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Abstract

In this paper we investigate the stochastic properties of the number of failed components
of a three-state network. We consider a network made up of n components which is
designed for a specific purpose according to the performance of its components. The
network starts operating at time t = 0 and it is assumed that, at any time t > 0, it can
be in one of states up, partial performance, or down. We further suppose that the state
of the network is inspected at two time instants t1 and t2 (t1 < t2). Using the notion
of the two-dimensional signature, the probability of the number of failed components
of the network is calculated, at t1 and t2, under several scenarios about the states of the
network. Stochastic and ageing properties of the proposed failure probabilities are studied
under different conditions. We present some optimal age replacement policies to show
applications of the proposed criteria. Several illustrative examples are also provided.
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1. Introduction

Nowadays, networks (systems), such as communication networks and computer networks,
play an important role in various areas of science and technology. A network is a series of
points (nodes) interconnected by communication paths (links) which allow nodes to exchange
data through the links. The networks can be modeled mathematically as a graph G(V ;E),
where V denotes the collection of nodes and E denotes the collection of links connecting the
selected pairs of nodes. In the simplest case, a network has two states: up or down. However,
in a general case, depending on how the states of a network are defined, the network may
have several states. A network with several states is called a multi-state network. Multi-
state networks have extensive applications in various areas of reliability and other disciplines.
From a mathematical point of view, the states of a multi-state network can be denoted by
K = 0, 1, . . . ,M , where K = 0 is used to show the complete failure of the network and
K = M is used to show the perfect functioning of the network. There is an extensive literature
on the reliability and stochastic properties of multi-state networks and systems under different
conditions. Among others, Lisnianski and Levitin [23] studied the tools for the reliability
assessment and optimization of systems having several states. Huang et al. [17] and Zuo and
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Tian [34] proposed generalizations for the multi-state k-out-of-n systems and presented some
algorithms for assessing the reliability of the system. Tian et al. [30] presented reliability
bounds for the multi-state k-out-of-n systems. Zhao and Cui [33] evaluated the distribution
of states in a generalized multi-state k-out-of-n system. Eryilmaz [6] investigated the mean
residual lifetime of multi-state k-out-of-n systems. Eryilmaz and Xie [11] considered three-
state k-out-of-n systems made up of independent and nonidentical components and studied
marginal and joint survival functions for the lifetimes of two different k-out-of-n systems.

Among various approaches introduced to explore the reliability and ageing properties of the
networks, one approach is based on the concept of the so-called signature (or D-spectrum) (see,
for example, [31] and [32] and the references therein for a review of different approaches). The
concept of the signature, which is a topological invariant of the network design, has proven
useful in the analysis of the network performance particularly for comparisons between different
network structures. Consider a network (system) which includes n components where we
assume that the component lifetimes are independent and identically distributed (i.i.d.) random
variables X1, X2, . . . , Xn with a common continuous distribution function F . Assuming that
T = φ(X1, . . . , Xn)denotes the network lifetime, the signature vector associated to the network
is a probability vector s = (s1, s2, . . . , sn), in which the ith element is defined as

si = P(T = Xi : n), i = 1, 2, . . . , n,

where Xi : n is the ith ordered random variable among X1, . . . , Xn. For more details on
signatures and their applications in the study of reliability of systems, see, for example, [21],
[25], [27], and [28]. The notion of the signature has been extended to single-step multi-state
networks by Gertsbakh and Shpungin [13]. Recall that a single-step network is a network such
that the failure of one component changes the network state at most by one. Throughout the
paper we are dealing with a single-step network consisting of n links where we assume that the
network has three states. When the network is in the up state (perfect functioning), we show its
state by K = 2, when the network is in partial performance, we use K = 1, and with K = 0,
we mean that the network is down. Further, in the sequel the nodes are assumed to be absolutely
reliable and whenever we assume that the components of a network fail, we mean that the links
of the network fail. Under the assumption that the network components have i.i.d. lifetimes,
we denote by X1 : n ≤ X2 : n ≤ · · · ≤ Xn : n the ordered lifetimes of the components. Assume
that the network starts to operate at time t = 0 where it is in state K = 2. Let the random
variable T1 denote the time that the network enters from state K = 2 into state K = 1 and the
random variable T denote the network lifetime, i.e. the first time that the network moves into
state K = 0. Let us consider, in a three-state network, a probability matrix S with elements
defined as

si,j = P(T1 = Xi : n, T = Xj : n) = ni,j

n! , 1 ≤ i < j ≤ n,

whereni,j represents the number of permutations in which the ith and the j th component failures
change the network state fromK = 2 toK = 1 and fromK = 1 toK = 0, respectively. Then
the matrix S is known as the signature matrix and si,j is called the two-dimensional signature
(see [13]). It should be noted that the calculation of the two-dimensional signature is only
dependent on the network structure and does not depend on the distribution of the component
lifetimes. Recently, Gertsbakh et al. [15] obtained several results on the two-dimensional
signature. Levitin et al. [20] used the multi-dimensional signature to evaluate the expected
damage associated with disintegrating networks that arise from an intentional attack. Ashrafi
and Asadi [2], [3] have studied several properties of the lifetimes of three-state networks using
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the signature matrix S under different conditions. Navarro et al. [26] introduced a new variant
of the two-dimensional signature for two systems having shared components.

The objective of the present paper is to investigate the stochastic and ageing properties of
the number of failed components of a single-step three-state network with signature matrix S.
To be more specific, under the assumption that the network lifetimes T1 and T are in the
given conditions, we are interested in calculating the probability of the number of components
that have failed in an operating network. Computing the probability of the number of failed
components in an operating network is not only important for engineers and network designers
to plan maintenance policies but is also important in designing optimized networks. Recent
literature has dealt with the number of failed (or working) components in two-state systems.
Asadi and Berred [1] studied the distribution of the number of failed components in a binary
coherent system. Eryilmaz [7] studied the probability and expectation of the number of working
components in a consecutive k-out-of-n system when the system is operating at time t . Eryilmaz
[8] explored the properties of the expected number of working components in weighted k-out-
of-n systems. Eryilma [9] and Kelkinnama et al. [19] investigated the probability of the number
of failed components in a binary system having exchangeable components. Ling and Li [22]
studied the effect of the random environment on the number of working components of a binary
system having heterogeneous components. Eryilmaz [10] considered a three-state system where
the components of the system are also assumed to have three states. The cited author calculated
the mean number of components that are in the up state or the partial performance state after
the failure of the system.

