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Abstract

In this paper, the design of frequency reconfigurable planar antenna by incorporation of meta-
surface superstrate (FRPA-MSS) is presented using an artificial neural network. The dual-layer
radiating structure is created on a 1.524mm thick Rogers RO4350B substrate board (ϵr = 3.48,
tan δ = 0.0037). The candidate antenna is designed and analyzed using a high-frequency struc-
ture simulator (HFSS) tool. The transfer matrix method is employed for the successful retrieval
of electromagnetic properties of the metamaterial. Frequency reconfiguration is achieved by pla-
cing the metasurface superstrate onto the rectangular patch antenna. A simplified ANN
approach has been employed for the design of metasurface incorporated proposed antenna.
Presented prototypes are characterized through experimental measurements. It is found from
the practical observations that the proposed antenna effectively reconfigures the tuning range
from 5.03 to 6.13 GHz. Moreover, the presented antenna operates efficiently with agreeable
gain, good impedance matching, and stable pattern characteristics across the entire operational
bandwidth. The experimental results obtained validate the simulated performance.

Introduction

In the present scenario, reconfigurable antennas have grabbed huge attention from the
research community due to their ability to integrate multiple standards into a single platform
[1]. Therefore, the wireless systems are empowered with reconfigurable antennas to enhance
the overall performance and providing cost-effective solutions [2]. The important characteris-
tics that are to be considered while designing these antennas are operating frequency, polar-
ization, and radiation pattern [3]. Modern-day wireless communication systems such as
mobile phones, laptops, watches, tablets, etc. support several wireless standards. To fulfill
such requirements, multiband, wideband and frequency reconfigurable antennas are the prob-
able choices. Frequency reconfigurable or tunable antennas act as the best alternative by open-
ing up new horizons, thereby providing additional functionality levels [4]. These antennas can
change their operating frequency while maintaining stable polarization and radiation pattern
modes over the entire frequency range [5]. This feature is accomplished by redistributing the
surface current within the radiating element by employing positive intrinsic negative (PIN)
diode [6], varactor diode [7], radio frequency micro-electro-mechanical system (RF-MEMS)
switches [8], multi-reed switches [9], and optical element [10]. Numerous reconfigurable
antennas have been demonstrated based on different switching techniques. In [11], the spiral-
shaped flexible and compact frequency reconfigurable antenna is implemented for wireless
applications. Ouyang et al. [12] proposed a microstrip patch antenna with an electronically
steerable parasitic array radiator. With the employment of switches and biasing networks,
the non-linear effects and insertion loss increase, that in turn, degrades the performance of
an antenna.

Over the previous decades, artificial materials have garnered prodigious attention in design-
ing smart antenna structures with improved performance parameters [13]. The origination of
metamaterial reveals an outstanding achievement in comparison to conventional materials.
This idea first came into existence in 1967 [14]. After that, the concept of metamaterial has
been explored widely to provide a wide tuning range, thus offering a promising solution to
various research-oriented problems. The remarkable electromagnetic properties of metamater-
ial such as negative refractive index, permittivity, and permeability values, anti-parallel phase
and group velocities, etc. are responsible for designing fascinating antenna structures with
superior characteristics [15]. Ramachandran et al. [16] proposed a left-handed metamaterial
design for satellite applications constructed using a combination of circular and square ring
structures. Though the three-dimensional metamaterial is a young field and has achieved
blooming technological advancements in several research areas such as microwaves and infra-
red regions yet they lack paucity in realizing lossless optical metamaterials. Thus to provide
easy fabrication, two-dimensional metasurfaces have emerged out as a multifaceted branch
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of engineering science in the last decade [17]. The surface variant
of metamaterial is portrayed as metasurface which means a sur-
face distribution of small apertures or holes [18]. Metasurfaces
(MS) are uniformly arranged, two-dimensional planar periodic
structure that is analogous to three-dimensional metamaterials
[19]. A metasurface-based planar frequency reconfigurable
antenna is designed with a fractional tuning range of 14.6%
[20]. The frequency reconfigurable slot antenna is demonstrated
using a single-layer metasurface [21]. Majumder et al. [22] pro-
posed a frequency reconfigurable antenna by loading two meta-
surface layers onto the slot antenna. Frequency and polarization
reconfigurable antenna is designed using polarization conversion
metasurface [23]. Metasurface enabled mechanically frequency
reconfigurable antenna by an equivalent radially homogenous
model is demonstrated by Li et al. [24]. Singh et al. demonstrated
the designing and analysis of circular fractal antenna using artifi-
cial neural networks (ANNs) [25]. Kaur et al. presented metasur-
face incorporated frequency reconfigurable antenna and used
ANN approach to develop antenna [26, 27].

