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A STATIONARY DISTRIBUTION ASSOCIATED
TO A SET OF LAWS WHOSE INITIAL STATES
ARE GROUPED INTO CLASSES.
AN APPLICATION IN GENOMICS

SERVET MARTÍNEZ,∗ Universidad de Chile

Abstract

Let � be a finite set and S be a nonempty strict subset of � which is partitioned into
classes, and let C(s) be the class containing s ∈ S. Let (Ps : s ∈ S) be a family of
distributions on �N, where each Ps applies to sequences starting with the symbol s. To
this family, we associate a class of distributions P

(π) on �N which depends on a probability
vector π . Our main results assume that, for each s ∈ S, Ps regenerates with distribution
Ps′ when it encounters s′ ∈ S \ C(s). From semiregenerative theory, we determine a
simple condition on π for P

(π) to be time stationary. We give a similar result for the
following more complex model. Once a symbol s′ ∈ S \ C(s) has been encountered,
there is a decision to be made: either a new region of type C(s′) governed by Ps′ starts
or the region continues to be a C(s) region. This decision is modeled as a random event
and its probability depends on s and s′. The aim in studying these kinds of models is to
attain a deeper statistical understanding of bacterial DNA sequences. Here � is the set
of codons and the classes (C(s) : s ∈ S) identify codons that initiate similar genomic
regions. In particular, there are two classes corresponding to the start and stop codons
which delimit coding and noncoding regions in bacterial DNA sequences. In addition,
the random decision to continue the current region or begin a new region of a different
class reflects the well-known fact that not every appearance of a start codon marks the
beginning of a new coding region.

Keywords: Markov chain; stationary distribution; regenerative process; Palm theory;
genomics
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1. Introduction

We propose a model in which sequences are segmented into different types of regions,
each initiated by a particular class of start symbols. Consecutive regions are not allowed to
be of the same type. The input to the model consists of the laws for the different types of
regions and our aim is to establish a law for the global organization of such sequences. This
problem is inspired by bacterial genomes where there are two types of regions: coding and
noncoding. Start codons mark the sites where translation into a polypeptide sequence begins
and stop codons define where the translation ends. So, stop codons define the starting points
of noncoding regions. Hence, given the distribution of these two types of regions, we propose
a law for the global organization of the genome.
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The general setting is as follows. Let � be a finite set of symbols and S ⊂ � be a strict subset
of symbols which mark the beginning of specific regions in the infinite sequences in �N. We
assume S is partitioned into equivalence classes (C(s) : s ∈ S), each class defining a different
type of region. We have as input a class of distributions (Ps : s ∈ S) on �N. We say that the law
Ps governs a region starting with s and this region is of type C(s). We associate to this class a
family of distributions P

(π) depending on a probability vector π = (πs : s ∈ S) and this family
holds candidates for modeling the global distribution on the set of sequences. The selection
of a distinguished distribution P

(π∗) will be made under the hypothesis of regeneration and by
imposing stationarity.

The main results in the general setting are given in Sections 3 and 4. In Section 3 we assume
that the laws (Ps : s ∈ S) have the following regenerative structure. If we start at s ∈ S, the
sequence of letters evolves with the distribution Ps until T 1 which is the time (or site) at which a
state s1 ∈ S \C(s) is first encountered. We assume the law restarts at T 1 with law Ps1 until time
T 2 when it first reaches s2 ∈ S \C(s1), and so on. The time stationarity of the distribution P

(π)

is studied through the chain of states {s1, s2, . . .} at times {T 1, T 2, . . .}. By using results from
regenerative processes and Palm theory, we are able to prove that P

(π) is time stationary if and
only if (πs/Es(T

1) : s ∈ S) is invariant for this chain (Theorem 3.1). In Section 4 we consider
a richer model. Here, a choice must be made at each site where a region of type C encounters a
symbol s′ �∈ C: either it starts a new region governed by Ps′ or it continues the current region
of type C. We are able to treat this model by imposing a natural regenerative structure at times
where a new region starts, and an analogous result to Theorem 3.1 can be stated.

For applications of our results to bacterial genomes, one takes the alphabet � = {A, C, G,

T}3, which consists of 64 triplets of the bases {A, C, G, T}. Each such triplet is called a codon.
The set of initial symbols is S = {ATG, GTG, TTG, TAA, TAG, TGA} which is partitioned
into two classes. The triplets {ATG, GTG, TTG} constitute the class of start codons for coding
regions while the other triplets {TAA, TAG, TGA} form the class of stop codons which mark
the end points of coding regions and which are essentially the start points of noncoding regions.