The rest of the paper is organized as follows. In Section 2 we consider a three-state network
described as above. We assume that the network is inspected at two time instants t1 and
t2 (t1 < t2). We further assume that at inspection time instants t1 and t2, it is known that
T1 ∈ A1(t1, t2) and T ∈ A2(t1, t2), where A1 and A2 are subsets of [0,∞) depending on the
values of t1 and t2. Under these conditions, we obtain the probability that at time t1 there are k
failed components and at time t2 there are l failed components in the network. Under several
choices for A1(t1, t2) and A2(t1, t2), the proposed conditional probabilities are calculated in
terms of the signature matrix and the common distribution function of the component lifetimes.
Some stochastic and ageing properties of the proposed probabilities are studied in this section.
In Section 3, under some age replacement policies, two applications of the proposed conditional
probabilities are presented. In Section 4 we summarize the achievements of this paper and
present some concluding remarks. Throughout the paper, several illustrative examples are also
provided.

2. The probability of the number of failed components

Suppose that X1, . . . , Xn denote the component lifetimes of a network made up of n
components, where the Xi’s are assumed to be i.i.d. with a common continuous distribution
function F(x). Suppose that the network is inspected at time instants t1 and t2 (t1 < t2). Let us
assume that the operator of the network has some information about the states of the network
at time instants t1 and t2. For instance, the operator may realize that T1 ∈ A1 = A1(t1, t2) and
T ∈ A2 = A2(t1, t2), where A1 and A2 are subsets of [0,∞). Let N(t) denote the number of
failed components in [0, t]. Then we are interested in calculating the conditional probabilities
in the following form:

pk,l(A1, A2) = P(N(t1) = k,N(t2) = l | T1 ∈ A1, T ∈ A2), 0 ≤ k ≤ l ≤ n.
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Among the many different special cases that can be considered for A1 and A2, we consider the
following cases.

(I) Assume that at time instants t1 and t2 the network is in states K = 2 and K = 1,
respectively. In this case, A1 = (t1, t2) and A2 = (t2,∞). Then pk,l(A1, A2), denoted
by pk,l(t1, t2), is given by

pk,l(t1, t2) = P(N(t1) = k,N(t2) = l | t1 < T1 < t2, T > t2), 0 ≤ k < l ≤ n− 1.

(II) Assume that at time t1 the network is in state K = 2, and at time t2 it is functioning. In
this case, A1 = (t1,∞) and A2 = (t2,∞), and pk,l(A1, A2), denoted by qk,l(t1, t2), is
given by

qk,l(t1, t2) = P(N(t1) = k,N(t2) = l | T1 > t1, T > t2),

0 ≤ k ≤ n− 2, k ≤ l ≤ n− 1.

(III) Suppose that at both time instants t1 and t2 the state of the network is K = 1. In this
case, A1 = (0, t1) and A2 = (t2,∞), and pk,l(A1, A2), denoted by rk,l(t1, t2), is given
by

rk,l(t1, t2) = P(N(t1) = k,N(t2) = l | T1 < t1, T > t2), 1 ≤ k ≤ l ≤ n− 1.

In the following theorem, pk,l(t1, t2), qk,l(t1, t2), and rk,l(t1, t2) are computed in terms of
the distribution function F and the signature matrix S.

Theorem 1. Consider a network including n i.i.d. components. Let T1 denote the time that
the network stays in state K = 2 and T denote the lifetime of the network. Assume that F(x)
denotes the common distribution of the component lifetimes and S denotes the signature matrix
of the network.

(i) If αk,l = ∑l
i=k+1

∑n
j=l+1si,j then, for 0 ≤ k < l ≤ n− 1,

pk,l(t1, t2) = αk,lck,l,nF
k(t1)(F (t2)− F(t1))

l−kF̄ n−l (t2)∑n−2
i=0

∑n−1
j=i+1 αi,j ci,j,nF

i(t1)(F (t2)− F(t1))j−i F̄ n−j (t2)
,

where ck,l,n = n!/k! (l − k)! (n− l)!.
(ii) If βk,l = ∑n−1

i=k+1
∑n
j=max{i,l}+1si,j then, for 0 ≤ k ≤ n− 2, k ≤ l ≤ n− 1,

qk,l(t1, t2) = βk,lck,l,nF
k(t1)(F (t2)− F(t1))

l−kF̄ n−l (t2)∑n−2
i=0

∑n−1
j=i βi,j ci,j,nF i(t1)(F (t2)− F(t1))j−i F̄ n−j (t2)

.

(iii) If γk,l = ∑k
i=1

∑n
j=l+1 si,j then, for 1 ≤ k ≤ l ≤ n− 1,

rk,l(t1, t2) = γk,lck,l,nF
k(t1)(F (t2)− F(t1))

l−kF̄ n−l (t2)∑n−1
i=1

∑n−1
j=i γi,j ci,j,nF i(t1)(F (t2)− F(t1))j−i F̄ n−j (t2)

.

Proof. We prove part (i). The proofs of (ii) and (iii) are similar to (i) and, hence, are omitted.
First, we should note that the event (N(t) = r) is equivalent to (Xr : n ≤ t < Xr+1 : n). Hence,
we can write

pk,l(t1, t2) = P(T1 > t1, T1 < t2 < T,Xk : n ≤ t1 < Xk+1 : n,Xl : n ≤ t2 < Xl+1 : n)
P(t1 < T1 < t2, T > t2)

.
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We have

P(T1 > t1, T1 < t2 < T,Xk : n ≤ t1 < Xk+1 : n,Xl : n ≤ t2 < Xl+1 : n)

=
n−1∑
i=1

n∑
j=i+1

P(T1 = Xi : n, T = Xj : n)P(T1 > t1, T1 < t2 < T,Xk : n ≤ t1 < Xk+1 : n,

Xl : n ≤ t2 < Xl+1 : n | T1 = Xi : n, T = Xj : n)

=
l∑

i=k+1

n∑
j=l+1

si,jP(Xi : n > t1, Xi : n < t2 < Xj : n,Xk : n ≤ t1 < Xk+1 : n,

Xl : n ≤ t2 < Xl+1 : n)

=
l∑

i=k+1

n∑
j=l+1

si,jP(Xk : n ≤ t1 < Xk+1 : n,Xl : n ≤ t2 < Xl+1 : n)

= ck,l,nF
k(t1)(F (t2)− F(t1))

l−kF̄ n−l (t2)
l∑

i=k+1

n∑
j=l+1

si,j

= αk,lck,l,nF
k(t1)(F (t2)− F(t1))

l−kF̄ n−l (t2), (1)

where the second equality is obtained from the fact that the event {T1 = Xi : n, T = Xj : n} does
not depend on the distribution of the component lifetimes and it only depends on the network
structure. On the other hand, it can be shown that, for 0 ≤ t1 < t2,

P(Xi : n > t1, Xi : n < t2 < Xj : n) =
i−1∑
k=0

j−1∑
l=i

ck,l,nF
k(t1)(F (t2)− F(t1))

l−kF̄ n−l (t2). (2)

Hence, from (2) and similar to the steps we used to obtain (1), it can be shown that

P(T1 > t1, T1 < t2 < T ) =
n−2∑
k=0

n−1∑
l=k+1

αk,lck,l,nF
k(t1)(F (t2)− F(t1))

l−kF̄ n−l (t2).

