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THE WELFARE COST OF EXCESS
VOLATILITY IN INCOMPLETE
MARKETS WITH SUNSPOTS

MINWOOK KANG
Nanyang Technological University

In an incomplete markets economy with sunspots, the Pareto-criterion cannot rank sunspot
equilibria of different levels of excess price-level volatility. Therefore, I propose a measure
of excess volatility cost in terms of a period-0 endowment good. Ex-ante endowment
subsidies are provided, in theory, to each consumer, so that the resulting equilibrium
allocation of the higher volatility is Pareto-equivalent to the original benchmark
equilibrium with a lower volatility level. The aggregate volatility cost is computed as the
sum of all consumers’ subsidies. Focusing on local analysis that considers small
variations around a given volatility level, I show that the aggregate cost strictly increases
in volatility even though each individual cost does not necessarily have this property.
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1. INTRODUCTION

I introduce a measure of price-level volatility cost in terms of consumption goods
in an incomplete markets economy with sunspots. The cost is, in theory, the endow-
ment compensations that induce the equilibrium with high price-level volatility
to be Pareto-equivalent to a benchmark equilibrium with low volatility.1 The
compensation is ex-ante in the sense that it affects the equilibrium prices and
allocations. It is well known that some consumers can be better off with increased
excess volatility. However, this paper shows that the proposed measure of the
cost strictly increases with higher price volatility. The idea of using the unit of
consumption good to measure volatility cost has been originated from the business
cycle literature with a representative agent. The new contribution of this paper is
applying the same exercise in the incomplete markets where there is heterogeneity.
These findings also provide a justification for sunspot-stabilizing policies, which
are commonly introduced in the literature.2 From the main result of this paper,
we conclude that stabilizing policies can minimize the volatility cost, even though
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they do not necessarily Pareto-improve the economy. The main content of this
paper focuses on the local analysis in which an infinitesimal variation in price
volatility is considered in order to avoid the singularity issue.

Market incompleteness with sunspots provides theoretical explanations for ex-
cess price-level volatility, which were shown initially by Cass (1989, 1992).3

Excess volatility has a negative impact on the welfare of risk-averse consumers
in a partial equilibrium model. However, in a general equilibrium model, it was
shown that some consumers are better off under sunspots.4 The excess volatil-
ity from sunspots affects the equilibrium asset prices, and the change in asset
prices can benefit some consumers. In the case where the beneficial asset price
effect dominates the negative excess-volatility effect, the consumer can be better
off with sunspots. The main question in this paper is whether increased excess
volatility is harmful to the economy as a whole. Because it is known that excess
price volatility can benefit some consumers, we need a new measurement to
encompass the total impact of the volatility on the entire economy. The measure-
ment is the endowment transfer that induces the equilibrium allocation of higher
price volatility to be Pareto-equivalent to the benchmark equilibrium with lower
volatility.

This paper compares equilibria with different levels of excess volatility but
with the same economic fundamentals. In the comparison between the bench-
mark equilibrium with lower volatility and the other equilibrium under higher
volatility, we first compute each consumer’s utility level with the lower-volatility
equilibrium. We assume that an ex-ante tax-subsidy (transfer) implemented in
period 0 can be applied to the equilibrium with higher price volatility. The transfer
is ex-ante in the sense that it affects the equilibrium asset price, i.e., the value
of money. Along the continuum of equilibria in an economy with tax-subsidy
plans, we focus on an equilibrium with the higher price volatility. We compute the
amount of subsidies applied to each consumer that would result in the same utility
levels as the benchmark equilibrium with a lower volatility. The aggregate cost of
increased price-volatility is measured as the sum of all consumers’ subsidies. Each
individual’s subsidy can be negative or positive, but we show that the aggregate
subsidy strictly increases with higher price-level volatility.5