Since the distinguished distribution P
(π∗) comes up by assuming regeneration and imposing

stationarity, the need arises to argue about the validity of these properties on codon sequences.
This is done by referring to some empirical statistical analyses of annotated genome sequences
and by taking account of some of their theoretical consequences.

Regeneration. One might be tempted to think that the regenerative framework we have
imposed in Section 4 is too strong. But in a recent joint paper [10] it was shown that the
sequence of codons marking the beginnings of regions of annotated bacterial genomes is a
homogeneous Markov chain, and this is consistent with one of the main consequences of this
regenerative framework.

Stationarity. We show in Proposition 5.1 and Proposition 5.2 in Section 5 that Chargaff’s
second parity rule (CSPR) implies time stationarity of nucleotide and codon sequences and,
when this rule is only assumed to be valid for n-tuples, then time stationarity holds for (n/3−1)-
tuples of codon sequences.

So, the basis of arguing for stationarity is CSPR. CSPR is an empirical law which was first
observed experimentally in Bacillus subtilis [19] and confirmed in sufficiently long sequences
for small polymer chains in [17]; more recent studies assessing its validity can be found in [1],
[9], and [15]. We refer the reader to [8, Chapter 4] for a detailed discussion of CSPR. There,
the author [8, p. 77] states that:

The number of occurrences of each n-tuple of nucleotides in a given strand approaches
that of its complementary n-tuple in the same strand. This symmetry is true for all long
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sequences at small n (e.g. n = 1, 2, 3, 4, 5). It extends to sets of n-tuples of higher-order n

with increase in length of the sequence.

On the contrary, a number of mechanisms causing violation of CSPR in short polymers are
described in [4]. For further discussion on various mechanisms that could support the origins
of CSPR, see [20].

We are aware that our stationarity view could be somewhat surprising because there exists
ample literature devoted to DNA analysis which, from the very beginning, asserts the nonsta-
tionarity of DNA sequences. For instance, see [2], or [14, p. 121], where it is stated that, ‘The
fact that DNA and protein sequences are nonstationary is overlooked on a large body of works’
or in [21] where it is claimed that ‘Standard statistical tests have been used to verify that the
genomic sequences are indeed non stationary’. Hence, one of the aims of this work is to supply
arguments for revisiting the question of stationarity of DNA sequences also in response to the
subtle observation made in [12, p. 678], ‘the assumption of stochastic stationarity is problematic
in view of the great degree of local and global heterogeneity in nucleotide sequences’. In fact
stationarity (or some degree of stationarity) in the structure of DNA sequences is a complex
issue which requires deeper study.

Perhaps one of the things that speaks most strongly against stationarity is the existence of
two types of regions. For instance in [5, p. 200], it is stated:

In this paper, we address, in the light of non-stationary time-series analysis, the questions
of (i) the existence of long-range correlations in DNA sequences and (ii) whether they are
present in both coding and non-coding segments or only in the latter.

The analysis of this question constitutes one of the main issues of this work, the existence of
regions with different statistical behaviors does not have to contradict stationarity as is shown
in Theorem 3.1.

Some of the most relevant works in the statistical analysis of DNA sequences have been
devoted to describing the statistical differences between regions of different types. In [13] and
[16], it was discovered that noncoding sequences have long-range correlations while short-range
correlations prevail in coding sequences. A detailed statistical discussion about the stationarity
or nonstationarity of coding and noncoding regions can be found in [6] and [7]. We point out
that in the general model studied in Section 4, we do not impose any constraint on the initial
laws (Ps : s ∈ S). They may have long- or short-range correlations, or neither, and they do not
need to satisfy any kind of Markovianness or stationarity.

We are aware that the models we introduce and study do not have the necessary degree
of complexity to realistically describe nucleotide or codon organization in DNA sequences of
bacterial genomes, but they do provide some insight for the analysis of some of their main
features. We wish to emphasize that, with respect to genomic analysis, our study is focused
on the statistical description of DNA sequences of bacterial genomes and for this purpose
we use annotated bacteria. We are not proposing automatic algorithms to identify the coding
and noncoding regions, rather we are attempting to better understand how a single strand is
statistically organized.

