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We examine the origin of very-large-scale motions (VLSMs) in fully developed
turbulent pipe flow at friction Reynolds number, Reτ = 934, using data from a
direct numerical simulation. The VLSMs and the packet-like large-scale motions
(LSMs) found in this study are very similar to those found in earlier studies.
Three-dimensional time-evolving instantaneous fields show that one component of
the process leading to the large streamwise length of VLSMs is the concatenation
of adjacent streamwise LSMs caused by the continuous elongation of LSMs due to
the strain component of the mean shear. Spatial organization patterns of the VLSMs
and LSMs and their properties are studied by separating auto-correlation of the
streamwise velocity fluctuations into the components of the VLSM and the LSM
defined by low-pass/high-pass filtering in the streamwise direction. The structures
of the two-point spatial correlations of the streamwise velocity component of the
VLSMs and the LSMs in the streamwise-azimuthal plane are characterized by multiple
maxima and complex patterns that beg explanation in terms of patterned coherent
arrangements of the LSMs. Using proper orthogonal decomposition (POD), it is found
that the X-shape correlation pattern of the VLSMs results from the superposition of
very long helically inclined structures and streamwise-aligned structures. Further
explanation of the patterns in the correlations of the VLSMs and LSMs is provided
through the study of synthetically constructed arrangements of simple hairpin packet
models of the LSM. Head-to-tail alignment of the model packets along streamwise
and helical directions suggested by the eigenvalues of the POD creates a pair of
long roll-cells centred above the logarithmic layer, and bracketing the LSMs. These
roll-cells are pure kinematic consequences of the induction within the LSM packets,
but they may also serve to organize smaller packets.

Key words: boundary layer structure, turbulent boundary layers

1. Introduction
Experimental and numerical studies have shown that structures with large scales and

very large scales in the outer layer play a crucial role in generating and transporting

† Email address for correspondence: jhlee06@unist.ac.kr
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Space–time formation of very-large-scale motions in turbulent pipe flow 1011

turbulent kinetic energy and Reynolds shear stress in canonical, wall-bounded
turbulent flows, such as boundary layers, pipe flows and channel flows. Falco (1977)
first identified large-scale motions (LSMs) as a generalization of the bulges in the
turbulent/non-turbulent interface that were known to occur at the edge of turbulent
boundary layers (Kovasznay, Kibens & Blackwelder 1970; Brown & Thomas 1977),
wakes and jets. Internal wall flows such as channels and pipes also contain LSMs
(Liu, Adrian & Hanratty 2001), although the confinement presented by internal
flows suggests that they may have to occur in patterns, in order to make room for
others in the region of the centreline. Correlation measurements in boundary layers
(Kovasznay et al. 1970) indicate that their average dimensions in the streamwise and
spanwise directions are 1.5R–3R and 0.5R, respectively, where R is used to represent
the boundary layer thickness, pipe radius or channel half-height. Being the tallest
structures, LSMs were defined originally by their height, not their length or width;
but, in recent years they have also been defined in terms of their length or their
wavelength. Following Guala, Hommema & Adrian (2006), we shall nominally take
the longest wavelength of LSMs to be πR.

In contrast to LSMs, the very-large-scale motions (VLSMs) found by Kim & Adrian
(1999) in turbulent pipe flow are as long as 10R–20R, and since then even longer
structures, up to 50R, have been observed (Priymak & Miyazaki 1994; Hites 1997;
Guala et al. 2006). Subsequent studies have shown that VLSMs are relatively short
in boundary layers, approximately 7R, while their mean lengths in channel flows are
intermediate (Kim & Adrian 1999; Ganapathisubramani, Longmire & Marusic 2003;
Guala et al. 2006; Balakumar & Adrian 2007; Hutchins & Marusic 2007a; Dennis &
Nickels 2011; Lee & Sung 2011; Wu, Baltzer & Adrian 2012). (See also Bullock,
Cooper & Abernathy (1978) whose observations of very long modes in fully turbulent
pipe flow may be the earliest made.) Adrian (2007) and Marusic et al. (2010) review
aspects of these interesting structures.

Hairpin packets consist of a coherent group of hairpin vortices aligned more or
less along the streamwise direction (Zhou et al. 1999; Adrian, Meinhart & Tomkins
2000). Zhou et al. (1999) found that single hairpins whose strengths (defined as
the maximum induced velocity relative to the mean flow) exceed a threshold value
generate new hairpin vortices upstream and downstream of the primary vortex. They
explained this phenomenon ‘on the basis of the delicate balance between self-induced
and mutually induced motion of the quasi-streamwise vortex legs which tend to
lift the vortices up and back, and the influence of mean shear which stretches and
intensifies the vortices along the streamwise direction’. In addition, Adrian et al.
(2000) showed that the flow in a boundary layer is the combination of packets
having various ages and sizes in a hierarchy of scales that increase with distance
from the wall. The coherent vortex packets that originate close to the wall frequently
occur within the relatively uniform, low-momentum zones inside larger, faster moving
packets (Meinhart & Adrian 1995). In turn, the larger low-momentum zones may
be the induced interior flow of still older packets of coherently aligned vortices
that originate upstream and overrun the younger, more recently generated packets.
The number of low-momentum zones in the hierarchy is presumably proportional
to the von Kárman number of the flow. The largest, outermost hairpin packets in
the hierarchy resemble the LSMs, but differences in the growth angles suggest that
another outer motion modifies the LSMs near the wall. Hairpin packets have been
shown to contribute 25 % of the Reynolds shear stress while occupying less than
4.5 % of the total area (Ganapathisubramani et al. 2003; Lee & Sung 2011).

The existence of VLSMs was first observed in the pre-multiplied one-dimensional
spectra associated with the streamwise velocity fluctuations measured by hot-wire
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and using Taylor’s frozen field hypothesis (Kim & Adrian 1999; Guala et al. 2006;
Balakumar & Adrian 2007). Kim & Adrian (1999) examined the pre-multiplied
spectra of a turbulent pipe flow at y+ = 132 and interpreted them as bi-modal
distributions with two maxima that indicated the mean wavelengths associated with
VLSMs and LSMs. Guala et al. (2006) and Balakumar & Adrian (2007) proposed
criterion for distinguishing between VLSMs and LSMs based on the streamwise
lengths of the structures. Based on the crossover in co-spectra of the streamwise and
wall-normal velocity fluctuations and the minimum between the VLSM and LSM
spectral peaks, they defined the nominal boundary separating VLSMs from LSMs
to be kxR = 2, where kx is the streamwise wavenumber. However, in view of the
bi-modal interpretation of the spectra, the two modes overlap, and the VLSM cannot
really be separated from the LSM by a sharp spectral cut. More properly, the nominal
streamwise wavelength λx = πR should be interpreted as the centre of a transition
zone from large to very large.

The contributions of the VLSMs to the Reynolds stresses in pipe flow have been
determined by integrating the energy spectra (Guala et al. 2006; Balakumar & Adrian
2007; Wu et al. 2012). The direct numerical simulation (DNS) study of Wu et al.
(2012) in a turbulent pipe flow reported that VLSMs of wavelength greater than 3R
contribute over 40 % of the streamwise turbulent energy, and more than 30 % of the
Reynolds shear stress. These values are somewhat lower than thermal anemometer
experimental results of Guala et al. (2006), although the difference might be due
to the discrepancy in Reynolds numbers. Temporal spectra of the time series from
thermal anemometer probes are necessarily converted to wavenumber spectra by using
Taylor’s frozen field hypothesis, commonly with the assumption that all eddies convect
at the mean velocity. This procedure has been shown to amplify the long wavelength
peak of the energy spectrum, raising the suspicion that the fraction of energy at
longer wavelength may be overemphasized in experiments relative to the DNS (del
Álamo & Jiménez 2009; Wu et al. 2012). On the other hand, the amplification results
from the energy of long wavelengths being aliased into shorter wavelengths around
the low-wavenumber spectral peak, so evaluation of the total energy contained in the
VLSM range may be underestimated.

In turbulent boundary layers, streamwise velocity structures having very long
lengths were first visualized experimentally by Hutchins & Marusic (2007a) by using
a spanwise rake of 10 hot-wires and Taylor’s hypothesis. They described VLSM, or
‘superstructures’, as they called them, in the form of very long, meandering positive
and negative streamwise velocity fluctuations having individual streamwise lengths
up to ∼20R in the logarithmic layer. They showed that the dominant meandering
behaviour of the structures induces an X-shaped pattern in the two-point spatial
correlation that changed from positive to negative values at streamwise spatial
separation ≈3.5R. In a DNS of turbulent pipe flow at Reτ = 685, Baltzer, Adrian &
Wu (2013) also found that the pattern of the correlation contours at lower levels has a
distinctive X-shape in the streamwise-azimuthal (spanwise) correlation plane. However,
using conditional averages given low-momentum events, they showed that the X-shape
is due to the streamwise-aligned LSMs with spanwise-offset that concatenate along
dominant helix angles of 0◦ and 4◦–8◦ relative to the streamwise direction. The
apparent wavering of the resulting VLSM on a scale of O(6R) was interpreted to
be a consequence of spanwise-offset LSMs rather than a sinusoidal perturbation of
an otherwise straight, streamwise-aligned sequence of LSMs. Although the very long
structures in the logarithmic layers of turbulent pipe and channel flows appear to
be qualitatively similar to those in boundary layer flow, some structural differences
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are to be expected in the wake regions of internal and external flows (Balakumar &
Adrian 2007; Monty et al. 2007, 2009; Lee & Sung 2013). The VLSM energy in
internal flows resides both in longer wavelengths and farther from the wall than in
boundary layer flow, and the streamwise wavelength of the VLSMs in the internal
flows continues to increase above the logarithmic layer, while in boundary layers
it does not. Because of these differences, Hutchins & Marusic (2007a) and Monty
et al. (2007) used the term ‘superstructures’ to distinguish the very long motions in
boundary layers from the VLSMs of the internal flows.

Discriminating between LSMs and VLSMs is not simple. In some studies the term
‘large-scale’ encompasses both the LSMs and VLSMs (Hutchins & Marusic 2007b;
Mathis, Hutchins & Marusic 2009; Chung & McKeon 2010), perhaps, because
the limited field-of-view of particle image velocimetry (PIV) could not resolve the
VLSMs (Adrian 2007). It is sometimes stated that the spatial characters of the
LSMs and VLSMs are similar, except for their length scales (Hutchins & Marusic
2007a). On the other hand, the works of Bailey et al. (2008) and Bailey & Smits
(2010) described clear differences between the spanwise structure of VLSMs and
LSMs in turbulent pipe flow, based on two-point measurements using a pair of
hot-wire probes offset by various azimuthal length separations and radial positions,
with varying the Reynolds number. They identified VLSM and LSM by performing
cross-spectral analysis as a function of streamwise wavenumber (using Taylor’s
hypothesis) and azimuthal separation. Bailey et al. (2008) found that the azimuthal
scale at streamwise wavenumbers in the VLSM range is larger than the scale for
streamwise wavenumbers in the LSM range at all wall-normal distances from the
wall. They noted that the difference between the azimuthal scales of VLSMs and
LSMs suggests the possibility that LSMs and VLSMs could be independent entities,
with VLSMs possibly arising from linear or nonlinear instabilities (del Álamo &
Jiménez 2006; McKeon & Sharma 2010; Hwang & Cossu 2010).