By thoroughly reviewing the aforementioned literature, the
design of frequency reconfigurable planar antenna is presented
using an ANN with enhanced performance characteristics. First,
the designing process of a metasurface incorporated dual-layer
frequency reconfigurable antenna is illustrated. Then the specific
characteristics of metamaterial are analyzed. Afterwards, the ANN
framework is illustrated. Followed by this, the results are dis-
cussed. In the end, the conclusion is presented.

Designing process of frequency reconfigurable antenna

The proposed work utilizes a dual-layer approach for implement-
ing the frequency reconfigurable antenna. The schematic of the
design is illustrated in Fig. 1. The dual-layer module is composed
of two substrate layers as shown in Fig. 1(a). The rectangular-
shaped patch antenna and circular ground plane are imprinted
on the upper and lower side of the first layer, respectively. The
periodical array of compounded double split-ring resonator
(CDSRR) shaped unit cells forming the metasurface is printed
on the upper side of the second layer. This module uses a flexible
Rogers RO4350B substrate with a dielectric constant (εr) of 3.48
and loss tangent (tan δ) of 0.0037. A fixed thickness of 1.524
mm has opted for both layers, thus the total thickness is 3.048
mm. For the excitation purpose, a 2 mm wide feedline is used
that provides a characteristic impedance of 50Ω. The antenna
is fed directly using coaxial feed and the SubMiniaturized version
A (SMA) connector is used for connecting purposes. The overall
dimensions of the structure are D × 2(h) mm2. For proper match-
ing conditions, both the layers are taken in circular form. The
angle θ, the orientation angle of the metasurface, is measured
with respect to the y-axis in a clockwise and anticlockwise direc-
tion and the maximum orientation angle is 90°. The schematic of
the patch antenna and metasurface is demonstrated in Figs 1(b)
and 1(c), respectively. The zoomed version of the unit cell is
represented in Fig. 1(d). The optimized parametric design speci-
fications of the proposed antenna are listed in Table 1.

Fig. 1. Design schematic of FRPA-MSS (a) dual-layer module (b) patch antenna (c) metasurface, and (d) zoomed version of a unit cell.

Table 1. FRPA-MSS design specifications.

Parameters D h Pl Pw Fl Fw Fp a b c d e f g i

Values (mm) 36 1.524 11 16 6.5 2 2 12.4 5.4 10 3 4 2 0.5 0.5
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Fig. 2. Analysis of CDSRR (a) waveguide medium for extracting the S-parameters and (b) equivalent circuit of the unit cell.

Fig. 3. Extracted S11 and S21 of the proposed unit cell
structure.

Fig. 4. Magnitude and phase characteristics of S11 and
S21.

Fig. 5. Real and imaginary parts of S11 and S21.
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Analysis of metamaterial

The effective electromagnetic parameters (permittivity εeff/per-
meability μeff/refractive index neff) of the unit cell structure are
extracted by utilizing the scattering parameters. For this, the

whole setup is placed inside the waveguide environment with
ports, electric field, and magnetic field applied along the respect-
ive axis [28–31]. This waveguide medium is shown in Fig. 2(a).
The structure functions like an LC resonator with a gap and

Fig. 6. Effective values of homogenous parameters (a)
wave impedance (b) refractive index (c) permittivity,
and (d) permeability.
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metal strip corresponds to capacitive and inductive elements,
respectively. The LC equivalent circuit of the unit cell is depicted
in Fig. 2(b).

Figure 3 shows the extracted reflection (S11) and transmission
(S21) coefficient of the unit cell structure. It is evaluated that a
strong reflection of −29.2 dB is observed at 7.7 GHz. This fre-
quency points to the coexistence of electric and magnetic reso-
nances [32]. The first transmission minimum is −40.7 dB at 8.2
GHz. The magnitude and phase characteristics of the reflection
and transmission coefficient are delineated in Fig. 4. From these
results, the phase reversal property of metamaterial is demon-
strated. The real and imaginary parts of the reflection and trans-
mission coefficient are described in Fig. 5. Further, results are
imported to Matrix Laboratory (MATLAB) for determining the
electromagnetic properties of metamaterial.

z =
��������������������
(1+ S11)2 − S212

(1− S11)2 − S212

√
(1)

n = 1
kd

cos−1 1
2S21

(1− S112 + S212)

[ ]
(2)

Different techniques have been employed so far for extracting
the notable properties of metamaterial. Nicolson Ross Weir
(NRW) and the transfer matrix method are popular as they are
based on two-port analysis [33]. In this work, the transfer matrix
method is employed as this is a direct method for determining the
wave impedance. The wave impedance and refractive index are
determined using (1) and (2), respectively. Here, z and n symbol-
ize the wave impedance and refractive index, respectively. The lit-
eral k and d represent the wave number of the incident wave and
thickness of the dielectric slab, respectively. The permittivity and

permeability values can be attained using (3) and (4).