Thus, when one considers double-stranded DNA, a more sophisticated analysis is required,
because even if the second strand of nucleotides is the reverse complement of the primary
strand, the interaction between both strands is extremely difficult to state in terms of genome
organization. In [11] we have analyzed a theoretical probabilistic toy model of a DNA duplex
inspired by the GLIMMER (Gene Locator and Interpolated Markov ModelER) algorithm. In
particular, it offered a statistical analysis of overlaps between potential coding regions on the two
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strands and illuminated a bias towards runs of consecutive coding regions within each strand,
rather than consecutive coding regions alternating between the two strands. Although the
toy model succeeded in capturing some probabilistic features appearing in annotated bacterial
genomes, it needs to be drastically updated with more sophisticated automatic models for
selecting potential coding regions in single DNA strands such as the one proposed here, as well
as with regard to the statistical correlation between gene candidates on each strand. A more
in-depth discussion of this program is beyond the scope of this work.

There is a large bibliography on the statistics of codon and nucleotide sequences of bacterial
DNA. Here, we have only cited papers that have a direct relationship to the present study. For
a more complete view of this body of work, the reader is directed to the references contained
in those that we have cited.

2. Main concepts

From now on � denotes a finite alphabet. Let us fix some notation and basic concepts.
Every countable set L is endowed with the discrete σ -field S(L) = {K : K ⊆ L}. We set
N = {0, 1, 2, . . .} and N

∗ = {1, 2, . . .}.
Define Xn : �N → � , x → xn to be the nth coordinate function, so Xn(x) = xn for x ∈ �N.

For each n ∈ N, BX
n = σ(X0, . . . , Xn) denotes the σ -field generated by the coordinates

X0, . . . , Xn. The product set �N is endowed with the σ -field BX∞ = σ(Xn : n ∈ N) generated
by all the coordinates.

For q ∈ N, the q-shift is

�q : �N → �N, (�qx)n = xn+q for all n ∈ N. (2.1)

Below we use the usual convention inf ∅ = ∞.
Let J : � → S(� ), i → J(i), be a map. Then, the function �N → S(� ), x → J(x0) is

σ(X0)-measurable. So, J(x0) is a random set. Let TJ = inf{n > 0 : Xn ∈ J(X0)} be the
random time to hit J in the future, so TJ(x) = inf{n > 0 : xn ∈ J(x0)}. It defines the sequence
of successive returns to J,

T 1
J = TJ and T n+1

J = T n
J + TJ ◦ �T n

J
for n ∈ N

∗. (2.2)

Here T n
J = ∞ implies T n′

J = ∞ for n′ ≥ n. We will set T 0
J = 0. Sometimes, the dependence on

X0 is important and we then write TJ(X0) instead of TJ . It is easy to see that for every random
set J = J(X0), the return time TJ(X0) = inf{n > 0 : Xn ∈ J(X0)} is a stopping time; that is,
it satisfies {TJ ≤ n} ∈ BX

n for all n ∈ N.
Let S be a fixed nonempty strict subset of � . Its elements are called initial symbols. We

suppose that S is partitioned into equivalence classes and we denote by C(s) the class containing
s ∈ S.

Let (Ps : s ∈ S) be a family of probability distribution on �N. Under Ps , the process
X = (Xn : n ∈ N) starts from s, so Ps(X0 = s) = 1. We denote by Es the expectation defined
by Ps . Let π = (πs : s ∈ S) be a probability vector on S, we denote by Pπ = ∑

s∈SπsPs the
distribution starting from π and Eπ is the expectation defined by Pπ .

On the set {X0 ∈ S}, we define the random time

T = TS\C(X0) = inf{n > 0 : Xn ∈ S \ C(X0)}.
We assume the set S \ C(s) is attained in finite time Ps-almost surely (a.s.),

Ps(T < ∞) = 1 for all s ∈ S.
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So, for X0 ∈ S, T is a stopping time which is finite Ps-a.s. for all s ∈ S. The sequence of
successive returns is

T 1 = T and T n+1 = T n + T ◦ �T n for n ∈ N
∗.

By definition, we have T n+1 < ∞ which implies that C(XT n+1) �= C(XT n). We will usually
set T 0 = 0. (At the end of the next section T 0 will have another meaning, as explained there).

We will assume that

Es(T ) < ∞ for all s ∈ S. (2.3)

We have Es(T ) = ∑
n∈N

Ps(T > n). Then, every probability vector π = (πs : s ∈ S) on S
defines the probability vector (πsEs(T )−1Ps(T > n) : s ∈ S, n ∈ N) on S × N. Hence, the
following expression defines a distribution P

(π) on �N depending on π :

P
(π)(B) =

∑
s∈S

πsEs(T )−1
(∑

n∈N

Ps(T > n, B ◦ �−1
n )

)
for all B ∈ BX∞.

We denote by E
(π) its mean expected value.

