding cycles. The calculated value of γ includes all of the
high-frequency fluctuations observed, regardless of their amplitude of oscillation.
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Figure 9. Variation of the intermittency factor γ with Re. We find that γ increases rapidly towards
unity, as the Reynolds number increases. At each Re, the value of γ is calculated from time traces
spanning 25 shedding cycles. The time traces are measured at a fixed point in the shear layer near
its outer edge, at x/D = 1.0.

The increase, with Re, of the intermittency factor measured at a fixed point in the
shear layer may in part be the effect of the region of instability moving upstream with
increasing Re. This suggestion is based on the work of Linke (1931) and Schiller &
Linke (1933), who determined that as Re increases, the point of transition in the shear
layers advances upstream. This corresponds with an upstream motion of the location
at which shear-layer fluctuations grow to perceptible proportions (see transition point
as defined by Sato 1956 in §6), which can cause a fixed probe to detect more frequent
shear-layer fluctuations, with increasing Re. To isolate the streamwise development
of the shear-layer instability, we have recorded time traces at a fixed Re = 4000,
for various downstream distances, as shown in figure 10. We find that packets of
shear-layer fluctuation become more frequent as one travels downstream. Since the
shear layer curves inwards as it travels downstream, the position of the probe was
adjusted at each streamwise location, so as to lie near its outer edge. The intermittent
fluctuations are observed to grow in magnitude with downstream distance, which is
characteristic of convectively unstable flows, such as a plane mixing layer.

Having characterized some aspects of the development of intermittency, we now
suggest a heuristic explanation for its existence. Wei & Smith (1986) conjectured that
the observed intermittency is due to the transverse motion of the shear layer. This
would cause a stationary probe to sense, only periodically, fluctuations corresponding
to the shear-layer instability. Recently, Cardell (1993) has indicated that it is unlikely
that intermittency is caused by this transverse motion, because it would imply that
the probe would record very low velocities (typical of the mean recirculation zone)
and produce characteristic low-velocity spikes which would appear in every shedding
cycle. However, such spikes are seldom observed, and when they do occur, are not
found to appear consistently in every shedding cycle, suggesting that the reason for
intermittency lies elsewhere. To establish that intermittency is not caused by the
transverse motion, we have quantified the latter by using the upper time trace in
figure 6(a). For our estimate, we assume that the vortex shedding oscillation observed
in the time trace (at x/D = 1.0) is caused solely by the mean velocity profile of the
shear layer moving past the fixed probe, at the primary shedding frequency. Such
a calculation will over-estimate the transverse motion since, as one can imagine,
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Figure 10. Time traces obtained at Re = 4000 show that the intermittency factor would increase
with downstream distance. The hot-wire probe is positioned near the outer edge of the shear layer,
at each streamwise location.

primary vortex formation would itself induce substantial fluctuating velocities in the
shear layer. It appears surprising that even an over-estimate produces a transverse
motion which is barely 8% of the thickness of the shear layer (defined to be the
transverse distance over which the mean velocity varies from 0.01∆U to 0.99∆U,
where ∆U is the mean velocity difference across the shear layer). Therefore, one can
conclude that even as far downstream as x/D = 1.0, the intermittency of shear-layer
fluctuations is not caused by a transverse motion of the separated shear layers. A
further deduction from this result is that the transverse motion cannot cause the
observed intermittency in the measurements of Wei & Smith (1986), which were made
at x/D = 0.6, since it is known that the transverse motion diminishes as one travels
upstream in the shear layer.

Any plausible explanation for intermittency would have to account for the fact
that it is present even when primary vortex formation is moderated or suppressed,
as documented by Cardell (1993). This implies that phenomena associated with
primary Kármán vortex shedding alone cannot completely explain intermittency. The
knowledge that the intermittency factor increases with Re and downstream distance
seems to suggest that the entire region of instability – from its inception to the location
at which well-defined shear-layer vortices are formed – moves randomly upstream and
downstream. In addition to the random motion described above, there is the distinct
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possibility that the spontaneous generation of certain three-dimensional streamwise
structures in the near wake, which have been referred to as Mode B by Williamson
(1988), contribute significantly to the intermittency. These Mode B structures which
have a typical spanwise wavelength of about one diameter are found to exist in
the braid region between consecutive Kármán vortices (Williamson 1988, 1996b), for
Re > 260 and at least up to Re = 104 (Lin, Vorobieff & Rockwell 1996). Temporal
changes in the three-dimensional structure at Re > 1000 may disrupt the ordered
formation of the predominantly two-dimensional shear-layer vortices and lead to the
observed intermittency.