Thus, the proof is complete. �

Remark 1. Alternative forms to represent the conditional probabilities in the above theorem
are, respectively, as follows:

pk,l(t1, t2) = αk,lck,l,nϕ
k(t1, t2)ξ

l(t1, t2)∑n−2
k=0

∑n−1
l=k+1 αk,lck,l,nϕ

k(t1, t2)ξ l(t1, t2)
, 0 ≤ k < l ≤ n− 1,

qk,l(t1, t2) = βk,lck,l,nϕ
k(t1, t2)ξ

l(t1, t2)∑n−1
k=0

∑n−1
l=k βk,lck,l,nϕk(t1, t2)ξ l(t1, t2)

, 0 ≤ k ≤ l ≤ n− 1,

rk,l(t1, t2) = γk,lck,l,nϕ
k(t1, t2)ξ

l(t1, t2)∑n−1
k=1

∑n−1
l=k γk,lck,l,nϕk(t1, t2)ξ l(t1, t2)

, 1 ≤ k ≤ l ≤ n− 1,

where ϕ(t1, t2) = F(t1)/(F (t2)− F(t1)) and ξ(t1, t2) = (F̄ (t1)− F̄ (t2))/F̄ (t2).
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In order to obtain the main results, we introduce the matrices A, B, and C for which the
nonzero elements are, respectively, defined as

αk,l =
l∑

i=k+1

n∑
j=l+1

si,j , 0 ≤ k < l ≤ n− 1, (3)

βk,l =
n−1∑
i=k+1

n∑
j=max{i,l}+1

si,j , 0 ≤ k ≤ n− 2, k ≤ l ≤ n− 1, (4)

γk,l =
k∑
i=1

n∑
j=l+1

si,j , 1 ≤ k ≤ l ≤ n− 1. (5)

We also introduce probability matrices P (t1, t2), Q(t1, t2), and R(t1, t2) such that their elements
are defined, respectively, aspk,l(t1, t2) for 0 ≤ k < l ≤ n−1, qk,l(t1, t2) for 0 ≤ k ≤ n−2, k ≤
l ≤ n− 1, and rk,l(t1, t2) for 1 ≤ k ≤ l ≤ n− 1.

Remark 2. Throughout this paper, it is clear that the calculation of the conditional probabilities
and verification of the conditions in the theorems depend on the calculations of the two-
dimensional signature. It should be mentioned that the computation of the two-dimensional
signature, in networks with a large number of components, is rather involved and, hence, a
challenging problem. In recent years, attempts have been made in the literature to propose
alternative methods for assessing the two-dimensional signature based on computational alg-
orithms or approaches such as decomposition of the systems to subsystems. For different
computational methods of the one-dimensional signature, we refer the reader to, for example,
[5], [12], [14], and [24]. A computational algorithm for the two-dimensional signature was
discussed by Gertsbakh and Shpungin [13]. The authors have proposed a Monte Carlo procedure
to approximate the two-dimensional signature in an n-component network (see also [20]).
Da and Hu [4] proposed an efficient method for computing the two-dimensional signature for
the n-component systems consisting of independent modules. Using computational approaches
mentioned above, one can calculate the quantities related to the two-dimensional signature si,j
such as αi.j , βi,j , and γi,j .

Let us consider the following example.

Example 1. Consider the bridge network with the structure shown in Figure 1. This network
consists of four nodes, s, a, b, t and we assume the nodes s and t are terminals. The network
includes five links, 1, 2, 3, 4, 5 that are subject to failure and each link has capacity one.

Figure 1: The bridge network.

https://doi.org/10.1017/jpr.2017.52 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.52


The failure probability of components in three-state networks 1057

We define the states of the network as the maximal flow that can be transferred from s to t .
Obviously, the network is in stateK = 0 if there is no connection between s and t . We assume
that it is in state K = 1 if a link among the links 1, 2, 4, and 5 fails, and is in state K = 2
if either all five links function or link 3 fails and the other links function. Hence, the positive
elements of the signature matrix associated to this network are as follows (for details of the
calculations, see [2]):

s1,2 = 1
5 , s1,3 = 7

15 , s1,4 = 2
15 , s2,3 = 2

15 , s2,4 = 1
15 .

Hence, it can be shown that the nonzero elements of A are given as

α0,1 = 4
5 , α0,2 = 4

5 , α0,3 = 1
5 , α1,2 = 1

5 , α1,3 = 1
15 .

Let the link lifetimes be independent exponential random variables with mean 1. Then we have
ϕ(t1, t2) = (1 − e−t1)/(e−t1 − e−t2) and ξ(t1, t2) = e−(t1−t2) − 1 and, hence, the matrix of
failure probabilities P = (pk,l(t1, t2)), k = 0, 1, 2, 3, l = 1, 2, 3, 4, can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2

c(t1, t2)

4ξ(t1, t2)

c(t1, t2)

ξ2(t1, t2)

c(t1, t2)
0

0
2ϕ(t1, t2)ξ(t1, t2)

c(t1, t2)

ϕ(t1, t2)ξ
2(t1, t2)

c(t1, t2)
0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where

c(t1, t2) = 2 + 4ξ(t1, t2)+ ξ2(t1, t2)+ 2ϕ(t1, t2)ξ(t1, t2)+ ϕ(t1, t2)ξ
2(t1, t2).

In Figures 2 and 3 we present the plots of p1,2(t1, t2) and p1,3(t1, t2), respectively. From
Figure 2, we see that p1,2(t1, t2) is increasing in t1 and decreasing in t2. Also, in Figure 3, we
see that p1,3(t1, t2) as a function of t1 has a maximum and as a function of t2 is increasing.

In the following we give results that compare the probabilities of the number of failed compo-
nents in two networks. Before that, we need to state the following definitions. Definition 1(i)
is a discrete version of the totally positive order presented in [18]. Also, in the following
definition, for any x and y, we employ the notation x ∧ y for min{x, y} and the notation x ∨ y
for max{x, y}. For more details about stochastic orderings, see [29].

Definition 1. (i) Let P = (pij ) and Q = (qij ), i = 1, . . . , n, j = 1, . . . , m, be two non-
negative matrices. We say that P is less than Q in the totally positive order (denoted by
P ≤TP Q) if, for every i1, i2 = 1, . . . , n, j1, j2 = 1, . . . , m,

pi1,j1qi2,j2 ≤ p(i1,j1)∧(i2,j2)q(i1,j1)∨(i2,j2),

where (i1, j1) ∧ (i2, j2) = (i1 ∧ i2, j1 ∧ j2) and (i1, j1) ∨ (i2, j2) = (i1 ∨ i2, j1 ∨ j2).