The measure of welfare losses from excess volatility in this paper is similar
to that in Lucas (1987, 2003) where the volatility cost is measured in terms of
consumption goods. This paper applies the measuring exercise in an incomplete
financial market economy where there are heterogeneous consumers. With this
heterogeneity, welfare by increased or decreased volatility is not ranked by a
Paretian criterion due to the general equilibrium effect. However, in the typical
macroeconomic model with a representative agent, there is no general equilibrium
effect so the welfare can simply be ranked by the magnitude of intrinsic shocks
such as total factor productivity shocks. This paper shows that even though there
are heterogeneous general equilibrium effects in an incomplete markets economy,
the aggregation of such effects is equal to zero by the market clearing condition
so the aggregate welfare can be ranked by excess volatility.
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The proposed measure of welfare cost in terms of the consumption good might
facilitate the quantification of the welfare loss from excess volatility. Previous
sunspot literature has focused mainly on the proof of nonoptimality of sunspot
equilibria, but this paper tries to quantify the extent to which sunspot-driven
volatility affects welfare. The main methodologies introduced in this paper could
be used to quantify the sunspot effect across various sunspot applications, such as
business cycles and bank runs.6

This paper is organized as follows. In Section 2, I introduce the general setting
of the model. Section 3 presents the measure of price-level volatility. Section 4
conducts the local analysis, which shows how the equilibrium is parameterized
by the tax-subsidy plan and price-level volatility. The main result of this paper is
presented in Section 5. Finally, concluding remarks are presented in Section 6.

2. THE MODEL

There are two periods labeled by the superscripts t = 0, 1. In period 1, there are
two sunspots states, θ = α, β, which have positive probabilities 0 < μα < 1
and μβ = 1 − μα . There are H consumers, labeled by the subscripts h ∈ H =
{1, 2, . . . , H }. Consumer h’s consumption allocation is xh = (x0

h, x
α
h , x

β
h ) ∈ R3

++,
which corresponds to price p = (p0, pα, pβ) ∈ R3

++, where p0 = 1. Consumer
h’s endowment is eh = (e0

h, e
1
h) ∈ R2

++. Consumer h’s preference is

uh(xh) = μαvh

(
x0

h, x
α
h

)+ μβvh

(
x0

h, x
β
h

)
,

where the subutility function vh (·) is strictly increasing, strictly concave, twice-
continuously differentiable, and satisfies the von Neumann–Morgenstern expected
utility hypothesis. We assume that the closure of indifference curves are contained
in R2

++.7 We also assume that the initial endowment is not Pareto-optimal (i.e.,
there is an incentive for at least two of the consumers to trade).

In a monetary market, mh denotes consumer h’s money holdings. In the mone-
tary equilibrium, there are some positive spot prices p � 0 and associated money
holdings {mh}Hh=1 such that each household chooses (xh,mh) in the optimization
problem:

max uh(xh)

subject to

⎧⎨⎩
p0x0

h + mh ≤ p0e0
h

pαxα
h ≤ pαe1

h + mh

pβx
β
h ≤ pβe1

h + mh

(1)

and xh ∈ R3
++,

and the market-clearing conditions are∑
h∈H

x0
h =

∑
h∈H

e0
h,
∑

h∈H
xα

h =
∑

h∈H
x

β
h =

∑
h∈H

e1
h
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and ∑
h∈H

mh = 0.

3. THE EQUILIBRIUM

Cass (1989, 1992) and Siconolfi (1991) have shown that in a general model of
sunspots with incomplete markets, the set of equilibrium allocations takes on
a continuum. The economy has two states at period 1, but one financial asset.
Therefore, the equilibrium set has one degree of indeterminacy. We define a
relative price for price-level between two states. The relative price is defined as

P = pβ/pα. (2)

Assuming that P ≥ 1, there is a one-to-one relationship between the relative
standard deviation σ of the price level and P 8:

σ =
√

μαμβ

μα + μβP
(P − 1) ≥ 0. (3)

Then, the continuum of equilibria can be parameterized by the measure of
volatility σ, where 0 ≤ σ <

