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We investigate the issue of the uniqueness of the cross-validation selected smooth-
ing parameters in kernel estimation of multivariate nonparametric regression or
conditional probability functions+ When the covariates are all continuous vari-
ables, we provide a necessary and sufficient condition, and when the covariates
are a mixture of categorical and continuous variables, we provide a simple suffi-
cient condition that guarantees asymptotically the uniqueness of the cross-validation
selected smoothing parameters+

1. MOTIVATION AND RESULTS

The kernel method is the most popular technique used in the estimation of
nonparametric0semiparametric models, and it is well known that the selection
of smoothing parameters in nonparametric kernel estimation is of crucial impor-
tance+ In the context of a regression model, Clarke ~1975! proposes the leave-
one-out least squares cross-validation method for selecting the smoothing
parameters+ The asymptotic optimality of this approach is studied by Härdle
and Marron ~1985! and Härdle, Hall, and Marron ~1988! in the context of a
univariate regression model, and Fan and Gijbels ~1995! have studied band-
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width selection in the context of local polynomial kernel regression+ For a regres-
sion model with a single ~univariate! continuous regressor, Härdle and Marron
~1985! and Härdle et al+ ~1988! show that the cross-validation function has the
following expression:

CV~h! �
def

n�1(
i�1

n

@Yi � [g�i ~Xi !#
2w~Xi !� C1 h 4 �

C2

nh
� op~h

4 � ~nh!�1 !,

(1.1)

where [g�i~Xi ! � (l�i
n Yl k~~Xl � Xi !0h!0(l�i

n k~~Xl � Xi !0h! is the leave-one-
out local constant kernel estimator of g~Xi ! [ E~Yi 6Xi !, k~+! is a second-order
kernel function, h is the smoothing parameter, w~+! is a weight function, C1 �
*$k202@g ''~x! f ~x!� 2g '~x! f '~x!#%2w~x! f ~x!�1 dx, C2 � k*s2~x!w~x! dx, k2 �
*k~v!v2 dv, k� *k~v!2 dv, g '~+! and g ''~+! denote first- and second-order deriv-
ative functions, and s 2~x! � Var~Yi 6Xi � x!+

The terms of C1 h 4 and C20~nh! in ~1+1! are the leading squared bias and
variance of CV~h!, respectively+ Let Zh denote the cross-validation selected
smoothing parameter that minimizes CV~h!; then from ~1+1! it is easy to show
that the Zh � h0 � op~h0!, where h0 � @C20~4C1!#

105n�105 + Note that C1 is non-
negative and C2 � 0+ Therefore, a necessary and sufficient condition for the
existence of the unique benchmark nonstochastic optimal smoothing param-
eter h0 is that C1 � 0+ The assumption that C1 � 0 puts some restrictions on
g~+!; for example, g~+! cannot be a constant function+ A similar necessary and
sufficient condition exists that guarantees an asymptotically uniquely defined
cross-validation selected smoothing parameter in estimating a conditional prob-
ability density function ~p+d+f+! with an univariate continuous conditional
variable+

The cross-validation procedure can be easily extended to the multivariate
~regression or p+d+f+ estimation! settings for selecting the smoothing param-
eters+ However, the conditions that ensure the uniqueness of cross-validation
selected smoothing parameters become more complex+ Recently, Hall, Racine,
and Li ~2004!, Hall, Li, and Racine ~2004!, and Li and Racine ~2003, 2004!
have considered the problem of nonparametric estimation of conditional den-
sity and regression functions with mixed discrete and continuous data+ They
propose to use the data-driven cross-validation ~CV! methods to select the
smoothing parameters, and they have shown that the CV selected smoothing
parameters are asymptotically equivalent to the nonstochastic optimal smooth-
ing parameters that minimize the asymptotic weighted estimation mean square
error+ However, when discussing the existence of the asymptotically uniquely
defined optimal smoothing parameters, Hall, Racine, and Li ~2004! and Li and
Racine ~2004! impose overly strong conditions+ In this note we provide sub-
stantially weaker sufficient conditions that guarantee the existence of the uniquely
defined CV selected optimal smoothing parameters+ We show that when all
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covariates are continuous random variables, the condition becomes neces-
sary and sufficient for the existence of uniquely defined optimal smoothing
parameters+

We consider a nonparametric regression model with mixed discrete and con-
tinuous covariates:

