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Abstract
In this paper, we model the surplus process as a compound Poisson process perturbed by diffusion
and allow the insurer to ask its customers for input to minimize the distance from some prescribed
target path and the total discounted cost on a fixed interval. The problem is reduced to a version of a
linear quadratic regulator under jump-diffusion processes. It is treated using three methods: dynamic
programming, completion of square and the stochastic maximum principle. The analytic solutions to
the optimal control and the corresponding optimal value function are obtained.
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1. Introduction

In recent years, stochastic control theory has gained significant interest in the insurance literature.
This is because the insurance company can control the surplus process such that a certain objective
function is minimized (maximized). In particular, there are three main criteria: maximizing the
discounted total dividend, minimizing the probability of ruin and maximizing the exponential utility.
The corresponding modern continuous-time approach was pioneered by Browne (1995) and
Asmussen & Taksar (1997), who applied classical stochastic control methods to reduce the opti-
mization problem to a matter of solving a Hamilton-Jacobi-Bellman (HJB) equation. Browne (1995)
found the optimal investment strategies to minimize the probability of ruin and to maximize the
exponential utility function under the model of Brownian motion with drift. For the same model,
Asmussen & Taksar (1997) obtained the optimal dividend strategy. Since their pioneering work,
many attempts have been made to solve the optimization problem in a framework that allows more
controls. Examples where the optimal dividend problem was treated under the model of diffusion are
Paulsen & Gjessing (1997), Paulsen (2003), Asmussen et al. (2000), Hϕjgaard & Taksar (1999,
2001, 2004) and Choulli et al. (2003). For the same model, Schmidli (2001).
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Taksar & Markussen (2003), Promislow & Young (2005) and Bai & Guo (2008) considered the
problem of minimizing the probability of ruin. All of these under the diffusion model gave the closed-
form solution. However, in the classical risk model, since the corresponding HJB equation contains
the integro term and differential term simultaneously, it is more difficult to solve. For when the
objective function is an exponential utility function, Yang & Zhang (2005) gave the closed-form
solution for the jump-diffusion model, whereas when the objective function is mean variance, Bai &
Zhang (2008) gave the optimal solution for the classical risk model. For other objective functions,
especially the ruin probability, only the existence of a solution to the HJB equation was proved, and
a verification theorem was given. Among them are Hipp & Plum (2000), Hipp & Taksar (2000),
Schmidli (2001, 2002), and Hipp & Vogt (2003).

In this paper, the surplus is modeled as a compound Poisson process perturbed by diffusion. Assume
that the insurer is allowed to ask its customers for input to minimize the distance from some
prescribed target path and the total discounted cost on a fixed interval. Then, the objective is to find
the amount of the input at every time (the optimal control) such that the distance from some
prescribed target path and the total discounted cost are minimized and to calculate the minimizing
value (the optimal value function).

For the above optimization problem, we first use a dynamic programming approach to solve it. By
changing the HJB equation to an ordinary partial differential equation, the analytic solutions to the
optimal control and the optimal value function are obtained. Then, it is treated again by the com-
pletion of square and stochastic maximum principle. This is different from the dynamic program-
ming approach in that two methods lead to a stochastic differential equation for the optimal control
process and not a nonlinear partial differential equation for the optimal value function. Solving the
stochastic differential equation yields the optimal control. Then, the optimal value function is
obtained by two different methods again.

By comparing three methods, it can be found that (1) the dynamic programming is the best method
for solving the optimal solution in this paper and that (2) the dynamic programming is limited for the
Markov process, and the two other methods, the completion of square and stochastic maximum
principle, are not. Therefore, the process given in this paper to solve for the optimal solution has
the inspiring effect of using these two methods to solve the optimal control problems in Non-Markov
risk processes (for example, the classical risk model with fractional Brownian motion
perturbation).

The paper is organized as follows. In section 2, the model assumptions are formulated. The control
and the objective function are introduced. In section 3, the control problem is solved. The problem is
divided into three parts. In subsection 3.1, the dynamic programming approach is used. The optimal
value function and the optimal control are obtained by the solution and the minimizing function of
the HJB equation. In subsection 3.2, stochastic differential equations for the optimal control process
are first obtained by the completion of square approach. Solving the equation results in the optimal
control. Then, the optimal value function is obtained by its definition. In subsection 3.4, the
same stochastic differential equations are obtained using the Hamiltonian system. Then, to obtain
the optimal value function, we give a lemma that complements the results given by Framstad
et al. (2004). Combining these results, the expression of the optimal value function is again
obtained.

