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MOVE-TO-FRONT RULE FOR
ACCESSING SEVERAL RECORDS

KING SING CHONG

Department of Statistics
The Chinese University of Hong Kong
Shatin, Hong Kong

The move-to-front rule is applied on a model where several records are accessed
each timeThe records will then be placed in the front positions randomly or with
the former relative order between themselves preseigdilibrium distributions

are exploredComparison of expected stationary search costs is carried out

1. INTRODUCTION

Assume that there arerecords in a linear list denoted b= {1,2,..., n}, of which
only one can be accessed each timed that accesses are mutually independent
Searching for records wanted always starts at the front position of th€Histime
spent until the record wanted has been found is the searchwbigth is to be
minimized Sincep;, the probability that the recoiids accesseds unknown(for all

i), self-organizing rules have been considerBae most famous one is the move-
to-front rule which moves the record accessed to the first position with the relative
order of the other records remaining unchangéte stationary distribution of the
list of records the expectationand the probability generating function of the sta-
tionary search cost under this rule have already been obtained by ME&ablken-
dricks[6], and Fill and Hols{5]. The probability that a record is in a particular
position under equilibrium has been derived by Burville and Kingiidnt-step
transition probabilities have been derived by Nel§dh Phatarfod 11], and Fill

[3]. See Fill[ 3] for more on the spectral structuighatarfod 10] has calculated the
nonzero eigenvalues of the transition probability matrix and their multipliciEis

[4] has considered the rate of convergence of the distribution of search/dtst
respect to expected stationary search,dbstmove-to-front rule has been proved to
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be worse than the transposition rRivest[12]) and even any POS$) rule, i =
2,3,...,n— 2, which, after a record in th@h position is accessethoves it up one
position if j = i and moves it to théth position ifj > i (Chong and Lanj2]).
Neverthelesghe distribution of the list of records converges more rapidly under the
move-to-front rule

Valiveti, Oommen and Zgierski[13] first considered a model for accessing
several records each time and applied a kind of move-to-front rule fcdess
probabilities arehowevey of special structure theyaamely whether a record is to
be accessed is independent of the other records accessed

In this paperwe consider instead a model with quite general access probabili-
ties Besides the move-to-front rule placing back the accessed records in the front
positions with their relative order being randfh3], we also consider another move-
to-front rule which preserves their relative order beféier both casesve find out
the number of positive recurrent communication claggdsns 2 and 4 and the
necessary and sufficient conditions for having only one such ¢tassllaries to
Thms 2 and 4. We also work out the recursive formulae for calculating the station-
ary distributions under both rules

Using the definition of cost ifil 3], it is proved that the move-to-front rule with
order preserved is better than that with random order

2. MOVE-TO-FRONT RANDOMLY

Suppose that there angecords in a linear listAt each time one can access several
records which will be moved randomly to the front of the list thereaBappose that
pais the probability thajustthe set of recordA is to be accessednd that different
accesses are independent

For examplesupposen = 6 and the records now have the ordes,8,3,2,4.
With probabilityp;, 4 5; the three records 2, and 5 are accessethese three records
are then placed randomly at the firsécongand third positions with record 6, and
3 at the fourthfifth, and sixth positionsrespectively The transition probability
from state(1,5,6,3,2,4) to state(2,5,4,1,6,3) is

Pi2,45 Pi1,2,4, Pr1,2,4.5, Pi1,2,3,45,
245 Pa2as | Pazase  Puzaase
3! 4! 51 6!

2.1. All p, Greater than Zero when A # J

We now assume thaiy's are greater than zero for all nonempgty
To calculate the stationary distributipdefing for every permutationr =

(m(1),7(2),...,7(n)),

Q7 (1),7(2),...,m(t =1} = EB: Pe
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and

1

N S ), (D), ()
X P i gp{ﬂ'(t) ..... A (t+j—1)IUB

whereB runs over all subsets ¢fr (1), 7(2),...,7(t — 1)}, with the conventions that
{7 (1), 7(2),..., 71t -1} = fort=1

and
Sarj a4,y = 1 forf=n—-t+1 t=12,...,n

Note thatQ({=(1),7(2),...,m(t — 1)}) is the probability for a given request
that only the records if#(1),7(2),...,7(t — 1)} are accessedand 1 —
Q{7 (1),w(2),...,7(t — 1)}) > 0 is assured by the assumption that- J im-
pliesps > 0.

