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The move-to-front rule is applied on a model where several records are accessed
each time+ The records will then be placed in the front positions randomly or with
the former relative order between themselves preserved+ Equilibrium distributions
are explored+ Comparison of expected stationary search costs is carried out+

1. INTRODUCTION

Assume that there aren records in a linear list denoted byN5 $1,2, + + + ,n% , of which
only one can be accessed each time, and that accesses are mutually independent+
Searching for records wanted always starts at the front position of the list+ The time
spent until the record wanted has been found is the search cost, which is to be
minimized+ Sincepi , the probability that the recordi is accessed, is unknown~for all
i !, self-organizing rules have been considered+ The most famous one is the move-
to-front rule which moves the record accessed to the first position with the relative
order of the other records remaining unchanged+ The stationary distribution of the
list of records, the expectation, and the probability generating function of the sta-
tionary search cost under this rule have already been obtained by McCabe@8# , Hen-
dricks @6# , and Fill and Holst@5# + The probability that a record is in a particular
position under equilibrium has been derived by Burville and Kingman@1# + t-step
transition probabilities have been derived by Nelson@9# , Phatarfod@11# , and Fill
@3# + See Fill@3# for more on the spectral structure+ Phatarfod@10# has calculated the
nonzero eigenvalues of the transition probability matrix and their multiplicities+ Fill
@4# has considered the rate of convergence of the distribution of search cost+With
respect to expected stationary search cost, the move-to-front rule has been proved to
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be worse than the transposition rule~Rivest @12# ! and even any POS~i ! rule, i 5
2,3, + + + ,n 2 2, which, after a record in thejth position is accessed, moves it up one
position if j # i and moves it to theith position if j . i ~Chong and Lam@2# !+
Nevertheless, the distribution of the list of records converges more rapidly under the
move-to-front rule+

Valiveti, Oommen, and Zgierski@13# first considered a model for accessing
several records each time and applied a kind of move-to-front rule to it+ Access
probabilities are, however, of special structure there, namely, whether a record is to
be accessed is independent of the other records accessed+

In this paper, we consider instead a model with quite general access probabili-
ties+ Besides the move-to-front rule placing back the accessed records in the front
positions with their relative order being random@13# ,we also consider another move-
to-front rule which preserves their relative order before+ For both cases, we find out
the number of positive recurrent communication classes~Thms+ 2 and 4! and the
necessary and sufficient conditions for having only one such class~corollaries to
Thms+ 2 and 4!+We also work out the recursive formulae for calculating the station-
ary distributions under both rules+

Using the definition of cost in@13# , it is proved that the move-to-front rule with
order preserved is better than that with random order+

2. MOVE-TO-FRONT RANDOMLY

Suppose that there aren records in a linear list+At each time one can access several
records which will be moved randomly to the front of the list thereafter+Suppose that
pA is the probability thatjust the set of recordsA is to be accessed, and that different
accesses are independent+

For example, supposen 5 6 and the records now have the order 1,5,6,3,2,4+
With probabilityp$2,4,5% the three records 2, 4, and 5 are accessed+These three records
are then placed randomly at the first, second, and third positions with record 1, 6, and
3 at the fourth, fifth , and sixth positions, respectively+ The transition probability
from state~1,5,6,3,2,4! to state~2,5,4,1,6,3! is

p$2,4,5%

3!
1

p$1,2,4,5%

4!
1

p$1,2,4,5,6%

5!
1

p$1,2,3,4,5,6%

6!
+

2.1. All pA Greater than Zero when A Þ BBB

We now assume thatpA’s are greater than zero for all nonemptyA+
To calculate the stationary distribution, define, for every permutationp 5

~p~1!,p~2!, + + + ,p~n!!,

Q~$p~1!,p~2!, + + + ,p~t 2 1!%! :5 (
B

pB
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and

S~p~t!,p~t11!, + + + ,p~n!! :5
1

12 Q~$p~1!,p~2!, + + + ,p~t 2 1!%!

3 (
j51

n2t11 S~p~t1j !,p~t1j11!, + + + ,p~n!!

j! (
B

p$p~t!, + + + ,p~t1j21!%øB

whereB runs over all subsets of$p~1!,p~2!, + + + ,p~t21!% ,with the conventions that

$p~1!,p~2!, + + + ,p~t 2 1!% :5 B for t 5 1

and

S~p~t1j !,p~t1j11!, + + + ,p~n!! :5 1 for j 5 n 2 t 1 1, t 5 1,2, + + + ,n+

Note that Q~$p~1!,p~2!, + + + ,p~t 2 1!%! is the probability for a given request
that only the records in$p~1!,p~2!, + + + ,p~t 2 1!% are accessed, and 1 2
Q~$p~1!,p~2!, + + + ,p~t 2 1!%! . 0 is assured by the assumption thatA Þ B im-
plies pA . 0+

Example 1:Supposen 5 4+ Then,

S~2,3,1,4! 5
1

12 pB

HS~3,1,4! p$2% 1 S~1,4!

p$2,3%

2
1 S~4!

p$1,2,3%

6
1

p$1,2,3,4%

24
J

5
1

12 pB
H p$2%

12 pB 2 p$2%
FS~1,4!~ p$3% 1 p$2,3! ! 1 S~4!