(ii) Let A and B be two subsets on (−∞,∞) and K be a nonnegative function defined on
A×B. We say that K is totally positive of order 2 (TP2) if, for all a1 < a2, b1 < b2, (ai ∈ A,
bi ∈ B, i = 1, 2),

K(a2, b2)K(a1, b1) ≥ K(a1, b2)K(a2, b1).
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Figure 2: The plots of (a) p12(1, t2), (b) p12(t1, 3), and (c) p12(t1, t2).

If, in Definition 1(i), we assume that P = (pij ) and Q = (qij ) are probability matrices,
then P is said to be less than Q in the likelihood ratio order, denoted by P ≤lr Q.

Definition 2. Let the random variableX, respectively Y , have distribution function F , respec-
tively G, survival functions F̄ , respectively Ḡ, and density function f , respectively g.

(i) We say that F is less thanG in the hazard rate order, denoted by F ≤hr G, if Ḡ(x)/F̄ (x)
is an increasing function of x.

(ii) We say that F is less than G in the reversed hazard rate order, denoted by F ≤rh G, if
G(x)/F (x) is an increasing function of x.

(iii) We say that F is less than G in the likelihood ratio order, denoted by F ≤lr G, if
g(x)/f (x) is an increasing function of x.

Theorem 2. Consider two networks each including n i.i.d. components, where the component
lifetimes of the two networks have the same distribution function. Let S1 and S2 be the
corresponding signature matrices and the matrices Ai , Bi , and Ci , i = 1, 2, have the
corresponding elements as defined in (3), (4), and (5), i = 1, 2, respectively. Suppose that
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Figure 3: The plots of (a) p13(1, t2), (b) p13(t1, 3), and (c) p13(t1, t2).

Pi (t1, t2), Qi (t1, t2), and Ri (t1, t2) are the probability matrices corresponding to Ai , Bi , and
Ci , i = 1, 2, respectively.

(i) If A1 ≤TP A2 then P1(t1, t2) ≤lr P2(t1, t2).

(ii) If B1 ≤TP B2 then Q1(t1, t2) ≤lr Q2(t1, t2).

(iii) If C1 ≤TP C2 then R1(t1, t2) ≤lr R2(t1, t2).

Proof. We prove part (i). The proofs of (ii) and (iii) are similar and, hence, are omitted.
Suppose that Pi (t1, t2) has the elements pi,k,l(t1, t2), i = 1, 2. To prove the result, we need to
show that, for every k1, k2 ∈ {0, . . . , n− 2}, l1, l2 ∈ {1, . . . , n− 1},

p1,k1,l1(t1, t2)p2,k2,l2(t1, t2) ≤ p1,k1∧k2,l1∧l2(t1, t2)p2,k1∨k2,l1∨l2(t1, t2).

It is equivalent to show that

α1,k1,l1ck1,l1,nα2,k2,l2ck2,l2,n ≤ α1,k1∧k2,l1∧l2ck1∧k2,l1∧l2,nα2,k1∨k2,l1∨l2ck1∨k2,l1∨l2,n.

This inequality holds from the fact that ck,l,n is TP in k and l and A1 ≤TP A2. �
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Example 2. Consider again the network shown in Figure 1 and assume that links are subject
to failure. Let us define the following two cases for the network states.

(i) First, assume that the network states are as described in Example 1. In this case, we have
derived the nonzero elements of A in that example. It can be also shown that the nonzero
elements of B and C are, respectively, given as

β0,0 = 1, β0,1 = 1, β0,2 = 4
5 , β0,3 = 1

5 ,

β1,1 = 1
5 , β1,2 = 1

5 , β1,3 = 1
15 ,

γ1,1 = 4
5 , γ1,2 = 3

5 , γ1,3 = 2
15 , γ2,2 = 4

5 , γ2,3 = 1
5 , γ3,3 = 1

5 .

(ii) Let us now assume that the nodes s, t , and b are terminals. In this case, we suppose that
the network remains in state K = 2 if the three terminals are connected, it is in state
K = 1 if two terminals among three are connected, and, finally, it is in stateK = 0 if the
three terminals are disconnected. For instance, when links 4 and 5 fail, terminals s and b
still have a connection and, hence, the network state is K = 1. The positive elements of
the signature matrix for such a network are

s∗2,4 = 2
15 , s∗2,5 = 1

15 , s∗3,4 = 7
15 , s∗3,5 = 7

30 , s∗4,5 = 1
10 .

It can be shown that the nonzero elements of A∗, B∗, and C∗ are, respectively, given as

α∗
0,2 = 1

5 , α∗
0,3 = 9

10 , α∗
0,4 = 2

5 ,

α∗
1,2 = 1

5 , α∗
1,3 = 9

10 , α∗
1,4 = 2

5 ,

α∗
2,3 = 7

10 , α∗
2,4 = 1

3 , α∗
3,4 = 1

10 ,

β∗
0,0 = β∗

0,1 = β∗
0,2 = β∗

0,3 = β∗
1,1 = β∗

1,2 = β∗
1,3 = 1, β∗

0,4 = β∗
1,4 = 2

5 ,

β∗
2,2 = β∗

2,3 = 4
5 , β∗

2,4 = 1
3 , β∗

3,3 = β∗
3,4 = 1

10 ,

γ ∗
2,2 = 1

5 , γ ∗
2,3 = 1

5 , γ ∗
2,4 = 1

15 , γ ∗
3,3 = 9

10 , γ ∗
3,4 = 3

10 , γ ∗
4,4 = 2

5 .

Let P (t1, t2), Q(t1, t2), and R(t1, t2) be the probability matrices of the number of failed
components of the network presented in (i) and P ∗(t1, t2), Q∗(t1, t2), and R∗(t1, t2) be the
probability matrices corresponding to the network described in (ii). Then, we have shown using
MATLAB® software that A ≤TP A∗, B ≤TP B∗, and C ≤TP C∗. Thus, from Theorem 2, we
conclude that P (t1, t2) ≤lr P ∗(t1, t2), Q(t1, t2) ≤lr Q∗(t1, t2), and R(t1, t2) ≤lr R∗(t1, t2).

In the following theorem, under some conditions on the distribution functions of the compo-
nent lifetimes of two networks, we compare the probabilities of the number of failed components
of the networks.

Theorem 3. Consider two networks each including n i.i.d. components with distribution func-
tions F1 and F2, respectively. Assume that the two networks have the same structure and
Pi (t1, t2), Qi (t1, t2), and Ri (t1, t2) are the probability matrices corresponding to Fi, i = 1, 2.
Let F1 ≤lr F2.