Example 1: Supposen = 4. Then

1 P23 P23 P23z
Sez1e = 1-p, {33,1,4) P2y + S > + S 6 o4

PiLa P23

A PSP o) + S
1-ps | 1-pos—pa| ™ Pz T P23 4 5

. P34 + p{L2,3,4}]
6

Pi2,3 P23 Pi12,34
d }+ 11, }+ 11, } ’

+
SL4) 2 6 24
where
So=1
Sua = 1
Y 1-py,— P2y — Pay — Prz,a

X | S (P + Prozy + Pwsy + Pzgy) + 5

Note that the denominator1 pg — pyzy — Pray — Prz,3 €qualspyy + Praoy + Prg +
P12,3 T Pay + P24t T Pzay + Pr2zar T Prua T P24y T Pruzay + Pro2,za-

Piray T P24y T Piyza t p{],2,3,4}}

THEOREM 1: S, 1).7(2.....=n) IS the stationary probability of the state.

.....

The proof is given in the Appendix
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2.2. General Cases

Now we consider genergly’s. If some of thep,'s are zergo Q{#(1),7(2),...,
7 (t —1)}) may equal 1 for some andt. Then the denominator in the definition of
Sz (), #t+1),....=ny May equal zerowe will now find out the necessary and suffi-
cient condition for the stationary distribution to be unique and make amendment to
the definition ofS ) »t+1.....=(n) SO that Theorem 1 still holds

Let U be the union of all subsetsof N such thaip, > 0.

LEmMMA 1: |U| =me there existgay, a,,...,an,} such that @{as, a,,...,an}) =1

Proor: If |U| = m, then there exist at least— mdifferent number®,,b.,...,b,
in N which do not belong t&J. So

{is,iz,..., 1} contains any oby,b,,...,00 = Py i, iy = 0.
Thus
Q({al’a29""am}) = :L

If {al’ a2’ ey am} = {1,2’ ey n}\{bl; b2’ ey bn—m}-
Converselyif there existda,, a,, ...,an such thaQ({as, a,,...,an}) = 1, let

{bg, by, ..., 0t ={1,2,...,n\{ay,a,...,am}
Then
{is,ip,...,ik} contains any oby, b, ...,00-m= pgi,i,...ig = 0.
Hence eachb; & U and|U|=m. [

THEOREM 2: The number of irreducible subchains(is— |U|)!, that is there are
(n—|U|)! positive recurrent communication classes with the complement of their
union consisting of transient states

ProoF: SupposelU| = n. Chooseiy, iy,...,ika) such thatpg, i, ., > 0. Of
course{iy, s, ..., kot C U.If k(1) <n,thenU\{i, i,...,Iy} is NonemptySo we
can always choosg(y)+1,--.,ike from this nonempty set with(2) > k(1) and
choose(if necessaryji, ..., jma) from{iy,is,..., ik} such that

If k(2) < n, then we can always cho0$§gy)+1, ..., ik from U\{iy,..., iz} with
k(3) > k(2) and chooséif necessaryj?,...,jae from{iy,...,ikz} such that
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Starting at any statéf we access the recordls *,. .., jmit 1), ikq—1)+1s- - -» ik(1)> @and
then acces$; 2,..., imE 2 iki-2+1,---»iki-1, and then..., and at last access
i1,...,lk), the order of then records will then become

il’---7ik(l)’ik(1)+l’-"’ik(2)’-'~’ik(|fl)+l"“’ik(l)(: In)

with positive probability

; ; i1 i1 ; -1 d-1 ;
p{ll ~~~~~ ikt p{ll ----- Im@)s k@ +15--+» i)} p{ll ----- Im(i=1)> k(=1 +1>-- > ik}

k(D)! (k2 — k(1) +m@D)! (k1) —k( —1) +m( —1)"

Of course every irreducible subchain must contain this st&e there is only one
irreducible subchain

SupposgU | = n— qwith g = 1. Then there exigy different number$,, ..., b,
such that each; & U. That means thesgrecords will never be accessed and their
relative order remains unchangesb if the Markov chain starts at a state with
precedingy;, it can never reach any states withprecedingp;. Eventually theseq
records will be in the last positions of the listand if we take them awaywe
encounter the case)’'| = n’ wheren’ = n — . Hence there are justy! irreducible
subchains [ ]

CoroLLARY: The stationary distribution is unique

< there is only one irreducible subchain
s |Ul=n-1,
© Q{7 (1), w(2),...,7(n— 2)}) < 1 for any permutationr.