Let us give a trajectorial description of P
(π). Let Xs,n = (Xl : l ∈ N) be trajectories of the

process X starting from s ∈ S with law Ps(· | T > n). Then, the process X defined in �N by

X = Xs,n ◦ �n with probability πsEs(T )−1Ps(T > n),

has distribution P
(π). Then, T can be defined for X and it satisfies

P
(π)(T < ∞) =

∑
s∈S

πsEs(T )−1
(∑

n∈N

Ps(T > n, T < ∞)

)
=

∑
s∈S

πs = 1.

Then, the sequence of times (T n : n ∈ N
∗) is defined in X and it is finite P

(π)-a.s.
We seek the conditions such that some distribution P

(π) is time stationary; that is, it satisfies
for all m ∈ N, all (i0, . . . , im) ∈ �m+1, and all t ∈ N

∗, P
(π)(Xk+t = ik, k = 0, . . . , m) =

P
(π)(Xk = ik, k =0, . . . , m). We note that this property is satisfied once it holds for t = 1. In

the case P
(π) is time stationary we can extend it to the set of bi-infinite sequences �Z by putting

P
(π)(Xk+t = ik, k = 0, . . . , m) = P

(π)(Xk = ik, k = 0, . . . , m) (2.4)

for all t ∈ Z, m ∈ N, and (ik : k = 0, . . . , m) ∈ �m+1.

3. Regeneration and conditions for time stationarity

In what follows we will assume that (Ps : s ∈ S) semiregenerates at times (T n). This means
that if we start from some Pπ , at time T 1 the process will restart with distribution Ps1 , where
s1 = XT 1 , and in general at T n the process will restart with distribution Psn , where sn = XT n .
We note that this condition implies that in order to have trajectories (Xn : n ∈ N) distributed
with laws (Ps : s ∈ S) we only require a countable set of independent copies of the cycles
(X0, . . . , XT ) starting from each one of these laws.
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Let us introduce the regeneration condition on Pπ in a more formal way. Let (i0, i1, . . . ,

im) ∈ S × �m. Define fixed times (τn : n ≥ 0) with τ 0 = 0 and τn+1 = inf{k > τn : k ≤
m, ik ∈ S \ C(iτn)}. Note that there is a finite r ≤ m such that τ 0, . . . , τ r are finite and
τ r+1 = ∞. The regeneration property of Pπ is as follows:

Pπ (Xl = il : l = 0, . . . , m) =
∑
s∈S

πs 1{i0=s}
(r−1∏

k=0

Pi
τk

(Xτk+t = iτ k+t , t = 1, . . . , τ k+1−τ k)

)

× Piτ r (Xτr+t = iτ r+t , t = 1, . . . , m − τ r ). (3.1)

Under the law Pπ , the regeneration property (3.1) implies that the sequence (XT n : n ∈ N
∗)

taking values in S satisfies

Pπ (XT k+1 = sk+1 | XT k = sk, . . . , XT 1 = s1) = Psk (XT = sk+1).

Hence, (XT n : n ∈ N
∗) is a Markov chain and its transition matrix Q = (qss′ : s, s′ ∈ S) is

given by qss′ = Ps(XT = s′) for s, s′ ∈ S. Since XT k+1 ∈ S \C(XT k ), it follows that qss′ > 0
implies s′ �∈ C(s).

Moreover, we can check that under Pπ the sequences of cycles ((XT k , . . . , XT k+1−1) : k ∈
N) are independent. Note that the distribution of the cycle (XT k , . . . , XT k+1−1) under Pπ is the
same as the distribution of the cycle (X0, . . . , XT −1) under Pπ Qk (here π Qk is the evolution
of π under Qk). It holds that (Xn : n ∈ N, T n : n ∈ N

∗) is a semiregenerative process because it
satisfies (XT k+n : n ∈ N) given T 1, . . . , T k, XT 1 , . . . , XT k = s is distributed as (Xn : n ∈ N)

under Ps . For definition and properties of semiregenerative processes, see [3, Chapter VII.5].
Recall that a positive vector ρ is invariant for the transition matrix Q if it satisfies the set of

equalities
ρs =

∑
s′∈S

ρs′qs′s for all s ∈ S.

There always exist invariant positive vectors. We will assume that Q is irreducible, so up to
a multiplicative constant the invariant positive vector is unique. Then, there exists a unique
probability vector noted π∗ = (π∗

s : s ∈ S) such that

(π∗
s Es(T )−1 : s ∈ S) is an invariant vector of Q.

Theorem 3.1. It holds that P
(π) is time stationary if and only if π = π∗.