Optimal insurance control for insurers with jump-diffusion risk processes

199

https://doi.org/10.1017/S1748499518000192 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000192


2. The Model

Consider the following classical surplus process perturbed by diffusion

Xt=ct�
XNt

i=1

Yi + σBt; t≥0; (2.1)

where c is the rate at which the premiums are received. {Nt; t≥0} is a Poisson process with parameter
β, denoting the total number of claims with claim times Ti(i=1, 2 …). Y1, Y2, … , independent of
{Nt; t≥ 0}, are positive i.i.d. random variables with a common distribution function (df)F(x), the
moment μj=

Ð1
0 xjFðdxÞ, for j=1, 2. {Bt; t≥0} is a standard Wiener process that is independent of the

aggregate claim process
PNt

i=1Yi, and σ is the dispersion parameter.

In addition to the premium income, we here assume that the company also receives interest on its
reserves with interest force δt. The interest is assumed to be a deterministic function of time. Thus, the
surplus at time t, without control, is given by the dynamics

dXt= δtXt + cð Þdt�d
PNt

i=1 Yi + σdBt; t 2 ½s;T�;
Xs=x;

(
(2.2)

where T is a fixed time and s and x denote the initial time and initial surplus, respectively.

For the remainder of this paper, we work on a complete probability space (Ω, F, P) on which the
process {Xt, 0≤ t≤T} is defined. The information at time t is given by the complete filtration Fs

t

� �
generated by {Xt, s≤ t≤T}.

A strategy α is described by a stochastic process uαt ; s≤ t≤T
� �

, where uαt represents the input in time
interval (t, t+ dt). When applying the strategy α, we let Xα

t

� �
denote the controlled risk process. The

dynamic for Xα
t is then given by

dXα
t = δtXα

t + c + u
α
t

� �
dt�d

PNt
i=1 Yi + σdBt; t 2 ½s;T�

Xs=x;

(
(2.3)

The strategy α is said to be admissible if uαt is Fs
t -progressively measurable and such that stochastic

differential equation (2.3) has a unique solution. In this case, we call the process uαt
� �

the control
process or simply the control. We denote by Π the set of all admissible strategies.

For a given admissible strategy α, we define the objective function Vα by

Vαðs; xÞ= 1
2
E
ðT
s

qt Xα
t �At

� �2 + e�λt uαt
� �2� �

dr + qT Xα
T�AT

� �2� 	
;

8ðs; xÞ 2 ½0;TÞ ´R: ð2:4Þ

In (2.4), qt and At are both continuous functions on the interval [0, T), and λ denotes a discount rate.
At represents the prescribed target path, and qt represents the prescribed proportion. In particular,
when qt= 1, this choice of objective function ensures the minimization of the distance from some
prescribed target path At and simultaneously minimized the total discounted cost over the interval
[s, T].
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The objective is to find the optimal value function

Vðs; xÞ=min
α2Π

Vαðs; xÞ; 8 ðs; xÞ 2 ½0;TÞ ´R; (2.5)

and to find an optimal control α* such that

Vðs; xÞ=Vα� ðs; xÞ=min
α2Π

Vαðs; xÞ; 8 ðs; xÞ 2 ½0;TÞ ´R:

Let C1,2 denote the space of ϕ(r, x) such that ϕ and its partial derivatives ϕr, ϕx, ϕxx are continuous
on [0, T]×R. Let C1;2

pc denote the space of ϕ(r, x) such that ϕ∈C1,2 and satisfies a polynomial growth
condition, i.e., there exist constants K and n such that, for all (r, x)∈R+×R, |ϕ(r, x)|≤K(1 + |x|n).
Moreover, ϕ(r, x) satisfies

E
ðT
s

ð1
0

ϕðr;Xα
r Þ�ϕðr;Xα

r�zÞ

 

 FðdzÞdr� 	
<1 (2.6)

for any control α. As will be seen in Theorem 3.1, the polynomial growth condition mainly ensures
that the term of the stochastic integral over Brownian motion is a martingale (see Fleming & Soner
(1993), P135), while (2.6) ensures that the term of the stochastic integral over the compensated
Poisson point process is a martingale (see Brémaud (1981), P235).

Let L2
F s;T;Rð Þ denotes the set of all Fs

t

� �
t≥ s-adapted R-valued processes Y(·) such that

E
Ð T
s YðrÞj j2dr<1.

3. Solution of the Control Problem

We now present an analytic solution of the control problem. The problem is treated in three ways.
One way is through the dynamic programming approach, which is traditionally used to solve the
optimal control problem for the case whereby the controlled process has the Markov property. The
second method is through a completion of squares method, inspired by the recent work of Frangos
et al. (2008) on the same linear quadratic problem under a fractional Brownian motion. The third
method is through the application of a stochastic maximum principle for jump diffusion. This
method was proposed for general control problems by Framstad et al. (2004).