In the present study, DNS data from the turbulent pipe simulation at Reτ = 934
by Lee & Sung (2013) is investigated to further illuminate how VLSMs are created.
Baltzer et al. (2013) showed that VLSMs consist of LSMs concatenated to create
very long structures, and Lee & Sung (2011) went further to show that streamwise
stretching of the LSMs leads to the head of upstream LSM meeting the tail of
downstream LSM, and concatenating by merger. However, the mechanisms causing
both the organization of the LSMs and the concatenation of the LSMs are still not
completely understood. For example, why are the LSMs aligned closely enough to
encounter each other in the first place? Is there an unknown mechanism that brings
LSMs into alignment close enough to collide as they grow longer?

To determine matters of causation, it is essential to observe the VLSMs and
the LSMs in time as well as space. In § 3, three-dimensional (3-D) time-evolving
instantaneous flow fields are scrutinized to provide a simple dynamical mechanism
for a VLSM to form from LSMs, and in § 4, statistical properties of VLSMs and
LSMs are analysed after they are separated from each other by spectral filters in
the streamwise direction. Patterns of spatial organization in the two-point spatial
correlations and the proper orthogonal decompositions (PODs) of the VLSMs and
LSMs are used to infer aspects of the spatial organization of individual LSMs. In § 5,
a model of LSMs based on various organized patterns of synthetic packets of hairpins
constructed in the spirit of the hairpin vortex model of Perry & Chong (1982) is
used to show that the complicated behaviour of the correlations and PODs of both
VLSM and LSM can be explained by a very simple pattern. Although Townsend’s
attached eddy model with randomly distributed hairpin-type vortices on the wall
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in a hierarchy manner has shown good prediction of the velocity statistics beyond
second-order moments and spectra (Perry & Marusic 1995; Marusic & Monty 2019),
there still remains the question of how they are organized in a flow field. Our model
can provide a hint for how the attached structures are organized, and for how they
contribute to form the patterns of the correlations, although the analysis is confined
to the logarithmic layer.

2. Numerical method
The governing equations in cylindrical coordinates for incompressible, fully

developed turbulent pipe flow were integrated in time using the fractional step
method along with the implicit velocity decoupling procedure. Position is denoted
by x = (x, r, θ) = (x, y, z), where; x is the streamwise (or axial) distance from the
inlet; r is the distance from the centreline; θ is the azimuthal angle; y = R − r is
the distance from the wall; and z = rθ is the spanwise distance. The corresponding
velocity fluctuating components are u (= ux), v (=−ur) and w (= uθ ), and U is the
temporally and spatially averaged (i.e. x- and θ -directions) streamwise mean velocity.
The maximum velocity of the fully developed laminar profile (Uc) and the pipe
radius (R) were used to non-dimensionalize the equations in the numerical solution.
Consequently, the unit time scale is R/Uc. As usual, the superscript + refers to
quantities normalized by the friction velocity, uτ or viscous length scale ν/uτ , and
the Reynolds number ReD=UbD/ν (=UcR/ν) is defined based on the pipe diameter,
D=2R, and the bulk velocity, Ub. Numerically, ReD = 35 000, and the von Kárman
number is R+ = Reτ = uτR/ν = 934. The streamwise domain was made 30R long,
based on the previous experimental and numerical studies of Kim & Adrian (1999)
and Wu et al. (2012). The finite-difference grid size employed in the current work
is 4097 × 301 × 1025 along the axial, radial and azimuthal directions with grid
resolutions 1x+ = 6.84, 1(Rθ)+ = 5.73, 1r+min = 0.33 and 1r+max = 9.24. The inflow
and outflow conditions were periodic, and the bulk velocity was fixed leaving the
integrated wall shear stress to fluctuate. Further numerical details may be found in
Lee & Sung (2013).

3. Time-evolving instantaneous fields
The primary question in the present study is how a VLSM is created in the flow.

The idea that small scales organize to create larger scales is quite reasonable, and
it has received increasing support over the past decade (Adrian 2007). The hairpin
packet model, which consists of hairpin vortices aligned in a streamwise linear fashion
offers an explanation for the most fundamental features of wall turbulence, such as
the multiple second quadrant bursting process, sweeps, the growth of length scale
with increasing distance from the wall, and the occurrence of low-momentum zones
(Meinhart & Adrian 1995; Adrian et al. 2000; Adrian 2007). Further, the creation of
the first generation of hairpin packets in the region above the buffer layer, as explained
by the auto-generation mechanism (Zhou et al. 1999), is an established mechanism in
which hairpins with sufficient strength create more new hairpins, and so on, ultimately
forming relatively coherent packets. Evidence from prior investigations (Marusic &
Adrian 2012) supports the idea that the tall low-momentum zones identified as LSMs
(in their figures 2–4) are among the oldest and largest packets that result from a
hierarchy of streamwise and spanwise mergers starting with the first generation of
packets auto-generated above the buffer layer. They are the analogues of bulges found
in turbulent boundary layers.
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FIGURE 1. (Colour online) Three-dimensional isocontour of the streamwise velocity
fluctuating structures with the contour level of u+ =−2. The flow direction is from left
to right. The isosurfaces are coloured based on the local value of y/R with higher y/R
represented in red.

A hairpin induces negative velocity (with respect to the hairpin) in the region
under its head and between its neck and legs. Inside a packet of hairpins a long
low-momentum zone is formed owing to the in-line alignment of the hairpins. The
ramp-shape of the low-momentum zone mimics the shape of the envelope of the
hairpin packet, albeit in a smoothed manner, and it is recognized readily because the
height of the envelope increases in the downstream direction along a characteristic
ramp angle in the range 10◦–15◦ (pertaining to the logarithmic layer), presenting a
ramp-like low-momentum zone when viewed from the side. As the hairpin packets
grow they encounter other packets (Adrian, Balachandar & Liu 2001; Tomkins &
Adrian 2003) leading to considerable scrambling of the vortices. For this reason it
proves convenient in this study to use contours of low velocity to identify hairpin
packets, as in Dennis & Nickels (2011), Lee & Sung (2011), Baltzer et al. (2013)
and Lee (2017).

The 3-D visualization of typical very long low-speed structures in figure 1 uses
a contour level of u+ = −2. The streamwise extent of the figure is 10R, and the
azimuthal range is shown in the right corner. Three very long low-speed streaks
that are slightly inclined to the spanwise direction are shown with lengths in excess
of the entire field of view in the flow direction, and with characteristic widths of
approximately 0.5R in the spanwise direction. These structures extend downwards to
the near-wall region, consistent with the ‘footprints’ described by Hutchins & Marusic
(2007a) for modulation of small-scale structures in the near-wall region. They also
extend upwards through the outer layer and almost to the centreline of the pipe (see
the colour contour).

Figures 2 and 3 present time-evolutions of the 3-D flow field in the perspective
and top views to show how VLSM 1 in figure 1 is created (VLSM 1 in figure 1
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tUc/R = 6.4

tUc/R = 9.6

Packet 2

 Packet 1 

 Packet 3

FIGURE 2. (Colour online) Perspective visualization of the time-evolving instantaneous
low-momentum zones. The contour level is u+ =−2, and the flow direction is from left
to right. The colour legend is identical to that in figure 1.

0 5

tUc/R = 0

tUc/R = 3.2

tUc/R = 6.4

tUc/R = 9.6

Packet 2  Packet 1 

 Packet 3

10

0.5

0

-0.5

x/R

FIGURE 3. (Colour online) Top view of the time-evolving low-momentum zones. The
contour level is u+=−2, and the flow direction is from left to right. The ellipses indicate
the LSMs. The colour legend is identical to that in figure 1. The solid line at tUc/R= 9.6
indicates approximate centre position of the LSMs at each streamwise location.

corresponds to tUc/R=9.6 in figures 2–4). The contour level is u+=−2, and the time
interval is tUc/R = 3.2. Figure 4, showing temporal variation of the low-momentum
regions in the x–y plane, completes the visualization. The data were extracted along
the fixed spanwise location (horizontal dashed line) in figure 3, and the contour is
adjusted to u+=−1.0 for clarity. At the initial time tUc/R= 0, there are two adjacent
ramp-like structures in figures 3 and 4, packet 2 (x/R<1.2) and packet 1 (1.5< x/R<
3.5) having lengths of 2–3R. These packets are LSM structures. They are inclined

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.786


Space–time formation of very-large-scale motions in turbulent pipe flow 1017

1

0

y/R

1

0

y/R

1

0

y/R

1y/R

x/R
0 2 4 6 8 10

Packet 2

Packet 2
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 Packet 1 

 Packet 1 
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tUc/R = 0

tUc/R = 3.2

tUc/R = 6.4

tUc/R = 9.6

FIGURE 4. Evidence for the formation of VLSM through merging of LSMs. The black
contours indicate the low-momentum regions (u+ = −1.0). The data here are extracted
along the streamwise-aligned dashed lines in figure 3. Solid lines indicate the approximate
envelopes of the packets, and dashed lines are visible to show the streamwise trajectories
of the travelling near-wall (thin) and outer layer (bold) structures.

at angles of approximately 15◦–25◦ to the wall, and they are presumably the oldest
and largest packets because they extend over a substantial region of the pipe core,
typically up to 0.6R. Smaller, younger packets can also be seen, and to distinguish
them from the largest packets we shall refer to the smaller packets simply as packets.
Note that the angle of the LSM packet ramps is larger than the 10◦–15◦ mean angle
of first generation packets (Christensen & Adrian 2001; Adrian 2007). The reason will
be described later. LSM packets 1 and 2 evolve slowly in time, moving with almost
equal convection velocities along the downstream direction (figures 2–4). Because the
outermost regions of packets 1 and 2 (corresponding to the heads or arches of the
tallest hairpins) experience higher mean flow velocity than the lower regions, they
move downstream faster than the lower-lying regions of the packets, as can be seen
in figure 4, wherein bold and thin dashed lines connect high and low parts of the
ramp-like low-momentum zones of packets 1 and 2 at four times. Their slopes indicate
approximate convection velocities, and they closely match with the mean velocities
at y/R= 0.02 and 0.35. This process results in two kinematic phenomena: (a) within
each LSM packet the taller hairpins move downstream faster than the shorter hairpins,
resulting in elongation of each packet; and (b) the heads of the hairpins move faster
than their lower parts (necks and legs), resulting in shearing motion. Since shear is
a combination of rotation and plane strain with stretching at 45◦ to the mean flow,
inclined hairpin vortices in the packets must be intensified by stretching and inclined
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forward by the rotation. As time increases the stretching of LSM packets 1 and 2 is
clear in figure 4.

