The Explanatory Power of Network Models

Carl F. Craver*t

Network analysis is increasingly used to discover and represent the organization of com-
plex systems. Focusing on examples from neuroscience in particular, | argue that whether
network models explain, how they explain, and how much they explain cannot be an-
swered for network models generally but must be answered by specifying an explanan-
dum, by addressing how the model is applied to the system, and by specifying which
kinds of relations count as explanatory.

1. Introduction. Network analysis is a field of graph theory dedicated to
the organization of pairwise relations. It provides a set of concepts for de-
scribing kinds of networks (e.g., small-world or random networks) and for
describing and discovering organization in systems with many densely con-
nected components.

Some philosophers describe network models as providing noncausal or
nonmechanistic forms of explanation. Lange (2013) and Huneman (2010),
for example, argue that network models offer distinctively mathematical (and
topological) explanations (sec. 3). Levy and Bechtel (2013) argue that net-
work models describe abstract causal structures in contrast to detailed forms
of causal explanation (sec. 4). Rathkopf (2015) distinguishes network expla-
nations from mechanistic explanations because network models apply to non-
decomposable systems (sec. 6).

My thesis is that whether network models explain, how they explain, and
how much they explain cannot be answered for network models generally
but must be answered by fixing an explanandum phenomenon, considering
how the model is applied to a target, and deciding what sorts of variables and
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relations count as explanatory (see Craver 2014). Uses of network models to
describe mechanisms are paradigmatically explanatory, even if the model is
abstract, and even if the system is complex, because such models represent
how a phenomenon is situated in the causal structure of the world (Salmon
1984). Network models might also provide distinctively mathematical expla-
nations (those that derive their explanatory force from mathematics rather
than, e.g., causal or nomic relations; see Lange 2013). Using examples from
network science, I illustrate two puzzles for any adequate account of such
mathematical explanations—the problem of directionality (sec. 3) and the
puzzle of correlational networks (sec. 5)—that are readily solved in paradigm
cases by recognizing background ontic constraints on acceptable mathemati-
cal explanations.

2. Basic Concepts of Network Analysis. Network models are composed
of nodes, standing for the network’s relata, and edges, standing for their rela-
tions. A node’s degree is the number of edges it shares with other nodes. The
path length between two nodes is the minimum number of edges required to
link them. In a connected graph, any two nodes have a path between them.

In regular networks, each node has the same degree. In random networks,
edges are distributed randomly. Few real networks are usefully described as
regular or random. In contrast to these special cases, small-world networks
often have an underlying community structure because nodes are connected
into clusters. The small-worldedness of a network is the ratio of its clustering
coefficient (the extent to which nodes cluster more than they do in a random
graph) to its average path length. This clustering yields networks with nearly
decomposable modules (Simon 1962; see also Haugeland 1998), collections
of nodes that have more and stronger connections with each other than they
have with nodes outside the group. Nodes with a high participation coefficient
have edges with nodes in diverse modules. Such nodes can serve as connect-
ing hubs linking modules together. These and other concepts are mathemati-
cally systematized and have been used to represent epidemics, academics, indie
bands, and airports, to name just a few.

3. Directions of Mathematical Network Explanation. Lange (2013) ar-
gues that some explanations of natural phenomena are distinctively mathe-
matical. Such explanations work by showing that the explanandum is mathe-
matically (vs. causally or nomically) necessary. Dad cannot evenly distribute
13 cookies between two kids because 13 is indivisible by 2. The sandpile’s mass
has to be 1,000 g (in a Newtonian world) because it is made of 100,000 grains
of 0.01 g each. In each case, the explanandum follows with mathematical ne-
cessity in the empirical conditions.

Network models might also provide distinctively mathematical explana-
tions. Take the bridges of Konigsberg: seven bridges connect four landmasses;
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nobody can walk a path crossing each bridge exactly once (an Eulerian path).
An Eulerian path requires that either zero or two landmasses have an odd
number of bridges. In Konigsberg, all four landmasses have an odd number
of bridges. So it’s mathematically impossible to take an Eulerian walk around
town.

Perhaps some facts about the brain have distinctively mathematical expla-
nations. For example, a network’s mean path length is more robust to the ran-
dom deletion of nodes in small-world networks than it is in regular or random
networks. This might explain why brain function is robust against random cell
death (see Behrens and Sporns 2011). Signal propagation is faster in small-
world networks than in random networks; oscillators coupled in small-world
networks readily synchronize (Watts and Strogatz 1998). Perhaps these are
mathematical facts, and perhaps they carry explanatory weight.