Flow visualization allows observation of the streamwise evolution of instability
over the entire length of the shear layer. In figure 11, we present typical examples of
the cross-sectional view of the near wake, indicating clearly the shear-layer vortices,
with the smoke-wire placed immediately downstream of the base of the cylinder. It
is of interest to note that flow visualization with the smoke-wire placed upstream of
the cylinder produced almost no evidence of the shear-layer instability. To explain
this apparent paradox, we note that in order to perceive shear-layer instability
using smoke-wire visualization, smoke particles would need to be introduced either
directly into the separated shear layer, as is done in figure 11, or into the cylinder
wall boundary layer. With regard to the latter technique, since all streamlines that
originate upstream of the cylinder always remain outside the boundary layer, it
appears nearly impossible to introduce smoke into the cylinder wall boundary layer
using an upstream-mounted smoke wire, which is consistent with our observation.
The photographs in figure 11 demonstrate clearly that the instability intensifies as
Re increases. In addition, a comparison between the images at Re = 4000 and
Re = 10 000 indicates that the region of clearly formed shear-layer waves or vortices
advances upstream as Re is increased. Furthermore, from a collection of photographs
at Re = 5000 (not shown), we find that at a fixed streamwise location, the instability
is at some instants barely perceptible, while at other instants has evolved into discrete
shear-layer vortices, providing visual evidence for the notion that the transition point
moves intermittently upstream and downstream. We also note from figure 11 that the
shear-layer instability appears to be in-phase across the wake, an observation also
made by Gerrard (1978). However, although such in-phase behaviour was observed
in the majority of our photographs, other configurations did manifest themselves.
The in-phase behaviour is perhaps linked to the intermittency as we explain below. It
is observed from the time traces, such as in figure 8, that the amplitude of the shear-
layer fluctuations can be classified into those which are large compared to the primary
vortex shedding oscillations and those which are small compared to these oscillations.
Although the foregoing discussion on intermittency did not address this aspect, we
would now like to suggest that it is the in-phase configuration which is responsible
for the large-amplitude shear-layer fluctuations observed in the time traces. Since
in the range of Reynolds numbers considered here Kármán vortex formation occurs
somewhat downstream of the cylinder, one would expect a certain degree of feedback
between the two separating shear layers, which arises due to their proximity. It is
conceivable that this feedback between the shear layers enhances fluctuations in the
shear layer to levels which are beyond those expected from the linear instability of a
shear layer developing in isolation. Moreover, one could consider the possibility of
mode competition in the system consisting of two shear layers separated spatially by
a distance of one cylinder diameter. The instability of such a system would admit
both a symmetric and an antisymmetric mode. If the most unstable frequency of
each of these two modes is not too dissimilar, then the swapping between large-
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Re = 4000

Re = 5000

Re = 7000

Re = 10000

Figure 11. Cross-sectional view of the near wake at various Reynolds numbers. The shear-layer
instability is observed to intensify as Re increases. It appears that the instability is in-phase across
the wake, although this is not the only configuration which was recorded. The smoke wire is placed
immediately downstream of the base of the cylinder (of diameter 2.54 cm), which was not fitted
with endplates.
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and small-amplitude shear-layer fluctuations is conceivably the result of a switching
between these two modes, one of which has a larger growth rate than the other.

In summary, we find that the observed intermittency in shear-layer fluctuations is
not caused by the transverse motion of the shear layer, but is principally the result of
a random streamwise motion of the transition point, which is influenced by temporal
changes in near-wake three-dimensional structures.