If lU|=n,Q({m(1),7(2),...,7(n—1)}) < 1for any permutationr. So Theoreni
is valid. Moreaver, in case of|U| = n — 1, if we make a little amendment to the
definition of S, ) »(t+1),....»(n) DY l€tting S,y = 1, Theoremil remainsvalid.

.....

Example 2: Suppose& =4, p;y 2, > 0, piz.a1 > 0, P2y + Pz.ay = 1. Then|U | =n. The
unique irreducible subchain i$ =

{(1,2,3,4),(1,2,4,3),(2,1,3,4),(2,1,4,3),
(34,1,2),(34,2,1),(4,3,1,2),(4,3,2,1)}.

One can easily check th&t, (1), »(2). 3).=@) iS zero if (a (1), 7 (2), 7 (3),7(4)) & H.
It can also be seen thdll | = n does not imply that the chain itself is irreducible

Example 3: Supposen =4, p; 5, > 0, P23 > 0, P12y + Pr2.gy = 1. Then|U|=n—
1. The unique irreducible subchainds=

{(:L2’3’4)’(27]9374)9(2’3’]54)’(3’ 27]94)}
Aga|n, S’TT(].),’ZT(Z),W(3),’TT(4)) is zero |f(77(1),77(2),77(3),77(4)) $ J.
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Example 4: Supposen = 4, pyy; > 0, pyr2 > 0, pgy + Py = 1. Then|U | =n— 2.
There are two irreducible subchains

{(14,2,3,4),(2,1,3,4)} and {(1,2,4,3),(2,1,4,3)}.

The denominator in the definition &3 4 is zera Now let Sz 4 = 1. Then

Pi2 P2
S1234 = Py + 5 So13a = 5

and

S1234 1t S21349 =1

Si.2,3.4 andS; 1 3 4) form a stationary distribution and will also be the limiting dis-
tribution if the chain starts from a state with 3 preceding 4

The same argument can be made for the si{dt@s4,3) and(2,1,4,3). Or, if we
take away from the list the records 3 andik remaining record set satisfigs' | =
n’ = 2, thus the chain is now irreducible with stationary probabilities

Pia,2) P2

SLZ) = p{l} + T and SZ,l = 2 .

3. MOVE-TO-FRONT WITH ORDER PRESERVED

In this sectionwe assume that the accessed records will be moved to front preserv-
ing the relative order in which they were arranged before the ac@éssother
assumptions remain the same as in the first paragraph of Section 2

3.1. All p, Greater than Zero when A # &

Again, we first assume that all thg,'s are greater than zero for &+ .

Let{Ay,A,,...,An} be a partition ofN, where somé\; may be nul]ande; be a
permutation ofA;, i = 1,2,...,m. As a conventiong; is empty if A, = &. Then
defing for everyi =1,2,...,.m—1,

R(ala Qz,... ,am) = R(Ab AZ’ LR Am)

= R(al’aZ’“'7ai’Ai+17Ai+2"-'7Am) = 2 pA'

A:0i, ANA;=A; or &

Note thatR(a4, as,...,ay) is the probability for a given request that only unions of
J,AL A, ..., Ay are accessed
Define
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when eachy; contains not more than one elemeamd

T - ! S pone T
a1, A,y am * 1— R(al,az, . ,am) puirllBi BB Bms Bm?
where the summation runs over @i’'s, i = 1,...,m, such thatassuminge; =

(ail’aiZ’ [ERX) aL(i))’

Bi = (ail’aiZ""aali(i))a
Bi = {ai]JaiZ""’ali(i)}’ (1)

Bi = (al()+1,@ ()25 8nei))s

where 0= |; = n, for eachi and 0< I (i) < n(i) for at least oné(i.e, cutting at least
one of the permutations,, a, ...,amy). Note thafT, ., . doesnotdepend onthe
order ofe;’s in its subscriptand equald,, ., .. .o, if @1 is empty

.....