Proof. Let π∗ be the unique probability vector such that (π∗
s Es(T )−1 : s ∈ S) is invariant

for the stochastic matrix Q and so γ = (γs : s ∈ S), given by

γs = π∗
s Es(T )−1∑

s′∈S π∗
s′Es′(T )−1 ,

is the unique invariant distribution for Q. Hence, under Pγ the sequence (XT n : n ∈ N) is
stationary so every XT n is distributed as γ . It is also straightforward to check that under Pγ

the increments (T n+1 − T n : n ∈ N) are independent and equally distributed as is the case for
the cycles ((Xn : T k ≤ n < T k+1) : k ∈ N). Also, under Pγ , (Xn : n ∈ N, T n : n ∈ N

∗) is a
regenerative process as defined in [3, Chapter VI.1]. In terms of Palm theory (see [3, Chapter
VII.6]), Pγ is an event stationary distribution. By using [3, Theorem 2.1, Chapter VI.2] and
[3, Lemma 3.2, Chapter V], it can be checked that P

(π∗) is the time stationary distribution
associated to Pγ in [3, Theorem 6.4, Chapter VII.6].
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When the distribution of T is aperiodic; that is, the greatest common divisor {l > 0 : Pγ (T =
l) > 0} = 1, from [3, Proposition 5.2(ii), Chapter VII.5] it follows that P

(π∗) is also the limiting
distribution of the semiregenerative processes (Xn : n ∈ N, T n : n ∈ N

∗). This implies that
P

(π) is time stationary only when π = π∗. If the distribution of T is periodic it suffices to take
the mean along the period as in [3, Corollary 1.5(ii), Chapter VI.1] to obtain the same result.

�
Since P

(π∗) can be defined on �Z by (2.4), we can define a stationary Markov renewal
process (T n : n ∈ Z) with T 0 = sup{T n : T n ≤ 0} such that XT n is distributed as π . (In this
definition and the following equation the variable T 0 is not identically 0.) Then, by using Palm
theory, we have

P
(π∗)(T 0 = −n) = Eγ (T )−1Pπ∗(T > n),

P
(π∗)(X0 = ik, k = 0, . . . , m | T 0 = −n) = Pγ (Xn = ik+n, k = 0, . . . , m | T > n).

4. Random model

We will modify the model studied in Sections 2 and 3 so as to capture some of the phenomena
which occur in sequences of codons within real bacterial genomes. In Section 3 we assumed
that a region of a new type starts when a state belonging to a different class is hit. Nevertheless,
it is known from genome annotation that when a noncoding region hits a start codon, only a
small proportion of these start codons mark the beginning of a new coding region. Some signals
must be present in the neighborhood of the start codon to trigger a true beginning. Nowadays,
there is a lot of active research being conducted into predicting the locations of genuine coding
regions, focused either on lists of motifs or on their locations near starting codons. A recent
discussion on this topic can be found in [18].

So, when a site containing a state belonging to a different class is hit, a decision must be
made: either a new region starts, or this state is treated as though it does not belong to S and
the sequence continues to be governed by the law of the current region. We will model this
decision by a random choice whose distribution can depend on the state that is hit and on the
initial state of the region. Toward this end, we use a sequence of independent Bernoulli random
variables.

In this section we retain all the notions and assumptions made in Section 2.
From now on we assume for each pair of symbols s0 ∈ S and s ∈ S \ C(s0), there exists a

well-defined probability εs0(s) ∈ [0, 1] that at s a new region starts when s is hit in a region
initiated in s0. We define εs0(s) = 0 for s0 ∈ S and s ∈ C(s0). We note that

Fs0 = {s ∈ S : εs0(s) > 0}.
We impose the irreducibility conditions: Fs0 �= ∅ for all s0 ∈ S and S = ⋃

s0∈SFs0 . Note
that the case εs0(s) = 1 for all pairs (s0, s) such that C(s0) �= C(s), means that when a region
started at s0 encounters a site containing s, then a new region governed by Ps will always start,
which corresponds to the situation already examined in Section 3.

Let E = {0, 1}S and e = (es : s ∈ S) be an element on E . On E we define a family of
Bernoulli product measures (bs0 : s0 ∈ S) given by

bs0(e) =
∏

s∈S : es=1

εs0(s) ×
∏

s∈S : es=0

(1 − εs0(s)).

