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The complex and far-from-intuitive issue of establishing how and when to act when

manoeuvres are to be performed in space is discussed here in a simple graphical way. An

analysis was made of the effects on the parameters of an orbit of low thrusts in three

directions: tangential to the orbit ; normal to it in the orbit plane; and normal to the orbit

plane. An outcome is that, in order to obtain a desired effect, and at the same time minimize

the undesired ones, it is better to use only a tangential thrust or only a normal one rather

than a combination of simultaneous tangential and normal thrusts. Thus it is not necessary

to investigate any alternative orientation of the thrusters. A manoeuvre can be accomplished

by thrusts given either only once along the orbit path, or in more than one orbital point.

Diagrams are produced which give a quick insight into the manoeuvre philosophy for both

kinds of action.

1. introduct ion. In space operations, a rendezvous must be accomplished,

a position must be reached or a spacecraft must be transferred to another orbit. In

addition, the performances of a constellation of artificial satellites deteriorate because

of motion perturbations or satellite failure, so that it becomes necessary to relocate

the satellites with respect to one another. This involves ‘space manoeuvring’.

Since a space manoeuvre may be considered a perturbation specifically designed for

the satellite motion, it can be accomplished by the action of ‘disturbing forces ’

(thrusts) producing suitable variations of the values of orbital elements. Standard

orbital elements will be used: a, semi-major axis ; e, eccentricity ; i orbit inclination;

Ω, longitude of the ascending node; ω, argument of the periapsis ; to, time of a

periapsis passage or Mo, mean anomaly at epoch¯M®n(t®to).

The ‘disturbing forces ’ can be expressed in the form of the following rectangular

components : T, tangential, positive in the direction of motion; N, perpendicular to

T in the orbital plane, positive towards the Earth; W, perpendicular to the orbital

plane, positive towards the north.

2. qual i tat ive analys is. The qualitative effects of these forces on the

above-mentioned elements are well known.<–
> They can be obtained by means of

simple relations between v (satellite velocity) and other parameters as well as by

certain geometrical properties of the orbital ellipse.

The most interesting results can be transferred directly onto the ellipse (Figure 1),

which represents an orbit relative to an attracting mass at F1, using the following

convention: the white areas indicate a positive variation of the elements in question

and the shaded ones a negative variation due to positive force, i.e. when a positive

tangential thrust is applied, the major axis always increases, while the eccentricity

increases in the sector DAC and decreases in the sector CBD. For negative values of

components, the results are opposite in sign.
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Figure 1. (a) Effects caused by T on eccentricity, major axis and line of apsides. (b) Effects

caused by N on eccentricity and line of apsides. The effect of N on the major axis is zero.

Interesting results concerning the contemporary effects of thrusts T and N (synergy

or contrast) may be obtained by super-impositions of the preceding figures, and these

are shown in Figure 2: ‘synergy’ means that when positive tangential and normal

forces are applied, both forces cause an increase or decrease of the elements

considered; ‘contrast ’ means that one of the forces causes an increase and the other

a decrease of the elements.
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Figure 2. (a) Synergy and contrast of N and T on e or on ω ; in the white areas there is a synergy

while in the shaded ones there is a contrast. (b) Synergy of N and T on e and on ω. NOT means

that there is no synergy, i.e. there is a contrast. In the white areas the assertion is true; for example

from L to D ‘NOT ω AND NOT e ’ is true; in the shaded ones the assertion is false.
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Figure 3. Areas where the inscribed assertions for forces N and T with equal sign are true.

Figure 4. Synergy graph of N and T on e and ω, without distinguishing between the sign of

the forces.

A synthesis of all of the above cases is given in Figure 3. As the force can be either

positive or negative, a final synthesis is given in Figure 4.

We can obtain some interesting considerations from these graphs concerning the

areas where it may be possible to act in order to bring about a change in one element

without changing the others. For example, we can investigate the area from L to D

to see if it is possible to vary a, without varying e and ω ; in the area from C to K, we

can see if the mentioned effect may be obtained by N and T which are opposite in sign.

We have to investigate the remaining sectors to establish if it is possible to produce

a change of e leaving ω unchanged or vice versa by acting with forces T and N.