3.1. The dynamic programming method

From standard arguments, we know that if the optimal value function V∈C1,2, then V satisfies the
following Hamilton-Jacobi-Bellman (HJB) equation

min
u2R

Vt + δtx + c + uð ÞVx +
1
2
σ2Vxx + βEVðt; x�YÞ�βVðt; xÞ + 1

2
qtðx�AtÞ2 + 1

2
e�λtu2

� �
=0;

8 ðt; xÞ 2 ½0;TÞ ´R; ð3:1Þ

with the terminal value

VðT; xÞ= 1
2
qT x�ATð Þ2; (3.2)

where, for notational convenience, we replace s by t in (2.5), and Y is a generic random variable that
has the same distribution as Yi(i=1, 2…).
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Note that in many cases, the optimal value function may fail to be sufficiently smooth to satisfy the
HJB equation (3.1) in the classical sense. However, it still satisfies (3.1) in the viscosity sense (see
Fleming & Soner (1993). The following verification theorem shows that the classical solution to the
HJB equation yields the solution to the optimization problem.

Theorem 3.1. Assume that W 2 C1;2
pc satisfies (3.1)–(3.2). Then, the value function V given by (2.5)

and W coincide. Furthermore, let u*(t, x) be such that

Vt + δtx + c + u�ðt; xÞð ÞVx +
1
2
σ2Vxx + βEVðt; x�YÞ�βVðt; xÞ + 1

2
qtðx�AtÞ2 + 1

2
e�λtu�

2ðt; xÞ=0

for all (t, x)∈ [0, T]×R. Then, the Markov control strategy α* of the from u�t=u
� t;Xu�

t

� �
is optimal.

Specifically, Wðt; xÞ=Vðt; xÞ=Vα� ðt; xÞ.

Proof. Let α be an arbitrary control. Then, by applying the Itô formula

W T;Xα
T

� �
=Wðt; xÞ +

ðT
s

Wr r;Xα
r

� �
+ δrXα

r + c + u
α
r

� �
Wx r;Xα

r

� �
+
1
2
σ2Wxx r;Xα

r

� �� 	
dr

+ σ
ðT
s
Wx r;Xα

r

� �
dBr +

XNT

i=Nt + 1

W Ti;Xα
Ti

� �
�W Ti;Xα

Ti�
� �� �

≥Wðt; xÞ +
ðT
s

βW r;Xα
r

� ��βEW r;Xα
r�Y

� �� 1
2
qr Xα

r�Ar
� �2� 1

2
e�λru2αðrÞ

� 	
dr

+ σ
ðT
s
Wx r;Xα

r

� �
dBr +

XNT

i=Nt + 1

W Ti;Xα
Ti

� �
�W Ti;Xα

Ti�
� �� �

since W(t, x) satisfies (3.1). The terminal value (3.2) implies that W T;Xα
T

� �
= 1

2qT Xα
T�AT

� �2. Then,
rearranging yields

1
2

qT Xα
T�AT

� �2 + ðT
s

qrðXα
r�ArÞ2 + e�λrðuαr Þ2

� �
dr

� 	

≥Wðt; xÞ + σ
ðT
s
Wx r;Xα

r

� �
dBr +

XNT

i=Nt +1

W Ti;Xα
Ti

� �
�W Ti;Xα

Ti�
� �� �

+ β
ðT
s
W r;Xα

r

� ��EW r;Xα
r�Y

� �
 �
dr: ð3:3Þ

Since the compound Poisson process jumps only finitely in any finite interval, the second integral
does not change if r is replaced by r− . Thus, by W 2 C1;2

pc , we have that

σ

ðt
0
Wxðr;Xα

r

� �
dBr +

XNt

i=1

W Ti;Xα
Ti

� �
�W Ti;Xα

Ti�
� �� �

+ β
ðt
0
W r;Xα

r

� ��W r;Xα
r�Y

� �
 �
dr

is a martingale. Taking expectations on both sides of inequality (3.3), it follows that Vα(t, x)≥W(t,
x), which implies V(t, x)≥W(t, x). For the optimal control α*, the inequality becomes an equality,
that is, Vα� ðt; xÞ=Wðt; xÞ. Thus, V(t, x)≤W(t, x), which completes the proof.

We see from Theorem 3.1 that if the classical solution W 2 C1;2
pc to (3.1)-(3.2) can be found, then we

have the (unique) optimal value function V(t, x) and the corresponding optimal control {α*}. In other
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words, for the above optimal problem, we need to solve the nonlinear partial differential equation
(3.1) and find the value u*(t, x) that minimizes the function

Wt + δtx + c + uð ÞWx +
1
2
σ2Wxx + βEW t; x�Yð Þ�βWðt; xÞ + 1

2
qt x�Atð Þ2 + 1

2
e�λtu2: (3.4)

Theorem 3.2. Define

Wðt; xÞ= 1
2
πðtÞx2 + gðtÞ�qTATð Þx + f ðtÞ; (3.5)

where π(·), g(·) satisfy

π0ðtÞ�π2ðtÞeλt + 2δtπðtÞ + qt=0;
g0ðtÞ + gðtÞ δt�πðtÞeλt� �

+ qTATeλt + c�βμ1
� �

πðtÞ�δtqTAT�qtAt=0;