Example 5to be compared with Examplg:1Suppose = 4. Then

Ti2319

1
=1 5 o . PeTecie t PegTesas * PuagTeanw!
Pz ~ PiL234

N S
1-py—Pu2sza

{ Pi2;
X
1-pz— Pz — Praa — Pr2sa

X [(Pa + Pr23) Ton@.wa T (Prs + Piwzs) Te),e,@)]

Pi2,3

+
1-pz = Pra — Py — Pr2zae

X [Py + Puza) Ter@.aa + (P + Puza) Tes,w.@
+ P2 Te.e.w.@]

P23

1-pPs = P23 — Puay — Pr2sa

X (P + Pap) T2, 30,0 T (P + p{2,3,4})T(2,3),(1),(4)]},
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where

To.e.m@ =1

(P + Pz + Pruay T Praza) Tne.w.9

To.e.0e =
9 1-ps— P — Py — P23 — Puay — Pruzay — Psa — Puzsa

P + P2y  Pag + Pz

Pw + Pzt Pas T Pzs T Py + Paar T Pegy + Praaay’
Piay + Piz3y T Pzay T P2z 4

P + P23 T Piaay + Prasay + Py + Py + Pray + Prazay’
P2y + P2y + Proay + Prazgy

Pzt + Pz + Pzay + P24y T Py + Pag + Paa + Pusa

Here we have repeatedly cut the permutations in the subscriptmtil each of them
contains not more than one element

To,en.@ =

T3, =

THEOREM 3: T(,(1). »(2)

(m(1),7(2),...,m(n)).
Again, the proof is given in the Appendix

=y IS the stationary probability of the state =

.....

3.2. General Cases

Suppose onlp,,j = 1,2,. ,S(=1), are greater than zer@onsider the combina-
tions of A4, .. AS, that is the pairwise disjoint setd; N---N Ag WhereA A
orA;,j=12,...,s HereAis the complemeri\ A;. Since each\ canbe expressed
as a union of somel N---N A, the algebrdi.e., field) generated bYA,,..., A
just consists of the unions of any sets having the fégm --- N As.

LEmMMA 2:
max{|A; N---N Ag|: A; = Ajor A forallj =1,2,...,s}
= max{|B;|:{By,B,,...,B.} is a partition of N such that B,,B,,...,By)
=landl=i=k} (2)
Proor: Recall

R(BLBz....B) = X P s,

If this equals 1then eachd is a umonUgEG By with G; C{1,2,...,k}. Supposé €
G4, and consider the comblnatum NN AS, whereA1 =A; and forc=j=s
- A ifiEG,

77 |A otherwise
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ThenA, N---N A, D B;. One can argue similarly if¢ G, by settingA, := A;. Thus
the LHS of Eq (2) is not less than the RHS of E().

If we consider a partition consisting of al; N---N AJ's, we immediately
obtain the equality u

THEOREM 4: The number of irreducible subchains is
II (A n---nAfY.
Aj=Aj or A]
Proor: First assume that the product above.iglien eacHi} can be expressed as
Api N---N Ag; with
A ifTEA
A= . .
’ AT E A
Let
1 ifieA
mj’i - ip -
0 ifi&A

and letm; be the binary number witi, ; as the first digitm, ; as the second digit. .,
andmyg; as the last angh digit. Note thatm; = mimpliesi = k. Sq, if i # k, we may
assume without loss of generality that > m,, and there thus existstauch that

Ari = Avis-- - Ani = Ak
and
At+l,i = A1, Atﬂ,k = A1

If we first access record&,, and then access recordls 1, and then..., and at last
access record&,, the record will then surely precede recokdsinceA, ; contains
i and does not contakwhile bothi andk are or are not i\, ..., A;. So ifwe let7 =
(7 (1),...,7(n)) be the permutation of,2,...,n such that

m,n.(l) > mﬂ.(z) > e > mw(n)’

the stater can be reached by the chain starting anywhehereforeevery irreduc-
ible subchain must contain. Thus there is only one irreducible subchain

Now suppose that among the sets having the fAgm ... N A, there are just
r of them having more than one elemedbenote thesesets a$,, ..., H,. Note that
theH;’s are pairwise disjointDenote

Hi = {hllb L) hll<(l)}

If H; = AL N---N Ay, then all records other thal, ..., hi;, will eventually be
accessedand thushi, ..., hi;, will eventually be placed together in the lai)
positions of the listOtherwise hy, ..., hi;, must be accessed togeth@f, for ex-
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ample we could access recohd without accessings, then there would exist aly
such thah; € A; andh; & A;. This contradicts the fact that; = A, N --- N A;C A,
no matter whethed; = A or A; = A}.) Again, they will eventually be placed together
in the list If we treat eachH; as a single recortl’, then the record set becomes

(hi.. h}u ({Lz,...,n}\ingi),

which has only one irreducible subchaoreover if we change recorti’ back to
H;, noting that the relative order of records witlinalways remains unchangete
know that the number of irreducible subchains is

_:1_[1(|Hi“): ~_1_[ ,(‘Alﬂ“'ﬂ Ah). u

CoroLLARY: The stationary distribution is unique

& there is just one irreducible subchain

& the algebra generated ByA4, ..., Ad} is the finest one with respect tg N
& R(By, By, ...,By) < 1for every partition{B,, B,, ..., B}, unless eachB;| = 1,
© the definition of T, and Theoren8 are valid.