5. Frequency of shear-layer instability
Our investigation has, up to this point, addressed various aspects of velocity

fluctuations in the shear layer. Finally, we would like to focus on the characteristic
frequency of the shear-layer instability, fSL. The shear-layer frequency may be
evaluated from long-time-averaged velocity spectra, in which case fSL is defined as
the frequency corresponding to the maximum in the broad-band peak discussed with
reference to figures 2 and 3. Regarding the measurement of shear-layer frequency,
it is of interest to confirm that the spectral peak at fSL does indeed correspond
reasonably to predictions which can be made from measurements of τSL (period of
shear-layer fluctuations) using time traces. (This question was raised by J. Mihailovic
& T. Corke at the APS Meeting, 1995, private communication.) We have computed
τSL directly from time traces, such as the one displayed in figure 6(a); however, since
time traces indicate that the frequency is approximately constant within each packet,
but may vary somewhat between packets, it becomes necessary to select a statistically
significant sample to produce a reasonable value for τSL. To demonstrate that the two
methods of determining shear-layer frequency are consistent, we have constructed a
histogram (using over 200 shear-layer fluctuation cycles) shown in figure 12(a), where
the frequency computed from each packet was weighted by the number of cycles
in that packet. The frequency measured from long-time-averaged velocity spectra,
shown by the arrowhead, is found to agree remarkably well with the most prominent
bin in the histogram, which shows a consistency between the two techniques of
measurement. However, since the technique using time traces is considerably more
laborious, all of our subsequent measurements of shear-layer frequency are made
from velocity spectra.

Before proceeding with our measurements of the normalized shear-layer frequency,
we would like to highlight variations (of fSL/fK vs. Re) obtained by previous inves-
tigators. To determine these variations, we have independently analysed the actual
data points from each investigation, utilizing an accurate digitizing tablet to extract
frequency data from relevant plots of previous investigations. Our own analysis of
these data, shown in table 1, indicates that the exponent, denoted p, in the expression

fSL

fK
= A× Re p ,

is clearly larger than 0.5 in every case. In addition, there is a fair amount of scatter
in the value of the exponent, which prompted us to make our own independent
measurements of fSL/fK . Noting that in many of the previous studies end conditions
were not well-defined, we have intentionally imposed parallel shedding conditions on
the cylinder for our measurements.

In figure 12(b), we show the variation of normalized shear-layer frequency with
Re, including only data from the present study and from Norberg (1987). These two
sets of data show clearly that a power law can sufficiently describe this variation, at
least over the range 103 < Re < 50× 103, in this particular figure. The large symbol
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Figure 12. The measurement of shear-layer frequency from time traces at Re = 2500 compares very
well with spectral measurements, as shown in the histogram in (a). The histogram is constructed
from a sample of over 200 shear-layer fluctuation cycles. The arrow marker is the value of fSL
evaluated from long-time-averaged velocity spectra. In (b) is shown the variation of normalized
shear-layer frequency with Re, using data from the present study and from Norberg (1987). The
least-squares best-fit curve through these data (shown by the solid line) is fSL/fK = 0.0207×Re0.69.
The large symbol, calculated from the mean value of the histogram in (a), is found to agree well
with the spectral measurements. The measurements are made at x/D = 1.0 and y/D ≈ 0.8.

at Re = 2500 is calculated using the mean value from the histogram in figure 12(a).
As mentioned above, it agrees well with the spectral data. A power law of the form
fSL/fK = 0.0207×Re0.69 fits both of these sets of data in a least-squares best-fit sense.

We now include all the available normalized shear-layer frequency data and arrive
at the variation displayed in figure 13. The solid line, which is the least-squares
best-fit line through all of these data concatenated, has the form

fSL

fK
= 0.0235× Re0.67 . (5.1)

It is clear that a power law of the form Re0.5, shown as the broken line in figure
13, will not adequately represent the variation of normalized shear-layer frequency.
This is particularly evident if one looks along the lines, with one’s nose close to the
frequency axis. In table 1 is included the power-law fit from our data alone, and
that from (5.1). Equation (5.1) is reasonably unaffected by the presence of oblique
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Figure 13. Variation of normalized shear-layer frequency with Reynolds number. The plot includes
data from all the investigators who have measured the shear-layer frequency. The least-squares
best-fit curve through all of these data is fSL/fK = 0.0235 × Re0.67. A curve of the form Re0.5 is
included as the broken line, for comparison. The isolated data point of Maekawa & Mizuno (1967)
at Re = 105 lends some support for an Re0.67 variation to be valid for Re > 50× 103. The present
measurements are made at x/D = 1.0 and y/D ≈ 0.8.

or parallel shedding, yielding an estimated variation in the exponent of around 0.01
if there was a mix of oblique and parallel shedding over this range of Re. Although
the power law in (5.1) applies over the range of Re up to 50 × 103, it cannot be
said whether or not a power law would be a good fit over the entire regime up
to Re = 2 × 105 (the boundary-layer transition critical Reynolds number), without
further detailed measurements. However, it is necessary to draw attention to an
isolated data point from the work of Maekawa & Mizuno (1967) who found that
fSL/fK = 60 at Re = 105. Interestingly, the corresponding value computed from our
least-squares best-fit power law (5.1), is fSL/fK = 55. As a comparison, we have

used the Re1/2-variation suggested by Kourta et al. (1987), to compute fSL/fK = 30
at Re = 105, which is significantly lower than the experimentally measured value. It
therefore appears that there is some evidence which supports the power law (5.1) to
be reasonably valid for Re up to 105.