p$1,3% 1 p$1,2,3%

2

1
p$1,3,4% 1 p$1,2,3,4%

6
G

1 S~1,4!

p$2,3%

2
1

p$1,2,3%

6
1

p$1,2,3,4%

24
J ,

where

S~4! 5 1,

S~1,4! 5
1

12 pB 2 p$2% 2 p$3% 2 p$2,3%

3 FS~4!~ p$1% 1 p$1,2% 1 p$1,3% 1 p$1,2,3% ! 1
p$1,4% 1 p$1,2,4% 1 p$1,3,4% 1 p$1,2,3,4%

2
G +

Note that the denominator 12 pB 2 p$2% 2 p$3% 2 p$2,3% equalsp$1% 1 p$1,2% 1 p$1,3% 1
p$1,2,3% 1 p$4% 1 p$2,4% 1 p$3,4% 1 p$2,3,4% 1 p$1,4% 1 p$1,2,4% 1 p$1,3,4% 1 p$1,2,3,4%+

Theorem 1: S~p~1!,p~2!, + + + ,p~n!! is the stationary probability of the statep+

The proof is given in the Appendix+
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2.2. General Cases

Now we consider generalpA’s+ If some of thepA’s are zero, Q~$p~1!,p~2!, + + + ,
p~t 21!%! may equal 1 for somep andt+ Then the denominator in the definition of
S~p~t!,p~t11!, + + + ,p~n!! may equal zero+ We will now find out the necessary and suffi-
cient condition for the stationary distribution to be unique and make amendment to
the definition ofS~p~t!,p~t11!, + + + ,p~n!! so that Theorem 1 still holds+

Let U be the union of all subsetsA of N such thatpA . 0+

Lemma 1: 6U 6# mm there exists$a1,a2, + + + ,am% such that Q~$a1,a2, + + + ,am%! 51+

Proof: If 6U 6# m, then there exist at leastn2 mdifferent numbersb1,b2, + + + ,bn2m

in N which do not belong toU+ So

$i1, i2, + + + , ik% contains any ofb1,b2, + + + ,bn2m n p$i1, i2, + + + , ik% 5 0+

Thus,

Q~$a1,a2, + + + ,am%! 5 1,

if $a1,a2, + + + ,am% 5 $1,2, + + + ,n%\$b1,b2, + + + ,bn2m% +
Conversely, if there exists$a1,a2, + + + ,am% such thatQ~$a1,a2, + + + ,am%! 5 1, let

$b1,b2, + + + ,bn2m% 5 $1,2, + + + ,n%\$a1,a2, + + + ,am%+

Then,

$i1, i2, + + + , ik% contains any ofb1,b2, + + + ,bn2m n p$i1, i2, + + + , ik% 5 0+

Hence, eachbj Ó U and6U 6# m+ n

Theorem 2: The number of irreducible subchains is~n 2 6U 6!!, that is, there are
~n 2 6U 6!! positive recurrent communication classes with the complement of their
union consisting of transient states+

Proof: Suppose6U 6 5 n+ Choosei1, i2, + + + , ik~1! such thatp$i1, i2, + + + , ik~1!%
. 0+ Of

course, $i1, i2, + + + , ik~1!% # U+ If k~1! , n, thenU \$i1, i2, + + + , ik~1!% is nonempty+ So we
can always chooseik~1!11, + + + , ik~2! from this nonempty set withk~2! . k~1! and
choose~if necessary! j1

1, + + + , jm~1!
1 from $i1, i2, + + + , ik~1!% such that

p$ j1
1, + + + , jm~1!

1 , ik~1!11, + + + , ik~2!%
. 0+

If k~2! , n, then we can always chooseik~2!11, + + + , ik~3! from U \$i1, + + + , ik~2!% with
k~3! . k~2! and choose~if necessary! j1

2, + + + , jm~2!
2 from $i1, + + + , ik~2!% such that

p$ j1
2, + + + , jm~2!

2 , ik~2!11, + + + , ik~3!%
. 0+

So after finite steps we obtaini1, + + + , ik~l ! such thatk~l ! 5 n and

p$i1, + + + , ik~1!%
. 0, p$ j1

1, + + + , jm~1!
1 , ik~1!11, + + + , ik~2!%

. 0, + + + , p$ j1
l21, + + + , jm~l21!

l21 , ik~l21!11, + + + , ik~l !%
. 0+
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Starting at any state, if we access the recordsj1l21, + + + , jm~l21!
l21 , ik~l21!11, + + + , ik~l !, and

then accessj1l22, + + + , jm~l22!
l22 , ik~l22!11, + + + , ik~l21! , and then + + + , and at last access

i1, + + + , ik~1!, the order of then records will then become

i1, + + + , ik~1! , ik~1!11, + + + , ik~2! , + + + , ik~l21!11, + + + , ik~l !~5 in!

with positive probability

p$i1, + + + , ik~1!%

k~1!!

p$ j1
1, + + + , jm~1!

1 , ik~1!11, + + + , ik~2!%

~k~2! 2 k~1! 1 m~1!!!
{{{

p$ j1
l21, + + + , jm~l21!

l21 , ik~l21!11, + + + , ik~l !%

~k~l ! 2 k~l 2 1! 1 m~l 2 1!!!
+

Of course, every irreducible subchain must contain this state+ So there is only one
irreducible subchain+

Suppose6U 65 n2 q with q $ 1+ Then there existq different numbersb1, + + + ,bq

such that eachbj Ó U+ That means theseq records will never be accessed and their
relative order remains unchanged+ So if the Markov chain starts at a state withbi

precedingbj , it can never reach any states withbj precedingbi + Eventually, theseq
records will be in the lastq positions of the list, and, if we take them away, we
encounter the case6U ' 65 n' wheren'5 n 2 q+ Hence, there are justq! irreducible
subchains+ n

Corollary: The stationary distribution is unique

m there is only one irreducible subchain,
m 6U 6$ n 2 1,
m Q~$p~1!,p~2!, + + + ,p~n 2 2!%! , 1 for any permutationp+