Huneman (2010) represents mathematical (specifically topological) expla-
nations as arguments. They contain an empirical premise, asserting a topolog-
ical (or network) property of a system, and a mathematical premise, stating a
necessary relation. In our example of Konigsberg’s bridges:

Empirical Premise. Konigsberg’s bridges form a connected network with
four nodes. Three nodes have three edges; one has five.

Mathematical Premise. Among connected networks composed of four

nodes, only networks containing zero or two nodes with odd degree contain

Eulerian paths.

Conclusion. There is no Eulerian path around the bridges of Konigsberg.
And in our example for the brain:

EP. System S is a small-world network. . . .

MP. Small-world networks are more robust to random attack than are ran-
dom or regular networks.'

C. System S is more robust to random attack than random or regular net-
works.

On this reconstruction, distinctively mathematical explanations are like cov-

ering law explanations (Hempel 1965) except the “law statements” are math-
ematically necessary (Lange 2013).

1. See Albert, Jeong, and Barabasi (2000). This claim must be circumscribed to make it a
necessary truth.
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The covering law model struggled famously with the asymmetry of causal
explanations. The flagpole’s height and the sun’s elevation explain the shad-
ow’s length, and not vice versa. Scientific explanations have a directionality
trigonometry lacks.

Similar cases arise for distinctively mathematical explanations. Because
each kid got the same number of cookies, it follows necessarily that Dad
started with an even batch, but the kids’ cookie count doesn’t explain the
batch’s evenness. From the mass of the Newtonian sandpile and the number
of identical grains, the mass of each grain follows necessarily, but the mass
of the whole does not explain the masses of its parts. Examples also arise for
network explanations:

EP. Konigsberg’s bridges form a connected network with four nodes. Marta
walks an Eulerian path through town.

MP. Among connected networks composed of four nodes, only networks
containing zero or two nodes with odd degree also contain an Eulerian
path.

C. Therefore, either zero or two of Konigsberg’s landmasses have an odd
number of bridges.

Yet Marta’s walk doesn’t explain Konigsberg’s layout.?

Huneman’s and Lange’s models are thus incomplete by their own lights;
legitimate and illegitimate explanations fit the form (see Lange 2013, 486).
The accounts are thus incomplete as descriptions of the defining norms that
sort good mathematical explanations from bad.

Furthermore, ontic commitments appear to readily account for this direc-
tionality. The evenness of the batch explains the equal distribution (and not
vice versa) because the distribution is drawn from the batch. Properties of
parts explain aggregate properties (and not vice versa) because the parts com-
pose the whole. Network properties are explained in terms of nodes and edges
(and not vice versa) because the nodes and edges compose and are organized
into networks. Paradigm distinctively mathematical explanations thus argu-
ably rely for their explanatory force on ontic commitments that determine
the explanatory priority of causes to effects and parts to wholes.

4. Network Models in Mechanistic Explanations. To explore this ontic ba-
sis further, consider three uses of network models—to describe structural con-

2. Perhaps the mayor ordered bridge construction to prevent anyone from ever again tak-
ing the Eulerian walk he shared with Marta the night before she left. That’s a causal expla-
nation.
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nectivity, causal connectivity, and functional connectivity. Models of struc-
tural and causal connectivity are sometimes used to represent causally rele-
vant features of a mechanism (Levy and Bechtel 2013; Zednik 2014). When
they do, they explain just like any other causal or constitutive explanation
(Woodward 2003; Craver 2007). Network models of functional connectivity
(secs. 5 and 6) are not designed to represent explanatory information as such.

4.1. Structural Connectivity. Network models sometimes represent a
mechanism’s spatial organization. For example, researchers have mapped
the structural connectivity (the cellular connectome) of the central nervous
system of C. elegans, all 279 cells and 2,287 connections (see White et al.
1986; Achacosa and Yamamoto 1991; see also www.wormatlas.org). The
nodes here are neurons; the edges are synapses. Algorithms applied to this
network reveal a “rich club” structure in which high-degree hubs link to one
another more than they do to nodes of lower degree (see, e.g., Towlson et al.
2013). Another example: Sebastian Seung is using automated cell-mapping
software and crowdsourcing to map the connectome of a single mouse ret-
ina (see www.eyewire.org). The goal of these projects is to map every cell
and connection in the brain (Seung 2012). Network analysis supplies basic
concepts (e.g., rich club) for discovering and describing organization in such
bewilderingly complex structures.