In case it may be construed that the reasonably large number of data points in
the present study weights the exponent of the concatenated data close to our own
exponent, we would like to indicate that if one determines the least-squares best-fit
exponent from all of the other data (excluding ours), one arrives at a variation of
the form Re0.7. If, in fact, the data of Wei & Smith (with the highest exponent) is
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Investigation Coefficient, A Exponent, p Re -range

Bloor (1964) 0.0277 0.6509 1300–25 000
Okamoto, Hirose & Adachi (1981) 0.0170 0.6925 1700–5600

Wei & Smith (1986) 0.0078 0.7997 2500–11 000
Kourta et al. (1987) 0.0507 0.5811 2600–15 000

Norberg (1987) 0.0346 0.6444 2200–44 500
Present study 0.0269 0.6587 1200–6000

All of the above data 0.0235 0.6742 1200–44 500

Table 1. A comparison of power-law variations from various studies. The data for normal-
ized shear-layer frequency from each investigation have been fitted to an equation of the form
fSL/fK = A× Rep. The range of Re from each of these studies is comparable.
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Figure 14. Visual display of the exponents from different investigations. The exponents have been
determined by independently re-analysing the actual data from each investigation. The symbol
σ represents one standard deviation of exponents listed in table 1, from the least-squares best-fit
exponent. The hitherto extensively used exponent, 0.5, is found to lie nearly 3σ from the least-squares
best-fit exponent of (5.1).

discounted, the average of all the other exponents (not all the data points) results
in an exponent of 0.64, which is still significantly larger than 0.5. To further clarify
this point, we present in figure 14 the exponents from all the studies overlaid on
a Gaussian distribution, with the least-squares best-fit exponent from (5.1) placed
at its apex. The standard deviation of the exponents in table 1 from the exponent
of (5.1), has been indicated as σ in figure 14. We observe, immediately, that the
exponent 0.5 lies nearly three standard deviations away from this least-squares best-
fit exponent. Therefore, one can conclude quite definitively that the true exponent for
the Re -variation of the normalized shear-layer frequency, is significantly larger than
the hitherto extensively used value 0.5.

6. Physical considerations to explain the Re0.67 power law
We present, here, a discussion which suggests why one should actually expect the

exponent to be greater than 0.5. On a dimensional basis, it is to be expected that the
shear-layer frequency will scale with a characteristic velocity and with a length scale
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of the form

fSL ∼
Usep

θt
, (6.1)

where Usep is the velocity outside the boundary layer at the separation point and θt
is the momentum thickness of the separated shear layer at the ‘transition point’. The
‘transition point’, defined by Sato (1956) for the case of a laminar separated shear
layer, refers to the location at which the shear layer develops an instability, discernible
as sinusoidal velocity fluctuations. By transition point, we do not mean the location
of transition-to-turbulence which occurs further downstream. Sato (1956) determined
the transition point from measurements of normalized turbulence energy integrated
across the width of the shear layer. He suggested that transition occurs at the point
at which this energy begins to increase rapidly. Furthermore, Sato (1956) found that
the transition point, as defined above, varies linearly with the momentum thickness
at the separation point (θsep), in the form

st ≈ 47 θsep , (6.2)

where st is the distance from the point of separation to the transition point, measured
along the shear layer.