If 6U 65 n,Q~$p~1!,p~2!, + + + ,p~n21!%! , 1 for any permutationp+ So Theorem1
is valid+ Moreover, in case of6U 6 5 n 2 1, if we make a little amendment to the
definition of S~p~t!,p~t11!, + + + ,p~n!! by letting S~p~n!! 5 1, Theorem1 remainsvalid+

Example 2:Supposen54, p$1,2% . 0, p$3,4% . 0, p$1,2% 1p$3,4% 51+Then6U 65n+The
unique irreducible subchain isH 5

$~1,2,3,4!,~1,2,4,3!,~2,1,3,4!,~2,1,4,3!,

~3,4,1,2!,~3,4,2,1!,~4,3,1,2!,~4,3,2,1!%+

One can easily check thatS~p~1!,p~2!,p~3!,p~4!! is zero if~p~1!,p~2!,p~3!,p~4!! Ó H+
It can also be seen that6U 65 n does not imply that the chain itself is irreducible+

Example 3:Supposen5 4, p$1,2% . 0, p$2,3% . 0, p$1,2% 1 p$2,3% 51+ Then6U 65 n2
1+ The unique irreducible subchain isJ 5

$~1,2,3,4!,~2,1,3,4!,~2,3,1,4!,~3,2,1,4!%+

Again, S~p~1!,p~2!,p~3!,p~4!! is zero if~p~1!,p~2!,p~3!,p~4!! Ó J+
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Example 4:Supposen5 4, p$1% . 0, p$1,2% . 0, p$1% 1 p$1,2% 51+ Then6U 65 n2 2+
There are two irreducible subchains:

$~1,2,3,4!,~2,1,3,4!% and $~1,2,4,3!,~2,1,4,3!%+

The denominator in the definition ofS~3,4! is zero+ Now let S~3,4! 5 1+ Then,

S~1,2,3,4! 5 p$1% 1
p$1,2%

2
, S~2,1,3,4! 5

p$1,2%

2
,

and

S~1,2,3,4! 1 S~2,1,3,4! 5 1+

S~1,2,3,4! andS~2,1,3,4! form a stationary distribution and will also be the limiting dis-
tribution if the chain starts from a state with 3 preceding 4+

The same argument can be made for the states~1,2,4,3! and~2,1,4,3!+ Or, if we
take away from the list the records 3 and 4, the remaining record set satisfies6U ' 65
n' 5 2, thus the chain is now irreducible with stationary probabilities

S~1,2! 5 p$1% 1
p$1,2%

2
and S2,1 5

p$1,2%

2
+

3. MOVE-TO-FRONT WITH ORDER PRESERVED

In this section, we assume that the accessed records will be moved to front preserv-
ing the relative order in which they were arranged before the access+ The other
assumptions remain the same as in the first paragraph of Section 2+

3.1. All pA Greater than Zero when A Þ BBB

Again, we first assume that all thepA’s are greater than zero for allA Þ B+
Let $A1,A2, + + + ,Am% be a partition ofN, where someAi may be null, andai be a

permutation ofAi , i 5 1,2, + + + ,m+ As a convention, ai is empty if Ai 5 B+ Then
define, for everyi 5 1,2, + + + ,m2 1,

R~a1,a2, + + + ,am! [ R~A1,A2, + + + ,Am!

[ R~a1,a2, + + + ,ai ,Ai11,Ai12, + + + ,Am! :5 (
A:∀i,AùAi5Ai or B

pA+

Note thatR~a1,a2, + + + ,am! is the probability for a given request that only unions of
B,A1,A2, + + + ,Am are accessed+

Define

Ta1,a2, + + + ,am
:5 1
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when eachai contains not more than one element, and

Ta1,a2, + + + ,am
:5

1

12 R~a1,a2, + + + ,am! ( pøi51
m Bi

Tb1,b1
' , + + + ,bm,bm

' ,

where the summation runs over allbi ’s, i 5 1, + + + ,m, such that, assumingai [
~a1

i ,a2
i , + + + ,an~i !

i !,

bi :5 ~a1
i ,a2

i , + + + ,al ~i !
i !,

Bi :5 $a1
i ,a2

i , + + + ,al ~i !
i %,

bi
' :5 ~al ~i !11

i ,al ~i !12
i , + + + ,an~i !

i !,
6 (1)

where 0# l i # ni for eachi and 0, l ~i ! , n~i ! for at least onei ~i+e+, cutting at least
one of the permutationsa1,a2, + + + ,am!+Note thatTa1,a2, + + + ,am

does not depend on the
order ofai ’s in its subscript, and equalsTa2,a3, + + + ,am

if a1 is empty+

Example 5~to be compared with Example 1!: Supposen 5 4+ Then,

T~2,3,1,4!

5
1

1 2 pB 2 p$1,2,3,4%
$p$2%T~2!,~3,1,4! 1 p$2,3%T~2,3!,~1,4! 1 p$1,2,3%T~2,3,1!,~4!%

5
1

1 2 pB 2 p$1,2,3,4%

3 H p$2%

1 2 pB 2 p$2% 2 p$1,3,4% 2 p$1,2,3,4%

3 @~p$3% 1 p$2,3%!T~2!,~3!,~1,4! 1 ~p$1,3% 1 p$1,2,3%!T~2!,~3,1!,~4!#

1
p$2,3%

1 2 pB 2 p$2,3% 2 p$1,4% 2 p$1,2,3,4%

3 @~p$2% 1 p$1,2,4%!T~2!,~3!,~1,4! 1 ~p$1% 1 p$1,2,3%!T~2,3!,~1!,~4!