These structural models contain a wealth of explanatorily relevant infor-
mation about how brains work. But for any given explanandum (e.g., locomo-
tion), that information is submerged in a sea of explanatorily irrelevant infor-
mation. Brute-force models of this sort describe all the details and do not sort
out which connections are explanatorily relevant to which phenomena.

Suppose, then, we fix an explanandum and filter the model for constitu-
tive explanatory relevance. The resulting model would describe the anatom-
ical connections relevant to some higher-level explanandum phenomenon.
But it would only describe structures and would leave out most of how neural
systems work. Cells generate temporal patterns of action potentials and trans-
mitter release. Dendrites actively process information. Synapses can be active
or quiescent, vary in strengths, and change over time. Two brains could have
identical structural connectomes and work differently; after all, dead brains
share structural connectomes with their living predecessors. One could model
those anatomical connections without understanding the physiology of the sys-
tem; anatomy is just one aspect of its organization.

4.2. Causal Connectivity. Directed graphs are also used to represent
causal organization, how the parts (or features) in a mechanism interact (e.g.,
Spirtes, Glymour, and Scheines 2000). Bechtel and Levy emphasize the im-
portance of causal motifs, abstract patterns in a network’s causal organiza-
tion: autoregulation, negative feedback, coherent feed-forward loops, and
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so on. Such motifs have been studied in gene regulatory networks (e.g.,
Alon 2007) and in the brain (Sporns and Kotter 2004). Motifs can be con-
catenated to form more complex networks and to construct predictive math-
ematical models of their behavior.

Causal motifs are mechanism schemas containing placeholders for rele-
vant features of the mechanisms and arrows showing how they interact. The
causal (or active) organization of a mechanism can be explanatorily relevant
to the mechanism’s behavior independently of how the motif is instantiated.
One can intervene to alter the details without changing the mechanism’s be-
havior so long as the abstract causal structure is still preserved through the in-
tervention (Woodward 2003; Craver 2007, chap. 6). If so, one can justifiably
say that the causal organization, rather than the gory details, is the relevant dif-
ference maker for that explanandum.

Like structural networks, abstract network motifs often contain only the
thinnest relevant information. For example, Alon’s type 1 coherent feed-
forward network is shown in figure 1. The arrows stand for “‘activation.”
Suppose X is a regulator of promoter Y for gene Z (adding considerable con-
tent to the motif). This motif clearly contains information explanatorily rel-
evant to Z’s expression. And if we constrain the explanandum phenomenon
sufficiently, the motif might describe the most relevant features of the mech-
anism. For different explananda (Craver 2007, chap. 6) or in different prag-
matic contexts (Weisberg 2013), one’s explanation will require different de-
grees of abstraction.

That said, network models of structural and causal connectivity are mech-
anistic in the sense that they derive their explanatory force from the fact that
they explain in virtue of representing how the phenomenon is situated in the
causal structure of the world. This general conclusion is supported by the
fact that network models can be used to describe things that are not, and are
not intended to be, explanations of anything at all. Just as causal-mechanical
theories of etiological explanation solved many of the problems confronting
Hempel’s covering law model by adding a set of ontic constraints that sort
good explanations from bad, a causal-mechanical theory of network explana-
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Figure 1. Type 1 coherent feed-forward network.
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tion clarifies (at least in many cases) why some network models are explan-
atory and others are not.

5. Nonexplanatory Evidential Networks. Consider the use of network
models to analyze resting-state functional connectivity (RSFC) in the brain
(Power et al. 2011; Wig, Schlaggar, and Petersen 2011; Smith et al. 2013).
This work mines magnetic resonance imaging (MRI) data for information
about how brain regions are organized into large-scale systems. It offers un-
precedented scientific access to brain organization at the level of systems
rather than the level of cells (Churchland and Sejnowski 1989). The term
“functional connectivity,” however, misleadingly suggests that FC models
represent the brain’s working connections as such. They do not (see also
Vincent et al. 2007; Buckner, Krienen, and Yeo 2013; Li et al. 2015).