At Re = 2000, using the relationship (Usep/U∞) = (1−CPB )1/2 and the base suction
coefficient from figure 7(b), we calculate a velocity of 1.35U∞ outside the boundary
layer at the separation point. At the same Re and at x/D = 1.0, we measure a velocity
on the outer side of the shear layer of 1.27U∞, from the profile in figure 1. This pair
of calculations was repeated for Re = 2600, Re = 4500 and Re = 5400, from which it
was found that the velocity on the outer side of the shear layer is only 6% lower at
x/D = 1.0 than it is at the point of separation. Therefore, it appears that this velocity
remains virtually constant over a streamwise distance of the order of one diameter,
and our choice of velocity scale will be taken as Usep. It should be noted that this
choice of velocity scale is matched more closely as Reynolds number is increased,
since the point of transition moves upstream with increasing Reynolds number as
we indicate below. Regarding the precise value of length scale which should govern
the shear-layer frequency, there seem to be several reasonable choices available in the
literature. Experimenters who have studied the unforced plane mixing layer (see the
review by Ho & Huerre 1984) appear to have used the value of momentum thickness
at the origin of the mixing layer, and although this is a reasonable scale, it would not
be suitable for the present problem. In this work, we wish to explicitly account for
the upstream motion of the region of instability with Re (Linke 1931) and we assume
that the characteristic length scale is one which also moves upstream as Re increases.
Unal & Rockwell (1984, 1988a) suggested a characteristic momentum thickness, upon
which the frequency is found to scale, measured at the middle of the linear growth
region of shear-layer instability in the cylinder wake. We suggest, from a physical
viewpoint, that the characteristic length scale which governs the frequency should be
the momentum thickness (θt) in the vicinity of the location at which perturbations
grows to perceptible proportions.

The scaling in (6.1), when used in conjunction with the definition of the Strouhal
number, S = fKD/U∞, yields

fSL

fK
∼ 1

S

(
Usep

U∞

)(
D

θt

)
. (6.3)

In order to predict the Re -variation of fSL/fK , it is necessary to determine how
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each term on the right-hand side of (6.3) varies. We begin with the development
of the momentum thickness (θ) of the shear layer. Bloor (1964) suggested that the
normalized momentum thickness at the separation point scales with Re−1/2 such that

θsep

D
=

A

Re1/2
, (6.4)

where A is a constant. Immediately following separation, and at least up to the
transition point, the separated shear layer develops like a laminar mixing layer and
spreads as (s + so)

1/2 (Sato 1956), where s is the distance measured along the shear
layer from the point of separation and (−so) is the location of the virtual origin
of the shear layer, which we assume to be constant here but justify presently. The
streamwise variation of the momentum thickness can, therefore, be represented in the
form

θ

D
= B

( s
D

+
so

D

)1/2

. (6.5)

The parameter B can be found in terms of A, using conditions at the separation point
(where s = 0), and the development of the momentum thickness takes the form

θ

D
=

A

Re1/2

(
s/D

so/D
+ 1

)1/2

. (6.6)

From (6.6) it is now possible to determine the momentum thickness θt at the transition
point st, and this when substituted into (6.3) yields

fSL

fK
∼ Re1/2

S

Usep

U∞

(
st/D

so/D
+ 1

)−1/2

. (6.7)

Now, if one assumes that the shear-layer frequency does not depend on the
position of transition, implying that the term in parentheses in (6.7) is constant, and
that Usep/U∞ and S are approximately constant, then the variation suggested by
Bloor (1964) is recovered,

fSL

fK
∼ Re1/2 . (6.8)

Despite the fact that such assumptions appear very reasonable, they are only
approximately correct over a large range of Re. If we use the result that (Usep/U∞) =
(1− CPB )1/2 in (6.7), we find

fSL

fK
∼ Re1/2 (1− CPB )1/2

S

(
st/D

so/D
+ 1

)−1/2

. (6.9)

The base suction coefficient increases with Reynolds number, for Re > 1200, as
shown by the meticulous work of Norberg (1994). Therefore, we expect the ratio
Usep/U∞ to increase over a large range of Re. Moreover, S decreases, albeit slowly,
over the Re -range under consideration. Consequently, one expects the value of the
exponent to be greater than 0.5. Furthermore, the position of transition in the shear
layers moves upstream with increasing Re, shown by Linke (1931) and Schiller &
Linke (1933), and is equivalent to st/D decreasing as Re increases. Thus the most
unstable frequency is larger than if the frequency were dictated by conditions at a
fixed downstream location in the shear layer.
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Figure 15. Variation of the shear-layer momentum thickness with Re. The momentum thickness
at the point of separation, in (a), has been determined from the boundary-layer velocity profile
measurements of Thom (1928), Fage (1928) and Green (1930). The measurements of the momentum
thickness at x/D = 1.0, in (b), are from Williamson (1997). It is found that both momentum

thicknesses are well-represented by an Re−1/2 variation.