.....

Example €to be compared with Examplg:3Supposer = 4, pyy 2, > 0, pi2.3 > 0,
P12y + Prz,3 = 1. The conditions in the corollary to Theorem 4 are satisfiklie
irreducible subchain is

{(2,1,3,4),(2,3,1,4)}.
For statesr other than(2,1,3,4) and(2,3,1,4), T, = 0.

Example 7to be compared with Examplg:2Supposen = 4, py; 21 > 0, pz4 > 0,
PiL2y + P34y = 1. Now there are 2K 2! irreducible subchains

{(12,34),(34,12)}, {(2,134),34,21)}
{(L27473),(4’3’L2)}, {(2’L4’3)’(4’3’ 271)}'

For all#'s other than these statds. = 0. Note that the denominator in the definition
of T12) (3.4 is zera If we let, however T ,) 3 4) be 1 then

Ta234 = Pu2Tw2,ce9 = Puas
T3412 = P4y T12,@34 = P4

These form a stationary distribution and will also be the limiting distribution if the
chain starts from a state with 1 preceding 2 as well as with 3 preceding 4
The same argument can be made for the other irreducible subchains
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4. COST COMPARISON

In this sectionwe only consider the case thg{ > 0 for all A # .
Asin[13], whenthe permutation of the whole set of records,ithe access cost
for the subseA of required records is

> 7 Y(a).
acA
Thus the expected cost with respect#ds
Elcosiz] = X pa 2 7 H(a) = X 7 (),
ACN acA i=1

where
fi:= 2 Pa-
ASi

Obviously if f’s are known the optimal permutation is such that (i) =
T () efi=f.
The next theorem is not a surprise

THEOREM 5: Move-to-front rule with order presared is better than that with ran
dom order with respect to expected stationary search.cost

Proor: Similar to[7], since the expected stationary search cost is now

> P{i precedes in stationaryf,

INEES]

> (P{i precedegin stationaryf; + P{j precedes in stationaryf;)

i,ji<j

> [ f; + P{i precedeg in stationary( i — )],

i, ji<j
it suffices to prove that
fi = f, = P@{i precedeg} = P{i precedes},

or equivalently

BgNE\{i,J} Puiue _ P@{i precedeg} _ P™{i precedeg}
Pe = P@{jprecedes} P®{j precedes}’
BCNi,j}

whereP® andP®@ represent the stationary distributions under move-to-front rule
with random order and move-to-front rule with order preseyvesdpectively
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By Theorem 1 and Lemma 4 in the Appendix
PD{i precedes} = SV} = S ;).
Sa

S Toue 3 mue)
PW{i precedeg}  pcitpy 0BT 2 Piue

P®{j precedes} 1 '
- | Pyus t 5 Piijue
BCN\{i,j}

On the other handy Theorem 3Lemma 5 and Lemma 6 in the Appendix

. o B N
P@{i precede} = > T j) = 2T = Y =Tai  w@.o
T T —

[omitting (i) and(j)]

whereY}){"1 is defined as in Lemma 5 in the Appendandr runs over all permu-
tations of the subsé¥\{i,j}. Thus

POi precedes) ity P11P
P@{jprecedes} > ps
BCN\i, j

}

which is not less than

) + 1p,. .
BQNE\:{Lj} [ Piiyue 2p{|,1}UB] P(l){i precede$}

}[p{J’}uB +1pius]  PY{] precedes)’

BTN\, j

because

Piiyus = 2 P;jyus- u

BCN\{i,j} BCN\{i, j}

Remark: Another reasonable definition for cost is
E[costm] = D, pamaxw 1(a),
ACN acA

under which Theorem 5 no longer remains vakdr exampleletn = 3, p;;; = 0.2,
P2y = 0.01, P = 0.01, P2y = 0.5, PLa = 0.01, P23 = 0.26, P23 = 0.0L Then
the costs corresponding to move-to-front ruj@®serving order and not preserving
order are 232568 and B3747 respectivelylf we changepy;, to 0.1 andp;; 5 to
0.36, howeveythe costs will then be.25419 and 25315 respectively

https://doi.org/10.1017/50269964899131073 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964899131073