The measure bs0 is supported by the set Es0 = {e ∈ E : es = 1⇒s ∈ Fs0}. Let (P bs0 =
b⊗N

∗
s0

: s0 ∈ S) be a family of product measures on EN
∗
.
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Let K = � × E and (i, e) be an element in K . The product space KN = (� × E)N is
endowed with the product σ -field BX∞ = σ(Xn : n ∈ N). Let u = (un : n ∈ N) ∈ KN and
note that un = (xn, wn) for n ∈ N, so w = (wn : n ∈ N) ∈ EN with wn = (ws

n : s ∈ S) ∈ E .
Let Xn : KN → K, u ∈ KN → Xn(u) = un ∈ K be the projection onto the nth

component. We set Xn : KN → � , u → xn and Wn : KN → E , u → wn. So, we can write
Xn = (Xn, Wn). This is an abuse of notation because we will continue writing Xn : �N →
� , x ∈ �N → xn ∈ � and also set Wn : EN → E , w ∈ EN → wn ∈ E . We keep the same
notation for the q-shift �q : KN → KN, (�qu)n = un+q , as the one introduced in (2.1)
for �N.

Let
Vs0 = {(s, e) ∈ Fs0 × Es0 : es = 1} and V =

⋃
s0∈S

Vs0 .

It holds that V is a proper subset of � × E and will play the role of the set of starting states.
For (s, e) ∈ V, the class C(s, e) is defined to be

C(s, e) = {(s′, e′) ∈ V : C(s) = C(s′)}.
On the set {X0 ∈ V}, we define the random time

T := TV\C(X0) = inf{n > 0 : Xn ∈ V \ C(X0)} = inf{n > 0 : Xn ∈ V, C(Xn) �= C(X0)}
(it can take the value ∞). The time T is a stopping time for the natural sequence of σ -fields.
As already stated for a random time in (2.2), we define the sequence of times

T 1 = T and T n+1 = T n + T ◦ �T n for n ∈ N
∗,

which are also stopping times. Note that T n+1 finite implies that C(XT n+1) �= C(XT n). We
set T 0 = 0.

Let (Ps : s ∈ S) be a family of probability distribution on �N satisfying the conditions
stated in Section 2: for all s ∈ S, Ps(X0 = s) = 1, Ps(T < ∞) = 1, and Es(T ) < ∞. We
emphasize that no regeneration property is assumed on this family.

For every probability vector π on S we define the following probability measure P †
π on KN:

for all m ∈ N, (i0, . . . , im) ∈ �m+1, and (e0, . . . , em) ∈ Em+1,

P †
π (Xk = ik, Wk = ek, k = 0, . . . , m)

=
∑
s∈S

πs 1{i0=s, es
0=1} Ps(Xk = ik, k = 1, . . . , m)P bs (Wk = ek, k = 1, . . . , m).

Recall that the set S\C(s) is attained in finite time Pπ -a.s., so by applying the Borel–Cantelli
lemma to the independent random variables (Wn : n ∈ N

∗), we obtain

P †
s (T < ∞) = 1 for all s ∈ S.

Let E
†
s be the expected value defined by P

†
s . The assumption (2.3) implies that

E†
s (T ) < ∞ for all s ∈ S. (4.1)

Note that P
†
s (XT ∈ FX0 , W

XT
T = 1) = 1, so T models the time where a region of a new

type starts, satisfying the conditions announced at the beginning of this section.
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We will introduce a class of probability distributions (P̂
†
s : s ∈ S) that semiregenerates at

times (T n) where the classes of a new type start. For this purpose let ((i0, e0), . . . , (im, em)) ∈
(S × E) × (� × E)m be a finite sequence. Define a sequence of fixed times (τn : n ∈ N) by
τ 0 = 0, τ n+1 = inf{k > τn : k ≤ m, (ik, ek) ∈ V \ C(iτn , eτn)}. There exists r ≤ m such that
τ 0, . . . , τ r are finite and τ r+1 = ∞. Then, inspired by (3.1), we define P̂

†
s by

P̂ †
s (Xl = il, Wl = el : l = 0, . . . , m)

= 1{i0=s, es
0=1}

(r−1∏
k=0

P
†
iT k

(Xτk+t = iτ k+t , Wτk+t = eτk+t , t = 1, . . . , τ k+1 − τ k)

)

× P
†
iτ r

(Xτr+t = iτ r+t , Wτr+t = eτr+t , t = 1, . . . , m − τ r ).

As usual we set P̂ †
π = ∑

s∈S πsP̂
†
s and note that Ê†

π is the associated expectation. The times
(T n : n ∈ N

∗) are finite P̂ †
π -a.s. We note that the sequence (XT n : n ∈ N

∗) is a Markov chain
with transition matrix Q† = (q

†
ss′ : s, s′ ∈ S) given by

q
†
ss′ = P̂ †

s (XT = s′) = P †
s (XT = s′) for all s, s′ ∈ S.