πðTÞ=qT ;
gðTÞ=0:

8>>>>><>>>>>:
(3.6)

f(t) satisfies

f 0ðtÞ= 1
2

gðtÞ�qTATð Þ2eλt� c�βμ1ð Þ gðtÞ�qTATð Þ� 1
2
βπðtÞμ2�

1
2
qtA2

t �
1
2
σ2πðtÞ (3.7)

with boundary condition

f ðTÞ= 1
2
qTA2

T : (3.8)

Then Wðt; xÞ 2 C1;2
pc is a solution of the HJB equation (3.1). The corresponding minimizing function

is given by

uðt; xÞ= �πðtÞx�gðtÞ + qTATð Þeλt (3.9)

with terminal condition

uðT; xÞ=�qT x�ATð ÞeλT :

Proof. By direct calculation, we obtain that

Wx=πðtÞx + gðtÞ�qTATð Þ; Wt=
1
2
x2π0ðtÞ + g0ðtÞx + f 0ðtÞ; Wxx=πðtÞ: (3.10)

Differentiating with respect to u in (3.4) and setting the derivative to be zero result in

uðt; xÞ=�Wxðt; xÞeλt:

Thus, we have

min
u2R

Wt + δtx + c + uð ÞWx +
1
2
σ2Wxx +

1
2
e�λtu2

� 	
ðt; xÞ + 1

2
qt x�Atð Þ2 + βEWðt; x�YÞ�βWðt; xÞ

� �

= Wt + δtx + c�Wxeλt
� �

Wx +
1
2
σ2Wxx +

1
2
eλtW2

x

� 	
ðt; xÞ + βEWðt; x�YÞ�βWðt; xÞ

+
1
2
qt x�Atð Þ2: ð3:11Þ
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Plugging (3.10) into (3.11) we obtain

min
u2R

Wt + δtx + c + uð ÞWx +
1
2
σ2Wxx +

1
2
e�λtu2

� 	
ðt; xÞ + 1

2
qt x�Atð Þ2 + βEWðt; x�YÞ�βWðt; xÞ

� �

=
1
2
π0ðtÞx2 + g0ðtÞx + f 0ðtÞ + δtx + cð Þ πðtÞx + gðtÞ�qTAT½ �� 1

2
eλt πðtÞx + gðtÞ�qTAT½ �2 + 1

2
σ2πðtÞ

+ βE
1
2
πðtÞðx�YÞ2 + gðtÞ�qTATð Þðx�YÞ

� 	
�β

1
2
πðtÞx2 + gðtÞ�qTATð Þx

� 	
: ð3:12Þ

Notice that E[Y]= μ1 and E[Y2]= μ2. Inserting (3.6), (3.7) and (3.8) into (3.12), we obtain that

min
u2R

Wt + δtx + c + uð ÞWx +
1
2
σ2Wxx + βEWðt; x�YÞ�βWðt; xÞ + 1

2
qt x�Atð Þ2 + 1

2
e�λtu2

� �
ðt; xÞ=0:

It is obvious that W(T, x) satisfies (3.2). Thus, we deduce that W(t, x) is solution of (3.1)–(3.2) and
the optimal control is given by (3.9).

Remark 3.1. In particular, let δt=qt=0 for t<T. In this case, we can obtain the solution of
equation (3.6):

πðtÞ= λ
λ
qT
�eλt + eλT ;

gðtÞ= λ c�βμ1ð Þðt�TÞ + qTAT eλt�eλTð Þ
eλt�eλT� λ

qT

:

8><>: (3.13)

3.2. The completion of squares method

Now, we show that the optimal control can be given by the solution of a forward backward
stochastic differential equation. The approach is similar to that of Frangos et al. (2008).

Theorem 3.3 The optimal control α* is given by u�t=�pteλt , where pt is the solution of the following
backward stochastic differential equation:

dX�
t= δtX�

t + c�eλtpt
� �

dt�d
PNt

i=1 Yi + σdBt;

dpt= �δtpt�qt X�
t�At

� �� �
dt�ηt d

PNt
i=1 Yi�βμ1dt

� �
+ σγtdBt; t 2 ½s;T�;

Xs=x;

pT=qTðX�
T�ATÞ;

8>>>>>><>>>>>>:
(3.14)

for (s, x)∈ [0, T]×R. Here, X�
t denotes the resulting process controlled by u�t

� �
, and ηt and γt are two

continuous processes such that

E
ðT
s
σ2γ2t X�

t�Xα
t

� �2
dt

� 	
<1; (3.15)

E
ðT
s
βμ1ηt j X�

t�Xα
t



 

dt� 	
<1; (3.16)

for any control α.
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Proof. Let α be an arbitrary control and recall the definition of Vα, as given in (2.4). The objective
function Vα may not be continuously differentiable. Consider