ACCESSING SEVERAL RECORDS 87

Acknowledgments

The author would like to thank ProR. Cowan of the University of Hong Kondrof. K. Lam of Hong
Kong Baptist Universityand the Associate Editor and the referee of Ammals of Applied Probability
version for their helpful comments

References

1. Burville, PJ & Kingman, JF.C. (1973. On a model for storage and seardournal of Applied
Probability 10: 697-701
2. Chong K.S. & Lam, K. (1997). Cost comparison of a spectrum of self-organizing rulesirnal of
Applied Probability34: 583-592
3. Fill, JA. (1996. An exact formula for the move-to-front rule for self-organizing listeurnal of
Theoretical Probabilityd: 113-160
4. Fill, JA. (1996. Limits and rates of convergence for the distribution of search cost under the move-
to-front rule Theoretical Computer Sciend®4 185-206
5. Fill, JA. & Holst, L. (1996. On the distribution of search cost for the move-to-front ril@ndom
Structures and Algorithm&: 179-186
6. Hendricks W.d (1972. The stationary distribution of an interesting Markov chaiaurnal of Ap-
plied Probability9: 231-233
7. Hendricks W.J (1976. An account of self-organizing systenSIAM Journal on Computing:
715-723
8. McCabe J (1965. On serial files with relocatable record3perations Research3: 609—-618
9. Nelson PR. (1977. Single-list library-type Markov chains with infinitely many book®urnal of
Applied Probabilityl4: 298—-308
10. Phatarfod R.M. (1991). On the matrix occurring in a linear search problefournal of Applied
Probability 28: 336—-346
11 Phatarfod R.M. (1994). On the transition probabilities of the move-to-front sched®urnal of
Applied Probability31: 570-574
12. Rivest R. (1976. On self-organizing sequential search heurist@smmunications of the Associa-
tion for Computing Machiner{9: 63—67
13 Valiveti, R.S., Oommen B.J, & Zgierski, JR. (1995. Adaptive linear list reorganization under a
generalized query systemournal of Applied Probabilityd2: 793-804

APPENDIX

To prove Theorem 1 we need the notations
{m(t+1),...,m (M)} . _
Vﬂ—(t) T 2 S(w(t),u)
M

and

whereu runs over all permutations ¢fr(t + 1),...,7(n)},  runs over all permutations of
{m(t), w(t +1),...,7(n)} and (7 (1), represents a permutation of(t),...,7(n)} with
m(t) as its first element
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LemMma 3: Fort=12,..., n and for any permutatiomr,

W), w41, = L

Proor: First note thai,(n); = S»(n) = 1. For the use of mathematical inductidet B run
over all subsets dfr (1), 7(2),...,7(t — 1)} andp= (4(2),...,u(n —t)) run over all permu-
tations of{z (t + 1),...,7(n)} as aboveAlso, let C! run over all subsets consisting of jyst
elements of 7 (t +1),...,7(n)} andD! run over all subsets consisting of jystlements of
{m(t),...,m(n)}. Then

Vol TV 1= QU (1), 7 (D), (t = DY)

n— t+11

2 i 2 Pirpuci-tuWia(tra),...,m(mpci—t
=1 ci-

n— t+11

2 E Pz truci-tuss

=

where the last equality comes from the assumption of induc8an

Vv{‘n'(t),ﬂ'(t+1) ..... w(n)}

_ o\ mH), L m () {ar (1), 7 (t+2),..., ()} {m(t),...,m(n—1)}
=V, +V, + o+ Vo

(t+1) (
1 n—t+1 1
T IO @D & | 2 Poe
=1 |

LEMMA 4: Forl=k<m=n, let

{7 (1),..., (k)}

w(m),..., (n))
be the sum of all 3s such that in the permutatiorof the se{=(1),...,7(k),7(m),...,7(n)},
7 (j) always precedes(j + 1) forallj = mm+ 1,...,n — 1 For corvenience let also
Sriomll =1, whenl=k <m=n+1 Then

{7 (1),..., (k)}
S, ) = S, forl=k<m=n+1

Proor: By the convention in Section2thatS ;t+),»(t+j+1)
lemmaistrue forEk<m=n+1
Fork=1 m=n,

»my=1forj=n—t+1,the

,,,,,

S = Sr@.mion T Sre @)
= Wer @), 7(my
=1 (by Lemma 3
= Srmp-
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Now suppose

{7 (1)} —
aw(mﬂ) ,,,,, (n)) s#(m+1) ,,,,, 7 (n))
is true for somanand alli such that =i =n—m+ 1. Then

{7 (1)} _
SA. ) = Sr@,mms. o) T Sr@yr@.mmr e T T S, (), @)

1
1-Q({w(2),...,7#(m—=1)})
y [”"”2 Samti-1,...,

=1 peooo g T

n-m+1 7L}

7(m+j),..., m(n))
+ 21 jl ; p{ﬂ'(m) ..... 77(m+j1)}UE:|
i= !