1 = n
z

(3)

m = nz (4)

The material characteristics of the metamaterial are deter-
mined from the negative parts of permeability and permittivity.
Thus, reflection and transmission are the integral parts of the
said method. Figure 6 illustrates the effective values of homogen-
ous parameters in the desired frequency range. The bold red line
represents the real part and the dashed blue line indicates the
imaginary part of the associated parameter. The positive real
value of wave impedance exists from 4 to 8.5 GHz range.
Similarly, the negative real value exhibited by permittivity exists
in 4−8.47 GHz and permeability in 4−8.2 GHz and 8.46−12
GHz. The permittivity and permeability values show electric
and magnetic plasma frequencies. The refractive index shows its
negative real value in between the electric and magnetic plasma
frequencies. The successful retrieval of results in the 4–8.2 GHz
frequency range confirms that the aforementioned structure exhi-
bits left-handed properties of metamaterial. This in turn shows
the effectiveness of the designed approach.

The analysis of the mathematical model of an equivalent cir-
cuit of CDSRR [34] is determined using (5)–(9). The equations

Fig. 8. Photographic view of the fabricated antenna
using RO4350B substrate (a) patch antenna and meta-
surface and (b) FRPA-MSS.

Table 2. Performance evaluation of ANN analysis.

Samples MSE Regression

Training 26 2.76710 × 10−4 9.99979 × 10−1

Validation 5 6.27304 × 10−4 9.99952 × 10−1

Testing 5 1.95663 × 10−4 9.99984e × 10−1

Fig. 7. Proposed FFBPN model.
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have been modified as a single ring has been considered in the
proposed design.

LCDSRR = m0

2

lCDSRRavg

4
ln

lCDSRRavg

i

( )
− 2

[ ]
(5)

lCDSRRavg = 4l − 4g (6)

CCDSRR = 2101
sub
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��
2

√
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g

[ ]
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arctg
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2pi

[ ]
(1r − 1) (8)

f = 1

2p
���������������
LCDSRRCCDSRR

√ (9)

where, LCDSRR and CCDSRR are the inductance and capacitance of
the equivalent circuit, respectively. μ0 and ε0 are the absolute per-
meability and permittivity, respectively. lCDSRRavg and 1subr are the
average length of the unit cell and relative permittivity of the sub-
strate. ϵr, and f represent the relative permittivity of material, and
the analytical frequency, respectively. From the equations, it is
evaluated that the analytical results show a frequency of 7.9
GHz that matches nearly its full wave simulated results.

Artificial neural network

It is imperative to design the metasurface unit cell precisely as the
metallic loop represents inductance L, and the gap between them
represents capacitance C, which in turn decides the resonating
frequency of the unit cell. Thus the resonance can be controlled
by changing the geometry of the structure. Therefore, an ANN
has been developed for the analysis of metasurface and incorpo-
rated in antenna for reconfiguration.

ANN is a powerful data computational tool that analyzes and
processes information in a similar way the human brain does. It
also plays a crucial role in the designing and analysis of an
antenna [35, 36]. The basic unit that acts as the building block
of the neural network is an artificial neuron. The feed-forward

back propagation network (FFBPN) is made up of many intercon-
nected neurons that are organized in three layers: input, hidden,
and output layer [37]. The information flows from the input
layer to the output layer after progressing through one or more
hidden layers. Each neuron is connected to other neurons via dir-
ect communication links with an individual weight connected to
each link. The difference between the desired output and network
output generates an error signal. Thus, ANN can adapt, learn and
recollect the information just like a biological neural network [38].
The proposed FFBPN model is elucidated in Fig. 7. This model is
constructed using three input layer neurons, four output layer
neurons, and 10 hidden layer neurons. The unit cell dimensions
and orientation angle of a frequency reconfigurable planar
antenna by incorporation of metasurface superstrate (FRPA-
MSS) are considered as inputs and their resonant frequencies
are considered as output. To evaluate this process, a data set con-
sisting of 36 samples is created through parametric analysis. From
this total, the training set contains 26 samples, five samples in the
validation set, and five samples in the testing set.

Results and discussion

The finite element method (FEM)-based 3D full-wave HFSS sup-
port tool is deployed for simulating the antenna prototype. The
photographic view of the fabricated prototype is shown in
Fig. 8. Anritsu MS2028C vector network analyzer (VNA) is
used for evaluating the experimental results.