(i) If αk,l is TP2 in k and l then P1(t1, t2) ≥lr P2(t1, t2).

(ii) If βk,l is TP2 in k and l then Q1(t1, t2) ≥lr Q2(t1, t2).

(iii) If γk,l is TP2 in k and l then R1(t1, t2) ≥lr R2(t1, t2).
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Proof. We only prove the result in (i). Parts (ii) and (iii) can be proved similarly. We have
shown in Remark 1 that the elements of matrix Pi (t1, t2) can be written as

pi,k,l(t1, t2)

= αk,lck,l,nϕ
k
i (t1, t2)ξ

l
i (t1, t2)∑n−2

k=0
∑n−1
l=k+1 αk,lck,l,nϕ

k
i (t1, t2)ξ

l
i (t1, t2)

, 0 ≤ k < l ≤ n− 1, 0 ≤ t1 < t2,

where ϕi(t1, t2) = Fi(t1)/(Fi(t2)−Fi(t1)) and ξi(t1, t2) = (F̄i(t1)− F̄i(t2))/F̄i(t2), i = 1, 2.
From Theorem 1.C.1 of [29], if F1 ≤lr F2 then F1 ≤hr F2 and F1 ≤rh F2. It can be seen that
if F1 ≤hr F2 then ξ1(t1, t2) ≥ ξ2(t1, t2) and if F1 ≤rh F2 then ϕ1(t1, t2) ≥ ϕ2(t1, t2), where
t1 < t2. Hence, for any k1, k2, l1, l2 ∈ {1, . . . , n} and t1 < t2, we have

ϕ
k1
1 (t1, t2)ξ

l1
1 (t1, t2)ϕ

k2
2 (t1, t2)ξ

l2
2 (t1, t2)

≤ ϕ
(k1∨k2)
1 (t1, t2)ξ

(l1∨l2)
1 (t1, t2)ϕ

(k1∧k2)
2 (t1, t2)ξ

(l1∧l2)
2 (t1, t2). (6)

Thus, from the fact that ck,l,n is TP2 in k and l and the assumption that αk,l is TP2 in k and l,
we conclude, from (6), that, for every k1, k2 ∈ {0, . . . , n− 2}, l1, l2 ∈ {1, . . . , n− 1},

p1,k1,l1(t1, t2)p2,k2,l2(t1, t2) ≤ p1,k1∨k2,l1∨l2(t1, t2)p2,k1∧k2,l1∧l2(t1, t2), t1 < t2.

Thus, the proof is completed. �
In the following example we provide an application of the above theorem.

Example 3. Consider again Example 2. Suppose that two networks have the same structures
as Example 2(ii). Let the link lifetimes of the networks have exponential distributions with
survival functions

F̄1(t) = e−λ1t , t > 0, λ1 > 0, F̄2(t) = e−λ2t , t > 0, λ2 > 0.

We see that if λ2 < λ1 then F1 ≤lr F2. Using MATLAB, it can be shown that αk,l , βk,l , and γk,l
are TP2 in k and l. Then we conclude fromTheorem 3 that for the bridge network, under the given
conditions, P1(t1, t2) ≥lr P2(t1, t2), Q1(t1, t2) ≥lr Q2(t1, t2), and R1(t1, t2) ≥lr R2(t1, t2).

Harris [16] defined the notion of increasing failure rate (IFR) for the bivariate random
vectors in the continuous setting. In the following definition, a discrete version of the concept
of bivariate increasing failure rate (BIFR) is given.

Definition 3. Let pi,j , i, j = 0, 1, . . . , be the bivariate mass function with survival function
P̄i,j . We say that pi,j is BIFR if P̄i,j is TP2 in i and j and P̄i+m, j+m/P̄i,j is decreasing in i
and j for any m = 1, 2, . . . .

In order to prove our next theorem, we need the following lemma.

Lemma 1. Let ω(t1, t2) = F(t1)/F̄ (t2), 0 < t1 < t2, and αi,j be as defined in (3). Suppose
that

h(i, j) = αi,j ci,j,nω
i(t1, t2)(ω(t2, t2)− ω(t1, t2))

j−i ,

g(k, l) = ∑n−1
j=l h(k, j), l > k, and g∗(k, l) = ∑l−1

i=kh(i, l). If αk,l is TP2 in k and l and
αk+1, l+1/αk,l is decreasing in k and l, where 0 ≤ k < l ≤ n− 1, then g(k + 1, l + 1)/g(k, l)
is decreasing in k and g∗(k + 1, l + 1)/g∗(k, l) is decreasing in l.

https://doi.org/10.1017/jpr.2017.52 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.52


1062 S. ASHRAFI AND M. ASADI

Proof. From the assumption that αk,l is TP2 in k and l, it can be seen that αk+1,l/αk,l is
increasing in l. Also, the assumptions that αk,l is TP2 in k and l and αk+1,l+1/αk,l is decreasing
in k imply that αk+1,l/αk,l is decreasing in k. We have

g(k + 1, l + 1)g(k + 1, l)− g(k + 2, l + 1)g(k, l)

=
n−1∑
j=l+1

n−1∑
i=l

[h(k + 1, j)h(k + 1, i)− h(k + 2, j)h(k, i)]

=
n−2∑
j=l

n−1∑
i=l

[h(k + 1, j + 1)h(k + 1, i)− h(k + 2, j + 1)h(k, i)]

=
n−2∑
j=l

[h(k + 1, j + 1)h(k + 1, n− 1)− h(k + 2, j + 1)h(k, n− 1)]

+
n−2∑
j=l

[h(k + 1, j + 1)h(k + 1, j)− h(k + 2, j + 1)h(k, j)]

+
n−3∑
j=l

n−2∑
i=j+1

[h(k + 1, j + 1)h(k + 1, i)+ h(k + 1, i + 1)h(k + 1, j)

− h(k + 2, j + 1)h(k, i)− h(k + 2, i + 1)h(k, j)]. (7)

First, we show that the first summation in (7) is nonnegative. Note that αk+1,l/αk,l and
ck+1,l,n/ck,l,n are decreasing in k and increasing in l. Therefore, we have

h∗
1(k, j, n) = αk+1,j+1ck+1,j+1,nαk+1,n−1ck+1,n−1,n − αk+2,j+1ck+2,j+1,nαk,n−1ck,n−1,n

≥ 0,

which implies that, for 0 < t1 < t2,

h(k + 1, j + 1)h(k + 1, n− 1)− h(k + 2, j + 1)h(k, n− 1)

= h∗
1(k, j, n)ω

2k+2(t1, t2)(ω(t2, t2)− ω(t1, t2))
j+n−2k−2

≥ 0.