Vαðs; xÞ�Vα� ðs; xÞ= 1
2
E qT Xα

T�AT
� �2� X�

T�AT
� �2� �h

+
ðT
s

qt Xα
t �At

� �2� X�
t�At

� �2� �
+ e�λt uαt

� �2� u�t
� �2� �� �

dt
i
:

Using the equality

y2�y�
2
= y�y�ð Þ2 + 2 y�y�ð Þy�

results in Vαðs; xÞ�Vα� ðs; xÞ=I1 + I2, where

I1=
1
2
E qT Xα

T�X�
T

� �2 + ðT
s

qt Xα
t �X�

t

� �2 + e�λt uαt�u�t
� �2� �

dt
� 	

≥0;

I2=E qT Xα
T�X�

T

� �
X�

T�AT
� �

+
ðT
s

qt Xα
t �X�

t

� �
X�

t�At
� ��pt uαt�u�t

� �� �
dt

24 35;
in which we have used u�t=�pteλt. Considering that Xα

t and X�
t solve equation (2.3), we can obtain

d Xα
t �X�

t

� �
= δt Xα

t �X�
t

� �
+ uαt�u�t
� �� �

dt: (3.17)

Substituting uαt�u�t of (3.17) into I2 yields

I2=E qT Xα
T�X�

T

� �
X�

T�AT
� �

+
ðT
s

qt Xα
t �X�

t

� �
X�

t�At
� �

+ δtpt Xα
t �X�

t

� �� �
dt�

ðT
s
ptd Xα

t �X�
t

� �� 	
:

In view of (3.14), pt satisfies

dpt= �δtpt�qt X�
t�At

� �� �
dt�ηt d

XNt

i=1

Yi�βμ1dt

 !
+ σγtdBt:

Then, I2 evolves as

I2=E qT Xα
T�X�

T

� �
X�

T�AT
� ��ðT

s
ptd Xα

t �X�
t

� ��ðT
s

Xα
t �X�

t

� �
dpt

�

�
ðT
s

Xα
t �X�

t

� �
ηt d

XNt

i=1

Yi�βμ1dt

 !
+
ðT
s
σ Xα

t �X�
t

� �
γtdBt�:

Since (3.15) and (3.16) implies

�
ðr
s
Xα

t �X�
t

� �
ηt d

XNt

i=1

Yi�βμ1dt

 !
+
ðr
s
σ Xα

t �X�
t

� �
γtdBt

is a martingale, I2 becomes

I2=E qT Xα
T�X�

T

� �
X�

T�AT
� ��ðT

s
ptd Xα

t �X�
t

� ��ðT
s

Xα
t �X�

t

� �
dpt

� 	
:

Applying the Itô formula to Xα
t �X�

t

� �
pt results in

d Xα
t �X�

t

� �
pt=pt�d Xα

t �X�
t

� �
+ Xα

t��X�
t�

� �
dpt + d Xα�X�

; p
D E

t
:
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An analysis similar to that in Theorem 3.1 shows that the first term does not change if t−
is replaced by t. Simultaneously, that Xα

t �X�
t is a continuous finite variation process implies

that t − in the second term can also be replaced by t and that the last term is equal to zero. Thus,
we have

I2=E qT Xα
T�X�

T

� �
X�

T�AT
� ��ðT

s
dpt Xα

t �X�
t

� �� 	
=0;

where the second equality follows from the boundary condition pT=qT X�
T�AT

� �
. We therefore

conclude that Vαðs; xÞ≥Vα� ðs; xÞ for α∈Π, which proves that α* is optimal.

We now give the solution of equation (3.14), which provides the optimal control and coincides with
the result obtained in the above subsection.

Theorem 3.4. The solution of equation (3.14) has the form

pt=πðtÞX�
t + gðtÞ�qTAT ;

ηt=πðtÞ; γt=πðtÞ; t 2 ½s;T�;

(
(3.18)

where the deterministic functions π(t) and g(t) are the solutions of the ordinary differential equation
(3.6).

Proof. Assume that qT, AT are deterministic. Then,

dpt=π0ðtÞX�
t dt + πðtÞdX�

t + g
0ðtÞdt: (3.19)

Substituting (3.18) into (3.14), we have

dpt= �δt πðtÞX�
t + gðtÞ�qTAT

� ��qt X�
t�At

� �� �
dt�ηt d

XNt

i=1

Yi�βμ1dt

 !
+ σγtdBt; (3.20)

and

dX�
t= δtX�

t + c�eλt πðtÞX�
t + gðtÞ�qTAT

� �� �
dt�d

XNt

i=1

Yi + σdBt:

Then, (3.19) becomes

dpt=π0ðtÞX�
t dt + πðtÞ δtX�

t + c
� �

dt�πðtÞeλt πðtÞX�
t + gðtÞ�qTAT

� �
dt

�πðtÞd
XNt

i=1

Yi + σπðtÞdBt + g0ðtÞdt: ð3:21Þ

Thus, by comparing the coefficient of X�
t dt in (3.20) and (3.21), we have

π0ðtÞ�π2ðtÞeλt + 2δtπðtÞ + qt=0:
Taking the coefficients of

PNt
i=1Yi and dBt yields

ηt=πðtÞ; γt=πðtÞ:
From the terms with dt, we have

g0ðtÞ + gðtÞ δt�πðtÞeλt� �
+ qTATeλt + c�βμ1
� �

πðtÞ�δtqTAT�qtAt=0:
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The condition pT=qT X�
T�AT

� �
implies that we have the following final conditions:

πðTÞ=qT ;

gðTÞ=0:

The proof is complete.