The tallest part of packet 2 (that appears to be a detached structure) overruns the
near-wall part of packet 1 (figure 4), which moves more slowly in the streamwise
direction. Eventually, the head of the upstream LSM packet 2 merges with the tail
of the downstream LSM packet 1, the connection first beginning close to the wall
and later extending beyond the logarithmic layer (see figure 2). At tUc/R= 6.4, the
tallest part of packet 2 starts to settle down into the valley-like region between the
adjacent ramp-like low-momentum patterns, and the continuous interaction of the
structures results in the connection of the packets at tUc/R= 9.6, creating the longer
structure of the VLSM. Lee et al. (2014) showed that the convection velocity of the
low-speed region is lower than the mean streamwise velocity, whereas the velocity in
the high-speed region exceeds the mean streamwise velocity. In addition, they found
that the convection velocity depends on the strength of the velocity fluctuations, i.e.
it is increased with an increase of the strength in the velocity fluctuations. As a
result, these differences of the convection velocity lead to the concatenation between
in-line low-speed structures. In figure 4, the connecting structure residing in the valley
seems to be trapped between the packet 1 and 2 for a long time, presumably because
it cannot travel downstream due to packet 1. As a result, the VLSM maintains its
coherence for a relatively long time.

After tUc/R = 9.6, the adjacent packets 1 and 2 are completely merged at the
downstream, and they form a long, but hardly straight, low-momentum zone travelling
in the streamwise direction (figure 3). The pattern gives an appearance of meandering,
but this is caused by the lateral offset of the merging packets, not by temporal
spanwise oscillations. The merged low-momentum zone appears to make a smaller
angle with respect to the wall (figure 4) owing to its length being approximately
doubled without a concomitant increase in height.

In addition to the stretching, shearing and merging process, we have also found
examples in the database where VLSM longer than 3R begins as a single structure
(shorter than 3R) and grows much longer without merging. However, this type of event
occurs infrequently in our DNS dataset, and the merging event shown in figures 2–4
is the primary mechanism by which scales of motion larger than the LSMs formed.
Statistical evidence indicating the commonplace occurrence of this mechanism will be
provided later.

At tUc/R = 6.4 in figures 2–4, another LSM packet-like structure (packet 3
designated by the arrow in figures 2 and 3) appears further upstream. Due to its
spanwise-offset (see figure 3), packet 3 is not visible in figure 4 at tUc/R = 9.6.
Therefore, the upstream end of packet 2 observed at tUc/R= 0.0 and 3.2 is probably
a small portion of merged structure between LSM packets 2 and 3, and additional
merging occurs with the downstream LSM packet 1. This is another indication of
the commonplace nature of mergers leading to longer structures. Consistent with our
observation, Lee et al. (2014) reported that in a turbulent channel flow the streamwise
merging event between the LSMs is frequently observed near the wall, although the
frequency of the merging event decreases far from the wall. The dominance of the
merging event near the wall suggests that the energetic peak of the VLSMs in energy
spectrum occurs near the wall compared to the LSMs (Monty et al. 2009).

The overall picture is consistent with the finding of Lee & Sung (2011), who
studied the VLSM formation mechanism in the time-evolving fields of a boundary
layer using DNS. Examination of the video of the spatially developing turbulent
boundary layer on a flat plate made by Lee et al. (2012) also shows merging
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between large packets in the manner just described. Furthermore, the signature of
the velocity fluctuations by Kevin, Monty & Hutchins (2019) with a VLSM pattern
is consistent with our observation, although they described the VLSM pattern using
meandering. Thus, it has the potential to be a root cause of VLSM with a helical
angle that is observed in significantly different outer flow geometry.

The streamwise concatenation process should not be confused with the near-wall
auto-generation mechanism, which also creates longer sequences of hairpin eddies.
Auto-generation is an organic growth process, whereas concatenation is mainly a
simple piecing together (although interactions between the vortices of the merging
LSMs may, and probably do occur).

The top view in figure 3 confirms that the very long structure at tUc/R = 9.6 is
not perfectly aligned along the streamwise direction, but inclined to the spanwise
direction with negative azimuthal angle (see solid line). However, it should be noted
that the primary body of LSM packet at tUc/R = 0.0 and 3.2 tilts with positive
spanwise-inclination angle. As LSM packet 1 merges with upstream LSM packet 2 at
tUc/R= 6.4 and 9.6, the upstream body of packet 1 alters its inclination from positive
to negative (from downward to upward), and the two LSM packets concatenate with
a very shallow angle. In this figure (at tUc/R = 9.6), the inclined angle of the total
VLSM is approximately 4◦, in agreement with Baltzer et al. (2013). They suggested
that as the packet-like entities concatenate in streamwise succession, there is also
azimuthal offset of the LSMs with a dominant helical angle. In order to examine
how the helical pattern of the VLSM is created in the present study, we considered
the time-evolving instantaneous fields with larger field of view (not shown here).
The result showed that packet 3 exists with a larger azimuthal offset than packet
2, and the continuous merging of packet 3 with the downstream packet creates a
long low-momentum zone aligned along a helical path. The angle of the helical
VLSM is determined by the pattern of the LSMs, i.e. the axial and azimuthal offsets
prior to merger. The LSMs that are aligned without offset can form a VLSM having
vanishing helical angle. The length of the VLSM also depends on the initial pattern
of LSMs. For example, despite packet 1 stretching continuously, it does not encounter
downstream packets that are old and large to be merger partners, and no additional
mergers are observed out to tUc/R= 9.6.

While the growth and alignment of spanwise-offset LSMs explains the formation
of helical low-speed streaks on the VLSM scale, our understanding of the origin of
VLSMs will not be complete until the genesis of the offset alignment is explained.
Ultimately, the final explanation must rest on a dynamical model that embodies
the interaction of the different scales and shows how they evolve to a statistical
equilibrium that contains the observed patterns and alignments. Such a model is not
within the scope of this paper. Instead, we will attempt to document the patterns in
both the VLSM and the LSM, and show how they are related.

4. Statistical analysis
If the formation mechanism observed in the instantaneous fields is a common

occurrence, it must leave an imprint on the two-point spatial correlation coefficient
of the streamwise velocity fluctuations, Ruu, defined as

Ruu(rx, r, rθ ; rref )= 〈u(x, rref , θ, t)u(x′, r, θ ′, t)〉/σu(rref )σu(r), (4.1)

where σu denotes the root mean square value of u. Since fully developed, axisym-
metric pipe flow is homogeneous in the x- and θ -directions, Ruu depends only on the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.786


1020 J. H. Lee, H. J. Sung and R. J. Adrian

1

0

-1

r z
/R

rx/R
-5 -4 -3 -2 -1 0 1 2 3 4 5

0.05

0.05
-0.05

0.1
0.2

0.3
0.50.

-0.05

FIGURE 5. (Colour online) Contour lines of correlation coefficient Ruu in the rx–rz plane,
with the reference point at yref /R= 0.15. Black lines are from the present DNS data, and
dashed lines indicate negative values. Red lines from correlation contours found by Baltzer
et al. (2013) are included for validation.

spatial separations rx = x′ − x and rθ = θ ′ − θ . The brackets 〈·〉 denote an average
over time and x-θ . Figure 5 plots contours of Ruu in the rx–rz plane at yref /R= 0.15,
where rz is the separation in the z-direction denoted by rz = (R − y)rθ . It shows
an approximately 7R long region of positive correlation flanked by shorter regions
of negative correlation on both sides in the spanwise direction. For the purpose of
validation, isocorrelation contours for the present simulations are compared to the
correlation found by Baltzer et al. (2013) at Reτ = 685. The agreement is reassuring,
considering the differences in the DNS codes and Reynolds number.

Figure 6 shows 3-D views of Ruu and two-dimensional (2-D) contours in the cross-
stream plane (rx = 0) for various wall-normal reference locations. Above yref /R =
0.3, the highly elongated region of positive correlation is bracketed above and to
the side by two long, anti-correlated regions, a space–time averaged manifestation
of the high-momentum zones surrounding low-momentum zones in the instantaneous
fields. The ramp-like contours of the positive correlations in the logarithmic layer are
a common feature in turbulent boundary layers (Hutchins & Marusic 2007a; Lee &
Sung 2011) and turbulent pipe flow (Baltzer et al. 2013), and we interpret them to be
consequences of the low-momentum zones inside long hairpin packets.

Contours in the cross-sectional planes in figure 6(a,b) reveal weak, but significant,
positive correlation between the reference location at 0◦ and locations centred at
∼140◦ and ∼220◦. The proximities of these correlation maxima to 140◦ and 220◦,
suggest a three-wavelength Fourier mode in the θ -direction. This result is contrary to
the hot-wire experiment of Bailey et al. (2008), who found no apparent correlation
outside |θ |< 90◦ from the reference location. They concluded that long structures are
not periodic in the azimuthal direction and that the interaction between the motions
on the opposing sides of the pipe is minimal. Results from a POD of the present
flow show long, energetic modes including 0, 1, 2, 3 and more wavelengths in θ .
Summation of modes needed to construct the above correlation function could pull
the location of the secondary positive maxima in figure 6(a,b) closer to 140◦ and
220◦, perhaps explaining the slightly non-periodic spacing in θ . As the reference
height is increased, the two red, anti-correlated regions gradually merge because the
spanwise (or azimuthal) domain (z= rθ) decreases with increasing wall-normal height,
even as their spanwise length scale increases.

The two-point spatial correlation function averages the structural characteristics
of eddies over all scales. Since our interest is in typical individual structures
of the VLSM and LSM, we will divide u into two signals associated with the
significantly different lengths of the VLSMs and LSMs and compute correlations of
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FIGURE 6. (Colour online) Correlation coefficient Ruu in 3-D perspective view. The 2-
D slices on the transparent cross-stream plane at rx/R = 0 are shown on the right-hand
side. Reference points are located at (a) yref /R = 0.1, (b) yref /R = 0.3, (c) yref /R = 0.5,
(d) yref /R= 0.7, (e) yref /R= 0.9. Isocontour levels for the 3-D view are Ruu = 0.1 (blue)
and −0.05 (red), and contour spacing for the 2-D view is varied from 0 to 1.0 with an
interval of 0.1 including −0.025 and −0.05. In the 2-D view, thick blue and red lines
indicate Ruu = 0.1 and −0.05 corresponding to the isosurfaces in 3-D view.
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FIGURE 7. (Colour online) Pre-multiplied one-dimensional streamwise spectra kxΦuu/u2
τ .