√
μα/μβ . The equilibrium with σ = 0 is a nonsunspot

equilibrium, but the equilibrium with σ > 0 is a sunspot equilibrium
In Section 2, the monetary market is defined with nominal assets (money). Here,

we consider an economy with real assets, which results in the same equilibrium
allocations as those of the monetary market for a given volatility level σ . The real
returns of money, denoted as

(
rα, rβ

)
, have an inverse relationship with price

levels (i.e., rα/rβ = pβ/pα). With the real return of
(
rα, rβ

)
, we can define the

real asset economy, where consumer h’s asset holding is bh and the price of the
asset is q. If bh units of the asset are held at the end of the first period, bhr

s units of
consumption good would be delivered in the second period. The economy with the
real asset (bh) results in the same equilibrium allocations as those of the original
monetary economy with mh.

For convenience of computation, we fix the expected value of the real return as
1 (i.e., μαrα + μβrβ = 1). Then, rα and rβ can be parameterized by σ :

rα =
√

μαμβ + σμα√
μαμβ + σ

(
μα − μβ

) (4)

and

rβ =
√

μαμβ − σμβ√
μαμβ + σ

(
μα − μβ

) . (5)

We restrict that the volatility level σ should be smaller than
√

μα/μβ , which
guarantees that the asset return in state β (rβ) is positive. The return in state α (rα)
is positive for any value of σ because we assume that pβ ≥ pα [see equation (2)].
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Solving the budget constraint in bh, we can re-write the maximization problem
in (1) as follows:

max
bh

∑
θ=α,β

μsvh

(
e0
h − qbh, e

1
h + rsbh

)
. (6)

We compare the equilibria that have different levels of excess volatility in a
given economy. The benchmark equilibrium has a lower equilibrium price-level
volatility, σ . We denote the equilibrium utility levels of all consumers at given
σ as U(σ) = (u1, u2, . . . , uh). It is known that the equilibrium allocations with
the volatility level σ ′ are not necessarily Pareto-inferior to those with σ . For
many examples, we do not have the following condition: U(σ) � U(σ ′), where
σ < σ ′.9 We consider ex-ante endowment subsidies that are provided, in theory,
to each consumer. The subsidy-adjusted endowment of the economy is given as
(e0

h + sh, e
1
h, e

1
h)

H
h=1 instead of (e0

h, e
1
h, e

1
h)

H
h=1, where sh is the subsidy provided

to consumer h in period 0. The subsidy is ex-ante in the sense that it affects
equilibrium prices and allocations. Let us denote the equilibrium utilities with
subsidies as U

(
σ, {sh}Hh=1

)
. The welfare cost of increased volatility from the

volatility level σ to σ ′ is defined as ∑
h∈H

sh, (7)

where
U
(
σ, 0H

) = U
(
σ ′, {sh}Hh=1

)
. (8)

0H in U
(
σ, 0H

)
means that there is no tax-subsidy plan implemented at the

equilibrium with the lower volatility level σ . However, the tax-subsidy plan {sh}Hh=1
is applied to the equilibrium at higher volatility level σ ′.

This paper first shows that (a) for given σ and σ ′, there exists a tax-subsidy
plan {sh}Hh=1 that induces the resulting equilibrium with volatility level σ ′ to be
Pareto-equivalent to the original equilibrium with volatility level σ and (b) the
defined aggregate cost

∑
h∈H sh is strictly increasing in volatility σ . In this paper,

we focus mainly on the local analysis that considers the infinitesimal change in
price volatility, i.e.,

(
σ ′ − σ

) → 0 to avoid a singular equilibrium that possibly
exists between the two volatility levels σ and σ ′.

4. THE LOCAL ANALYSIS

This section introduces how the welfare can be parameterized by both tax-subsidy
plans and changes in price volatility. It is assumed that tax-subsidy plans from
outside the economy can be implemented in period 0. The tax-subsidy plan is
perfectly anticipated so that it affects equilibrium prices and allocations. The
subsidy-adjusted endowment is given by

(e0
h + sh, e

1
h, e

1
h)

H
h=1. (9)
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In equation (9), sh would be negative if consumer h becomes better off with
sunspots. However, in the local analysis that considers an infinitesimal change in
the volatility level σ , the change in sh is also small. Therefore, with the assumption
that e0

h > 0, e0
h + sh would remain positive.