We now calculate the optimal value function V(s, x), that is, the corresponding objective function to
the optimal control u�t . First, by definition, we have

2Vðs; xÞ=E
ðT
s

qtðX�
t�AtÞ2 + e�λtu�

2

t

� �
dt + qT X�

T�AT
� �2� 	

: (3.22)

Substituting pT=qT X�
T�AT

� �
into the last term and applying the Itô formula to the resulting term

yield

pT X�
T�AT

� �
=ps x�Asð Þ +

ðT
s
pt�d X�

t�At
� �

+
ðT
s

X�
t��At

� �
dpt +

ðT
s
d p;X��Ah it;

=ps x�Asð Þ +
ðT
s
pt�dX�

t +
ðT
s
X�

t�dpt�pTAT + psAs +
ðT
s

βμ2πðtÞ + σ2πðtÞ
� �

dt:

Then, we denote EpT X�
T�AT

� �
=J1 + J2, where

J1=psx�pTAT +
ðT
s

βμ2πðtÞ + σ2πðtÞ
� �

dt

= πðsÞx + gðsÞ�qTATð Þx�pTAT +
ðT
s

βμ2πðtÞ + σ2πðtÞ
� �

dt;

and

J2=E
ðT
s
pt�dX�

t +
ðT
s
X�

t�dpt

� 	
:

Plugging (3.14) into the right-hand side of the above equality and using the martingale property
result in

J2=E
ðT
s

pt� δtX�
t + c�eλtpt�βμ1

� ��X�
t�δtpt�X�

t�qt X�
t�At

� �� �
dt

� 	
:

Note that J2 does not change if t− is replaced by t. Thus, we have

J2=E
ðT
s

pt δtX�
t + c�eλtpt�βμ1

� ��X�
t δtpt�X�

t qt X�
t�At

� �� �
dt

� 	
:

Rearranging yields

J2=E
ðT
s

pt c�βμ1ð Þ�Atqt X�
t�At

� �� �
dt�

ðT
s

qt X�
t�At

� �2 + eλtp2t� �
dt

� 	
:

Optimal insurance control for insurers with jump-diffusion risk processes

207

https://doi.org/10.1017/S1748499518000192 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000192


In addition, Theorem 3.3 shows that e2λtp2t =u
�2
t . Thus, all the above reasoning yields

2Vðs; xÞ= πðsÞx + gðsÞ�qTATð Þx +
ðT
s

βπðtÞμ2 + σ2πðtÞ
� �

dt

+E
ðT
s

pt c�βμ1ð Þ�Atqt X�
t�At

� �� �
dt�pTAT

� 	

= πðsÞx + gðsÞ�qTATð Þx +
ðT
s

βπðtÞμ2 + σ2πðtÞ
� �

dt

+E
ðT
s

πðtÞX�
t + gðtÞ�qTAT

� �
c�βμ1ð Þ�Atqt X�

t�At
� �� �

dt�pTAT

� 	
: ð3:23Þ

In the following, we use properties of the function g(x) to cancel the stochastic term of (3.23). First,
the boundary condition g(T)=0 yields gðTÞðX�

T�ATÞ=0. On the other hand, applying the Itô for-
mula to it results in

gðTÞ X�
T�AT

� �
=gðsÞ x�Asð Þ +

ðT
s
gðt�Þd X�

t�At
� �

+
ðT
s

X�
t��At

� �
dgðtÞ

=gðsÞx +
ðT
s
gðt�ÞdX�

t +
ðT
s
g0ðtÞX�

t�dt: ð3:24Þ

Replacing dX�
t by the first equality in (3.14) and g’(t) by the second equality in (3.6) yields

EgðTÞ X�
T�AT

� �
=gðsÞx +E

ðT
s
gðt�Þ δtX�

t� + c�eλtpt�βμ1
� �

dt
�

+
ðT
s

�X�
t�gðtÞðδt�πðtÞeλt� ��X�

t� qTATeλt + c�βμ1
� �

πðtÞ

+X�
t�δtqTAT +X�

t�qtAtÞdt
�
: ð3:25Þ

Replacing t − by t and adding (3.25) to (3.23) result in

2Vðs; xÞ=πðsÞx2 + 2ðgðsÞ�qTATÞx

+E
ðT
s

2 c�βμ1ð Þ gðtÞ�qTATð Þ + βπðtÞμ2 + qtA2
t + σ

2πðtÞ� �
dt�pTAT + qTATx

�

+
ðT
s

�gðtÞeλtpt + gðtÞeλt�qTAT
� �

eλt
�
πðtÞX�

t +X
�
t δtqTAT

� �
dt
�
:

Replacing πðtÞX�
t by (3.18) to the right-hand side and rearranging yields

2Vðs; xÞ=πðsÞx2 + 2ðgðsÞ�qTATÞx

�
ðT
s

gðtÞ�qTATð Þ2eλt�2 c�βμ1ð Þ gðtÞ�qTATð Þ�βπðtÞμ2�qtA2
t �σ2πðtÞ

� �
dt + J3;

where

J3=�E qTðX�
T�ATÞAT


 �
+ qTATx + qTATE

ðT
s

c�βμ1ð Þ�eλtpt +X�
t δt

� �
dt

� 	
:
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In view of the first equality of (3.14), we have

J3=�E qT X�
T�AT

� �
AT


 �
+ qTATx + qTATE

ðT
s
dX�

t

� 	
=qTA2

T :

So

2Vðs; xÞ=πðsÞx2 + 2ðgðsÞ�qTATÞx

�
ðT
s

gðtÞ�qTATð Þ2eλt�2 c�βμ1ð Þ gðtÞ�qTATð Þ�βπðtÞμ2�qtA2
t �σ2πðtÞ

h i
dt + qTA2

T ;

which coincides with (3.5), (3.7) with the boundary condition (3.8).

3.3. The maximum principle

This subsection employs the maximum principle to solve the problem. According to Framstad et al.
(2004), the Hamiltonian H:[0, T]×R4×R→R for the above problem becomes

Hðt; x; u; p;Q; rÞ=� 1
2
e�λtu2� 1

2
qt x�Atð Þ2 + δtx + u + cð Þp + σQ

+
ð
R

�zrðt; zÞ�zp + xrðt; zÞð ÞβFðdzÞ; ð3:26Þ

where ℛ is the set of functions r:R2→R such that the integral in (3.26) converges. The adjoint
equation (corresponding to the pair (X, u)) in the unknown adapted process p(t)∈R, Q(t)∈R and r
(t, z)∈R is the backward stochastic differential equation (BSDE)

dpðtÞ=� ∂H
∂x

H t;XðtÞ; uðtÞ; pðtÞ;QðtÞ; rðt; �Þð Þdt +QðtÞdBðtÞ +
ð
R

r t�; zð ÞNðdt; dzÞ

=� δtpt�qt Xt�Atð Þð Þdt +QðtÞdBt +
ð
R

r t�; zð ÞNðdt; dzÞ�
ð
R

rðt; zÞβFðdzÞdt; ð3:27Þ

with terminal condition

pðTÞ=�qTðx�ATÞ; (3.28)

where N(t, z) is a Poisson random measures with Lévy measures βF(dz).

By Framstad et al. (2004, Theorem 2.1), (X*, u*) is an optimal pair if it satisfies

H t;X�
t ; u

�
t ; pðtÞ;QðtÞ; rðt; �Þ� �

=max
u2R

H t;X�
t ; u; pðtÞ;QðtÞ; rðt; �Þ� �

for all t∈ [s, T] and that

bHðxÞ : =max
u2R

H t; x; u; pðtÞ;QðtÞ; rðt; �Þð Þ (3.29)

exists and is a concave function of x for all t∈ [s, T], where (p(t), Q(t), r(t, z)) is a solution of
the corresponding (X*, u*) to adjoint equation (3.27). We take γ(t, z)= ηtz and Q(t)= − σγt; then,
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(3.27)-(3.28) become

dpt= �δtpt + qt X�
t�At

� �� �
dt + ηt d

PNt
i=1 Yi�βμ1dt

� �
�σγtdBt;

pT=�qT XT�ATð Þ:

8<: (3.30)

All the above statements yield that the optimal control u�t is

u�t=pte
λt; (3.31)

in which pt is the solution of the following equation:

dX�
t= δtX�

t + c + e
λtpt

� �
dt�d

PNt
i=1 Yi + σdBt;

dpt= �δtpt + qtðX�
t�AtÞ

� �
dt + ηt d

PNt
i=1 Yi�βμ1dt

� �
�σγtdBt;

X�
s=x;

pT=�qT XT�ATð Þ:

8>>>>>><>>>>>>:
(3.32)

Note that the optimal control given by (3.31)–(3.32) is equal to that given by Theorem 3.3. Thus,
Theorem 3.3 is again proven. The solution of equation (3.32) has been given by Theorem 3.4.