Now we show that the second summation in (7) is nonnegative. Note that ck+1, j+1,n/ck,j,n is
decreasing in k. Thus, from the assumption that αk+1, j+1/αk,j is decreasing in k, we have

h∗
2(k, j, n) = αk+1,j+1ck+1,j+1,nαk+1,j ck+1,j,n − αk+2,j+1ck+2,j+1,nαk,j ck,j,n ≥ 0,

and, hence, for 0 < t1 < t2,

h(k + 1, j + 1)h(k + 1, j)− h(k + 2, j + 1)h(k, j)

= h∗
2(k, j, n)ω

2k+2(t1, t2)(ω(t2, t2)− ω(t1, t2))
2j−2k−1

≥ 0.

Finally, we show that the last summation in (7) is nonnegative. In order to do so, let

a = h(k + 2, j + 1)h(k, i), b = h(k + 2, i + 1)h(k, j),

c = h(k + 1, i + 1)h(k + 1, j), d = h(k + 1, j + 1)h(k + 1, i).
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It can be shown that d ≥ a because αk+1,j /αk,j and ck+1,j,n/ck,j,n are decreasing in k
and increasing in j . Also, since αk+1, j+1/αk,j and ck+1, j+1,n/ck,j,n are decreasing in k
and j , it can be seen that d ≥ b and cd ≥ ab. Therefore, we can write d + c − a − b =
(1/d)[(d − a)(d − b)+ cd − ab] ≥ 0, which implies that

h(k + 1, j + 1)h(k + 1, i)+ h(k + 1, i + 1)h(k + 1, j)− h(k + 2, j + 1)h(k, i)

− h(k + 2, i + 1)h(k, j)

≥ 0.

Hence, we conclude that

g(k + 1, l + 1)g(k + 1, l) ≥ g(k + 2, l + 1)g(k, l),

which implies that g(k + 1, l + 1)/g(k, l) is decreasing in k. The proof for the case that
g∗(k + 1, l + 1)/g∗(k, l) is decreasing in l is the same as the above and, hence, is omitted.
Thus, the proof is completed. �

Using Lemma 1, we can prove the following result.

Theorem 4. Let αk,l , βk,l , and γk,l be defined as in (3), (4), and (5), respectively.

(i) If αk,l is TP2 in k, l and αk+1, l+1/αk,l is decreasing in k and l, then pk,l(t1, t2), 0 ≤ k <

l ≤ n− 1, is BIFR.

(ii) If βk,l is TP2 in k, l and βk+1, l+1/βk,l is decreasing in k and l, then qk,l(t1, t2), 0 ≤ k ≤
n− 2, k ≤ l ≤ n− 1, is BIFR.

(iii) If γk,l is TP2 in k, l and γk+1,l+1/γk,l is decreasing in k and l, then rk,l(t1, t2), 1 ≤ k ≤
l ≤ n− 1, is BIFR.

Proof. We prove (i). Parts (ii) and (iii) can be proved similarly and, hence, are omitted.
Consider h(i, j) and g(i, j) as defined in Lemma 1 and P̄k,l(t1, t2) as the survival function of
pk,l(t1, t2), which is given by

P̄k,l(t1, t2) =
∑n−2
i=k+1

∑n−1
j=max{l,i}+1 h(i, j)∑n−2

i=0
∑n−1
j=i+1 h(i, j)

.

In order to prove the theorem, it is enough to prove that P̄k+1, l+1(t1, t2)/P̄k,l(t1, t2) is decreasing
in k, l for every k, l ∈ {0, 1, . . . , n − 2}. First, we assume that l ≥ k + 1 and show that
P̄k+1,l+1(t1, t2)/P̄k,l(t1, t2) is decreasing in k. That is, for l ≥ k + 1, we show that

P̄k+1, l+1(t1, t2)P̄k+1, l(t1, t2)− P̄k+2, l+1(t1, t2)P̄k,l(t1, t2) ≥ 0. (8)

Let m = max{i + 1, l + 2} and m∗ = max{r, l}. It is equivalent to show that

n−2∑
i=k+2

n−1∑
j=m

n−2∑
r=k+2

n−1∑
s=m∗+1

h(i, j)h(r, s)−
n−2∑
i=k+3

n−1∑
j=m

n−2∑
r=k+1

n−1∑
s=m∗+1

h(i, j)h(r, s) ≥ 0.
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On the other hand, we have

n−2∑
i=k+2

n−1∑
j=m

n−2∑
r=k+2

n−1∑
s=m∗+1

h(i, j)h(r, s)−
n−2∑
i=k+3

n−1∑
j=m

n−2∑
r=k+1

n−1∑
s=m∗+1

h(i, j)h(r, s)

=
n−2∑
j=l+1

n−2∑
r=k+2

n−1∑
s=m∗+1

h(k + 2, j + 1)h(r, s)

−
n−1∑
j=l+1

n−3∑
r=k+2

n−2∑
s=m∗+1

h(r + 1, s + 1)h(k + 1, j)

= g(k + 2, l + 2)h(n− 2, n− 1)

+
n−3∑
r=l+1

n−2∑
s=r+1

r∑
j=l+1

[h(k + 2, j + 1)h(r, s)− h(r + 1, s + 1)h(k + 1, j)] (9)

+
n−3∑
r=k+2

[g(k + 2,m∗ + 2)g(r,m∗ + 1)− g(r + 1,m∗ + 2)g(k + 1,m∗ + 1)] (10)

+
n−3∑
r=k+2

[g(k + 2, l + 2)− g(k + 2,m∗ + 2)]h(r, n− 1). (11)

It can be shown that h(i + 1, j + 1)/h(i, j) is decreasing in i and j because αi+1, j+1/αi,j
and ci+1, j+1,n/ci,j,n are decreasing in i and j . Thus, (9) is nonnegative. From Lemma 1,
g(k + 1, l + 1)/g(k, l) is decreasing in k, which implies that (10) is nonnegative. Also,
(11) is nonnegative because g(k, l) is decreasing in l. Therefore, we have the inequality
in (8), i.e. P̄k+1, l+1(t1, t2)/P̄k,l(t1, t2) is decreasing in k. Using similar steps, one can show
that when l ≤ k, P̄k+1, l+1(t1, t2)/P̄k,l(t1, t2) is also decreasing. We omit the proof that
P̄k+1, l+1(t1, t2)/P̄k,l(t1, t2) is decreasing in l as it is the same. Finally, it can be shown that if
αk,l is TP2 in k and l then pk,l(t1, t2) is TP2 in k and l, which, in turn, implies that P̄k,l(t1, t2)
is TP2 in k and l. This completes the proof of theorem. �
Example 4. Gertsbakh and Shpungin [13] considered a network with five nodes and ten links
shown in Figure 4. The authors assumed that the links are subject to failure and defined the
states of the network as follows. If all nodes are in connection, the network is in state K = 2,
if nodes are separated into two disjoint sets, it is in state K = 1, and if the nodes are divided
into at least three disjoint sets, it is in state K = 0.