3. quanti tat ive analys is. One way to carry out a quantitative

analysis of the problem in question is to start out from the analytic relations which

express the time rate-of-change of the six parameters in terms of perturbations. The

well-known Gaussian form of Lagrange’s Planetary Equations will be used, where the

force components are in the direction R of the radius vector, S perpendicular to the

radius in the orbital plane and W orthogonal to both.?,@

These equations can be also expressed in the form of the perturbing force

components T, N and W by rotating the axes. A re-formulation of these equations has

been obtained by Battin.A Expressions equivalent to Battin’s, where T, N and W are

forces per unit mass, are :

da

dt
¯ (A sinΦB cosΦ)T(B sinΦ®A cosΦ)N (1)
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We may use these relations to express small, yet finite, rather than infinitesimal,

variations of the elements caused by finite duration burns producing small velocity

variation ∆v in the direction of T, N and WC ; and so the above equations may be

modified to give the change in any element of an elliptic orbit due to a small impulse

∆v.

Writing ∆v
N

¯N∆t, ∆v
T

¯T∆t, ∆v
W

¯W ∆t the equations become:

∆a¯ (A sinΦB cosΦ)∆v
T
(B sinΦ®A cosΦ)∆v

N
(7)

∆e¯ (A
<
sinΦB

<
cosΦ)∆v

T
(B

<
sinΦ®A

<
cosΦ)∆v

N
(8)

∆i¯
r cos u

na=(1®e=)</=
∆v

W
(9)
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From here on T for ∆v
T
, N for ∆v

N
and W for ∆v

w
will be used. Through the above

equations the variations ∆a, ∆e, ∆ω and ∆Mo caused by a ∆v¯ 0±01 DU}TU (in the
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Figure 5. Variation ∆e caused by a T¯ 0±01 DU}TU versus true anomaly, for a¯ 5 DU and

nine values of e, from e¯ 0±1 to e¯ 0±9 with step of 0±1.
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Figure 6. Variation ∆e caused by a N thrust¯ 0±01 DU}TU versus ν, for a¯ 5 DU and nine

values of e, from e¯ 0±1 to e¯ 0±9 with step of 0±1.
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Figure 7. Schematic representation of the effects caused by T, N, W" 0.

direction of T and N respectively) for a¯ 5 DU and different values of e have been

calculated and then plotted versus true anomaly ν. As to the variations ∆i and ∆Ω

caused by a thrust in the direction of W, we fixed a value of variations ∆i and ∆Ω

caused by a thrust in the direction of W, we fixed a value of i¯ 30 deg, a¯ 5 DU,

ω¯ 90 and 180 deg respectively and then plotted the variations versus u. Figures 5

and 6 show examples of these graphs, where ∆e versus ν is represented.

By carefully analysing the aforesaid graphs it was possible to obtain the areas

where a given effect is positive or negative and the points of the orbit where it is null

or maximum, depending on the value of e.
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These results were used to obtain the schematic graphics of Figure 7. In each of

them, the x-axis represents the hypothetical orbit’s major axis with the centre in O

and the focuses in F1 and F2. In each of the ordinate axes, the approximate effects

of the forces on the parameters are represented when they are applied in the points

of the elliptic contour represented by the abscissas on the x-axis ; the upper part of the

contour is represented above the x-axis and the lower one under the x-axis. In the

white areas, the parameter considered increases by the action of the positive force and

in the shaded areas it decreases. Only the points where a certain effect is null or

maximum are shown and then joined up by straight lines. The null or maximum

points are precisely indicated in the diagrams concerning the effects caused by T (on

e, a and on ω) for every e, as are the points in the diagrams concerning the effects

caused by N and by W for a slightly eccentric orbit ; in the latter cases the maximum

points are moderately displaced at higher eccentricity.
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Figure 8. Examples of the real variations of e and ω respectively according to the convention

described above, caused by a ∆v¯ 0±01 DU}TU in the direction of T, for a¯ 5 DU and e¯ 0±5.

The abscissas were calculated by means of the relation x¯ r cos νc with r¯ radius vector and

c¯ ea which is the abscissa of the first focus ; thus the x-axis actually represents the hypothetical

orbit’s major axis. As before, in the white areas there is an increase of the elements and a decrease

in the shaded ones.
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Figure 9. Ratios f1 and f2 versus ν, for a¯ 5 DU and e¯ 0±5.