Consumer h’s problem is to choose bh ∈ R to maximize the following expected
utility:

max
bh

∑
θ=α,β

μsvh

(
e0
h + sh − qbh, e

1
h + rsbh

)
. (10)

The objective function in (10) is strictly concave in bh, and the optimal choice
is characterized by a solution to the first-order condition:

−q
∑

θ=α,β

μs ∂

∂x0
vh

(
e0
h + sh − qbh, e

1
h + rsbh

)
+

∑
θ=α,β

μsrs ∂

∂x1
vh

(
e0
h + sh − qbh, e

1
h + rsbh

) = 0, (11)

where ∂
∂x0 vh and ∂

∂x1 vh are derivatives with respect to the first-period consumption
and the second-period consumption, respectively. Because vh is strictly concave,
the solution exists and is unique for any q ∈ R++. The unique solution depends
on the volatility σ , the subsidy s, and the price of the real asset q. Let bh(σ, s, q)

be the unique solution to equation (11). Let

b(σ, s, q) =
∑
h∈H

bh(σ, s, q) (12)

be the market excess demand function for the asset, which is twice continuously
differentiable. The equilibrium equation can be expressed as

b(σ, s, q) = 0. (13)

It is known that, generically in endowments, there are finitely many (or unique)
equilibria for any given real returns (rα, rβ) [see Cass (1989)]. Because (rα, rβ)

has a one-to-one relationship with σ and the subsidy-adjusted endowment can be
characterized by the subsidy plan (s), the C2 function q̂ can be defined locally
around a regular point (σ , s). This paper assumes that the function q̂ is well defined
around (σ , s), which means that the endowments are chosen in such a way that
a finite number of sunspot equilibria exist for a given σ . We state the regularity
assumption below.

Regularity assumption: For a given (σ, s) = (σ , s), q is the equilibrium price
of the real asset such that b(σ , s, q) = 0. We assume that the equilibrium equation
of the price effect is nonsingular, i.e., ∂b(σ , s, q)/∂q �= 0.

By the regularity assumption, we can solve for q as a smooth function of (σ, s)

locally around a regular point, (σ , s), so there is a C2 function q̂ (σ, s) defined on
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a neighborhood � ⊂ R+ × RH around (σ , s) such that

b(σ, s, q̂ (σ, s)) = 0. (14)

Then, we can define b̂h and ûh from equation (14) by the following rule:

b̂h (σ, s) := bh (σ, s, q̂ (σ, s)), (15)

ûh(σ, s) :=
∑

θ=α,β

μsvh

(
e0
h + sh − q̂(σ, s)̂bh (σ, s) , e1

h + rs (σ ) b̂h (σ, s)
)
. (16)

The next step is to introduce a smooth function S(σ) = [Sh(σ )]Hh=1, which
maps points around σ to transfers around s ∈ RH . If (σ , s) is a regular point,
the composition functions q̂(σ, S(σ )), b̂h (σ, S(σ )), and ûh(σ, S(σ )) are smooth
around σ for any smooth function S(σ) satisfying S(σ) = 0.