They estimated the positive elements of the signature matrix (S) as

s4,7 = 0.0047, s4,8 = 0.0194, s5,7 = 0.0191, s5,8 = 0.0751,

s6,7 = 0.0596, s6,8 = 0.227, s7,8 = 0.5951.

It can be shown that the nonzero elements of the estimated matrix A are as follows. For
k = 0, 1, 2, 3,

αk,4 = 0.0241, αk,5 = 0.1183, αk,6 = 0.4049, αk,7 = 0.9166,

α4,5 = 0.0942, α4,6 = 0.3808, α4,7 = 0.8972,

α5,6 = 0.2866, α5,7 = 0.8221, α6,7 = 0.5951.
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Figure 4: Network with five terminals.

Also, the positive elements of the estimated matrix B are as follows: βk,l = 1 for k =
0, 1, 2, 3, l = 0, . . . , 6, l ≥ k, and

βk,7 = 0.9166, k = 0, 1, 2, 3, β4,l = 0.9759, l = 4, 5, 6,

β4,7 = 0.8972, β5,5 = β5,6 = 0.8817, β5,7 = 0.8221, β6,6 = β6,7 = 0.5951.

Using MATLAB, it can be seen that αk,l and βk,l are TP2 in k and l. Also, it follows
that αk+1, l+1/αk,l is decreasing in k and l, where k = 0, 1, . . . , 5, and l = 4, 5, 6, 7, l > k.
On the other hand, βk+1, l+1/βk,l is decreasing in k and l, where k = 0, 1, . . . , 5, and l =
0, 1, . . . , 6, l ≥ k. Thus, from Theorem 4, pk,l(t1, t2) and qk,l(t1, t2) are BIFR.

3. Optimal age replacement problems

In this section we present two optimal age replacement policies in order to provide some
illustrative examples as applications of the conditional probabilities given in Section 2.

Policy 1. In the first policy, we deal with a single-step three-state n-component network
described in Section 2. We assume that an operator has inspected the network at time t1 and
he/she has realized that the network is in the state K = 1. Let the operator consider another
inspection time t2 after t1. It is clear that at t2 the network would be either in state K = 1 or it
has already failed before t2. If the network has failed before t2, the operator decides to replace
all components of the network by new ones. If the network is in state K = 1 at time t2, then
the operator decides just to replace the failed components by new ones. Now, an interesting
problem is to find the optimum replacement time t∗2 that minimizes the mean cost per unit of
time. It is clear that t∗2 depends on t1. We define a cost function as follows. Let c1 be the cost of
replacement of a component by a new one, c2 be the cost of inspection of a nonfailed component,
and c3 be the cost of network failure. Suppose also thatψ(t1, t2) = E(N(t2) | T1 < t1, T > t2).
Then it can be seen from Theorem 1(iii) that

ψ(t1, t2) =
∑n−1
l=1

∑l
k=1 lck,l,nγk,lF

k(t1)(F (t2)− F(t1))
l−kF̄ n−l (t2)∑n−1

i=1
∑n
j=i ci,j,nγi,jF i(t1)(F (t2)− F(t1))j−i F̄ n−j (t2)

, 0 < t1 < t2.

If the network has failed before the inspection time t2 then the total cost is (nc1 + c3). If, at
time t2, it is in state K = 1 then the total expected cost is (ψ(t1, t2)c1 + (n − ψ(t1, t2))c2).
Hence, the expected cost per unit of time can be written as

η1(t1, t2) = P(T < t2 | T1 < t1 < T )(nc1 + c3)+ P(T > t2 | T1 < t1 < T )(ψ(t1, t2)c1 + (n− ψ(t1, t2))c2)

E(min{T , t2} | T1 < t1 < T )

= P(T1 < t1, t1 < T < t2)(nc1 + c3)+ P(T1 < t1, T > t2)(ψ(t1, t2)c1 + (n− ψ(t1, t2))c2)

P(T1 < t1 < T )E(min{T , t2} | T1 < t1 < T )
, (12)

https://doi.org/10.1017/jpr.2017.52 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.52


1066 S. ASHRAFI AND M. ASADI

where

E(min{T , t2} | T1 < t1 < T )

= t1 +
∫ t2
t1

P(T1 < t1, y < T < t2) dy + (t2 − t1)P(T1 < t1, T > t2)

P(T1 < t1 < T )
.

It should be noted that the event {T1 = Xi : n, T = Xj : n} does not depend on the distribution
function of the component lifetimes and only depends on the network structure. Hence, by
applying the law of total probability, the probabilities in the cost function in (12) can be written as

P(T1 < t1, t1 < T < t2)

=
n−1∑
i=1

n∑
j=i+1

P(T1 = Xi : n, T = Xj : n)P(T1 < t1, t1 < T < t2 | T1 = Xi : n, T = Xj : n)

=
n−1∑
i=1

n∑
j=i+1

si,jP(Xi : n < t1, t1 < Xj : n < t2).

Using the same argument, it can be seen that

P(T1 < t1, T > t2) =
n−1∑
i=1

n∑
j=i+1

si,jP(Xi : n < t1, Xj : n > t2)

and

P(T1 < t1 < T ) =
n−1∑
i=1

n∑
j=i+1

si,jP(Xi : n < t1 < Xj : n).

In order to give the next example, we need the following remark.

Remark 3. Suppose that the network is inspected at time t and it is observed that the network
is in state K = 1. In this situation, one might be interested in the following probability:

p∗
i (t) = P(N(t) = i | T1 < t < T ).

Consider pk,l(t1, t2) as defined in Theorem 1(i). Then, using the fact that p∗
i (t) = p0,l(0, t), it

can be seen that

p∗
i (t) = ai

(
n
i

)
φi(t)∑n−1

j=1 aj
(
n
j

)
φj (t)

, i = 1, . . . , n− 1, (13)

where φ(t) = F(t)/F̄ (t) and ar = ∑r
i=1

∑n
j=r+1 si,j . Asadi and Berred [1] studied several

properties of type p∗
i (t). If one decides to replace the failed components by new ones at time t ,

then the expected cost per unit of time can be written as

η2(t) = E(N(t) | T1 < t < T )(c1 − c2)+ nc2

t
,

where E(N(t) | T1 < t < T ) = ∑n−1
i=1 ip

∗
i (t) and p∗

i (t) is defined in (13). It can be seen that
if, in policy 1, t1 = t2 then η1(t1, t2) = η2(t1).
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Figure 5: (a) The plot of η1(t1, t2) and (b) the plot of η1(0.1, t2) for c1 = 1, c2 = 0.2, c3 = 5.