1 p$1,2%T~2!,~3!,~1!,~4!#

1
p$1,2,3%

1 2 pB 2 p$1,2,3% 2 p$4% 2 p$1,2,3,4%

3 @~p$2% 1 p$2,4%!T~2!,~3,1!,~4! 1 ~p$2,3% 1 p$2,3,4%!T~2,3!,~1!,~4!#J ,
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where

T~2!,~3!,~1!,~4! 5 1,

T~2!,~3!,~1,4! 5
~p$1% 1 p$1,2% 1 p$1,3% 1 p$1,2,3%!T~2!,~3!,~1!,~4!

1 2 pB 2 p$2% 2 p$3% 2 p$2,3% 2 p$1,4% 2 p$1,2,4% 2 p$1,3,4% 2 p$1,2,3,4%

5
p$1% 1 p$1,2% 1 p$1,3% 1 p$1,2,3%

p$1% 1 p$1,2% 1 p$1,3% 1 p$1,2,3% 1 p$4% 1 p$2,4% 1 p$3,4% 1 p$2,3,4%
,

T~2!,~3,1!,~4! 5
p$3% 1 p$2,3% 1 p$3,4% 1 p$2,3,4%

p$3% 1 p$2,3% 1 p$3,4% 1 p$2,3,4% 1 p$1% 1 p$1,2% 1 p$1,4% 1 p$1,2,4%
,

T~2,3!,~1!,~4! 5
p$2% 1 p$1,2% 1 p$2,4% 1 p$1,2,4%

p$2% 1 p$1,2% 1 p$2,4% 1 p$1,2,4% 1 p$3% 1 p$1,3% 1 p$3,4% 1 p$1,3,4%
+

Here we have repeatedly cut the permutations in the subscript ofTuntil each of them
contains not more than one element+

Theorem 3: T~p~1!,p~2!, + + + ,p~n!! is the stationary probability of the statep 5
~p~1!,p~2!, + + + ,p~n!!+

Again, the proof is given in the Appendix+

3.2. General Cases

Suppose onlypAj
, j 5 1,2, + + + ,s~$1!, are greater than zero+ Consider the combina-

tions of A1, + + + ,As, that is, the pairwise disjoint setsDA1 ù{{{ù DAs where DAj 5 Aj

orAj
' , j 51,2, + + + ,s+HereAj

' is the complementN \Aj +Since eachAj can be expressed
as a union of someDA1 ù{{{ù DAs, the algebra~i+e+, field! generated by$A1, + + + ,As%
just consists of the unions of any sets having the formDA1 ù{{{ù DAs+

Lemma 2:

max$6 DA1 ù{{{ù DAs6 : DAj 5 Aj or Aj
' for all j 5 1,2, + + + ,s%

5 max$6Bi 6 : $B1,B2, + + + ,Bk% is a partition of N such that R~B1,B2, + + + ,Bk!

5 1 and1 # i # k%+ (2)

Proof: Recall

R~B1,B2, + + + ,Bk! 5 (
G#$1,2, + + + , k%

pøg[G Bg
+

If this equals 1, then eachAj is a unionøg[Gj
Bg with Gj # $1,2, + + + ,k% + Supposei [

G1, and consider the combinationDA1 ù{{{ù DAs, where DA1 :5 A1 and, for 2 # j # s,

DAj :5 HAj if i [ Gj ,

Aj
' otherwise+
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Then DA1 ù{{{ù DAs$ Bi +One can argue similarly ifi Ó G1 by setting DA1 :5 A1
' + Thus,

the LHS of Eq+ ~2! is not less than the RHS of Eq+ ~2!+
If we consider a partition consisting of allDA1 ù{{{ù DAs’s, we immediately

obtain the equality+ n

Theorem 4: The number of irreducible subchains is

)
DAj5Aj or Aj

'

~6 DA1 ù{{{ù DAs6!!+

Proof: First assume that the product above is 1+ Then each$i % can be expressed as
A1, i ù{{{ù As, i with

Aj, i 5 HAj if i [ Aj

Aj
' if i Ó Aj

+

Let

mj, i 5 H1 if i [ Aj

0 if i Ó Aj

and letmi be the binary number withm1, i as the first digit,m2, i as the second digit, + + + ,
andms, i as the last andsth digit+Note thatmi 5 mk impliesi 5 k+ So, if i Þ k,we may
assume without loss of generality thatmi . mk, and there thus exists at such that

A1, i 5 A1,k, + + + ,At, i 5 At,k

and

At11, i 5 At11, At11,k 5 At11
' +

If we first access recordsAs, and then access recordsAs21, and then+ + + , and at last
access recordsA1, the recordi will then surely precede recordk sinceAt11 contains
i and does not containkwhile bothi andkare or are not inA1, + + + ,At +So, if we letp5
~p~1!, + + + ,p~n!! be the permutation of 1,2, + + + ,n such that

mp~1! . mp~2! . {{{ . mp~n! ,

the statep can be reached by the chain starting anywhere+ Therefore, every irreduc-
ible subchain must containp+ Thus, there is only one irreducible subchain+

Now suppose that among the sets having the formDA1 ù{{{ù DAs, there are just
r of them having more than one element+Denote theser sets asH1, + + + ,Hr +Note that
theHi ’s are pairwise disjoint+ Denote

Hi 5 $h1
i , + + + ,hk~i !

i %+

If Hi 5 A1
' ù{{{ù As

' , then all records other thanh1
i , + + + ,hk~i !

i will eventually be
accessed, and thush1

i , + + + ,hk~i !
i will eventually be placed together in the lastk~i !

positions of the list+ Otherwise, h1
i , + + + ,hk~i !

i must be accessed together+ ~If , for ex-
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ample, we could access recordh1
i without accessingh2

i , then there would exist anAj

such thath1
i [ Aj andh2

i Ó Aj + This contradicts the fact thatHi 5 DA1 ù{{{ù DAs # DAj ,
no matter whetherDAj 5Aj or DAj 5Aj