The ground-level data of this project are measures of the blood-oxygen-
level dependent (BOLD) signal in each (3 mm?®) voxel of the brain. The term
“resting state” indicates that these measures are obtained while the subject is
(hopefully) motionless in the scanner and not performing an assigned task.’
The scanner records the raw time course of the BOLD signal for each voxel.
This noisy signal is then filtered to focus on BOLD fluctuations oscillating
between 0.1 and 0.01 Hz.* Neuroscientists use this range because it gener-
ates the highest-powered signal, not because it is functionally significant. It is
likely too slow to be relevant to how the brain works during behavioral tasks.

To model these data as a network, you start by defining the nodes. Power
etal. (2011) use two methods. The results mostly agree with each other. Voxel-
wise analysis treats each voxel of the brain as a node location, yielding at least
10,000 nodes per brain (Power et al. used 44,100 nodes). Areal analysis, a less
arbitrary approach, uses meta-analyses of task-based functional MRI (fMRI)
studies, combined with FC-mapping data described below, to identify 20 mm
spheres in regions throughout the brain. This approach yields 264 node loca-
tions per brain. Neither approach starts with working brain parts. Voxelwise
analysis dices the brain into uniformly sized cubes. Areal analysis reduces it to
264 spheres. In fact, the nodes are not even locations; rather, the nodes are time
courses of low-frequency BOLD fluctuations in those locations.

The edges represent Pearson correlations between these time courses. The
strength (or width) of an edge reflects the strength of the correlation. This is all
represented in a matrix (10,000 x 10,000 or 264 x 264) showing the corre-
lation between the BOLD time course in each voxel (or area) and that in every
other voxel (or area). This matrix can then be analyzed with network tools, as
described below.

3. Nothing here turns on the specialness of rest relative to activity or on whether the com-
mand to rest is an intervention.

4. For an overview of data processing stages, see Van Dijk et al. (2011).
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It is now clear why the term “functional connectivity” is misleading. The
nodes in the network do not (and need not) stand for working parts. They
stand for time courses in the BOLD signal, which are merely indicators of
brain activity. These time courses are (presumably) too slow to be part of
how the brain performs cognitive tasks, they are present when the brain is
notinvolved in any specific task, and they are measured in conveniently mea-
surable units of brain tissue rather than known functional parts. Likewise, the
edges do not necessarily represent anatomical connections, causal connec-
tions, or communications. There are, for example, strong functional connec-
tions between the right and left visual cortices despite the fact that there is
no direct anatomical connection between them (Vincent et al. 2007). These
correlations in slow-wave oscillations in blood oxygenation, in short, under-
determine the causal and anatomical structures that presumably produce them
(Behrens and Sporns 2011).

We have here a complex analog of the barometer and the storm: a correla-
tional model that provides evidence about explanatory structures in the brain
but that is not used to (and would not) explain how brains work. FC matrices
are network models. They provide evidence about community structure in the
brain. Community structure is relevant to brain function. But the matrices do
not explain brain function. They don’t model the right kinds of stuff: the nodes
aren’t working parts, and the edges are only correlations. As for the barom-
eter and the storm, A is evidence for B, and B explains C, but A does not ex-
plain C. In my view, network analysis is interesting to the philosopher not
primarily because it offers nonmechanistic explanations but because of the role
it might play in discovering and describing complex mechanisms. Consider some
examples.

5.1. System Identification. Like structural networks, FC networks can be
analyzed with community detection tools to find clusters of nodes that are
more tightly correlated with one another than with nodes outside the cluster.
The assumption that clustered nodes in a correlational network form a causally
functional unit can be given a quasi-empirical justification: things that fire to-
gether wire together, things that wire together synchronize their activities, and
this synchronicity is reflected in temporal patterns in the BOLD signal (see
Wig et al. 2011, 141).

Using these methods, researchers have discovered several large-scale sys-
tems in the cortex, some of which correspond to traditional functional divi-
sions (Power et al. 2011). For example, classical visual and auditory areas
show up as clusters. Yet there are also surprises: for example, the classic sep-
aration of somatosensory from motor cortices is replaced by an orthogonal
separation of hand representations from mouth representations.