Solid line: present simulation data at yref /R= 0.1; red dashed line: experimental data from
Kim & Adrian (1999) at yref /R= 0.1 and ReD,cl= 33 800 based on the pipe diameter and
turbulent centreline velocity; blue dashed line: DNS data from Wu et al. (2012) at yref /R=
0.1 and Reτ = 685. The spectra for VLSM (square red symbols) and LSM (circular red
symbols) are the result of decomposing the total spectrum using smooth low-pass (open
squares) and high-pass (open circles) filters. The cutoff wavenumbers used to separate the
VLSM from the LSM by Guala et al. (2006) at all yref /R and Bailey et al. (2008) at
yref /R= 0.2 are shown with arrows for reference.

each to ascertain the spatial structures of the large and very large motions. Various
approaches have been used to separate the motions, most using a sharp cut at a
streamwise wavenumber demarcating the VLSM from the LSM. Figure 7 compares
the pre-multiplied one-dimensional streamwise energy spectrum from our simulation
with DNS data at the lower Reynolds number (Reτ = 685) at yref /R = 0.1 (Wu
et al. 2012). Further, an experimental pipe spectrum measured by Kim & Adrian
(1999) at Reτ = 825 is included, although this spectrum was not published in Kim
& Adrian (1999). The experimental spectrum (red dashed line) clearly shows the
bimodal shape characteristics in the logarithmic layer and there are two clear peaks
in the experimental spectrum at kxR∼ 1 and kxR∼ 4, thought to indicate the VLSM
and LSM, respectively. The long-wavelength peak (blue dashed line) for the DNS
from Wu et al. (2012) appears attenuated relative to the experimental spectrum,
but the present spectrum at the high Reynolds number (solid line) suggests that a
long-wavelength peak occurs at long wavelength (kxR ∼ 0.8–0.9). Relative to the
spectrum of our numerical simulation, the experimental peak at long wavelength
is amplified despite of the low Reynolds number, an effect caused by the use of
Taylor’s hypothesis according to the theory of del Álamo & Jiménez (2006). Marusic
& Monty (2019) reported that the long-wavelength peak is associated with the type-B
eddies which are physically detached eddies that are expected to scale with the
boundary layer thickness. The energy of the VLSMs or superstructures consist of the
contribution from the type-A eddies (attached eddies) and type-B eddies, and there
remains the question of how much energy comes from an individual eddy.
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Space–time formation of very-large-scale motions in turbulent pipe flow 1023

The wavenumber of the minimum between the two experimental peaks, at kxR∼ 1.5,
would be a well-defined candidate to divide the VLSM velocity from the LSM
velocity, except that it fails to account for the lower energy of the VLSM spectrum
relative to that of the LSM spectrum (Kim & Adrian 1999). As noted in the
introduction, Guala et al. (2006) and Balakumar & Adrian (2007) used the slightly
larger nominal value kxR = 2 as the wavenumber separating the VLSMs and the
LSMs because there is a clear change in the sign of the co-spectrum of u and v

around this value, and it corresponds to a mean wavelength of πR that is close to
the mean length of LSMs found by Kovasznay et al. (1970). Bailey et al. (2008)
and Bailey & Smits (2010) employed wavenumbers across the range 0.6 6 kxR 6 1.5
(depending on y/R) to divide the VLSM from LSM. The grey-shaded range in
figure 7 contains all of the foregoing estimates of the wavenumber separating LSMs
and VLSMs.

We have assessed the sensitivity of the respective spatial correlations to the
separating wavenumber value. The magnitudes of the correlations are affected by
the separating wavenumber, but spatial features, such as the scale and shape of the
correlation contours are largely unaffected, in agreement with Bailey & Smits (2010).
Therefore, when using a sharp boundary to distinguish large from very large we have
chosen the wavenumber kxR= 2 to be consistent with the work of Guala et al. (2006)
and Balakumar & Adrian (2007). Note that filtered velocities obtained using mutually
exclusive filters, such as the sharp cutoff filters, must be statistically uncorrelated.

While a single, nominal wavenumber separating large- from very-large-scale
motions is convenient for purposes of discussion and characterization, it is not
physical, because the spectra of the VLSMs and the LSMs are certain to overlap.
Moreover, taking the inverse Fourier transform of sharply cut spectra to get the
correlation functions can produce unphysical ringing due to the discontinuity. Hence,
separation by filtering in streamwise wavenumber space is better done with a pair
of overlapping, smoothly decreasing low-pass and high-pass filters, having energy
transfer characteristics such as the two curves which consist of open squares and
circles in figure 7.

The two-sided co-spectrum of u with streamwise wavenumber kx and azimuthal
wavenumber kθ is defined as

Suu(kx, r, kθ ; rref )≡
1

(2π)2

∫
∞

−∞

e−
√
−1(kxrx+kθ rθ )Ruu(rx, r, rθ ; rref )σu(rref )σu(r) drx drθ . (4.2)

If uvl is obtained by passing u through a low-pass filter Hvl(kx) its co-spectrum is

Svl(kx, r, kθ ; rref )= |Hvl(kx)|
2Suu(kx, r, kθ ; rref ). (4.3)

If r= rref , (4.3) becomes the power spectrum of uvl on the plane at yref (= 1− rref ).
The high-pass filter that defines the LSM plus smaller scales must satisfy

|Hl(kx)
2
= 1−Hvl(kx)|

2 (4.4)

to conserve energy. The corresponding dimensionless spatial correlations are

Rvl(rx, r, rθ ; rref )=

∫
∞

−∞

e
√
−1(kxrx+kθ rθ )|Hvl(kx)|

2Suu(kx, r, kθ ; rref ) dkx dkθ/σu(rref )σu(r),

(4.5)
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FIGURE 8. Correlation coefficient Rl for the LSMs at yref /R = 0.1 in the rx–y plane.
Grey shading indicate contours of the correlations of the LSMs plus small scales (i.e.
kxR> 2), and solid lines are the contours of correlation of LSMs only (i.e. 2< kxR6 10).
(b) Enlarged-view. Line contour levels are 0.005, 0.1, 0.2, 0.3 and 0.4.

Rl(rx, r, rθ ; rref )=

∫
∞

−∞

e
√
−1(kxrx+kθ rθ )|Hl(kx)|

2Suu(kx, r, kθ ; rref ) dkx dkθ/σu(rref )σu(r).

(4.6)

Note that Rvl and Rl are not ordinary correlation coefficients because they have
been normalized by the mean square value of u in order to describe the relative
contributions of the VLSM and LSM to the total energy. Hence

Rvl(0, rref , 0; rref )= σ
2
vl/σ

2
u and Rl(0, rref , 0; rref )= σ

2
l /σ

2
u , (4.7a,b)

where
σ 2
vl = u2

vl(rref ), σ 2
l = u2

l (rref ) and σ 2
u = u2(rref ). (4.8a−c)

The filters (|Hvl|
2 and |Hl|

2) shown in figure 7 were constructed to satisfy (4.4) and

|Hvl|
2
= ( 1

2)
2
= |Hl|

2 at kxR= 2, (4.9)

making the LSMs weaker than the VLSMs below kxR = 2, and the VLSMs weaker
than the LSMs above kxR= 2. The red squares and circles in figure 7 represent the
power spectra of uvl and ul, given by the products of the VLSM and LSM filter
functions with the power spectrum of u. This decomposition presents a simple picture
of two modes having peaks at kxR∼ 0.5–0.8 and kxR∼ 8 with a dividing boundary at
kxR= 2.

The foregoing decomposition does not attempt to separate the LSM from those in
the inertial sub-range and the dissipation range. In their study of a high Reynolds
number boundary layer, Hutchins & Marusic (2007b) separated the large scale from
the small scales at λx = R (kxR = 2π), and in their POD analysis Bailey & Smits
(2010) used λx ∼ 0.6R (kxR= 10), while in their previous study (Bailey et al. 2008)
the smaller scales were included in the LSMs. The various wavenumbers that have
been used to define the LSM/small-scale boundary fall in the orange band in figure 7.
Following Bailey & Smits (2010) we have chosen kxR= 10 for the nominal boundary.
Figure 8 compares correlation coefficients Rl computed by Fourier-transforming the
power spectrum of u over kxR> 2 (i.e. including the small scales), and 2< kxR 6 10
(excluding the small scales). The grey contours indicate the correlation Rl including
the smaller scales, and the solid lines indicate the correlation excluding the small
scales. The border between lightest grey and white is the 0.005-contour level to
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Space–time formation of very-large-scale motions in turbulent pipe flow 1025

highlight the LSMs. At large separations the small scales have little effect on the
LSM correlation (figure 8a). The contour shape near the reference location is created
by the induced velocity of strong second-quadrant ejection motions beneath the heads
of hairpins. The weak correlation between the tallest packet of the LSM (far from
the wall) and the LSM in the logarithmic layer (yref /R = 0.1) is consistent with
the attached eddy model in which another type of eddies (termed type-B eddies)
which are physically detached from the wall are important far above the logarithmic
layer (Marusic & Monty 2019). The streamwise separation (approximately ±2R) of
the positive correlation contours from the reference position indicates that the Rl
structure is ∼2R long, and the correlation gives good picture of bulges. Contrary to
the large-scale component, at separations less than 0.3R the small-scale components
with wavenumber kxR> 10 make substantial differences (figure 8b). Since our primary
interest is the organization of the long wavelength components for the LSMs (low
contour levels), it is not important to exclude the small-scale motions from the
investigation of the LSMs.

In order to examine the spatial organization pattern of the VLSM and LSM,
individual 2-D correlation contours of the VLSM (Rvl) and LSM (Rl) are estimated.
This investigation is particularly important for a better understanding of the formation
of the VLSM because the LSMs creating a VLSM by the concatenation process are
also associated with the generation of the LSM patterns (Rl), as will be shown later.
Figure 9 shows 2-D contours of the correlations of the VLSM (Rvl) and LSM (Rl)
in the streamwise-radial plane. The contours of Rvl clearly indicate a structure that is
asymmetric in the streamwise direction and tilted at a small angle ∼4◦ with respect
to the wall. This behaviour is contra-indicative of long, streamwise homogeneous
roll-cell structures, which would have no asymmetry and no tilt (Baltzer et al. 2013).
Except at yref /R = 0.1, where the correlation is weighted to the downstream, the
structures of the VLSM in the outer layer (0.3 6 yref /R 6 0.9) reside primarily
upstream of the reference point. This effect and the foregoing tilt and asymmetry are
consistent with the shape of the low-momentum zone within a single hairpin packet,
except that the inclination of the centroid of the low-momentum zone of single packet
correlations is expected to be larger. These observations, combined with the length of
the correlation concept, are consistent with concatenated hairpin packets. Compared
to the VLSM correlations, the LSM correlations (figure 9) in the outer layer contain
elements in the lower level contours that indicate structural inclination at clearly
larger angles. At yref /R= 0.1, the 15◦–20◦ angle is consistent with established values
for the envelope of hairpin packets in the logarithmic layer, but further up the angle
steepens to approximately 45◦, consistent with inclination angle of individual hairpins
within packets. The streamwise extent of the LSM correlations shows little or no bias
fore or aft, suggesting that the effect of differential convection due to mean shear is
small.

The correlation functions of the streamwise velocity of VLSM and LSM are
examined on the cross-stream plane in figure 10. The bold zero contours separate
regions of positive and negative correlation. Positive correlations of the VLSM are
flanked by regions of negative correlation, indicating long, low-momentum zones
flanked by high momentum zones, or vice versa. The positive regions extend to the
near-wall layer, even for reference heights up to yref /R = 0.9, showing clearly the
influence of the footprints of the VLSMs on the near-wall region (Mathis et al. 2009).
Two secondary regions of weak, positive VLSM correlation occur at ∼140◦ and ∼220◦
from the event location at 0◦ for reference points lying below yref /R= 0.5. They, too,
penetrate the near-wall region. Baltzer et al. (2013) observed similar patterns of weak,
positively correlated streaks in Ruu up to approximately yref /R= 0.4.
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FIGURE 9. Correlation coefficient Rvl (lef-hand side) and Rl (right-hand side) in the rx–y
plane. (a) yref /R= 0.1, (b) yref /R= 0.3, (c) yref /R= 0.5, (d) yref /R= 0.7, (e) yref /R= 0.9.
In Rvl, contour levels are varied from 0.05 to 0.3 with an interval of 0.05, and in Rl,
contour levels are varied from 0.05 to 0.45 with interval of 0.05. A negative contour level
of −0.05 is included in Rvl and Rl (dashed line). The mean inclination angles based on
a contour level of R= 0.05 are shown.