By the definition of T , we have C(XT k+1) �= C(XT k ), so q
†
ss′ > 0 implies that C(s′) �= C(s).

An invariant vector ρ for Q† satisfies ρs = ∑
s′∈S ρs′q†

s′s for all s ∈ S. We have assumed
that Q is irreducible and so Q† is also irreducible. Then, up to a multiplicative constant the
invariant vector is unique.

Assumption (4.1) implies that

Ê†
s (T ) < ∞ for all s ∈ S.

Then, every probability vector π = (πs : s ∈ S) defines the probability vector

(Ê†
s (T )−1P̂ †

s (T > n)πs : s ∈ S, n ∈ N) on S × N.

Hence, the following distribution is well defined on KN:

P̂
†(π)(B) =

∑
s∈S

πsÊ
†
s (T )−1

(∑
n∈N

P̂ †
s (T > n, B ◦ �−1

n )

)
for all B ∈ BX∞, (4.2)

where �n is the n-shift on KN.
Let us denote by π†∗ the unique probability vector that satisfies

(π†∗
s Ê†

s (T )−1 : s ∈ S)

is invariant for Q†.
In a similar way as we did in Theorem 3.1, we can prove the following condition for time

stationarity of P
∗†.

Theorem 4.1. It holds that P
∗†(π) is time stationary if and only if π = π†∗.

5. Stationarity and Chargaff’s second parity rule

In the genomic setting, L = {A, C, G, T} is the set of nucleotides, � = L3 is the list of
codons and the complement mapping ϕ : {A, C, G, T} → {A, C, G, T} is given by ϕ(A) =
T = ϕ−1(A), ϕ(C) = G = ϕ−1(C). For a DNA sequence, CSPR means that the frequency
of appearance of any k-tuple (l0, . . . , lk−1) ∈ Lk is equal to the frequency of its reverse
complement (ϕ(lk−1), . . . , ϕ(l0)).
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Below, in the theoretical framework of CSPR, we show in the first part of the proof of
Proposition 5.1 that CSPR implies that the probability distribution on a nucleotide sequence is
time stationary. In the second part of the proof of Proposition 5.1, we prove that CSPR also
implies that the probability distribution on a codon sequence is time stationary. This is the time
stationarity property studied in Sections 3 and 4.

The validity of CSPR has been checked for k-tuples of nucleotides with small k but it extends
to sets of k-tuples of higher-order k with an increase in length of the sequences, as mentioned in
[8]. With this fact in mind, in Proposition 5.2, we state stationarity for the class of (k−1)-tuples
in the nucleotide sequence, which implies stationarity for (k/3 − 1)-tuples of codons.

Let us supply CSPR in a general theoretical framework. Let L be an alphabet and Yn : LN →
L be the nth coordinate function: Yn(y) = yn for y ∈ LN. Let ϕ : L → L be an involution, this
means that ϕ is one-to-one and ϕ−1 = ϕ. Since ϕ is a bijection, we have L = {ϕ(h) : h ∈ L}.

Let PLN be a probability measure on LN. We say that PLN satisfies the CSPR with respect
to ϕ if for all m ∈ N, all (l0, . . . , lm) ∈ Lm+1, and all t ∈ N,

PLN(Yk+t = lk, k = 0, . . . , m) = PLN(Yk+t = ϕ(lm−k), k = 0, . . . , m). (5.1)

We claim that (5.1) is satisfied if it holds for t = 0. That is, if for all m ∈ N and all (l0, . . . , lm) ∈
Lm+1,

PLN(Yk = lk, k = 0, . . . , m) = PLN(Yk = ϕ(lm−k), k = 0, . . . , m). (5.2)

In fact, from (5.2), we obtain

PLN(Yk = hk, k = 0, . . . , t − 1; Yt+k = lk, k = 0, . . . , m; Yt+m+k =ck, k = 0, . . . , t − 1)

= PLN(Yk = ϕ(ct−1−k), k = 0, . . . , t − 1; Yk+t = ϕ(lm−k), k = 0, . . . , m;
Yk+t+k = ϕ(ht−1−k), k = 0, . . . , t − 1).

Hence, by summing on (h0, . . . , ht−1) ∈ Lt and (c0, . . . , ct−1) ∈ Lt , we obtain (5.1).
Let d ∈ N

∗ be fixed. In our results we shall also consider the following setting of d-mers,
where � := Ld is a new alphabet. We take the following transformation: ζ : LN → �N,
y → x = ζy with xn = (ζy)n = (ydn, . . . , yd(n+1)−1). So PLN ◦ ζ−1 is the induced law by
PLN on �N.