5.2. Brain Parcellation. Changes in functional connectivity can be used
to map cortical boundaries (e.g., Cohen et al. 2008; Wig et al. 2014; Gordon
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et al. 2016). An abrupt change in the correlational profile from one voxel to
the next indicates that one has moved from one cortical area to another. This
approach identifies some familiar boundaries of traditional anatomy but can
also be extended to areas, such as the angular gyrus and the supramarginal
gyrus, for which anatomical boundaries and parcellations are not currently
settled (see, e.g., Nelson et al. 2010).

5.3. Comparing Brains. Differences in functional connectivity might be
associated with neurological disorders and insults, such as Alzheimer’s dis-
ease (Greicius et al. 2004), schizophrenia (Bassett et al. 2008), multiple scle-
rosis (Lowe et al. 2008), and Tourette syndrome (Church et al. 2009). These
differences might indicate detectable changes that are etiologically relevant
or that are independently useful indicators for diagnosis or prognosis.

5.4. Lesion Analysis. Neuropsychologists of a strict localizationist bent
prize “pure” cases of brain damage involving complete and surgical damage
to single functional regions of cortex. “Impure cases” are notoriously hard to
interpret because the symptoms combine and cannot be attributed with any
certainty to the damage to specific loci. FC analysis, however, might offer
an alternative perspective. Power et al. (2013), for example, identify a number
of local “target hubs” in the cortex that are closely connected to many func-
tional systems and have high participation coefficients. Damage to these areas
produces wide-ranging deficits out of proportion to the size of the lesion (War-
ren et al. 2014). The “impure cases” of classical neuropsychology might look
more pure through the lens of network science.

To conclude, FC-network models are correlational networks. They are used
to discover causal systems, not to represent how causal systems work. Whether
a network model explains a given phenomenon depends on how that phenom-
enon is specified and on whether the nodes and edges represent the right kinds
of things and relations. Philosophical debates about how models refer (and
what they refer to) are central to understanding how some models have ex-
planatory force (Giere 2004; Frigg 2006).

6. Near Decomposability and Random Walks. Rathkopf (2015) argues
that network models are distinct from mechanistic explanations because mech-
anistic explanations apply only to nearly decomposable systems (see sec. 2)
whereas network analysis applies to systems that are not nearly decompos-
able. In drawing a “hard line” between these, Rathkopf’s useful discussion
both undersells the resources of network analysis and artificially restricts the
domain of mechanistic explanation.

Network analysis is not restricted to nondecomposable systems. The pri-
mary goal of FC analysis is to reveal community structure in complex net-
works. The community detection algorithms applied to FC matrices are an-
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imated by Simon’s (1962) concept of near decomposability: a component in
a nearly decomposable system is a collection of nodes more strongly con-
nected to one another than with nodes outside that collection (see Hauge-
land 1998). Consider random walk algorithms, such as InfoMap (Rosvall
and Bergstrom 2008).°> A “bot” starts at an arbitrary node and moves along
edges. It tends to get “trapped” in nearly decomposable clusters precisely be-
cause there are more and stronger edges that keep it in the cluster than ones
that afford escape. Escape routes are interfaces. The places it gets trapped are
nearly decomposable communities. Such algorithms do not deliver binary re-
sults (decomposable/not decomposable); rather, they represent a full spectrum
of organization. Nondecomposable systems (with no community structure) are
rare, idealized special cases. Rathkopf’s hard line is a blur.
Rathkopfenforces this line by restricting the concept of mechanism. Each
network he considers is a causal network, composed of nodes, such as peo-
ple, and interactions, such as contagion. (Network models are useful in epide-
miology because they model community structure). Even in so-called non-
nearly decomposable causal networks, the base level of nodes and edges is
still a set of causally organized parts: a mechanism. In characterizing that base
level, we learn how network behavior is situated in the causal structure of the
world. The line between mechanisms (organized causal interactions among
parts) and nonmechanisms (e.g., correlations) is much harder than that be-
tween nearly decomposable and non-nearly decomposable mechanisms.

7. Conclusion. Network analysis is transforming many areas of science. It
is attracting large numbers of scientists. It is generating new problems to solve
and new techniques to solve them. It is revealing phenomena invisible and
unthinkable with traditional perspectives. Yet it does not seem to fundamen-
tally alter the norms of explanation. The problem of directionality and the puz-
zle of correlational networks signal that, at least in many cases, the explanatory
power of network models derives from their ability to represent how phenom-
ena are situated, etiologically and constitutively, in the causal and constitutive
structures of our complex world.
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