The 0-contour Rl (right-hand side of figure 10) fails to convincingly reveal
secondary regions of positive correlation, but the grey contour level on which
Rl = 0.0005 does show secondary regions of positive correlation, especially at
yref /R= 0.3 and 0.5. Unlike the secondary positive correlation regions of the VLSMs,
those of the LSMs depend strongly on the wall-normal location of the reference
points, separating from the wall with increasing yref /R and disappearing above
yref /R= 0.7. The LSMs separate in the sense that the regions of positive correlation
at rx/R= 0 in Rl do not reach the wall at yref /R > 0.1. However, the 2-D contour of
Rl in the rx–y plane in the logarithmic layer (figure 8) is attached to the wall at an
upstream location. The contribution of the attached hairpin vortex to the generation
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FIGURE 10. Correlation coefficient Rvl (left-hand side) and Rl (right-hand side) in the
cross-stream plane. (a) yref /R = 0.1, (b) yref /R = 0.3, (c) yref /R = 0.5, (d) yref /R = 0.7,
(e) yref /R= 0.9. Contour levels are varied from 0 to 0.4 with an interval of 0.05 including
−0.025 and −0.05. The bold black solid line indicates the 0-contour level and dashed
lines indicate negative values, respectively. For Rl in (a–c), the correlation contour of
0.0005 is depicted with a bold grey solid line.
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of the correlation patterns in the logarithmic layer is consistent with Townsend’s
attached eddy hypothesis in which geometrically self-similar attached eddies occur
in a hierarchy of scales with a population density of eddies that varies inversely
with size and thus with distance from the wall (Townsend 1976; Marusic & Monty
2019). However, the less streamwise coherence of the correlation contours above the
logarithmic layer (figure 9) implies that detached eddies, which may be formed locally
away from the wall or are physically detached due to a saturation of the self-similar
growth of hairpins attached to the wall, play a dominant role to generation of the
correlation patterns.

Bailey & Smits (2010) reported that the azimuthal scales of the LSMs in the
wake region (termed ‘detached LSMs’) and the VLSMs in the logarithmic layer are
approximately the same, leading them to suggest that, and if the hypothesis of Kim &
Adrian (1999) is valid, then only the larger, older, detached LSMs in the outer layer
rather than the smaller hairpin packets located near the wall align to create VLSMs.
In figure 10, we find the same approximate equality of azimuthal length scales of the
VLSM in the logarithmic layer and the LSM in the outer layer (yref /R> 0.5), despite
the wavenumber separating VLSM and LSM differing from that of Bailey & Smits
(2010). Based on the observations of LSMs in the outermost edge of the boundary
layer (Kovasznay et al. 1970; Falco 1977), Kim & Adrian (1999) and succeeding
publications from that group have consistently defined LSMs in pipes and channels
to be 2–3R long structures whose wall-normal extent approaches the centreline.
They have further interpreted the LSMs to be the oldest and therefore largest packets.
Since the largest packets contain smaller packets in a hierarchy of scales (Adrian et al.
2000), the attached smaller packets in the near-wall region with strong streamwise
fluctuating velocity contribute to align the adjacent packets. Note that in figure 4, the
tallest detached packet was shown to overrun the near-wall attached packet to form
the VLSM. This scenario suggests that the LSMs and VLSMs are interrelated.

Figures 11 and 12 display correlation coefficients Rvl and Rl in the rx–rz plane using
low values to expose the LSM and VLSM patterns (large correlation coefficients occur
at small separation by virtue of the small-scale contributions; to see the large scales,
one must accept the low correlation coefficients that occur at large separations).
Correlation on the plane yref /R = 0.15 is included for future reference. The contour
levels range from −0.05 to 0.1, with solid and dashed lines corresponding to contour
levels of 0, 0.001 and −0.001. Below yref /R = 0.5 the contours of Rvl exhibit
X-shaped patterns at very-large-scale separations between 5R and 10R (the regions
in yellow). We will see that the X is a superposition of positively and negatively
inclined alignments of LSMs along shallow (∼5◦–10◦) helical angles. The helical
angle of the VLSM and the LSM is defined as the mean of the largest and smallest
helical angles, as shown in figures 11(a) and 12(a). At separations less than 5R
the X-shape merges into a red region of high correlation flanked by spanwise-offset
regions of negative (blue) then positive (pale yellow) correlation. In the streamwise
direction the correlation briefly turns negative at approximately 8-9R, then resumes
a positive value. As noted in Baltzer et al. (2013) the presence of the features at
these low contour levels is due neither to noise, nor lack of statistical convergence,
nor streamwise periodicity of the simulation, because previous experimental studies
reported similar behaviour. The X-shape correlation pattern has also been reported
in a boundary layer study using Taylor’s hypothesis (Hutchins & Marusic 2007a).
They also showed that an X-shape could be produced by correlating three adjacent,
12R-long strips of high–low–high speed flow that meandered sinusoidally in the
spanwise direction. The single frequency meandering created periodic regions of
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FIGURE 11. (Colour online) Correlation coefficient Rvl in the rx–rz plane. (a) yref /R= 0.1,
(b) yref /R= 0.15, (c) yref /R= 0.3, (d) yref /R= 0.5, (e) yref /R= 0.7, ( f ) yref /R= 0.9. Colour
contour levels are varied from −0.05 to 0.1, and solid lines depict the low contour levels
of the correlations, corresponding to 0, 0.001 and −0.001 (dashed line). Thick, straight
solid lines in (a) indicate the largest and smallest helical angles for the VLSM, and thick,
straight dashed lines depict the mean helical angle.

positive and negative correlation in the streamwise direction with a period of 3.5R.
The similar positive region in our pipe flow simulation is more elongated (rx ∼ 7R)
in figure 11 with additional regions of positive correlation offset in the streamwise
and spanwise directions. However, it is hard to make such a pattern using a simple
meandering low-speed streak. Later, we will show that the superposition of helically
inclined VLSM modes, similar to those observed in the instantaneous fields, can
induce complex spatial organization similar to that found in figure 11.

In figure 12, the correlation pattern of the LSM, Rl, also exhibits an X-pattern, but
the angle of inclination is much larger than the helical angles found for the VLSM,
and the streamwise and spanwise scales are, of course, smaller. The small region of
positive correlation is surrounded fore-and-aft and side-to-side by regions of negative
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FIGURE 12. (Colour online) The same as figure 11, but for correlation coefficient Rl in
the rx–rz plane. In (a), the enlarged view of a region in the vicinity of the reference
location is included in the right-hand corner for clarity.

correlation. Although the region of positive correlation is surprisingly small, this
pattern is consistent with the correlation of a single hairpin packet, but the X-pattern
is not.

We now examine the variation of the correlation-based helical angles for the VLSM
and the LSM along the wall-normal direction. Figures 11 and 12 make it clear that the
helical angle depends on the value of the threshold employed. Since low contour levels
of both VLSMs and LSMs create an X-shape pattern, we have chosen R= 0.0005 as
a representative low contour level to measure the helical angles of the structures with
opposite sign. In figure 13(a), the dominant helical angle of the VLSM (βvl) is shown
to decrease continuously with increasing y/R, probably due to the decrease of the
azimuthal domain (figure 11), creating less helical angle. Contrary to the observation
for the VLSMs, the highly tilted helical angle of the LSM (βl) increases continuously
in the outer layer (figure 13b). As shown in figure 12, the increase of the helical angle
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FIGURE 13. Azimuthally offset angle variations of the (a) VLSMs and (b) LSMs based
on R= 0.005.

of the LSM seems to be due to high growth rate of the spanwise length scale of the
LSMs than that of the streamwise length scale with the distance from the wall.

5. Reconstruction of Rvl and Rl

In this section, we will provide evidence that the spatial organization pattern of
Rvl discussed in the previous section can be constructed by a combination of several
helically aligned VLSM patterns based on energetic POD modes. The identified
VLSM patterns that are created by artificial packets of hairpin vortices can reconstruct
both Rvl and Rl based on spectral filtration of the signal.

5.1. Proper orthogonal decomposition analysis
We first consider the Karhunen–Loeve procedure to extract the most energetic coherent
structures (POD modes) from the eigenfunctions of the two-point correlation tensor in
the Fourier domain (Duggleby et al. 2007; Baltzer 2012)∫ R

0
Sij(kx, r, kθ ; rref )Ψ̂

(n)
j (kx, r, kθ)r dr= λ(n)(kx, kθ)Ψ̂

(n)
i (kx, rref , kθ), (5.1)

where Ψ̂ is the Fourier-transformed eigenfunction with associated eigenvalue λ, and n
is an index assigned to each POD mode by ordering according to decreasing energy.
The spectral-density tensor Sij is calculated from discrete Fourier-transformed velocity
ûi(kx, r, kθ) as

Sij(kx, r, kθ ; rref )= 〈ui(kx, rref , kθ)u∗j (kx, r, kθ)〉, (5.2)

where (*) denotes the complex conjugate of the eigenfunction. Due to the homogeneity
and periodicity in x and θ each velocity component of the POD modes varies
trigonometrically as a function of the x and θ spatial coordinates, i.e. the modes
are Fourier in those directions. Each mode is assigned a mode number set (ix, iθ , n),
where ix and iθ are indices for which the corresponding mode wavenumbers are

kx =
2π

30R
ix and kθ = iθ . (5.3a,b)

In the latter, we will use both notions, (ix, iθ ) and (kx, kθ ), as convenient. Since
the eigenvalue indicates the mean amounts of turbulent kinetic energy that each
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ix = 0 ix = 1 ix = 2 ix = 3 ix = 4 ix = 5 ix = 6

iθ = 0 0.0164 0.0261 0.0212 0.0211 0.0136 0.0132 0.0116
iθ = 1 0.1069 0.13701 0.0744 0.0474 0.0534 0.0460 0.0428
iθ = 2 0.14641 0.1616 0.1175 0.0820 0.0649 0.0418 0.0421
iθ = 3 0.14161 0.2038 0.15611 0.0969 0.0673 0.0383 0.0383
iθ = 4 0.2044 0.1487 0.12461 0.0686 0.0550 0.0399 0.0374
iθ = 5 0.0912 0.0997 0.0882 0.0627 0.0473 0.0291 0.0235
iθ = 6 0.0627 0.0512 0.0511 0.0495 0.0406 0.0274 0.0208

TABLE 1. Eigenvalue spectrum of the n= 1 POD modes for the unfiltered pipe flow (e.g.
using Ruu in the POD kernel). The eigenvalues in bold correspond to the 10 most energetic
Fourier modes. The superscript 1 indicates mode combination 1.

POD mode contributes to reconstructed fields, the most energetic modes with n = 1
are particularly important in organizing the flow. The n = 1 eigenvalues for each
streamwise and azimuthal wavenumber index in table 1 include the sum of all Fourier
modes with positive and negative wavenumber values for the indices. The 10 most
dominant modes are depicted in bold. The n = 1 modes account for approximately
90 % of total kinetic energy for all (ix, iθ ) pairs, and the most energetic modes are
observed in VLSM wavelengths, consistent with a previous study of Baltzer et al.
(2013).