1
1- Q{7 (2),...,m(m—=1)})

L S .. ()
> 0 2 Pl m(m, .. wm— DIUE
j=0 J: E
L S (m),.. . ()
+ 0 2 Pz (my, ..., w(m+j—D}UE
=1 J: E
1

1-Q({m(2),...,m(m=1)})

y [”mﬂ Samti,...,

()
_ 0 2 Pla(m.....m(mt - DIUF
j=1 J: F

.....

= S(w(m) AAAAA 7(n)»

where the third equality is from the assumption of inductiwith E andF running over all
subsets of7 (2),...,m7(m—1)} and{=(1),...,7(m— 1)}, respectivelyUp to now we already
have

(7 (1)} _
S, ) = S, )

form=2,3,...,n,n+ 1.
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Next we assume that for sonkeand allm >k
(7 (1),..., (K} —
S: (m),..., Z—(n)) - Sn—(m) ,,,,, (n))-
Thusif k<m-—1,

S({w(l) ,,,,, 7r(k+1)}

w(m),..., 7 (n))

1,..., L alr@..., A),...,m(K)
S({w((k)H) ﬂ(fnf ..... any T Sn’(m) 7r(k+1)}77(m+1) ,,,,, amy T oot S({:(m ..... fr(n)},w(kﬂ»

= Sakrn,mm,...,7) T ey, akrn,7mi,....eo) T 00 F S, (), (k1)

{7 (k+1)}
(m),..., (n))

= Srm.....7m)
and the proof of Lemma 4 is completed n

ProorF oF THEOREM 1: By Lemma 3 we know immediately that the sum of all
Sr@.7@.....wn)'S IS 1. Now,

1 is’(vuﬂ) ,,,,, () Pr .. (i)}
Srw.x@..... U . T

1 {w(l) (D} ol (D) () PN
1_ [ 2 ST Dy + = (by Lemma 4,

that is

Pn

p{w(l> ..... 7()} Sl (D),..., 7 ()}
S’ﬂ'(l) 7(2),...,m(n) — p@S(ﬁ(l) 7@)sermr(m) T 2 - S(7<,+1) ..... winy T F

Note thatin order to reach state in one step from some permutatiamly sets of records
{m(1),...,m(j)}, ] = 0,4,...,n should be accessehenj = 0, that is no record is ac-
cessedthe Markov chain will stay in the state in one step provided that its current state
is 7. Whenj = n, that is all records are accessed at the same tilme chain may arrive at
the stater in one stepwith probability py/n!) no matter which the current state When
j=12,...,n—1, Sy 700 is just the sum of alB,’s such thatstarting from the state

v, the chaln may arrive at the statein one step(with probability p;,«a),....~(j)/i!). SQ
Theorem 1 is proved n

We now proceed to prove Theorem 3
LEmmA 5: Let{A4,...,An, E4,...,E} be a partition of N(note that one of m and k may be

zero. Let o; be a permutation of Ai =1,...,m E ={e(1),e(2),...,e(g)}, i =1...,k
Define

wheree; runs aer all permutations of Ei =1,...,k
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Then

Epvo Ex —
Yok = o am (@@ (@1(GD), oo (8D (G -

Proor: Obviously the conclusion is true when eaEhcontains not more than one element
i=1...,k
In general by the definition ofT,,

F1, Eq\Fy, ..o, Fi, BV
S > Fp<u.“118.>u<U}‘:1F.>YB1.ﬁi AAAAA BmoBin

where the summation runs over g|I's as defined in Eg(1) (i =1,...,m) and allF;’s being
subsets of; (j =1,...,k) with the restriction that there existstherat least oné such that
B # A andB; # ¢ or at least ong such thaf; # E; andF; # .