Yi � g~Xi !� ui , (1.2)

where g~{! has an unknown functional form, E~ui 6Xi !� 0, Xi � ~Xi
c , Xi

d!, Xi
d is

a q � 1 vector of regressors that assume discrete values, and Xi
c � R p are the

remaining continuous regressors+ We use Xij
d to denote the j th component of

Xi
d , and we assume that Xij

d takes cj � 2 different values, that is, Xij
d �

$0,1, + + + , cj � 1% for j � 1, + + + ,q+We use D �) j�1
q $0,1, + + + , cj � 1% to denote the

range assumed by x d + We are interested in estimating g~x! � E~Yi 6Xi � x! by
the nonparametric kernel method+ We use f ~x! � f ~x c, x d! to denote the joint
density function+ For x c � ~x1

c , + + + , xp
c! we use the product kernel: K c~x c, Xi

c!�

) j�1
p ~10hj !k~~xj

c � Xij
c!0hj !, where k is a symmetric, univariate density func-

tion and 0 � hj � ` is the smoothing parameter for xj
c+ For a discrete regressor

we define, for 1 � j � q,

l~Xij
d , xj

d ,lj ! � �1 if Xij
d � xj

d ,

lj if Xij
d � xj

d ,
(1.3)

where 0 � lj � 1 is the smoothing parameter for xj
d+ Therefore, the product

kernel for x d � ~x1
d , + + + , xq

d! is given by K d~x d, Xi
d! � ) j�1

q l~Xij
d , xj

d ,lj !+ The
kernel function for the mixed regressors x � ~x c, x d! is simply the product of
K c and K d , that is, K~x, Xi ! � K c~x c, Xi

c!K d~x d, Xi
d!+ The nonparametric esti-

mate of g~x! is given by [g~x! � (i�1
n Yi K~x, xi !0(i�1

n K~x, xi !+ We choose
~h,l! � ~h1, + + + , hp,l1, + + + ,lq! by minimizing the following CV function:

CVLC ~h,l! �
1

n (i�1

n

~Yi � [g�i ~Xi !!
2w~Xi !, (1.4)

where [g�i~Xi ! � (l�i
n Yl K~Xi , Xl !0(l�i

n K~Xi , Xl ! is the leave-one-out local-
constant ~LC! kernel estimator of g~Xi ! and 0 � w~+! � 1 is a weight function
that serves to avoid difficulties caused by dividing by zero, or by the slow con-
vergence rate for when Xi is near the boundary of the support of X+

Define an indicator function Ij~v d, x d! � I ~vjd � xj
d!)s�j, s�1

q I ~vjd � xs
d!+

Note that Ij~v d, x d!� 1 if and only if v d and x d differ only in their j th compo-
nent+ Letting mj~x! and mjj~x! ~m � g or m � f ! denote the first-order and
second-order partial derivatives of m~x c, x d! with respect to xj

c , Hall, Li, and
Racine ~2004! have shown that ~*dx � (x d�D *dx c , D is the support of X d!
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CVLC ~h,l! ���k2

2 (j�1

p

@gjj ~x! f ~x!� 2gj ~x! fj ~x!#hj
2

� (
vd�D

Ij ~v d, x d !@g~x c, v d !� g~x!# f ~x c, v d !lj�2

� w~x! f ~x!�1 dx �
k p

nh1 + + +hp

� �s 2~x!w~x! dx � op�(
j�1

p

hj
4 �(

j�1

q

lj
2 � ~nh1 + + +hp !

�1�+ (1.5)

The preceding results are based on the LC kernel estimation result+ Li and
Racine ~2004! have considered the local linear ~LL! CV method+ The CV objec-
tive function is the same as given in ~1+4! but with [g�i~Xi ! replaced by a leave-
one-out LL kernel estimator+ Li and Racine ~2004! have shown that the resulting
CV function has the same form as ~1+5! with the term 2gj~x! fj~x! removed+

Define zj � n�20~4�p!hj
2 for j � 1, + + + , p, and zp�j � n�20~4�p!lj for j �

1, + + + ,q; then both the leading terms of CVLC ~h,l! and CVLL~h,l! can be
written in the form of c0 n�40~ p�4!x~z1, + + + , zp , zp�1, + + + , zp�q!, where c0 �
k p*s 2~x!w~x! dx � 0 is a constant, and

x~z1, + + + , zp , zp�1, + + + , zp�q ! ���(
j�1

p�q

Bj ~x!zj�2

dx �
1

~z1 + + + zp !
102

� z 'Az �
1

~z1 + + + zp !
102 , (1.6)

where z � ~z1, + + + , zp�q!
' ~the prime denotes transpose!, A is a ~ p � q! �

~ p � q! symmetric positive semidefinite matrix with its ~ j, s! th element
given by A~ j, s! � *Bj~x!Bs~x! dx, where Bj~x! � c0