The orthogonal eigenfunctions obtained from (5.1) can be used to reconstruct the
two-point spatial correlation tensor with the corresponding eigenvalues. The two-point
spatial correlation tensor is given by Baltzer (2012) and Holmes et al. (2012)

Rij(rx, r, rθ ; rref )=
∑

kx

∑
kθ

∑
n

λ(n)(kx, kθ)Ψ̂
(n)

i (kx, rref , kθ)Ψ̂
(n)∗

j (kx, r, kθ)e j(kxrx+kθ rθ ). (5.4)

This equation (5.4) indicates that Rij can be decomposed into the sum of the weighted
(by λ) two-point correlation tensors of the eigenfunctions for all (ix, iθ , n) triples,
and inverse Fourier transform back into physical space. Since the n = 1 modes
contribute most significantly to the flow, we focus on the structures of the n= 1 mode.
Furthermore, since the dominant X-shaped pattern in Rvl consists of wavelengths larger
than 15R in figure 11, we shall focus on Fourier modes ix = 0, 1, 2; as an example,
five energetic modes (ix, iθ , n) = (2, ±3, 1), (0, ±2, 1), (0, ±3, 1), (1, ±1, 1) and
(2,±4, 1) with VLSM modes ix = 0, 1, 2. The modes are energy ordered in table 1,
with n = 1 being the most energetic mode. Their linear sum, properly weighted by
λ(n)(kx, kθ), is able to reproduce an X-shaped correlation pattern of Rvl, similar to that
in figure 11(b) in the logarithmic layer. The components of the 4th, 6th, 7th, 8th and
9th energetic modes are grouped as mode combination 1 in table 1. These five modes
are among the longest VLSM wavelengths more than 15R long, and the helical angles
of the modes (βvl) vary from 0◦ to 10.1◦ by the relation βvl= tan−1

[(R− y)2πix/(Lxiθ)]
at a particular y location with a wavenumber pair (ix, iθ ) (Baltzer et al. 2013). The
helical angle of βvl ∼ 5.0◦ at yref /R = 0.1 indicates a mode relation ix ∼ 0.464iθ ,
implying that the helical angle at this height is not simply obtained from a single
dominant VLSM pattern, consistent with our previous observation in figures 10
and 11 with the secondary peak of the positive-offset regions closer to 140◦ and 220◦.
Although not shown here, another mode combination of eigenmodes can be made
for Rvl with clear X-shape pattern, for instance using 4th, 7th, 8th and 9th energetic
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FIGURE 14. (Colour online) Correlation coefficient Rvl at yref /R= 0.15 in the rx–rz plane
with (a) Rvl based on present DNS data and (b) Rvl based on superposition of the five
energetic eigenmodes. Contour levels are varied from −0.05 to 0.1, and the solid lines
depict the 0-contour level. Thick, straight dashed lines depict the mean helical angle
∼4.5◦.

modes or 2nd, 4th, 7th, 8th, 12th, 14th, 16th and 18th energetic modes and so on.
However, simply summing the five (or more) most energetic modes only provides a
highly elongated correlation pattern in the streamwise direction without the X-shaped
contour.

The streamwise-elongated pattern with no X-shape pattern and high energy
is consistent with results by snapshot POD method that is based on no scale
decomposition in x- and θ -directions to calculate POD modes (Hellström, Sinha
& Smits 2011). In turbulent pipe flow at ReD = 12 500, they found that the most
energetic POD mode (n = 1) that is the sum of all (ix, iθ ) pairs consists of straight,
streamwise-aligned segments of positive and negative streamwise velocity fluctuating
structures. They also noted that the superposition of the four most energetic modes
(n = 1–4) will recreate meandering structures, indicating that the alignment of
spanwise-offset small scales of motions creates the appearance of VLSM.

Figure 14 shows correlation coefficients Rvl calculated from the present DNS data
and from the superimposition of the above five energetic modes (mode combination
1) with positive and negative azimuthal wavenumber pair at yref /R = 0.15 (highest
extent of logarithmic layer) in which VLSMs are frequently observed to be populated.
The dominant X-shape pattern of the correlation with highly elongated positive region
(∼7R long) shown in figure 14(a) is clearly apparent in the reconstructed Rvl. The
mean helical angle of βvl ∼ 4.5◦ (thick, bold dashed lines) averaged with the five
energetic modes is in good agreement with the real one. In addition, positively
correlated regions with the streamwise- and spanwise-offsets found in figures 10
and 11 are obviously shown with non-periodic spacing in x and θ , although the
location of secondary positive maxima with the spanwise-offset in figure 14(b) is
slightly closer to the reference location at rx/R = 0. The difference of the contour
levels between figures 14(a) and 14(b) is due to neglecting the other modes, and this
indicates that other VLSM structures with different helical angles and wavelengths
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are also important in constructing the full structural organization pattern of the true
correlation Rvl. The similarity of the reconstructed Rvl to the real one demonstrates
that the complex X-shaped correlation pattern of Rvl (or low contour level of Ruu)
with the offset regions in the streamwise and spanwise directions is not simply due
to a dominant outer layer large-scale structure (e.g. very long meandering motion). It
also requires the superposition of helically inclined very long structures (4th, 8th and
9th modes) and streamwise-aligned motions (6th and 7th modes).

Figure 15 displays vector patterns of reconstructed v and w modes with isosurfaces
of reconstructed u mode for the five dominant POD modes of mode combination 1.
The vortices and associated large-scale patterns in the POD modes are periodically
arranged along the pipe’s circumference, and the modes take helical form encompassing
all radii with rotation as x varies, unless ix is non-zero. Here, we visualize
counterclockwise modes. A similar set of clockwise modes also exists for oppositely
signed azimuthal wavenumber. The most dominant patterns in figure 15 are those of
roll-cells, indicating a close association with VLSMs. The strength of the roll-cell
modes is maximum for (ix, iθ) = (2, 4), indicating that the strength of the roll-cells
is proportional to the number of azimuthal wavenumber. In addition, the roll-cells
clearly influence near-wall structures regardless of the POD mode pair, based on
observations that the roll-cells are centred far from the wall at y/R = 0.29–0.41,
and the roll-cells’ influences are strong in the near-wall region, consistent with the
interaction between inner and outer layers (Mathis et al. 2009). Although not shown
here, linear estimates of conditional averages with a −u event at yref /R= 0.15 using
the VLSM correlation on the cross-stream plane exhibit large-scale counter-rotating
roll-cells with strong eruptions and sweep motions, consistent with the reconstructed
POD modes in figure 15 (blue colour). This indicates that the large roll-cells could
sweep near-wall hairpin packets into alignment along the stagnation zones between
cells (Toh & Itano 2005; Adrian 2007). However, it is not clear whether the roll-cell
also nudges the LSMs into alignment, or the LSM alignment creates the roll-cells.

5.2. Hairpin packet model
To provide clear evidence for how spatial organization patterns of both Rvl and Rl are
created in the flow field based on the model of VLSMs, we consider a hairpin model
devised from the work of Perry & Chong (1982) and Perry & Marusic (1995). In
their model, a hairpin has the shape of a goalpost inclined at 45◦ to the wall in the
downstream direction. The induced velocity created by the model is calculated based
on the Biot–Savart law.

Figure 16(a) shows the typical structure of a hairpin vortex represented by an
isosurface of negative streamwise velocity. Here, the contour level is chosen to
clearly show the hairpin-like structure with 20 % of minimum (negative maximum).
The legs (or neck) of the goalpost-like hairpin are attached to the wall, and the
inclination angle of the structure is maintained to be constant with 45◦ for simplicity.
The packet in figure 16(b) consists of six hairpin vortices that are streamwise-aligned
with spacing 0.5R. The height (h) of the hairpins varies linearly from 0.1R to 0.7R
with an interval of 0.12R, creating a packet growing upwards in the streamwise
direction at a mean angle of approximately α = 13.5◦ (Zhou et al. 1999; Adrian
et al. 2000). Note that the width of the hairpins is taken to be twice that of the
hairpin height based on the data of Tomkins & Adrian (2003). The induced velocity
within and around a packet is simply the linear summation of the velocities induced
by individual hairpin vortex. The induced velocity and correlation patterns by a
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FIGURE 15. (Colour online) Roll-cell-like behaviour of the five POD modes with (a) (ix=

2, iθ = 3), (b) (ix = 0, iθ = 2), (c) (ix = 0, iθ = 3), (d) (ix = 1, iθ = 1) and (e) (ix = 2, iθ =
4). The left-hand side plots display the colour contours of reconstructed u with in-plane
velocity vectors of v and w modes at x/R= 0 planes, and the right-hand side red and blue
isosurfaces indicate the swirling patterns of positive and negative u-structures (at one-half
of maximum and minimum).

packet in figure 16(c,d) are similar to those found in the literature (Zhou et al. 1999;
Tomkins & Adrian 2003).
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FIGURE 16. (a) Goalpost-like model of a single hairpin vortex (Perry & Marusic 1995).
The hairpin is inclined to the flow direction with 45◦. (b) Hairpin packet model (grey
colour) constructed here using 6 hairpins (dashed lines). The height (h) of the hairpins is
varied linearly from 0.1R to 0.7R and the width (w) is 2h. The growth angle is constant,
α = 13.5◦. The individual hairpins in (b) are separated with spacing of δx/R = 0.5 in
the streamwise direction, creating a 3R-long hairpin packet, enveloping an LSM. The
hairpin in (a) is the 6th hairpin in the packet, as shown in (b) with transparent view. The
isosurface contours in (a) and (b) are the negative streamwise velocity. (c) The u velocity
induced inside and outside the model packet at yref /R= 0.15 (normalized by the negative
maximum) and (d) line contours of the correlation coefficient of the streamwise velocity
on the rx–rz plane at yref /R= 0.15. The contour levels are varied from 0.1 to 0.9, and the
dashed line depicts R=−0.05.