In the next example, the optimal time t∗2 is obtained for different costs.

Example 5. Consider again the network in Example 1. Assume that the link lifetimes are
independent having Weibull distribution with reliability function F̄ (t) = e−t2 . In Table 1 we
present the optimal time t∗2 that minimizes the expected cost per unit of time and η1(t1, t

∗
2 ) for

several time instants t1 and different costs. We see that if the costs c1 or c2 increase then the
optimal time t∗2 increases. Also, it can be seen that when c3 increases then t∗2 decreases.

Suppose that c1 = 1, c2 = 0.2, and c3 = 5. It can be seen from Figure 5(a) that when
t1 < 0.29, the plot of η1(t1, t2) as a function of t2 has a minimum after time t1 (see also
Figure 5(b)). However, when t1 ≥ 0.29 the plot of η1(t1, t2) is increasing in t2 where its
minimum occurs at time t1, i.e. t∗2 = t1 (see also Figures 6(a) and 6(b)).

It can be shown that E(T1) = 0.443 113. It can be seen from Table 1, for several costs that
are presented, if t1 = 0.443 113 then t∗2 = 0.443 113.

Table 1: Optimal values of replacement at time t2.

t1 t∗2 η1(t1, t
∗
2 ) t1 t∗2 η1(t1, t

∗
2 )

c1 = 1, c2 = 0.2, c3 = 5 c1 = 1.5, c2 = 0.2, c3 = 5

0.100 000 0.357 475 9.041 675 245 0.100 000 0.359 082 6 11.659 186 830
0.200 000 0.330 775 8.101 239 037 0.200 000 0.331 330 0 10.476 724 580
0.443 113 0.443 113 4.657 975 252 0.443 113 0.443 113 0 6.158 734 352
1.000 000 1.000 000 2.664 435 858 1.000 000 1.000 000 0 3.704 708 269

c1 = 1, c2 = 0.3, c3 = 5 c1 = 1, c2 = 0.2, c3 = 10

0.100 000 0.401 617 65 9.896 697 384 0.100 000 0.290 752 0 10.710 265 700
0.200 000 0.378 427 50 9.063 875 726 0.200 000 0.256 627 3 8.973 165 093
0.443 113 0.443 113 00 5.486 203 777 0.443 113 0.443 113 0 4.657 975 252
1.000 000 1.000 000 00 2.956 381 375 1.000 000 1.000 000 0 2.664 435 858
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Figure 6: (a) The plot of η1(t1, t2) and (b) the plot of η1(0.5, t2) for c1 = 1, c2 = 0.2, c3 = 5.

In the following, we consider another optimal age replacement problem.
Policy 2. Assume that the network inspection time is t . Clearly, at time t the state of the

network is either K = 2, K = 1, or it has failed before t . If the network has failed before t ,
the operator decides to replace all components by new ones. If it is in state K = 1 then just
the failed components are replaced and if it is in stateK = 2, the operator does not replace any
components. Let c1 be the cost of replacing a component by a new component, c2 be the cost
of inspection of a nonfailed component, c3 be the cost of the network failure, and c4 be the cost
of inspection of the network when it is in stateK = 2. Then the mean cost per unit of time can
be written as

η3(t) = P(T < t)(nc1 + c3)+ (P(T > t)− P(T1 > t))(ψ2(t)c1 + (n− ψ2(t))c2)+ P(T1 > t)c4

E(min{t, T }) ,

where ψ2(t) = E(N(t) | T1 < t < T ) and E(min{t, T }) = ∫ t
0 P(T > x) dx. It can be seen

that

P(T1 > t) =
n∑
i=1

s
(1)
i P(Xi : n > t), P(T > t) =

n∑
i=1

s
(2)
i P(Xi : n > t),

where s(1) = (s
(1)
1 , . . . , s

(1)
n ) and s(2) = (s

(2)
1 , . . . , s

(2)
n ) are the marginal signature vectors

corresponding to signature matrix S, i.e. s(1)i = P(T1 = Xi : n) and s(2)i = P(T = Xi : n). As
an application of this policy, we have the following example.

Example 6. Consider again the network described in Example 2(ii). Let the link lifetimes have
Weibull distribution with reliability function F̄ (t) = e−t2 . In Table 2 we present the optimal
time t∗ that minimizes the expected cost per unit of time and η3(t

∗) for different costs. From
Table 2, we can see that the optimal time t∗ is a decreasing function of costs c1, c2, or c3. Also,
when c1 = 1, c2 = 0.2, and c3 = 5, we see that when c4 increases then t∗ increases.
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Table 2: Optimal values of replacement at time t∗.

c4 t∗ η3(t
∗) c3 t∗ η3(t

∗)
c1 = 1, c2 = 0.2, c3 = 5 c1 = 1, c2 = 0.2, c4 = 1

0.5 0.414 339 1.580 615 480 5 0.508 938 2.566 309 515
1.0 0.508 938 2.566 309 515 7 0.499 970 2.592 069 484
1.5 0.583 638 3.337 885 659 10 0.488 905 2.626 482 095

c1 = 1, c3 = 5, c4 = 1 c2 = 0.2, c3 = 5, c4 = 1

0.2 0.508 938 2.566 309 515 1.0 0.508 938 2.566 309 515
0.5 0.488 236 2.721 760 332 1.5 0.459 862 2.850 504 647
0.7 0.475 294 2.818 013 962 2.0 0.427 409 3.068 872 716

4. Conclusions

In this paper we have dealt with a single-step three-state network with n components (links).
The states of the network are considered as up (K = 2), partial performance (K = 1), and down
(K = 0). The network starts to operate at time t = 0 where it is in stateK = 2. The network is
assumed to stay for a random timeT1 in stateK = 2 and then moves to stateK = 1. The lifetime
of the network is denoted by a random variableT . We have assumed that the network is inspected
at two time instants t1 and t2 (t1 < t2). Under different conditions on the state lifetimes T1
and T , we have calculated the probabilities of the number of components that have failed in the
network in terms of the signature matrix S and the common distribution of component lifetimes.
The calculated probabilities have been compared, in terms of likelihood ratio order, for two
different networks where their corresponding signature matrices are ordered in terms of totally
positive order. Conditions on the signature matrix under which the calculated probabilities
are bivariate increasing failure rates have been studied. Under some age replacement policies,
two applications of the proposed conditional probabilities have been presented. Throughout
the paper, we have investigated the three-state networks. However, we should mention that
extension of the results to general networks with higher states is an interesting and, of course, a
challenging problem which is under consideration by the authors as a topic of future research.
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