By mathematical inductian

[1_ R(alw--;am’ E11---7Ek)]YaEll """ Iir

= > To0 b1 B B (&), (aa0) 2 PUR,BIUF
Bireeos Bm:0 such thaB; #A; andB;# FC UjkzlEj
T Tap o am (). (el g > > Paur

B:Li,BNA=A or I FCUK, E,F+UN 1 E,F+Q
=[1-R(ay,...,am(€1(D),....(8 )] Tay.....ap ... (e(go)
F AT @@, (aan [R(@1; - s (€2(2)), ... (6(GK)))
- R(ay,...,am Eq,...,E)]}
=[1-R(ay,...,am Ep,o. ., BN Ta,  a(er(W... (000 -
LEMMA 6: Suppose
{AL A, ..., AR Cy,Co,...,C}

is a partition of N «; is a permutation of A y; is a permutation of Gi =1,2,...,m. Assume

that
a; = (ail’aiZ:---’aL(l)) and v, = (C:iI.rCin---’CL(i))-
Let
Y1V2500s Ym oo __
Tz am= 2 T
{14250 {m

where(; runs aer all permutations of AU C; with the relatve orders of the elements of A
and those of Cremaining the same as i and-y;, respectiely.
Then,

T71,72 ----- Ym — T

1,02,..., am 1,02, .-, Am, Y1, Y2504+ Ym*
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Proor: When alln;’s andu;’s are O or 1

T'yl sY25 s Ym — YAlucl AAAAA AnUCH — 1

@y,0,..., am
by Lemma 5 Generally
Y1 Y2005 Ym —
Tz am= X Tetptm
[STY LTINS im

1 T84 Om,
= ToRMA UGy AU Gy 2 Pumaeoe Tl

whereg;, B;, andg/ are defined as in Eq1),
o = (c:il.v--wczi/(i))v
D = {C:ib"wczi/(i)}$
o = (Cli}(i)Jrl’-"aCliJ(i))’

and the summation runs over giI's and all§;’s with 0= 1(i) =n(i),0=v(i) = u(i), and
under the restriction

O suchthat 0< (i) + v (i) < n(i) 4+ u(i). 3)

Note that the partitiodB;, A1\Bu,..., Bm, Am\Bm, D1,C1\D4, ..., Dm, Cr\ D} is finer than
{AL,As,...,An,C1,Cs,...,Ch}. Sg by mathematical inductign

[1-R(ALUCy,...,An U C]T )y 2 m

@y, ..., ¥y

= 2  PUPEUD) BBl B Bl 618 B
[ such that &1 (i)<n(i) or 0<wv(i)<u(i)

+
satisfying Eq (3) andDi,I(i )=0orn(i),v(i)=0oru(i)

= [1_ R(A17"°7Amacl7"'9Cm)]Ta1

pUurl1(B|UD|)T011 ----- A, Y15+ Ym

+ [R(Ay,...,Am,Cay..,.Cr) = R(ALU Cy,. ., A U C)I T,
=[1-R(ALU C, An U C)] T,

ProOF oF THEOREM 3: By Lemma 5(letting k = 1 and alle;’s be empty, we know that
2., T.=1wheren runs over all permutations &. Moreover

T, 7@,.... 70

l n—1
= 1— P — P E Pir@,=@,..., ﬂ'(i)}T(‘fr(l),ﬂ'(Z) ~~~~~ m())(m(j+1),7(j+2),..., (n))
N =1
1 - (1),7(2) (§)]
_ m(2),..., ]
Ta- 0o — P E Pz, =), ..., 77(])}T(7-r(]+1)7;—(]+2) ,,,,, =y (by Lemma 6
N =1
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that is

n—1
— (7 (1), 7(2),...,m(}))
T(ﬂ-(l),-n-(Z) ,,,,, w(n) — Z:L p{ﬂ'(l),-n-(Z) ,,,,, ‘n'(j)}T(ﬂ'(j+l),‘n'(j+2) ..... (n)) + (p® + pN)T(-n(l),n(Z) ..... (n)) e
j=

Similar to the proof of Theorem, hote thatin order to reach state in one step from some
permutationonly sets of recordém(1),...,7(j)}, j = 0,1,...,n, should be accessedhen
j =0orn, thatis none or all of the records are accesshd Markov chain will stay in the state
o in one step provided that its current statei$Vhenj=1,2,...,n—1, T((,,’T((jll’i;;jff,',)()n)) is just
the sum of alll,’s such thatstarting from the statg, the chain may arrive at the stateén one

step Thus Theorem 3 is proved n
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