'+! Again, they will eventually be placed together
in the list+ If we treat eachHi as a single recordhi , then the record set becomes

$h1, + + + ,hr % ø S$1,2, + + + ,n%\ ø
i51

r

HiD,
which has only one irreducible subchain+Moreover, if we change recordhi back to
Hi , noting that the relative order of records withinHi always remains unchanged,we
know that the number of irreducible subchains is

)
i51

r

~6Hi 6!! 5 )
DAi5Ai or Ai

'

~6 DA1 ù{{{ù DAs6!!+ n

Corollary: The stationary distribution is unique

m there is just one irreducible subchain,
m the algebra generated by$A1, + + + ,As% is the finest one with respect to N,
m R~B1,B2, + + + ,Bk! , 1 for every partition$B1,B2, + + + ,Bk%, unless each6Bi 6# 1,
m the definition of Ta1, + + + ,am

and Theorem3 are valid+

Example 6~to be compared with Example 3!: Supposen5 4, p$1,2% . 0, p$2,3% . 0,
p$1,2% 1 p$2,3% 5 1+ The conditions in the corollary to Theorem 4 are satisfied+ The
irreducible subchain is

$~2,1,3,4!,~2,3,1,4!%+

For statesp other than~2,1,3,4! and~2,3,1,4!, Tp 5 0+

Example 7~to be compared with Example 2!: Supposen5 4, p$1,2% . 0, p$3,4% . 0,
p$1,2% 1 p$3,4% 5 1+ Now there are 2!3 2! irreducible subchains:

$~1,2,3,4!,~3,4,1,2!%, $~2,1,3,4!,~3,4,2,1!%,

$~1,2,4,3!,~4,3,1,2!%, $~2,1,4,3!,~4,3,2,1!%+

For allp’s other than these states, Tp 50+Note that the denominator in the definition
of T~1,2!,~3,4! is zero+ If we let, however, T~1,2!,~3,4! be 1, then

T~1,2,3,4! 5 p$1,2%T~1,2!,~3,4! 5 p$1,2% ,

T~3,4,1,2! 5 p$3,4%T~1,2!,~3,4! 5 p$3,4% +

These form a stationary distribution and will also be the limiting distribution if the
chain starts from a state with 1 preceding 2 as well as with 3 preceding 4+

The same argument can be made for the other irreducible subchains+
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4. COST COMPARISON

In this section, we only consider the case thatpA . 0 for all A Þ B+
As in @13# ,when the permutation of the whole set of records isp, the access cost

for the subsetA of required records is

(
a[A

p21~a!+

Thus, the expected cost with respect top is

E@cost6p# 5 (
A#N

pA (
a[A

p21~a! 5 (
i51

n

p21~i ! fi ,

where

fi :5 (
A]i

pA+

Obviously, if fi ’s are known, the optimal permutation is such thatp21~ i ! #
p21~ j ! m fi $ fj +

The next theorem is not a surprise+

Theorem 5: Move-to-front rule with order preserved is better than that with ran-
dom order with respect to expected stationary search cost+

Proof: Similar to@7# , since the expected stationary search cost is now

(
i, j :iÞj

P$i precedesj in stationary% fj

5 (
i, j :i,j

~P$i precedesj in stationary% fj 1 P$ j precedesi in stationary% fi !

5 (
i, j :i,j

@ fi 1 P$i precedesj in stationary%~ fj 2 fi !# ,

it suffices to prove that

fi $ fj n P~2! $i precedesj % $ P~1! $i precedesj %,

or equivalently

(
B#N \$i, j %

p$i %øB

(
B#N \$i, j %

p$ j %øB

$ 1 n
P~2! $i precedesj %

P~2! $ j precedesi %
$

P~1! $i precedesj %

P~1! $ j precedesi %
,

whereP~1! andP~2! represent the stationary distributions under move-to-front rule
with random order and move-to-front rule with order preserved, respectively+
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By Theorem 1 and Lemma 4 in the Appendix,

P~1! $i precedesj % 5 S~i, j !
N \$i, j % 5 S~i, j ! +

So,

P~1! $i precedesj %

P~1! $ j precedesi %
5

(
B#N \$i, j %

Fp$i %øB 1
1

2
p$i, j %øBG

(
B#N \$i, j %

Fp$ j %øB 1
1

2
p$i, j %øBG +

On the other hand, by Theorem 3, Lemma 5, and Lemma 6 in the Appendix,

P~2! $i precedesj % 5 (
t

T~i, j !
t 5 (

t
T~i, j !,t 5 Y~i, j !

N\$i, j % 5 T~i, j !, ~1!,~2!, + + + ,~n!
assssdssssg

@omitting ~i ! and~ j !#

,

whereY~i, j !
N\$i, j % is defined as in Lemma 5 in the Appendix, andt runs over all permu-

tations of the subsetN\ $i, j % + Thus,

P~2! $i precedesj %

P~2! $ j precedesi %
5

(
B#N \$i, j %

p$i %øB

(
B#N \$i, j %

p$ j %øB

,

which is not less than

(
B#N \$i, j %

@ p$i %øB 1 2
12p$i, j %øB#

(
B#N \$i, j %

@ p$ j %øB 1 2
12p$i, j %øB#

5
P~1! $i precedesj %

P~1! $ j precedesi %
,

because

(
B#N \$i, j %

p$i %øB $ (
B#N \$i, j %

p$ j %øB+ n

Remark: Another reasonable definition for cost is

E@cost6p# 5 (
A#N

pA max
a[A

p21~a!,

under which Theorem 5 no longer remains valid+ For example, let n5 3, p$1% 5 0+2,
p$2% 5 0+01, p$3% 5 0+01, p$1,2% 5 0+5, p$1,3% 5 0+01, p$2,3% 5 0+26, p$1,2,3% 5 0+01+ Then
the costs corresponding to move-to-front rules, preserving order and not preserving
order, are 2+32568 and 2+33747, respectively+ If we changep$1% to 0+1 andp$2,3% to
0+36, however, the costs will then be 2+45419 and 2+45315, respectively+
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APPENDIX