�102~k2 02!@gjj ~x! f ~x! �
2gj~x! fj~x!#w~x!102f ~x!�102 ~one removes 2gj~x! fj~x! if it is a local linear CV
function! for j � 1, + + + , p, and Bp�j~x! � c0

�102(vd�D Ij ~v d, x d !@g~x c, v d ! �
g~x!# f ~x c, v d!w~x!102f ~x!�102 for j � 1, + + + ,q+

Hall, Racine, and Li ~2004! have considered the CV selection of smoothing
parameters in a conditional probability ~density! estimation framework and show
that their CV objective function also has a leading term of the form as given in
~1+6! with of course a different definition of Bj~x! for j � 1, + + + , p � q+ There-
fore, the leading term of the CV objective function, in either a regression or a
conditional probability model, has the expression as given by ~1+6!+ The unique-
ness of the CV selected optimal smoothing parameters replies on the unique-
ness of a nonnegative vector z � R��

p � R�
q that minimizes ~1+6!, where

R��
p � $z � R

p, zj � 0 for all j � 1, + + + , p% and R�
q � $z � R

p, zj � 0 for all
j � 1, + + + ,q%+ Subsequently we will first focus on the simple case that all covari-
ates are continuous+

1020 QI LI AND JIANXIN ZHOU

https://doi.org/10.1017/S0266466605050504 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050504


When q � 0 ~no discrete covariates!, all covariates are continuous random
variables, and ~1+6! becomes

xc~z1, + + + , zp ! ���(
j�1

p

Bj ~x!zj�2

dx �
1

~z1 + + + zp !
102

� z 'Az �
1

~z1 + + + zp !
102 , (1.7)

with z � ~z1, + + + , zp!
' , and A is now of dimension p � p+ The uniqueness of the

CV selected optimal smoothing parameters of h1, + + + , hp hinges on the unique-
ness of a vector z � R��

p that minimizes ~1+7!+ Let z * denote the vector of z
that minimizes xc~z! over R��

p ; we ask that

Each zj
* ~ j � 1, + + + , p! is positive, finite, and uniquely determined+ (1.8)

If ~1+8! holds true, then the CV selected smoothing parameters are all well
defined asymptotically+ In fact, it follows from Hall, Li, and Racine ~2004! and
Hall, Racine, and Li ~2004! that n�10~4�p! Zhj

p
&& Mzj

* for j � 1, + + + , p, or equiva-
lently, ~ Zhj � hj

*!0hj
* � Zhj 0hj

* � 1
p
&& 0, where hj

* � Mzj
*n�10~4�p! is the bench-

mark nonstochastic optimal smoothing parameter ~ j �1, + + + , p!+ The next theorem
gives a simple necessary and sufficient condition for ~1+8! to hold+

THEOREM 1+1+ Assume that q � 0 so that z � ~z1, + + + , zp!
'; define

m � inf
z�Z,7z7�1

z 'Az+

Then x~z! has a unique minimizer z * � R�
p with 0 � zj

* � ` for all j �
1, + + + , p if and only if

m � 0+ (1.9)

Next, we discuss the general case with a mixture of continuous and discrete
covariates+ Now, z � ~z1, + + + , zp�q!

' and A is a ~ p � q! � ~ p � q! symmetric
positive semidefinite matrix+ Let Z � Z1 � Z2 where Z1 � R��

p and Z2 � R�
q

and let z * � Z denote a minimizer of x~z1, + + + , zp�q!+ We seek conditions that
ensure the following result:

For j � 1, + + + , p, each zj
* is positive and finite, for j � p � 1, + + + , p � q,

each zj
* is nonnegative, and all zj

*'s are uniquely determined+ (1.10)

Condition ~1+10! will lead to asymptotically uniquely defined CV selected
smoothing parameters of Zh1, + + + , Zhp, Zl1, + + + , Zlq+ We partition the A matrix as

A � �A11 A12

A12
' A22

�, (1.11)
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where A11 is of dimension p � p, and A22 is of dimension q � q, and A12 has a
comfortable dimension+ The following theorem gives the existence and unique-
ness of a minimizer for x~z!+

THEOREM 1+2+ Let

m � inf
z�Z,7z7�1

z 'Az+

If m � 0, then x has a minimizer z * � ~z~1!
* , z~2!* ! � Z with x~z *! � �`, and

a necessary and sufficient condition for a point z � ~z~1!, z~2!! � Z to be a
minimizer of x is that z~1! � z~1!