The attracting mass is at F1, so above the x-axis the effects for true anomalies ν

from 0° to 180° are represented and below it, those for ν from 180° to 360°. In the case

of W, the x-axis represents the line of the nodes and the y-axis represents the line of

the vertices.

Obviously these representations do not exactly express the variations in the y-axis,

which are sin}cos type oscillations and depend on a and e. However, the symmetries

of the diagrams in Figure 7 for the T thrust are also present in the actual diagrams

(Figure 8).

4. discuss ion. The qualitative and quantitative analysis provide the

following conclusions concerning certain combined effects between the variations ∆a,

∆ω, ∆e and ∆Mo in a single time action:

4.1. ∆a and not (∆e and ∆ω). It is not possible to vary a and completely avoid

both of the undesired effects by balancing the N and T thrusts in the suitable areas

of Figure 3 or Figure 4.

Let us consider Figure 9, where f1 is the ratio N}T for which the variation ∆e

caused by T cancels the one due to N; f2 is the same ratio for ∆ω. Lines f1 and f2 do

not intersect and therefore we cannot obtain any ν value in which both of the

undesired effects can be cancelled by a balanced action of T and N. A reduction of

the undesired effects by the action of both T and N can nevertheless be obtained, but

only from ν1¯ cos−<(®e) to ν2¯ tan−<(e=®1)}2e and from ν3¯ tan−<(1®e=)}2e to

ν4¯ cos−<(®e), corresponding to the arcs CK and LD of Figure 4 as we expected.

Figure 7 provides us with some immediate operational insight : for instance, a

desired ∆a can be obtained by the smallest T value at the perigee; here, no

undesired ∆ω is produced by T and furthermore the undesired ∆e is minimal due to

the low value of T.

4.2. ∆a and not ∆ω – ∆a and not ∆e. Figure 7 clearly indicates that by applying

a T at the perigee, a high ∆a can be obtained with no ∆ω, and by applying a T at the

ends of the minor axis, a ∆a can be obtained with no ∆e.
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Figure 10. Thrusts T and N, in terms of ν, to obtain ∆ω¯ 1° and ∆e¯ 0 (a¯ 5 DU and

e¯ 0±5).
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Figure 11. Thrusts T and N, in terms of ν, to obtain ∆e¯ 0±1 and ∆ω¯ 0°, with a¯ 5 DU

and e¯ 0±5.

4.3. ∆e and not (∆ω and ∆a) – ∆e and not ∆a. An impulse N does not produce

variations of a. Thus, when such an impulse is applied to the points where the highest

∆e and no ∆ω are produced, i.e. at the ends of the second focus (see Figure 7), the

desired manoeuvres may be performed.

4.4. ∆Mo and not (∆a and ∆e) – ∆Mo and not ∆a. As in the above case, an

impulse N at the apogee should be applied.
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4.5. ∆ω and not ∆e. By solving the system formed by equations (8) and (11) with

∆ω equal to the desired value and ∆e¯ 0, we can obtain the diagram illustrating the

suitable thrusts N and T versus ν. As can be seen in Figure 10, the best solution is to

apply only one of the two thrusts N or T in the points ν in the graph where the other

thrust is represented as null. For optimal energy-saving purposes it is better to apply

T at the points of true anomaly ν1¯ ν4¯ cos−<(®e), i.e. at the ends of the minor axis,

rather than N at the perigee or apogee.

4.6. ∆e and not ∆ω – ∆Mo and not ∆e. By the same process as before, it proves

convenient to use only one impulse for ∆e and not ∆ω, i.e. a tangential thrust at the

apogee or perigee (see Figure 11) ; for ∆Mo and not ∆e, a thrust T may be used at the

points of anomalies ν1 and ν2¯ cos−<(®e), i.e. at the ends of the minor axis (Figure 12).
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Figure 12. Thrusts T and N, versus ν, to obtain ∆Mo¯ 1° and ∆e¯ 0, (a¯ 5 DU and

e¯ 0±5).

One interesting outcome of the above analysis (4.1–4.6) is that, in order to obtain a

desired effect and at the same time minimize the undesired ones, it is better to use only

a thrust T or only a thrust N rather than a combination of T and N. Therefore, the

orientations of T and N are the best ones for the thrusters in the in-plane manoeuvres.