We construct the five energetic VLSM modes described in § 5.1 by aligning the
above artificially generated hairpin packets along helical angles (with spanwise-offset)
that are very consistent with those of the five modes in figure 15. An example of
an artificially constructed VLSM pattern corresponding to the counterclockwise 4th
mode (ix, iz)= (2, 3) is shown in figure 17(a) with its correlation patterns (b) Ruu, (c)
Rvl and (d) Rl using the high- and the low-pass filters employed in figure 7. Here,
the computational domain is (Lx, Ly, Lz) = (30R, 1.25R, 2π ∗ 0.85R) to be consistent
with the domain size in the logarithmic layer in figures 14 and 15. The configuration
in figure 17 is clearly shown when the cylinder in figure 15(a) is rolled out to be
viewed as a plane at y/R = 0.15. In addition, figure 18 shows correlation patterns
using both positive and negative spanwise wavenumber pair for the 4th mode, i.e.
clockwise and counter-clockwise helices, compared to that in figure 17. Since the
hairpin packets are continuously aligned along the helical alignment related to the
4th POD mode both with spanwise-offset and with a streamwise-interval similar to
that between the hairpins, there exist 10 hairpin packets along the helical lines over
the 30R long domain. As expected, the correlation Rvl with low contour level of Ruu
in figure 17 shows that the highly elongated positive VLSM pattern is flanked by
negatively correlated regions on each side due to vortex induction from the legs and
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FIGURE 17. (a) Perspective view of the synthetically constructed pattern (u velocity with
20 % of minimum) associated with the counterclockwise 4th mode (ix, iz) = (2, 3). The
top view of the pattern is shown in the right-hand corner, and the flow direction is from
left to right. Spatial two-point correlations using the pattern in (a) where (b) Ruu, (c) Rvl
and (d) Rl. The high- and low-pass filters in figure 7 were employed, and the reference
wall-normal height is yref /R= 0.15. The dominant helical angles for VLSM (βvl) and LSM
(βl) are defined in (c) and (d) with dashed and dashed-dot lines. Here βvl and βl are ∼6.8◦
and ∼25.4◦ for the 4th mode. In addition, the relevant LSM patterns for βvl and βl are
described in (a) with dashed and dashed-dot lines.

the head, and the correlation is inclined at a helical angle due to spanwise-inclined
VLSMs related to the 4th mode. In addition, the correlations of Ruu and Rvl seem
to contain meandering behaviour along the helically inclined VLSM alignment (see
the top view in figure 17a), and it is more pronounced in Ruu rather than Rvl due
to the smoothing effect of the VLSM filter. This demonstrates that the meandering
is possibly due to spanwise-offset LSMs that are relatively straight, not due to a
dominant meandering motion residing in turbulent flow. The meandering behaviour
based on our result is consistent with the previous observations of Balakumar &
Adrian (2007) that ‘the smoothed field of a concatenation of misaligned hairpin
packets would look like a pair of meandering counter-rotating streamwise vortices’.
Furthermore, our result is consistent with the study of Hellström et al. (2011) based
on snapshot POD modes in which they showed that reconstructions with the 10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.786


1038 J. H. Lee, H. J. Sung and R. J. Adrian

-15 -10 -5 0 5 10 15
rx/R

2

0

-2

r z/
R

2

0

-2

r z/
R

2

0

-2

r z/
R

1.0
0.6
0.2
-0.2
-0.6

0.4
0.2
0
-0.2
-0.4

0.4
0.2
0
-0.2
-0.4

ıl

ı√l

(a)

(b)

(c)

FIGURE 18. Spatial two-point correlations (a) Ruu, (b) Rvl and (c) Rl at yref /R = 0.15
using the artificial pattern in figure 17, but using both positive and negative spanwise
wavenumber pair. The dominant helical angles for VLSM (βvl) and LSM (βl) present in
figure 17 are shown in the figure.

most energetic POD modes (n= 1–10) capture all the principal characteristics of the
VLSM, suggesting that VLSMs are constructed of the most energetic POD modes
that give the impression of long meandering structures.

However, the correlation pattern of Rl in figure 17(d) shows a clear alternating
pattern of positive (white) and negative (black) correlation regions at an angle of βvl
in the streamwise direction. This is attributed to high-momentum regions residing in
the upstream of the low-momentum regions due to continuous induction of hairpin
vortices, consistent with figure 12. Instead of the long coherent pattern along the angle
of βvl in Rl, an elongated pattern of positive correlation region is obviously shown to
be created with an inclination angle (βl), as depicted by a white dashed-dot line in
figure 17(d). Since we assume that the most upstream packets in each line (along βvl)
are located in the region of 0 6 x/R 6 Ll, then the mode helical angle for the LSM
at a particular y location and with a wavenumber pair (ix, iz) can be defined by

βl = tan−1

(
(R− y)2π

iz

(
1
Ll
−

iz

Lx

))
, (5.5)

where Ll is the streamwise length (= 3R) of each packet. Then, the (ix, iz) = (2, 3)
mode has LSM helical angle of βl = 25.4◦ at y/R= 0.15 in figure 17(d). As can be
seen in figure 17(a) with the dashed-dot line, such a positive correlation pattern of
Rl along with the helical angle βl is induced by the alignment of LSMs, although
each LSM is involved in creating different VLSMs. Inspection of the other four modes
with their configurations using the above relation in figure 19 shows helical angles
of βl = 41.7◦ (ix = 0, iz = 2), 30.7◦ (ix = 0, iz = 3), 57.9◦ (ix = 1, iz = 1) and 19.9◦
(ix= 2, iz= 4) with a similar organization pattern to the (ix, iz)= (2, 3) mode, although
corresponding correlation patterns (i.e. Ruu, Rvl and Rl) are not shown here.
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FIGURE 19. The same as figure 17(a), but for the other four modes. (a) 6th mode
(ix, iθ ) = (0, 2), (b) 7th mode (ix, iθ ) = (0, 3), (c) 8th mode (ix, iθ ) = (1, 1) and (d) 9th
mode (ix, iθ )= (2, 4).

Although the VLSM mode of (ix, iz)= (2, 3) is one of the most energetic modes in
the eigenvalue spectrum and has wide influence in organizing the flow pattern, strong
local energy contributions to the total energy are primarily from the sum of LSM
and smaller scales of motions, as shown in figure 17(d) with deep white and black
contours. The contour coefficients Rvl and Rl normalized by the mean square value
of u in figures 10–12 also show the consistent behaviour to the energy contributions
from LSMs and VLSMs. Baltzer et al. (2013) analysed an instantaneous field with an
energetic mode (ix, iz)= (2, 3), and they showed that the typical strength of the very
long u-structure with the mode is more than 20 times smaller than that of the raw
data at y/R= 0.15, indicating that the highly energetic VLSMs should be combined
with smaller scales of motions contributing to strong local net energy to consist of a
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FIGURE 20. Roll-cell-like behaviour of the artificial five POD modes. Each POD mode is
constructed using each artificially constructed VLSM pattern of the five energetic modes
with positive and negative spanwise wavenumber pair. (a) (ix, iθ )= (2,±3), (b) (0, ±2),
(c) (0, ±3), (d) (1, ±1) and (e) (2, ±4). The left-hand plots display the colour contours
of u with in-plane velocity vectors of v and w modes at x/R= 0 planes, and the right-
hand white and black isosurfaces indicate the swirling patterns of positive and negative
u-structures (at one-half of maximum and minimum).

total energy for a raw instantaneous realization. The energy relationship is consistent
with the hypothesis that the largest scales are composed of concatenations of LSMs.

Figure 20 shows constructed POD modes using the artificially constructed VLSM
patterns of the energetic five modes of mode combination 1. Here, each POD mode
is calculated using each corresponding VLSM pattern with a positive and negative
spanwise wavenumber pair among the five energetic modes, i.e. in figure 20(a),
the artificial VLSM pattern, which resembles the pattern corresponding to the 4th
mode (ix, iz) = (2, ±3), is first made by the alignment of the artificial LSMs with
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positive and negative spanwise wavenumber pair, and the energetic POD mode with
wavenumber pair (ix, iz)= (2,±3) is constructed based on its correlation pattern shown
in figure 18(a). This approach results in the most energetic n= 1 POD mode at the
(ix, iz) = (2, 3) wavenumber pair in figure 20(a), corresponding to the wavenumber
pair related to the 4th energetic mode (figure 15a).

In figure 20, the very-large-scale counter-rotating roll-cell-like vortex patterns are
periodically organized in the streamwise and spanwise directions except for the
rotation when varying the streamwise location for non-zero ix. The roll-cells for
the modes are centred at y/R = 0.28, 0.34, 0.3, 0.37 and 0.2, and the trend of the
position is comparable to y/R= 0.33, 0.38, 0.34, 0.41 and 0.29 in figure 15 for the
real ones, although there are small discrepancies in magnitude. The roll-cell motions
are present for either the streamwise-aligned or spanwise-inclined VLSM pattern,
and the general shape of the contours for all the roll-cells is relatively insensitive to
the number of roll-cell pairs, consistent with those in figure 15. This indicates that
the artificial packet alignments for the VLSMs replicate the topology of the modal
flow pattern for each five mode. However, some differences are clearly observed in
particular in the near-wall region. That is, the isosurfaces of the roll-cells in the 3-D
view in figure 20 are not closed in the near-wall region. The difference indicates that
the model for the VLSM related to the roll-cells is not complete, and this could be
attributed to the absence of consideration not only for interaction between inner and
outer layers (Mathis et al. 2009) but also for a hierarchy of scales across most of
the wall layer in this model (Adrian et al. 2000).

Significant efforts have paid attention to studying the roll-cell-like motions in
previous studies based on a stability analysis calculation, conditional averaging
conditioned by a u event, instantaneous analysis and POD modes (Toh & Itano 2005;
del Álamo & Jiménez 2006; Hutchins & Marusic 2007b; Chung & McKeon 2010;
Wu et al. 2012; Baltzer et al. 2013). However, it is not still clear for the origin of
the roll-cells (i) that they could be generated by the collective behaviour of near-wall
structures (Toh & Itano 2005), or (ii) that they could be amplified by the forcing of
smaller modes (McKeon & Sharma 2010), or (iii) that they could be attributed to
jittering of small-scale (Balakumar & Adrian 2007; Marusic & Hutchins 2008), or
(iv) that they could be due to a linear instability mechanism (del Álamo & Jiménez
2006).

The existence of the roll-cells similar to the real ones in figure 20 demonstrates
that roll-cells could be created by the VLSMs that are collectively formed by the
concatenation of LSMs aligned in a straight manner or in a spanwise-inclined
manner. As similar to the behaviour of the roll-cell in the near-wall region in
figure 15, relatively strong influence of the roll-cells on the near-wall structures in
figure 20 indicates that the large-scale roll-cells centred in the outer layer organize
the entire flow with strong near-wall interaction, for example, near-wall small-scale
modulation by outer layer VLSM (Mathis et al. 2009). Since the roll-cell created
by the outer layer energetic VLSM (that are created by collective behaviour of
smaller-scales) sweeps smaller-scale motions into beneath the VLSM pattern as
shown in the vector fields in figures 15 and 20, the alignment of the small-scale
motions along the line of the roll-cell by a sweep event can induce a footprint of
the VLSM in the near-wall region. Furthermore, since the small-scale motions with
sufficient strength can ultimately grow into LSM packets via auto-generation, the
presence of the roll-cell mode can also induce the alignment of the LSM packets
in a helical angle to form a VLSM, finally intensifying the roll-cell. A DNS study
of a turbulent channel flow by Hwang, Lee & Sung (2016) provided evidence that
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FIGURE 21. Superimposed correlation patterns in the rx–rz plane using the five artificial
VLSM patterns with positive and negative spanwise wavenumber pair at yref /R = 0.15.
Here (a) Rvl and (b) Rl. The mean helical angles of βvl and βl for VLSMs and LSMs are
depicted by dashed and dashed-dot lines in (a) and (b).

the congregation of the near-wall streaks beneath the outer counter-rotating roll-cells
generates intense velocity perturbations which are lifted away from the wall, resulting
in the concatenation of LSMs to form a VLSM. This two-way interactive mechanism
is consistent with the co-supporting cycle of Toh & Itano (2005). In addition, in
the sense that small-scales play a role in organizing the roll-cell modes, our result
is similar to McKeon & Sharma (2010) in which the most energetic mode in the
presence of forcing by other smaller modes is a VLSM.