Using (6.4) in (6.2), we find the variation

st

D
= 47

A

Re1/2
. (6.10)

Substituting (6.10) into (6.9), produces the following variation for the normalized
shear-layer frequency:

fSL

fK
∼ (1− CPB )1/2

S

Re1/2

(CRe−1/2 + 1)1/2
, (6.11)

where C = 47A (D/so). To predict the Re -variation of fSL/fK from (6.11), it is
necessary to determine the constant C . We have determined A = 0.25, as shown in
figure 15(a), by evaluating the momentum thickness at the point of separation from
the boundary-layer velocity profile measurements of Thom (1928), Green (1930) and
Fage (1928). Williamson (1997) found that the momentum thickness of the shear
layer varies as 0.82 Re−1/2, at a distance of one diameter downstream of the axis of
the cylinder, as shown in figure 15(b). This result was utilized in (6.6) to determine
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Figure 16. Predicted shear-layer frequency using the data of Norberg (1987). In (a) is shown the
variation predicted by ignoring the effect of upstream motion of the transition point. However,
accounting for this upstream motion, and using (6.11) produces the variation shown in (b). In
each case, the least-squares best-fit power-law variations are indicated; the vertical axes are only
proportional to fSL/fK .

so/D = 0.12. We have calculated so/D ≈ 0.12 at Re = 28×103 from the measurements
of Thom (1928) and so/D ≈ 0.13 at Re = 100 × 103 from the work of Fage (1928),
from which it appears that so/D is virtually constant over a range which spans almost
one decade in Reynolds number, and justifies our earlier assumption of constant so/D.

Therefore, the constant C ≈ 100, and the term C Re−1/2 is never much larger than
unity for the Re -range in which the shear-layer instability manifests itself, implying
that the second term in the denominator of the second term in (6.11) cannot be
neglected compared to the first.

Using measured values of (−CPB ) and S over a large range of Re, from Norberg
(1994), it is now possible to predict the variation of the shear-layer frequency from
(6.11). We have found that the predicted variation of fSL/fK with Re is well-
represented by a power law. If, to first order, we neglect the entire denominator of
the second term in (6.11), we arrive at the variation shown in figure 16(a), for which
the least-squares best-fit line is of the form fSL/fK ∼ Re0.57. This is the power-law
variation of fSL/fK when one accounts only for the variations in Usep (or −CPB ) and
S , as Reynolds number is varied.

If we now include the denominator of the second term, which accounts for the
upstream motion of the transition point with Re as well, we find the variation shown
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u ′rms
U∞

Figure 17. The apparent ‘resonance’ in (u′rms/U∞)Total at Re = 260. The power-law variation
from (5.1), when extrapolated to lower Re, seems to indicate that the shear-layer frequency would
be equal to the vortex-shedding frequency at Re = 262, thereby suggesting a wake–shear-layer
interaction which produces a ‘resonance’ in wake characteristic parameters at this Re. The solid
symbols are data from Williamson (1996b) and the open ones from Prasad & Williamson (1997).
The measurements are made at x/D = 10.0 and y/D ≈ 1.0.

in figure 16(b), for which the least-squares best-fit line is of the form

fSL

fK
∼ Re0.69 . (6.12)

The above simple analysis, based on physical arguments, appears to produce an
exponent for the Re -variation of the normalized shear-layer frequency which is in
good agreement with that obtained from experimental measurements.

One might wonder if the predicted shear-layer frequency using (6.11) is sensitive
to the precise value of C . We show, below, that the predicted variation in (6.12) is
remarkably robust to changes in the value of C = 47A (D/so), where the parameter
47 is obtained from the work of Sato (1956). As mentioned above, so/D is found
to be virtually invariant with Re. The constant A was also similarly evaluated and
found to vary by less than 7% among the three studies. Since the parameter from the
work of Sato (1956) depends on the level of free-stream turbulence, one may expect
it to produce a reasonable variation in the value of C . To intentionally over-estimate
the change in exponent due to alterations in C , we assume that C varies by 50% due
to variations in its constituents. We find that even a 50% change in C produces a
variation in the exponent of only 0.025. The predicted variation of fSL/fK therefore
seems to be robust to variations in the precise value of C .