* and z~2! � z~2!
* � z~2!

0 for some z~2!
0 � N ~A22! ,

the null space of A22.1 In particular, if q � 0 or A22 is positive definite, then the
Hessian (second derivative) matrix H of x is positive definite at every point
z � Z with x~z! � �`. Thus x has a unique minimizer z * satisfying (1.10).

2. Proofs and Discussions

Proof of Theorem 1+1+ The “if” part of Theorem 1+1 is a special case of
Theorem 1+2 with q � 0+ Thus we only need to prove the “only if” part+ Let
m� 0 be attained at some z * � ~z1

*, + + + , zp
*! � Z with 7z *7� 1+ If zi

*� 0 for all
i � 1, + + + , p, then x~tz *!r 0 as tr �`+ This implies that x has no minimizer+
If zi

* � 0 for some 1 � i � p, without loss of generality, we assume that
z1
* � {{{ � zr

* � 0 for some 1 � r � p � 1+ Let « � 0 be chosen such that
p~1 � «!� r+ Let z � ~z1, + + + , zp!� Z with zi �1,1 � i � r, zi � 0, r �1 � i � p+
Consider z~t ! � t «�1~z * � tz! � Z for all t � 0, because Z is a convex cone+
We have

z~t !'Az~t ! � t 2«�2z *'Az * � 2 t «z *'Az � t 2«z 'Azr 0, as tr 0

and

~z~t !1 + + + z~t !p ! � t p~«�1!�r{~zr�1
* + + + zp

*!r �`, as tr 0

because p~«� 1!� r � 0, which implies that x~z~t !!r 0 as tr 0+ Therefore
x has no minimizer+ �

Remark 2+1+ From the proof of Theorem 1+1 we know that m � 0 is a nec-
essary and sufficient condition for the existence of a minimizer z * that mini-
mizes xc~z!; the uniqueness of the minimizer z * comes from the fact that the
Hessian matrix of xc~z! is positive definite+

Note that in Theorem 1+1 m is defined as the infimum of z 'Az, not of xc~z!
as it does not contain the term of 10Mz1 + + + zp+ Also note that the minimization
is done over the unit sphere restricted to the first quadrant+ Theorem 1+1 states
that m � 0 is a necessary and sufficient condition for the existence of a unique
minimizer z * with each component zj

* ~ j � 1, + + + , p! positive and finite+ This
condition is substantially weaker than the requirement that A be a positive def-
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inite matrix as assumed in Hall, Racine, and Li ~2004! and Li and Racine ~2004!+
It is obvious that when A is positive definite, then m � 0 because z � 0 when
restricted to 7z7� 1+ However, consider the LL regression case with p � 2 and
that g~x1, x2! � x1

2 � x2
2; then g11~x! � g22~x! � 2, and this leads to

A � c�1 1

1 1�,
where c � 0 is a constant+ Thus, A is a singular matrix, and hence it is not
positive definite+ Nevertheless, it is easy to check that m � 0 because in this
case z 'Az � c~z1 � z2!

2 � 0 for any z � R�
2 with 7z7 � 1+ Therefore, by

Theorem 1+1 we know that z * is uniquely defined with 0 � zj
* � ` ~ j � 1,2!;

this implies that the CV selected smoothing parameters are well defined+ In
fact, n�106 Zhj

p
&& Mzj

* for j � 1,2+ This result is quite intuitive; given that g~x! is
nonlinear in both x1 and x2, one would expect that the CV selected smoothing
parameters should converge to zero with the rate of Op~n

�10~4�p! !� Op~n
�106!+

Proof of Theorem 1+2+ It is clear that Z is a convex cone in R
p�q + For each

z � Z, we write z � ~z~1!, z~2!! where z~1! � Z1 and z~2! � Z2+ We have

x~z! � �`m z~1! � int~Z1!+

By the definition ~1+6!, x is a lower semicontinuous function from Z to R �
$�`% + For each z � Z with 7z7 � 1 and t � 0, we have tz � Z and x~tz! �
t 2m+ For r � 0, denote Br � $z � R

p�q�1 : 7z7 � r% and Kr � PZ � Br + Thus
there exists R � 0 such that

min
z�Z

x~z!m min
z�KR

x~z!+

Because KR � PZ � BR is a nonempty compact set, by the Weierstrass theorem,
the lower semicontinuous function x attains its minimum at z * � ~z~1!