ûh(σ, S(σ )) is the corresponding utility level in equilibrium given σ and S(σ),

whereas ûh(σ, 0H ) represents the utility levels associated with volatility level σ

without any tax-subsidy plans.
Differentiating ûh(σ, S(σ )) with respect to σ , we have

∂ûh(σ, S(σ ))

∂σ
=
(

S ′
h(σ ) − ∂q̂ (σ, S(σ ))

∂σ
b̂h (σ, S(σ ))

) ∑
θ=α,β

μs
∂vh

(̂
x0

h, x̂
s
h

)
∂x0

+
∑

θ=α,β

μs
∂vh

(̂
x0

h, x̂
s
h

)
∂x1

(
∂rs (σ )

∂σ
b̂h (σ, S(σ ))

)
(17)

+ ∂b̂h (σ, S(σ ))

∂σ

∑
θ=α,β

(
μs

∂vh

(̂
x0

h, x̂
s
h

)
∂x1

rs (σ ) − μs
∂vh

(̂
x0

h, x̂
s
h

)
∂x0

q̂ (σ, S(σ ))

)
,

where S ′(σ ) = ∂S(σ )/∂σ , x̂0
h := e0

h + Sh(σ ) − q̂ (σ, S(σ )) b̂h (σ, S(σ )) and x̂s
h :=

e1
h + rs(σ )̂bh (σ, S(σ )).

By the first-order condition from equation (11), we can define λh (σ, S(σ )) as

λh (σ, S(σ )) =
∑

θ=α,β

μs
∂vh

(̂
x0

h, x̂
s
h

)
∂x0

= 1

q̂ (σ, S(σ ))

∑
θ=α,β

μsrs (σ )
∂vh

(̂
x0

h, x̂
s
h

)
∂x1

, (18)

which is strictly positive.
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With equation (18), we can simplify equation (17) as

1

λh (σ, S(σ ))

∂ûh(σ, S(σ ))

∂σ
= b̂h (σ, S(σ ))

λh (σ, S(σ ))

∑
θ=α,β

μs ∂rs

∂σ

∂vh

(̂
x0

h, x̂
s
h

)
∂x1︸ ︷︷ ︸

Risk effect

(19)

−∂q̂ (σ, S(σ ))

∂σ
b̂h (σ, S(σ ))︸ ︷︷ ︸

General equilibrium effect

+ S ′
h (σ )︸ ︷︷ ︸

Tax-subsidy effect

.

Equation (19) can be decomposed into the risk effect, the general equilibrium ef-
fect, and the tax-subsidy effect. The risk effect can be interpreted as a pure sunspot
effect in the sense that the term is not affected directly by the change in the asset
price. The general equilibrium effect is from the changes in the equilibrium asset
price, ∂q̂ (σ, S(σ )) /∂σ . Both risk and general equilibrium effects are affected by
the tax-subsidy plan S(σ), but this paper will show that for any smooth function
S(σ), (a) the risk effect for any consumer h ∈ H is strictly negative and (b) the
aggregate general equilibrium effect

∑
h∈H − ∂q̂(σ,S(σ ))

∂σ
b̂h (σ, S(σ )) is always zero.

The two properties are crucial in proving the main proposition in this paper. In the
following lemma, we show that the risk effect is strictly negative

LEMMA 1. The risk effect is negative, that is,

b̂h (σ, S(σ ))

λh (σ, S(σ ))

∑
θ=α,β

μs ∂rs

∂σ

∂vh

(̂
x0

h, x̂
s
h

)
∂x1

< 0. (20)

Proof. The risk effect can be expressed as

b̂h (σ, S(σ ))

λh (σ, S(σ ))

∑
θ=α,β

μs ∂rs

∂σ

∂vh

(̂
x0

h, x̂
s
h

)
∂x1

= b̂h (σ, S(σ ))

λh (σ, S(σ ))

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μα ∂vh(x̂0

h ,̂xα
h )

∂x1

μβ
√

μαμβ{√
μαμβ+σ(μα−μβ)

}2

+μβ
∂vh

(
x̂0

h ,̂x
β
h

)
∂x1

−μα
√

μαμβ{√
μαμβ+σ(μα−μβ)

}2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (21)

=
(
μαμβ

)3/2{√
μαμβ + σ

(
μα − μβ

)}2

b̂h (σ, S(σ ))

λh (σ, S(σ ))

⎛⎝∂vh

(̂
x0

h, x̂
α
h

)
∂x1

−
∂vh

(
x̂0

h, x̂
β
h

)
∂x1

⎞⎠ .