To prove Theorem 1 we need the notations

Vp~t!
$p~t11!, + + + ,p~n!% :5 (

µ
S~p~t!,µ!

and

W$p~t!,p~t11!, + + + ,p~n!% :5 (
u

Su ,

wherem runs over all permutations of$p~t 1 1!, + + + ,p~n!%, u runs over all permutations of
$p~t!, p~t 1 1!, + + + ,p~n!% and ~p~t!,µ! represents a permutation of$p~t!, + + + ,p~n!% with
p~t! as its first element+
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Lemma 3: For t 5 1,2, + + + , n and for any permutationp,

W$p~t!,p~t11!, + + + ,p~n!% 5 1+

Proof: First note thatW$p~n!% 5 S~p~n!! 51+ For the use of mathematical induction, let B run
over all subsets of$p~1!,p~2!, + + + ,p~t 21!% andµ[ ~µ~1!, + + + ,µ~n2 t!! run over all permu-
tations of$p~t 1 1!, + + + ,p~n!% as above+ Also, let C j run over all subsets consisting of justj
elements of$p~t 1 1!, + + + ,p~n!% andD j run over all subsets consisting of justj elements of
$p~t!, + + + ,p~n!% + Then,

Vp~t!
$p~t11!, + + + ,p~n!%@12 Q~$p~1!,p~2!, + + + ,p~t 2 1!%!#

5 (
j51

n2t11 1

j! (
µ,B

p$p~t!%ø$µ~1!, + + + ,µ~ j21!%øBS~µ~ j !, + + + ,µ~n2t!!

5 (
j51

n2t11 1

j (
C j21,B

p$p~t!%øC j21øBW$p~t11!, + + + ,p~n!% \C j21

5 (
j51

n2t11 1

j (
C j21,B

p$p~t!%øC j21øB,

where the last equality comes from the assumption of induction+ So,

W$p~t!,p~t11!, + + + ,p~n!%

5 Vp~t!
$p~t11!, + + + ,p~n!% 1 Vp~t11!

$p~t!,p~t12!, + + + ,p~n!% 1 {{{ 1 Vp~n!
$p~t!, + + + ,p~n21!%

5
1

12 Q~$p~1!,p~2!, + + + ,p~t 2 1!%! (
j51

n2t11 1

j (
D j,B

jpD jøB

5 1+ n
Lemma 4: For 1 # k , m # n, let

S~p~m!, + + + ,p~n!!
$p~1!, + + + ,p~k!%

be the sum of all Sn’s such that in the permutationn of the set$p~1!, + + + ,p~k!,p~m!, + + + ,p~n!%,
p~ j ! always precedesp~ j 1 1! for all j 5 m,m 1 1, + + + ,n 2 1+ For convenience let also
S~p~m!, + + + ,p~n!!

$p~1!, + + + ,p~k!% :5 1, when1 # k , m5 n 1 1+ Then,

S~p~m!, + + + ,p~n!!
$p~1!, + + + ,p~k!% 5 S~p~m!, + + + ,p~n!! for 1 # k , m# n 1 1+

Proof: By the convention in Section 2+1 thatS~p~t1j !,p~t1j11!, + + + ,p~n!! 51 for j 5n2 t11, the
lemma is true for 1# k , m5 n 1 1+

For k 5 1, m5 n,

S~p~n!!
$p~1!% 5 S~p~1!,p~n!! 1 S~p~n!,p~1!!

5 W$p~1!,p~n!%

5 1 ~by Lemma 3!

5 S~p~n!! +
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Now suppose

S~p~m1i !, + + + ,p~n!!
$p~1!% 5 S~p~m11!, + + + ,p~n!!

is true for somem and alli such that 1# i # n 2 m1 1+ Then,

S~p~m!, + + + ,p~n!!
$p~1!% 5 S~p~1!,p~m!, + + + ,p~n!! 1 S~p~m!,p~1!,p~m11!, + + + ,p~n!! 1 {{{ 1 S~p~m!, + + + ,p~n!,p~1!!

5
1

12 Q~$p~2!, + + + ,p~m2 1!%!

3 F (
j51

n2m12 S~p~m1j21!, + + + ,p~n!!

j! (
E

jp$p~1!,p~m!, + + + ,p~m1j22!%øE

1 (
j51

n2m11 S~p~m1j !, + + + ,p~n!!
$p~1!%

j! (
E

p$p~m!, + + + ,p~m1j21!%øEG
5

1

12 Q~$p~2!, + + + ,p~m2 1!%!

3 F (
j50

n2m11 S~p~m1j !, + + + ,p~n!!

j! (
E

p$p~1!,p~m!, + + + ,p~m1j21!%øE

1 (
j51

n2m11 S~p~m1j !, + + + ,p~n!!

j! (
E

p$p~m!, + + + ,p~m1j21!%øEG
5

1

12 Q~$p~2!, + + + ,p~m2 1!%!

3 F (
j51

n2m11 S~p~m1j !, + + + ,p~n!!