Concerning the out-of-plane effects the situation is quite clear (Figure 7) : in order to

obtain a ∆i, a W thrust should be given at a node, or at both nodes in the opposite

direction, and a similar action by W should be performed at the vertices of the orbit

in order to obtain a ∆Ω.

Figure 13 shows the synthesis of the suggested thrusts to obtain the combined

effects between ∆a, ∆ω, ∆e and ∆Mo.

In the vertex ∆ω we can also read ∆Mo ; it is not necessary to make any changes to

the force T and, as far as force N is concerned, ‘N at the apogee or perigee’ must be

replaced by ‘N at the apogee’.

As far as the out-of-plane effects are concerned, Figure 7 may be of further help: for

example, if a variation ∆i without a variation ∆Ω is required, it is obvious that the
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Figure 13. Diagram illustrating which thrust and orbital position is the best according to the

desired manoeuvre, giving a synthesis of the suggested thrusts in order to obtain some certain

combined effects between ∆ω, ∆a and ∆e. It indicates the best solutions and also takes into

account the need to save energy, i.e. to give the lowest thrust. At each vertex the best action to

obtain the indicated effect with the smallest variations of the other two parameters is indicated;

at the sides of the triangle the action to obtain the effect at the ‘yes ’ end of the arrow is shown,

thus avoiding the effect at the ‘no’ end. Points C, D, K and L are the same as those shown in

Figure 7. All of the above concerns the so-called ‘single time manoeuvres ’.

best solution is to apply an orthogonal component W at nodes (u¯ 0°, 180°), where

its effect on i is maximum and that on Ω is null.

5. conclus ions. A manoeuvre may be accomplished by means of suitable

variations of the orbital parameters. It may not be possible to choose the point or the

points where the thrusts are to be applied, i.e. one has to manoeuvre ‘here and now’,

generally by means of low thrusts. This may happen, for instance in the final phase

of a rendezvous, at the apogee of the current orbit ; it is then necessary to know which

thrusts offer the best solution. In these cases a single impulse T or N may be more

suitable than two simultaneous T and N impulses, as discussed before. The diagrams

presented in Figures 7 and 13 can give rapid indications of the most suitable kind of

thrust necessary according to the point of action when the manoeuvre must be

performed at a single time.

When we consider the techniques of multiple thrusting around the orbit, Figure 7

can still give a quick insight into the manoeuvre philosophy, while Figure 13 is no

longer helpful. The reason is that, as shown in Figure 7, a T thrust is more effective

than an N one, therefore only the former will be used to obtain the desired effect –

when it is applied for the first time – and cancel the undesired effects, when it is

applied the second time. This can also lead to a strengthening of the desired effect.

The following manoeuvres can be used as examples :

(i) To obtain a ∆a without altering the other parameters. From Figure 7, it can be

seen that two T thrusts at the ends of the major axis can give rise to two ∆a’s which

add together ; they do not produce a ∆ω and, if they are balanced according to
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equation (8), they produce a couple of counterbalancing ∆e’s. This is the classical

Hohman transfer.

Two T thrusts at the ends of the minor axis can produce a final ∆a, no ∆e, and, if

they are balanced according to equation (11), they produce a couple of

counterbalancing ∆ω’s.

In practice, for small impulses and variations of the parameters, two equal T

thrusts applied at 180° from each other, can give rise to two ∆a’s which add together

as well as couples of counter-balancing ∆e’s, ∆ω’s, ∆Mo’s (as we said, the

symmetries of the schematic diagrams in Figure 7 for the T thrust are also present in

the corresponding actual Figures).

(ii) To change everything except a in the plane parameters. Two T burns having

opposite signs, at opposite anomalies in the actual orbits, can produce these effects,

as shown in Figure 7. The intensity of the T forces are to be balanced according to

the equation (7).

(iii) To let an orbit spin around its active focus, without changing its final shape and

size. The optimal way involves giving an initial T burn at one end of the minor axis

and a second T burn, which is opposite in sign, at the second end of the minor axis of

the intermediate transfer ellipse. The two burns should produce two ∆a’s which cancel

each other out, so they should be balanced in intensity according to equation (7).

(iv) If only e must be varied, i.e. to obtain a highly eccentric orbit for communication

purposes in the area under the apogee, two opposite impulses at the perigee and

apogee may be applied. Their ratio can be easily established by means of equation (7).