If b̂h (σ, S(σ )) > 0, we have xα
h > x

β
h . Because vh is strictly concave, we have

∂vh(x0
h,xα

h )
∂x1 <

∂vh

(
x0

h,x
β
h

)
∂x1 . Therefore, the risk effect (21) is negative. If b̂h (σ, S(σ )) <
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0, we have xα
h < x

β
h . Because vh is strictly concave, we have

∂vh(x0
h,xα

h )
∂x1 >

∂vh

(
x0

h,x
β
h

)
∂x1 .

Therefore, the risk effect (21) is negative.

Lemma 1 indicates that on the equilibrium path from lower volatility to higher
volatility, the risk effect is always negative. However, the general equilibrium effect
can be negative or positive. If the positive general equilibrium effect outweighs
the negative risk effect, consumer’s utility would increase during increased price
volatility.

5. THE COST OF INCREASED VOLATILITY

In Section 4, we showed that the equilibrium utility level can be parameterized by
the volatility level σ and the tax-subsidy plan {sh}Hh=1. Even though both σ and
{sh}Hh=1 affect equilibrium prices and allocations, we have shown that the risk effect
of increased price volatility is always negative. In this section, we will show that
the sum for all consumers’ the general equilibrium effects of increased volatility
is always zero for any given tax-subsidy plan {sh}Hh=1. The general equilibrium
effect is due to the change in asset price (i.e., the changes in the expected return
of money). When the asset price increases (decreases) with an increased volatility
level, lenders (borrowers) could be better off through the asset trading. However,
because the net supply of the asset is zero, the total gain or loss to the economy
from the change in asset price is necessarily zero. Therefore, the aggregate cost
of price-volatility is determined solely by the risk effects, not by the general
equilibrium effects, even though the individual cost is determined by both, which
will be shown in the following proposition.

PROPOSITION 1. For a nonsingular equilibrium with σ , there exists a smooth
function [Sh(σ )]Hh=1 such that

Sh(σ ) = 0 and
∂ûh (σ, S(σ ))

∂σ
|σ=σ = 0 for all h ∈ H,

and the smooth function [Sh(σ )]Hh=1 satisfies the following:

∑
h∈H

∂Sh(σ )

∂σ
> 0, where σ = σ .

Proof. From equation (19), we have

∂ûh(σ, σ (σ ))

∂σ
= b̂h (σ, S(σ ))

∑
θ=α,β

μs ∂rs

∂σ

∂vh

(̂
x0

h, x̂
s
h

)
∂x1

(22)

+ λh (σ, S(σ ))

{
S ′

h(σ ) − ∂q̂ (σ, S(σ ))

∂σ
b̂h (σ, S(σ ))

}
.
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From equation (22), the equality ∂ûh(σ,S(σ ))
∂σ

|σ=σ = 0 implies that

S ′
h(σ ) = ∂q̂ (σ, S(σ ))

∂σ
b̂h (σ, S(σ ))︸ ︷︷ ︸

The general equilibrium effect

(23)

− b̂h (σ, S(σ ))

λh (σ, S(σ ))

∑
θ=α,β

μs ∂rs

∂σ

∂vh

(̂
x0

h, x̂
s
h

)
∂x1︸ ︷︷ ︸

The risk effect

and Sh(σ ) = 0 for all h, where σ = σ .

From equation (23),
∑

i∈H S ′
i (σ ) can be expressed as∑

i∈H

S ′
i (σ ) = ∂q̂ (σ, S(σ ))

∂σ

∑
i∈H

b̂i (σ, S(σ )) (24)

−
∑
i∈H

b̂i (σ, S(σ ))

λi (σ, S(σ ))

∑
θ=α,β

μs ∂rs

∂σ

∂vi

(̂
x0

i , x̂
s
i

)
∂x1

.