We now seek the expression of the optimal value function V not by definition and the HJB equation
but by the relations between the maximum principle and dynamic programming in the jump-
diffusion case. By Framstad et al. (2004, equation 24a), we know that

pðtÞ= ∂V
∂x

t; X�
t

� �
: (3.33)

In our case, this implies that

Vðt; xÞ=1
2
πðtÞx2 + gðtÞ�qTATð Þx + f ðtÞ; (3.34)

where f(t) is a suitable function. To determine f(t), we give the following Lemma; it also complements
the results given by Framstad et al. (2004).

Lemma 3.1 Let (X*, u*) be an optimal pair. Suppose that the optimal value function V∈C1,2. Then,

Vt t;X�
t

� �
=G t;X�

t ; u
�
t ;�Vx t;X�

t

� �
;�Vxx t;X�

t

� �� �
=max

u2R
G t;X�

t ; u;�Vx t;X�
t

� �
;�Vxx t;X�

t

� �� �
;

a:e:t 2 ½s;T�;P�a:s: ð3:35Þ

where G is defined by

Gðt; x; u; p;PÞ : = δtx + c + uð Þp + 1
2
σ2P�βEVðt; x�YÞ + βVðt; xÞ

� 1
2
qtðx�AtÞ2� 1

2
e�λtu2: ð3:36Þ
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Proof. The previous analysis shows that the optimal control is

u�t=�ðπðtÞX�
t + gðtÞ�qTATÞe�λt (3.37)

It shows that the optimal control is Markovian, i.e., it depends only on the actual surplus and not on
the history of the process. Thus, the resulting surplus process X�

t still has the Markov property.
Therefore, we have

V t;X�
t

� �
=
1
2
E
ðT
t

qr X�
r�Ar

� �2 + e�λru�
2

r

� �
dr + qT X�

T�AT
� �2 j X�

t

� 	

=
1
2
E
ðT
t

qr X�
r�Ar

� �2 + e�λru�
2

r

� �
dr + qT X�

T�AT
� �2 j Fs

t

� 	
8t 2 ½s;T�; P�a:s: ð3:38Þ

Inspired by Yong & Zhou (1999, P251), we define

mt : =
1
2
E
ðT
s

qr X�
r�Ar

� �2 + e�λru�
2

r

� �
dr + qT X�

T�AT
� �2 j Fs

t

� 	
: (3.39)

Clearly, m(·) is Fs
t -adapted square-integrable martingale. Thus, by the martingale representation

theorem (see Tang & Li (1994), Lemma 2.3), we have

mt=ms +
ðt
s
MrdBr +

ð
R

ðt
s
Hðr; zÞNðdrdzÞ�

ð
R

ðt
s
Hðr; zÞβFðdzÞdr

=Vðs; xÞ +
ðt
s
MrdBr +

ð
R

ðT
s
Hðr; zÞNðdrdzÞ�

ð
R

ðT
s
Hðr; zÞβFðdzÞdr; ð3:40Þ

where M 2 L2
Fðs;T;RÞ and H 2 BF s; T; Rð Þ. Then, by (3.38) and (3.40),

V t;X�
t

� �
=mt� 1

2

ðt
s
qr X�

r�Ar
� �2 + e�λru�

2

r

� �
dr

=Vðs; xÞ� 1
2

ðt
s
qr X�

r�Ar
� �2 + e�λru�

2

r

� �
dr

+
ðt
s
MrdBr +

ð
R

ðt
s
Hðr; zÞNðdrdzÞ�

ð
R

ðT
s
Hðr; zÞβFðdzÞdr: ð3:41Þ

On the other hand, applying the Itô formula to V t;X�
t

� �
yields

dV t;X�
t

� �
= Vt t;X�

t

� �
+ δtX�

t + c + u
�
t

� �
Vx t;X�

t

� �
+
1
2
σ2Vxx t;X�

t

� �� �
dt

+ σVx t;X�
t

� �
dBt + d

XNt

i=1

V Ti;X�
Ti

� �
�V Ti;X�

Ti�
� �

: ð3:42Þ
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Comparing (3.41) with (3.42) results in

Vt t;X�
t

� �
+ δtX�

t + c + u
�
t

� �
Vx t;X�

t

� �
+ 1

2 σ
2Vxx t;X�

t

� �
+ β
Ð
R V t;X�

t��z
� ��V t;X�

t�
� �� �

GðdzÞdt

=� qt X�
t�At

� �2 + e�λtu�
2

t

� �
σVx t;X�

t

� �
=Mt

Hðt; zÞ=V t;Xt��zð Þ�V t;X�
t�

� �

8>>>>>>>>><>>>>>>>>>:
(3.43)

This proves the first equality in (3.35). Since V∈C1,2, it satisfies the HJB equation (3.1), which
implies the second equality in (3.35).

Combining (3.34) and, (3.37) with the first equality of (3.35), we obtain (3.5) with f(t) given by (3.7)-
(3.8) again.
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