In the case of a circular orbit, the point of the first impulse becomes the new orbit

perigee, which is elliptic. The second impulse given at the apogee will produce a new

increase of eccentricity and cancel ∆a, and the perigee will approach the Earth. In this

way it is possible to obtain orbits which are increasingly more eccentric whose

perigees are increasingly nearer the Earth.

As stated above, in order to vary only e, a number of T thrusts at the perigee

alternated by an equal number of thrusts at the apogee should be used: each apogee

burn must compensate the ∆a produced by the preceding perigee burn.

In this way the orbital period T is restored each T}2 time, but the time of perigee

transit will prove different at each transit. In the case of a geostationary orbit a shift

in longitude of the sub-satellite point will be experienced<< ; in order to avoid this

effect, an over-compensation is necessary at the apogee, by a ∆v which is twice the

perigee ∆v one and opposite in sign. This excess in ∆v will be compensated yet again

by a new perigee thrust which is equal to the preceding perigee one.

Until now we have dealt with impulsive thrusts. If the thrusters are weak it may be

necessary to perform thrusts which are prolonged in time. Their effects may be

worked out by integrating equations from (7) to (12). It is clear from Figure 7 that,

generally speaking, there is a loss of efficiency for each given ∆v global value. As to

the variations of the orbit inclination i the effect was shown@,<< to be the same as that

given by an impulsive thrust of equal ∆v performed at the centre of the thrust arc ∆s,

except that its size is reduced by the factor 2 sin (0±5 ∆s)}∆s.

For the reasons stated above, a higher number of impulsive thrusts performed in

the best points in successive orbital periods is preferable to a single prolonged thrust,

where feasible. It was nevertheless shown that in the case of circular orbits, the change

in semi-major axis (by a T thrust) depends exclusively on the total ∆v, regardless of

the thrust length@,<<.

https://doi.org/10.1017/S0373463398008212 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463398008212


no. 1 space manoeuvring 103

references

< Mueller, I. (1964). Introduction to Satellite Geodesy. Ungar (USA), pp. 171–176.

= Moulton, F. R. (1958). An Introduction to Celestial Mechanics. The Macmillan Co., New York,

pp. 304–315.

> Trombetti, C. (1970). Dispense di Geodesia Spaziale. Universitary Naval Institute, Naples.

? Bate, R., Mueller, D. and White, J. (1971). Fundamentals of Astrodynamics. Dover Publications, New

York, pp. 396–407.

@ American Society of Fotogrammetry, (1983). Manual of Remote Sensing. Vol. 1, R. N. Colwell, Falls

Church (USA), pp. 711–712.

A Battin, R. H. (1987). An Introduction to the Mathematics and Methods of Astrodynamics. American

Institute of Aeronautics and Astronautics Inc., New York, pp. 488–489.

B Iannuzzi, C. (1994). Manovre Spaziali. Graduation thesis, Rep. Prof. G. Lucarelli, I.U.N., Naples.

C Roy, E. (1988). Orbital Motion. A. Hilger, New York, pp. 343–344.

D Kaplan, M. H. (1976). Modern Spacecraft Dynamics & Controls. J. Wiley & Sons, New York, pp. 88–91.

<; Chao and Baker (1983). On the propagation and control of geosynchronous orbits. Journal of

Astronautical Sciences, 31 (1), 99–115.

<< Soop, E. M. (1994). Handbook of Geostationary Orbits. Kluwer Accademic Publishers and Microcosm,

Inc., USA, pp. 42–67.

<= Betts, J. T. (1977). Optimal three-burn orbit transfer. AIAA Journal, 15 (6), 861–864.

<> Cazala-Hourcade, E. (1993). Apogee manoeuvre strategies for the INMARSAT-2 spacecraft. The

Journal of Astronautical Sciences, 41 (3), 319–338.

<? Middour, J., Hope, A., Dasenbrock, R. and Bakeris, D. (1995). Trajectory and manoeuvre planning

products and procedures for Clementine Operations. AAS Publication Office, San Diego, pp. 423–435.

<A Kuzmak, G. E. (1965). Linearized theory of optimal multi-impulse plane flights. Cosmic Research, 3 (1),

101–109.

key words

1. Satellites. 2. Space. 3. Command & Control

https://doi.org/10.1017/S0373463398008212 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463398008212