j! (
F

p$p~m!, + + + ,p~m1j21!%øF

1 S~p~m!, + + + ,p~n!! (
E

p$p~1!%øEG
5

1

12 Q~$p~2!, + + + ,p~m2 1!%!

3 F~12 Q~$p~1!, + + + ,p~m2 1!%!!S~p~m!, + + + ,p~n!!

1 S~p~m!, + + + ,p~n!! (
E

p$p~1!%øEG
5 S~p~m!, + + + ,p~n!! ,

where the third equality is from the assumption of induction, with E andF running over all
subsets of$p~2!, + + + ,p~m21!% and$p~1!, + + + ,p~m21!% , respectively+Up to now we already
have

S~p~m!, + + + ,p~n!!
$p~1!% 5 S~p~m!, + + + ,p~n!!

for m5 2,3, + + + ,n,n 1 1+
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Next, we assume that for somek and allm . k,

S~p~m!, + + + ,p~n!!
$p~1!, + + + ,p~k!% 5 S~p~m!, + + + ,p~n!! +

Thus, if k , m2 1,

S~p~m!, + + + ,p~n!!
$p~1!, + + + ,p~k11!%

5 S~p~k11!,p~m!, + + + ,p~n!!
$p~1!, + + + ,p~k!% 1 S~p~m!,p~k11!,p~m11!, + + + ,p~n!!

$p~1!, + + + ,p~k!% 1 {{{ 1 S~p~m!, + + + ,p~n!,p~k11!!
$p~1!, + + + ,p~k!%

5 S~p~k11!,p~m!, + + + ,p~n!! 1 S~p~m!,p~k11!,p~m11!, + + + ,p~n!! 1 {{{ 1 S~p~m!, + + + ,p~n!,p~k11!!

5 S~p~m!, + + + ,p~n!!
$p~k11!%

5 S~p~m!, + + + ,p~n!!

and the proof of Lemma 4 is completed+ n

Proof of Theorem 1: By Lemma 3, we know immediately that the sum of all
S~p~1!,p~2!, + + + ,p~n!!’s is 1+ Now,

S~p~1!,p~2!, + + + ,p~n!! 5
1

12 pB
(
j51

n S~p~ j11!, + + + ,p~n!! p$p~1!, + + + ,p~ j !%

j!

5
1

12 pB
F (

j51

n21 p$p~1!, + + + ,p~ j !%

j!
S~p~ j11!, + + + ,p~n!!

$p~1!, + + + ,p~ j !% 1
pN

n! G ~by Lemma 4!,

that is,

S~p~1!,p~2!, + + + ,p~n!! 5 pB S~p~1!,p~2!, + + + ,p~n!! 1 (
j51

n21 p$p~1!, + + + ,p~ j !%

j!
S~p~ j11!, + + + ,p~n!!

$p~1!, + + + ,p~ j !% 1
pN

n!
+

Note that, in order to reach statep in one step from some permutation, only sets of records
$p~1!, + + + ,p~ j !%, j 5 0,1, + + + ,n should be accessed+ When j 5 0, that is, no record is ac-
cessed, the Markov chain will stay in the statep in one step provided that its current state
is p+When j 5 n, that is, all records are accessed at the same time, the chain may arrive at
the statep in one step~with probability pN0n!! no matter which the current state is+ When
j 5 1,2, + + + ,n 2 1, S~p~ j11!, + + + ,p~n!!

$p~1!, + + + ,p~ j !% is just the sum of allSn’s such that, starting from the state
n, the chain may arrive at the statep in one step~with probability p$p~1!, + + + ,p~ j !%0j!!+ So,
Theorem 1 is proved+ n

We now proceed to prove Theorem 3+

Lemma 5: Let $A1, + + + ,Am, E1, + + + ,Ek% be a partition of N~note that one of m and k may be
zero!+ Let ai be a permutation of Ai , i 5 1, + + + ,m, Ei 5 $ei ~1!,ei ~2!, + + + ,ei ~gi !%, i 5 1, + + + ,k+
Define

Ya1, + + + ,am

E1, + + + ,Ek :5 (
e1, + + + ,ek

Ta1, + + + ,am,e1, + + + ,ek
,

whereei runs over all permutations of Ei , i 5 1, + + + ,k+
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Then,

Ya1, + + + ,am

E1, + + + ,Ek 5 Ta1, + + + ,am,~e1~1!!, + + + ,~e1~g1!!, + + + ,~ek~1!!, + + + ,~ek~gk!! +

Proof: Obviously, the conclusion is true when eachEi contains not more than one element,
i 5 1, + + + ,k+

In general, by the definition ofTa1, + + + ,am,e1, + + + ,ek
,

Ya1, + + + ,am

E1, + + + ,Ek 5
1

12 R~a1, + + + ,am,E1, + + + ,Ek!

3 (
b1, + + + ,bm,F1, + + + ,Fk

p~øi51
m Bi !ø~øj51

k Fj !
Yb1,b1

' , + + + ,bm,bm
'

F1,E1\F1, + + + ,Fk,Ek\Fk,

where the summation runs over allbi ’s as defined in Eq+ ~1! ~i 51, + + + ,m! and allFj ’s being
subsets ofEi ~ j 5 1, + + + ,k! with the restriction that there existseitherat least onei such that
Bi Þ Ai andBi Þ B or at least onej such thatFj Þ Ej andFj Þ B+

By mathematical induction,

@12 R~a1, + + + ,am,E1, + + + ,Ek!#Ya1, + + + ,am

E1, + + + ,Ek

5 (
b1, + + + ,bm:∃i such thatBiÞAi andBiÞB

Tb1,b1
' + + + ,bm,bm

' ,~e1~1!!, + + + ,~ek~gk!! (
F#øj51

k Ej

p~øi51
m Bi !øF

1 Ta1, + + + ,am,~e1~1!!, + + + ,~ek~gk!! (
B:∀i,BùAi5Ai or B

(
F,øj51

k Ej ,FÞøj51
k Ej ,FÞB

pBøF

5 @12 R~a1, + + + ,am,~e1~1!!, + + + ,~ek~gk!!!#Ta1, + + + ,am,~e1~1!!, + + + ,~ek~gk!!