By the asset market-clearing condition,
∑

h bh = 0, and equation (24), we have

∑
i∈H

S ′
i (σ ) = −

∑
i∈H

b̂i (σ, S(σ ))

λi (σ, S(σ ))

∑
θ=α,β

μs ∂rs

∂σ

∂vi

(̂
x0

i , x̂
s
i

)
∂x1

, (25)

∑
i∈H S ′

i (σ ) in (25) is strictly negative by Lemma 1.

Proposition 1 shows that corresponding to an infinitesimal increase in volatility
σ , an infinitesimal variation in the aggregate cost of volatility

∑
i∈H

∂Si(σ )
∂σ

is strictly
positive. The individual cost ∂Sh(σ )

∂σ
in equation (23) can be decomposed into the risk

effect and the general equilibrium effect. Due to the general equilibrium effect, the
individual cost is not always positive. However, the proof of Proposition 1 shows
that the sum of all consumers’ general equilibrium effects is zero and, therefore,
it is guaranteed that the aggregate cost is positive.

6. CONCLUSION

This paper proposes a measure of the cost of excess volatility in incomplete
markets with sunspots. The cost is measured as the amount of endowment subsidies
that induces the equilibrium of higher volatility to be Pareto-equivalent to the
lower-volatility equilibrium of the benchmark equilibrium. The main result of
this paper is that the individual cost is not positively correlated with price-level
volatility necessarily, but the aggregate cost is positively correlated with price-level
volatility.
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Kang (2015) also compared two equilibria with lower and higher volatility
levels in incomplete markets with sunspots. The tax-transfer plan is applied to
lower volatility levels and showed that there exist tax-transfer plans that induce
the equilibrium with lower volatility to be Pareto-superior to the equilibrium with
higher volatility. The tax-transfer plan in Kang (2015) was balanced but is not
balanced in this paper.

This paper assumed that there was no intrinsic uncertainty but the proposed
measure of volatility cost can be applied to an economy with intrinsic uncertainty.
Specifically, in an incomplete markets economy with intrinsic uncertainty and pure
inside money, the optimal equilibrium results in price-level volatility. This means
that there exists an “optimal” price volatility level in which Pareto-efficiency is
achieved. It is highly possible that the proposed cost has its lowest value at the
optimal volatility level in the economy with intrinsic uncertainty.

NOTES

1. By the same logic using Kaldor–Hicks criterion, the compensation does not actually occur and,
thus, a more efficient outcome can, in theory, leave some consumers worse off.

2. For sunspots-stabilizing policies, see Cass and Shell (1983, Proposition 3) and Balasko (1983,
Theorem 1), Mas-Colell (1992), Goenka and Préhac (2006), Antinolfi and Keister (1998), and Kajii
(1997).

3. Without the existence of extrinsic uncertainty, market incompleteness has been conjectured to
be one of the causes of excess price volatility in Shiller (1992), Constantinides and Duffie (1996),
Calvet (2001), and Citanna and Schmedders (2005).

4. See Goenka and Prechac (2006), Kajii (2007), and Kang (2015) for a sunspots model with
incomplete markets and see Bhattacharya et al. (1998) and Cozzi et al. (2016) for a sunspots model
with restricted market participation.

5. This paper focuses on the local analysis that an infinitesimal change in the volatility level is
considered. The main difficulty in extending the local result to a global result is the possibility of a
singular equilibrium along the equilibrium path defined by price-volatility levels. This problem arises
when there are multiple equilibria at some given price-volatility levels.

6. See Farmer and Guo (1994), Farmer and Woodford (1997), and Peck and Shell (2003).
7. This can be stated as limiting conditions, such that limx1→0∂vh/∂x1 = ∞,

limx2→0∂vh/∂x2 = ∞, limx1→∞∂vh/∂x1 = 0, and limx2→∞∂vh/∂x2 = 0.
8. Equivalently, we have

P =
√

μαμβ + σμα√
μαμβ − σμβ

,

where 0 ≤ σ <
√

μα/μβ .
9. See Goenka and Préhac (2006) and Kang (2015).
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