7. Discussion
Despite the fact that the shear-layer instability is observed only for Re > 1200,

one could question whether the instability would influence wake parameters at lower
Reynolds numbers. Such a question arises because of the occurrence of a remarkable
maximum in wake characteristic parameters found in the three-dimensional transi-
tion regime (190 < Re < 260), as described in the following. Williamson & Roshko
(1990) and Norberg (1994) found a local maximum in (−CPB ) at Re ≈ 260. Further-
more, Prasad & Williamson (1997) have found that the total fluctuation intensity,
(u′rms/U∞)Total , shown in figure 17, rises very rapidly through the three-dimensional
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transition regime and attains a remarkable peak at Re ≈ 260, with a similar peak also
occurring for (u′rms/U∞)fK . From flow visualization, Williamson (1996b) and Prasad &
Williamson (1997) have found that the primary vortex shedding which is particularly
spanwise-coherent at Re ≈ 260 is reminiscent of the shedding observed in the laminar
regime, with the exception of a superimposed fine-scale three-dimensionality. In ad-
dition, time traces show that velocity fluctuations appear to be particularly periodic
at Re ≈ 260, producing a distinctly sharp peak at fK in long-time-averaged velocity
spectra. All of these observations are suggestive of some sort of a ‘resonance’ in wake
characteristic parameters at Re ≈ 260. An attempt to understand why this resonance
occurs, led us to examine (5.1) more closely. By a simple manipulation, (5.1) can be
recast into a more appropriate form,

fSL

fK
=

(
Re

262

)0.67

, (7.1)

from which it is immediately deduced that fSL/fK = 1 when Re = 262. The fact
that the observed resonance in wake parameters occurs at a Reynolds number when
fSL/fK = 1 from the above equation, may perhaps be a coincidence. Alternatively,
one may suggest that this resonance is due to an interaction between the wake and
the shear layer, when the primary wake frequency would be equal to the shear-layer
frequency. Although a convincing proof of this interaction is still lacking, further
details are presented in Williamson (1996b).

8. Conclusions
In the present investigation, we have found that the spanwise end conditions

which control the primary vortex shedding from the cylinder significantly affect the
instability of the separated shear layer. By imposing parallel shedding conditions, the
inception of instability occurs at Rec ≈ 1200; however, the use of oblique shedding
conditions inhibits the development of instability until Rec ≈ 2600. The dependence
of the critical Reynolds number on the spanwise end conditions, in the absence of the
effects of a variation in free-stream turbulence, could explain much of the enormous
scatter found in quoted values of Rec. Despite the fact that the angle of primary
vortex shedding affects the inception of shear-layer instability, we find that it does
not influence the orientation of the shear-layer instability, since flow visualizations
demonstrate that the shear-layer instability is inherently two-dimensional, irrespective
of the particular mode of primary vortex shedding.

We confirm the existence of intermittency in shear-layer fluctuations, as found
previously in the theses of Norberg (1987) and Cardell (1993). We demonstrate
that the intermittent nature of the shear-layer fluctuations is not associated with the
transverse motion of the shear layers past a stationary probe, as has been previously
suggested. We find that the random (streamwise) motion of the point of transition
is principally responsible for the intermittency in shear-layer fluctuations measured
at a fixed point. One may expect that this streamwise movement of the transition
point is influenced by the temporal changes in the near-wake three-dimensionality,
in the form of Mode B streamwise vortices. Periods of upstream movement of the
transition point, and the most vigorous presence of shear-layer instability, seem to
coincide when there exists an in-phase synchronization of the shear-layer vortices in
a ‘varicose’ configuration.

With respect to the shear-layer frequency, we find, from a complete re-examination
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of data from previous investigators, that a power-law of the form Re1/2 does not
accurately represent the variation of fSL/fK . In fact, a consideration of all the data
from previous studies, including our own measurements, results in the variation

fSL

fK
= 0.0235× Re0.67 .

The above equation appears to be valid for Re up to 105. We present an argument,
based on simple physical ideas, which suggests why one would naturally expect an
exponent larger than 0.5. The analysis takes account of the Re -variation of the
velocity and length scales that govern the shear-layer frequency, which are influenced
by the variations in the base pressure, Strouhal number and the upstream motion of
the transition point, as Reynolds number is increased, resulting in the relationship

fSL

fK
∼ Re0.7 ,

which is in a good agreement with the direct experimental measurements.

Finally, despite the fact that the shear-layer instability is not manifested for Re <
1200 from hot-wire measurements, it appears that the observed ‘resonance’ in wake
characteristic parameters at Re ≈ 260 is possibly caused by an interaction between
the wake and the shear layer, when fSL/fK would be equal to unity.

The authors would like to express their gratitude to Thomas Leweke for several
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