However, it should be noted that roll-cell modes constructed using LSM wavelengths
are different to the roll-cells associated with VLSM wavelengths. When counter-
rotating roll-cells are visualized using LSM wavelengths based on POD modes and
linearly estimated conditional fields in the cross-stream plane (not shown here), the
local, but strong sweep event was observed on a region beneath the event location
y/R = 0.15, not on the near-wall region, implying less influence of LSMs on the
near-wall regions.

Figure 21 shows superimposed correlation patterns Rvl and Rl using the artificially
generated five energetic VLSM modes. Here, each correlation pattern of Rvl and Rl
constructed from each VLSM mode (for example, Rvl and Rl from the 4th mode in
figure 18) is simply summed with multiplying DNS-based eigenvalues through all
five modes according to (5.4). Compared to figure 14(b), the difference is that the
five VLSM patterns here are constructed by the alignments of the artificial LSMs
that are either streamwise-aligned or spanwise-inclined, whereas there are no imposed
LSM wavelengths in figure 14(b). As a result, an additional correlation pattern for Rl
created by the alignments of the packet model is introduced in figure 21(b) by the
spatial filtering of the artificial VLSM patterns. Since the synthetic VLSM patterns
are constructed based on the POD modes using the present DNS data shown in
figure 14, the overall correlation pattern Rvl in figure 21(a) is in excellent agreement
with figure 14.

In figure 21(b), it is evident that the combination of the LSM patterns constructed
for the formation of the several VLSM modes also induce a distinctive X-shaped
pattern of Rl created by positive and negative correlation regions with a large helical
angle βl ≈ 25◦ at yref /R= 0.15, consistent with the pattern in figure 12(b). As shown
in figure 17, such pattern of Rl is created by another periodic pattern of the LSMs,
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compared to the alignment of the LSMs along the lines of the VLSMs. Note that the
positive correlation region in the reference location is observed to be longer and wider
than the real pattern of Rl in figure 12 due to the absence of small-scales motions in
the model.

The pattern of the LSMs is consistent with a 3-D visualization study of a scalar
field using dye slots in a low Reynolds number boundary layer (Delo, Kelso &
Smits 2004). By examining the spanwise organization pattern of a large-scale packet
structure (here, the term packet is used to describe regions of brightly marked dye
within the boundary layer), in particular focusing on the outer portion of the boundary
layer due to a clear pattern of the structure at that height without the complexity
of higher levels, they identified that the LSMs in the outer layer (y/R = 1.12) are
organized along diagonal lines, inclined to the streamwise direction within the range
of approximately −45◦ to 45◦. Compared to our result, the inclination angle 45◦
in the outer part of the boundary layer is larger than the angle in the outermost
height in figure 13(b) owing to a different flow type with geometric contraction in
the pipe core. The smaller helical angle when approaching the near-wall region in
figure 13(b) is also consistent with the behaviour in Delo et al. (2004) in which they
showed no strong diagonal orientation in the near-wall region. The formation pattern
for Rl in figures 17 and 21 indicates that the increase of the helical angle for the
LSMs along y/R is closely associated with the spanwise length scale growth of the
structures, although the decrease of the spanwise domain size can cause the decrease
of the helical angle, similar to that for the VLSMs in figures 11 and 13. However,
since a helical angle βvl for the VLSMs is created by an attached VLSM, similar to
that in figure 17(a), the influence of the spanwise scale growth on βvl is negligible.

Similarly, the described formation patterns for VLSMs and LSMs can provide an
explanation for the different features of the spanwise-offset regions between them
in figures 10–12. Since the streamwise-aligned VLSMs with a helical angle βvl are
attached to the wall by the role of the roll-cells at all y/R, the VLSM pattern with
azimuthal-offset positive correlation regions can maintain an azimuthal similarity at
∼140◦ and ∼220◦ in a statistical sense with little influence of the spanwise scale
growth along y/R (figures 10, 11, 15 and 17). However, since the LSMs in the
outer layer are largely affected by the spanwise scale growth of the LSMs along
y/R (figures 10 and 17), the azimuthal location of the spanwise-offset regions might
be dependent of the radial position of the event. Furthermore, the smaller spanwise
width of the LSMs rather than the VLSMs (figure 10) suggests that the offset regions
can further persist up to y/R= 0.5 rather than the VLSM.

The spatial organization pattern observed in the present study is also consistent with
a very recent experimental result in a turbulent boundary layer flow by Kevin et al.
(2019). They investigated the spatial organization pattern of large-scale streaks without
separation between LSMs and VLSMs, and observed that the large-scale coherence
becomes increasingly misaligned with the distance from the wall (e.g. oblique/diagonal
coherence inclined at ±45◦ at around y/R = 1.0) with increasing meandering
behaviour, similar to those in the earlier studies of Sillero, Jiménez & Moser (2014)
and De Silva et al. (2018). They also found dominant streamwise-repeating behaviour
of the large-scale structures. The overall organization pattern observed by Kevin
et al. (2019) is very similar to our correlation patterns of Rl in which the helical
angle increases with the distance from the wall with dominant anti-correlated regions
fore-and-aft and side-to-side with respect to the reference position. The presence of
the larger helical angle of the LSMs with the distance from the wall implies that the
streamwise-aligned LSMs without spanwise-offset play an important role in creating
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the correlation pattern of the VLSMs with small helical angle near the centreline
(figures 11 and 13), and another periodic pattern of the LSMs compared to the
alignment of the LSMs along the lines of the VLSMs leads to a larger helical pattern
(figure 19).

6. Summary and conclusions
We analysed the DNS data of the fully developed turbulent pipe flow to investigate

not only the formation mechanism of the VLSM from the LSMs but also the spatial
organization patterns of the VLSMs and the LSMs with their statistical properties.
The friction Reynolds number was Reτ = 934 and the streamwise domain length was
30R (Lee & Sung 2013). Consistent with the previous conjecture of Kim & Adrian
(1999), the streamwise structure of the very large scale was found to be created by the
coherent alignment of the LSM packets. The streamwise length and the helical angle
of the VLSM were determined by the initial pattern (or alignment) of the LSMs, and
the roll-cell-like motions might play an important role in organizing the alignment of
the LSMs in a helical angle. This merging process between the LSMs was attributed
to the continuous stretching and shearing of the hairpin packets of the LSMs due
to wall-normal mean velocity gradient. The similarity of this elongation-concatenation
mechanism and the mechanism found in turbulent boundary layer and channel flows
(Lee & Sung 2011; Lee et al. 2014) indicates that formation of VLSMs by elongation-
concatenation with spanwise angle does not depend fundamentally on the flow type.

The spectral filtration of the auto-correlations of the streamwise velocity fluctuations
based on the cutoff streamwise wavenumber kxR = 2 provided the statistical
organization patterns and statistical properties of the VLSMs and LSMs, respectively.
As similar to previous studies based on Ruu with low contour level, the correlation
Rvl for the VLSMs showed that the dominant anti-correlated region to the positive
correlation near the event point is located in the spanwise-offset region, and the
VLSMs are attached to the wall even in the outer layer, indicating significant
contribution of the VLSMs to the interaction of the structures between near-wall
region and outer layer. On the other hand, examination of the spatial pattern of the
LSMs revealed that the dominant anti-correlated regions of the streamwise velocity
fluctuating structure exist fore-and-aft and side-to-side of the positive correlation
region with the comparable size. The mean inclination angles of the VLSM and LSM
to the wall in the logarithmic layer were approximately 4◦ and 20◦, respectively, and
this is distinguishable from the previous one (10◦–15◦) for a ramp-like low-momentum
region by a hairpin packet due to global averaging of all structures.

The analysis using the artificially constructed hairpin packets based on the POD
analysis showed that the highly elongated correlation of the VLSMs with the shallow
angled X-shape pattern in the logarithmic layer (figures 11b and 14a) can be
constructed by the superposition of very long structures composed of spanwise-offset
LSMs aligned in the streamwise direction. The appearance of the meandering of the
VLSM previously reported was successfully created by the alignment of the relatively
straight spanwise-offset LSMs. In addition, the complex pattern of the streamwise- and
spanwise-offset positive regions found in the correlations was also constructed using
the combination of the synthetic VLSM patterns. This indicates that the correlation
patterns shown in the DNS data are a consequence of spanwise-offset LSMs along
a helical direction rather than a dominant very long sinusoidally wavering motion.
The correlation pattern of the LSMs with the larger helical angles (figure 12b) rather
than the VLSMs was induced by another periodic combination of the LSMs that are
involved in creation of the VLSMs.
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One school of thought attributes the creation of roll-cells to dynamic instability
mechanisms that are not dependent on the formation of large hairpin packets (LSMs).
For example, del Álamo & Jiménez (2006) found a linear instability mechanism in
channels whose most-amplified wave solution has the form of roll-cells. Another
school explains roll-cells as the response of those long, helical mode shapes that are
most strongly amplified in the presence of forcing by smaller modes present in the
(pipe) flow (McKeon & Sharma 2010). This mechanism allows for the possibility
that large hairpin packets may be the smaller scales that force dynamic growth of the
roll-cell modes. In opposition to these dynamic explanations, the POD analysis of the
artificially generated VLSMs in the present study revealed that a roll-cell-like motion
could be created by the VLSMs that are collectively constructed by the concatenation
of the LSMs. The roll-cells were just dynamically passive kinematic manifestations
of aligned packets being projected onto the POD modes. That is, averaging the
flow around a set of (somehow) aligned packets creates a pattern that looks like a
roll-cell when projected onto Fourier modes. However, the roll-cells centred in the
outer layer were found to sweep the small-scale motions beneath the VLSM pattern,
creating the small-scale footprint of the outer layer VLSM in the near-wall region. If
the small-scale motions beneath the roll-cell motions can ultimately grow into LSM
packets via auto-generation, the LSMs aligned closely enough to encounter each other
can grow to a VLSM by a merging process (figures 2–4), finally intensifying the
roll-cell. The LSM packets can align in a helical manner or in a straight manner, and
the alignment of the LSMs with a helical angle is determined by the initial pattern
of the LSMs prior to merger.

Interestingly, our generation process of the roll-cells shares some similarity with
a secondary flow generation mechanism over a longitudinal surface roughness in a
turbulent boundary layer. When the longitudinal surface roughness is presented on the
bottom surface, it retards the local fluid directly over the elevated roughness elements
due to large wall shear stress (thus, a low-momentum region), and a high-momentum
region occurs in the valleys between the elevated roughness elements. In order to
preserve mean flow continuity, a spanwise motion should be developed over the
roughness, thus resulting in a large-scale counter-rotating circulation (i.e. roll-cells)
(Vanderwel & Ganapathisubramani 2015; Hwang & Lee 2018). In the present study,
the alignment of LSMs along a helical angle induces large Reynolds shear stress
(wall shear stress) beneath the hairpins by the cooperative transfer of momentum
between the hairpins (i.e. coherent stress) (Adrian et al. 2000). Thus, the VLSM
inclined at an angle to the wall retards the local fluid in a similar way to the effects
of the surface roughness, and generates a secondary flow-like pattern to preserve the
conservation of mass, organizing the entire flow field far from the wall.
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