* , z~2!* ! �
KR with x~z *! � �`+

To continue our proof of the theorem, let us examine the Hessian ~the second-
order derivative! matrix H of x at each point z � Z with x~z! � �`+ A direct
calculation shows that

H �
]2x~+!
]z]z '

� 2A � �
1

4Mz1 + + + zp

@2G � J # 0

0 0� , (2.1)

where G is a p � p diagonal matrix with its j th diagonal element given by 10zj
2

for j �1, + + + , p, and J is a p � p matrix with its ~ j, s!th element given by 10~zj zs!,
j, s � 1, + + + , p; that is, J � ~z1

�1 , + + + , zp
�1!'~z1

�1 , + + + , zp
�1! is positive semidefinite+

Thus 2G � J is a symmetric positive definite matrix+ Because A is symmetric
positive semiefinite, H is always symmetric positive semidefinite+ The case
q � 0 implies that H is positive definite because 2G � J is positive definite;

UNIQUENESS OF CROSS-VALIDATION SELECTED PARAMETERS 1023

https://doi.org/10.1017/S0266466605050504 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050504


the case q � 0 and A22 being positive definite implies that the sum of the two
matrices in the right-hand side of ~2+1! is positive definite+ That is, the Hessian
matrix H is positive definite at any point z � Z with x~z! � �`+ Thus, x~z!
has a unique minimizer+

To prove the necessary and sufficient condition, let z � ~z~1!, z~2!! � Z+ If z
is another minimizer of x, then let x~z *! � x~z! � m+ Denote z~a! � az �
~1 � a!z * � Z for 0 � a � 1+ Because x is convex, we have

x~z~a!! � ax~z!� ~1 � a!x~z * !� m,

which implies x~z~a!! � m ∀0 � a � 1+ Because

0 � x~z~a!!� x~z * !� a¹x~z * !~z � z * !

�
1

2
a 2~z � z * !'H~z * !~z � z * !� o~7z � z * 72 !,

where the last term o~7z � z *72! represents a higher order term, we must have
¹x~z *!~z � z *!� 0 and ~z � z *!H~z *!~z � z *!� 0+ By ~2+1!, this can be true
only if z~1! � z~1!

* + Then we have z~a!'Az~a! � z *'Az * � C+ Denote h~a! �
z~a!'Az~a! � ~2a 2 � 2a � 1!C � ~2a � 2a 2!z 'Az * for 0 � a � 1+ For 0 �
a � 1, we have 0 � h '~a! � ~4a � 2!C � ~2 � 4a!z 'Az *, which leads to
z 'Az * � C, and then ~z � z *!'A~z � z *! � 0+ Because A is symmetric positive
semidefinite, this implies A~z � z *! � 0, and then A22~z~2! � z~2!

* ! � 0+ Thus
z~2! � z~2!

* � z~2!
0 where z~2!

0 � z~2! � z~2!
* � N ~A22!+

Conversely, if z � ~z~1!, z~2!! � Z with z~1! � z~1!
* and z~2! � z~2!

* � z~2!
0 for

some z~2!
0 � N ~A22!, to prove that z is a minimizer of x, we only have to show

that z 'Az � z *'Az *+ But this can be easily verified by substituting z � z * �
~0, z~2!0 !+ This completes the proof of Theorem 1+2+ �

Let us apply Theorem 1+2 to show how to determine the existence and unique-
ness of a minimizer for a simple case of p � 1 and q � 2 with

A � �
1 0 0

0 1 1

0 1 1� + (2.2)

Then z 'Az � z1
2 � ~z2 � z3!

2 , and it is easy to see that m � 0 in this case+ So by
Theorem 1+2 we know there exists a minimizer z *+ However, q � 2 and A22 is
not positive definite, so from the last part of Theorem 1+2 we cannot infer the
uniqueness of z *+ Nevertheless, it is easy to check that in this case x~z!� z1

2 �
~z2 � z3!

2 � 10Mz1 and that ~z1
*, z2
*, z3
*! � ~~ 12

_ !405,0,0! is a minimizer of x~z!+
Let z � ~z~1!, z~2!! � Z be another minimizer of x+ By the second part of Theo-
rem 1+2, we have z~1! � z1

* � ~ 12
_ !405 and z~2! � z~2!

* � z~2!
0 � z~2!

0 for some z~2!
0 �

N ~A22! ~because z~2!
* � ~0,0!'!+ However, z~2! � z~2!

0 � N ~A22! implies that
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z3 � �z2; this together with z2, z3 � R� implies that z~2! � ~0,0!' + Hence,
z � z *, and z * is the unique minimizer of x~z!+

NOTE

1+ The null space of A22 is defined as N ~A22! � $z~2! � R
q : A22 z~2! � 0% +
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