1 $Ta1, + + + ,am,~e1~1!!, + + + ,~ek~gk!! @R~a1, + + + ,am,~e1~1!!, + + + ,~ek~gk!!!

2 R~a1, + + + ,am,E1, + + + ,Ek!#%

5 @12 R~a1, + + + ,am,E1, + + + ,Ek!#Ta1, + + + ,am,~e1~1!!, + + + ,~ek~gk!! + n

Lemma 6: Suppose

$A1,A2, + + + ,Am,C1,C2, + + + ,Cm%

is a partition of N, ai is a permutation of Ai , gi is a permutation of Ci , i 51,2, + + + ,m+ Assume
that

ai [ ~a1
i ,a2

i , + + + ,an~1!
i ! and gi [ ~c1

i ,c2
i , + + + ,cu~i !

i !+

Let

Ta1,a2, + + + ,am

g1,g2, + + + ,gm :5 (
z1,z2, + + + ,zm

Tz1,z2, + + + ,zm

wherezi runs over all permutations of Ai ø Ci with the relative orders of the elements of Ai

and those of Ci remaining the same as inai andgi , respectively+
Then,

Ta1,a2, + + + ,am

g1,g2, + + + ,gm 5 Ta1,a2, + + + ,am,g1,g2, + + + ,gm
+
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Proof: When allni ’s andui ’s are 0 or 1,

Ta1,a2, + + + ,am

g1,g2, + + + ,gm 5 YA1øC1, + + + ,AmøCm 5 1

by Lemma 5+ Generally,

Ta1,a2, + + + ,am

g1,g2, + + + ,gm 5 (
z1,z2, + + + ,zm

Tz1,z2, + + + ,zm

5
1

12 R~A1 ø C1, + + + ,Am ø Cm! ( pøi51
m ~BiøDi !

Tb1,b1
' , + + + ,bm,bm

'
d1,d1

' , + + + ,dm,dm
'

,

wherebi , Bi , andbi
' are defined as in Eq+ ~1!,

di 5 ~c1
i , + + + ,cv~i !i !,

Di 5 $c1
i , + + + ,cv~i !i %,

di
' 5 ~cv~i !11

i , + + + ,cu~i !
i !,

and the summation runs over allbi ’s and alldi ’s with 0 # l ~i ! # n~i !, 0 # v~i ! # u~i !, and
under the restriction

∃ i such that 0, l ~i ! 1 v~i ! , n~i ! 1 u~i !+ (3)

Note that the partition$B1,A1\B1, + + + ,Bm,Am\Bm,D1,C1\D1, + + + ,Dm,Cm\Dm% is finer than
$A1,A2, + + + ,Am,C1,C2, + + + ,Cm% + So, by mathematical induction,

@12 R~A1 ø C1, + + + ,Am ø Cm!#Ta1,a2, + + + ,am

g1,g2, + + + ,gm

5 (
∃i such that 0,l ~i !,n~i ! or 0,v~i !,u~i !

pøi51
m ~BiøDi !

Tb1,b1
' , + + + ,bm,bm

' ,d1,d1
' , + + + ,dm,dm

'

1 (
satisfying Eq+ ~3! and∀ i , l ~i !50 or n~i !, v~i !50 or u~i !

pøi51
m ~BiøDi !

Ta1, + + + ,am,g1, + + + ,gm

5 @12 R~A1, + + + ,Am,C1, + + + ,Cm!#Ta1, + + + ,am,g1, + + + ,gm

1 @R~A1, + + + ,Am,C1, + + + ,Cm! 2 R~A1 ø C1, + + + ,Am ø Cm!#Ta1, + + + ,am,g1, + + + ,gm

5 @12 R~A1 ø C1,Am ø Cm!#Ta1, + + + ,am,g1, + + + ,gm
+ n

Proof of Theorem 3: By Lemma 5~letting k 5 1 and allai ’s be empty!, we know that
(p Tp 5 1 wherep runs over all permutations ofN+ Moreover,

T~p~1!,p~2!, + + + ,p~n!!

5
1

12 pB 2 pN
(
j51

n21

p$p~1!,p~2!, + + + ,p~ j !%T~p~1!,p~2!, + + + ,p~ j !!,~p~ j11!,p~ j12!, + + + ,p~n!!

5
1

12 pB 2 pN
(
j51

n21

p$p~1!,p~2!, + + + ,p~ j !%T~p~ j11!,p~ j12!, + + + ,p~n!!
~p~1!,p~2!, + + + ,p~ j !! ~by Lemma 6!
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that is,

T~p~1!,p~2!, + + + ,p~n!! 5 (
j51

n21

p$p~1!,p~2!, + + + ,p~ j !%T~p~ j11!,p~ j12!, + + + ,p~n!!
~p~1!,p~2!, + + + ,p~ j !! 1 ~ pB 1 pN!T~p~1!,p~2!, + + + ,p~n!! +

Similar to the proof of Theorem 1, note that, in order to reach statep in one step from some
permutation, only sets of records$p~1!, + + + ,p~ j !%, j 5 0,1, + + + ,n, should be accessed+When
j 50 orn, that is, none or all of the records are accessed, the Markov chain will stay in the state
p in one step provided that its current state isp+Whenj 51,2, + + + ,n21, T~p~ j11!, + + + ,p~n!!

~p~1!, + + + ,p~ j !! is just
the sum of allTz’s such that, starting from the statez, the chain may arrive at the statep in one
step+ Thus, Theorem 3 is proved+ n
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