Proposition 5.1. If PLN verifies the CSPR then PLN and PLN ◦ ζ−1 are time stationary.

Proof. Assume that PLN satisfies the CSPR. For all m ∈ N
∗, we have

PLN(Yk+1 = lk, k = 0, . . . , m)

=
∑
h∈L

PLN(Y0 = h, Yk+1 = lk, k = 0, . . . , m)

=
∑
h∈L

PLN(Ym+1 = ϕ(h), Ym−k = ϕ(lk), k = 0, . . . , m)

= PLN(Ym+1 ∈ L, Ym−k = ϕ(lk), k = 0, . . . , m)

= PLN(Ym−k = ϕ(lk), k = 0, . . . , m)

= PLN(Yk = lk, k = 0, . . . , m).

Then, PLN is time stationary.
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Let us now prove that PLN ◦ ζ−1 is time stationary. Let Xn : �N → � be the nth coordinate
function. We must prove that, for all m ∈ N and ((ldk, . . . , ld(k+1)−1) : k = 0, . . . , m) ∈ �m+1,

we have
PLN ◦ ζ−1(Xk = (ldk, . . . , ld(k+1)−1), k = 0, . . . , m)

=
∑

(c0,...,cd−1)∈Ld

PLN ◦ ζ−1(X0 = (c0, . . . , cd−1),

Xk+1 = (ldk, . . . , ld(k+1)−1), k = 0, . . . , m).

This relation is equivalent to,

PLN(Yt = lt , t = 0, . . . , d(m + 1) − 1)

=
∑

(c0,...,cd−1)∈Ld

PLN(Y0 = c0, . . . , Yd−1 = cd−1; Yt+d = lt , t = 0, . . . , d(m + 1) − 1),

which is equivalent to the equality

PLN(Yt = lt , t = 0, . . . , d(m + 1) − 1) = PLN(Yt+d = lt , t = 0, . . . , d(m + 1) − 1).

This last relation follows straightforwardly from the time stationarity of PLN , completing the
proof. �

Let us state that a weaker condition of CSPR implies a weaker stationary property. Assume
that the CSPR is verified only for tuples of length smaller or equal to r0. This means that, for
all m < r0, all (l0, . . . , lm) ∈ Lm+1, and all u ∈ N,

PLN(Yk+u = lk, k = 0, . . . , m) = PLN(Yk+u = ϕ(lm−k), k = 0, . . . , m).

Let us prove that in this case the stationarity only holds for the cylinders of length strictly
smaller than r0.

Proposition 5.2. Let r0 ≥ 2. Assume that PLN verifies the CSPR for cylinders defined by tuples
of length smaller or equal to r0. Then, for all m < r0 −1 and all (l0, . . . , lm) ∈ Lm+1, we have

PLN(Yk+u = lk, k = 0, . . . , m) = PLN(Yk = lk, k = 0, . . . , m) for all u ∈ N
∗.

To state the result in the d-mers setting assume that �r0/d� ≥ 2. Then, for m < �r0/d� − 1
and all ((ldk, . . . , ld(k+1)−1), k = 0, . . . , m) ∈ �m+1, we have

PLN ◦ ζ−1(Xk+u = (ldk, . . . , ld(k+1)−1), k = 0, . . . , m)

= PLN ◦ ζ−1(Xk = (ldk, . . . , ld(k+1)−1), k = 0, . . . , m) for all u ∈ N
∗.

Proof. Let us prove the first relation by induction on u ∈ N
∗. For u = 1 the proof is the

same as the first part of the proof of Proposition 5.1 when we showed that PLN is stationary.
Assume it has been shown up to u, let us prove it for u + 1. Since m + 2 ≤ r0, we obtain

PLN(Yu+1+k = lk, k = 0, . . . , m)

=
∑
h∈L

PLN(Yu = h, Yu+1+k = lk, k = 0, . . . , m)

=
∑
h∈L

PLN(Yu+m−k = ϕ(lk), k = 0, . . . , m; Yu+1+m = ϕ(h))

= PLN(Yu+m−k = ϕ(lk), k = 0, . . . , m)

= PLN(Yu+k = lk, k = 0, . . . , m).

https://doi.org/10.1017/jpr.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.2


326 S. MARTÍNEZ

Then, from an inductive argument, we obtain PLN(Yu+1+k = lk, k = 0, . . . , m) = PLN(Yk =
lk, k = 0, . . . , m). Hence, the first equation is shown. The second relation follows straightfor-
wardly from the first one, and this is done as in the second part of the proof of Proposition 5.1
when we showed that PLN ◦ ζ−1 is time stationary. �
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