ANN results

A data set containing 36 samples is created by changing the basic
dimensions of unit cell and the value of rotation angle for training
the ANN model. For this purpose, the input parameters consid-
ered are “c”, “d”, and “θ”, and output parameters are “fr1”, “fr2”,
“fr3”, and “fr4”. The desired degree of accuracy is achieved using
the Levenberg–Marquardt algorithm. The training function
employed is trainlm. Tansig and purelin are the transfer functions
used in the hidden and output layers, respectively. The output of
the model is evaluated using three main statistical parameters
mean squared error (MSE), number of epochs used, and max-
imum absolute error. The performance evaluation for analyzing
the designed antenna is described in Table 2. The performance
plot for analyzing the designed antenna is illustrated in Fig. 9.
It is noticed in plot that best validation performance takes place
at 0.0006273 at epoch 8.

Fig. 9. Performance plot for analyzing the designed antenna.
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Table 3. Absolute error estimation for the analysis of the designed antenna.

Inputs HFSS outputs ANN outputs Absolute error

c d θ fr1 fr2 fr3 fr4 fr1 fr2 fr3 fr4 fr1 fr2 fr3 fr4

10 2 0 5.086 0 0 0 5.072 −0.003 0.025 −0.014 0.013 0.003 −0.025 0.014

10 3.5 0 4.990 0 0 0 4.991 −0.008 0.008 0.011 −0.001 0.008 −0.008 −0.011

9.5 3 0 5.134 0 0 0 5.152 −0.005 0.008 −0.010 −0.017 0.005 −0.008 0.010

10.5 3 0 4.885 0 0 0 4.882 −0.009 0.017 0.020 0.003 0.009 −0.017 −0.020

10 2.5 30 0 5.399 0 0 −0.009 5.383 −0.019 −0.021 0.009 0.016 0.019 0.021

10 3.5 30 0 5.343 0 0 −0.006 5.323 −0.023 −0.016 0.006 0.019 0.023 0.016

9 3 30 0 5.600 0 0 0.012 5.598 −0.005 0.0006 −0.012 0.001 0.005 −0.000

11 3 30 0 5.142 0 0 0.012 5.101 −0.034 −0.009 −0.012 0.041 0.034 0.009

10 2 60 0 0 6.002 0 −0.001 −0.003 6.002 −0.0001 0.001 0.003 −0.000 0.000

10 3 60 0 0 5.945 0 −0.005 −0.022 5.972 0.008 0.005 0.022 −0.026 −0.008

9 3 60 0 0 6.106 0 0.007 −0.006 6.114 0.014 −0.007 0.006 −0.007 −0.014

10.5 3 60 0 0 5.873 0 −0.017 −0.025 5.909 0.009 0.017 0.025 −0.036 −0.009

10 3.5 90 0 0 0 6.106 −0.017 −0.010 −0.026 6.105 0.017 0.010 0.026 0.000

10 4 90 0 0 0 6.074 −0.012 −0.004 −0.026 6.079 0.012 0.004 0.026 −0.005

9.5 3 90 0 0 0 6.202 −0.008 −0.009 −0.028 6.202 0.008 0.009 0.028 0.000

11 3 90 0 0 0 5.929 −0.003 −0.010 −0.050 5.920 0.003 0.010 0.050 0.009

Average absolute error 0.045 0.191 0.084 0.012

Fig. 10. Regression plot for analyzing the performance
of the designed antenna.
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Fig. 12. Surface current distribution obtained at orientation angles (a) 0° (b) 30° (c) 60°, and (d) 90°.

Table 4. Summarized results of the designed antenna.

Orientation angle

Simulated Measured

Resonant frequency (GHz) Return loss Resonant frequency (GHz) Return loss

0° 4.99 −35.1748 5.03 −21.9950

30° 5.35 −23.0528 5.39 −17.7132

60° 5.93 −43.3927 5.98 −36.3314

90° 6.12 −10.5187 6.13 −11.4674

Fig. 11. Simulated (solid line) and measured (dotted
line) S11 of the designed antenna.
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Regression analysis is a statistical measure for examining and
comprehending the relationship between target and output
values. Its value should be close to 1 for getting a good perform-
ance results. The regression plot showing the performance ana-
lysis during training, validation, and testing is shown in Fig. 10.
The total regression value of 0.99998 is obtained. The absolute
error estimation for analyzing the designed antenna is shown in
Table 3. It contains 16 samples that are randomly selected from
the generated data set. The average absolute error estimated for
fr1, fr2, fr3, and fr4 are 0.045, 0.191, 0.084, and 0.012, respectively.

Reflection coefficient

The simulated and measured values of S11 of the designed
antenna are illustrated in Fig. 11. Both the results are in good
accord. It is anticipated from Fig. 11 that by rotating the metasur-
face from 0° toward 30°, 60°, and 90° with reference to the station-
ary patch antenna, the resonant frequency continuously shifts up
from 4.99 to 5.35, 5.93, and 6.12 GHz, respectively. The best
match occurs at an orientation angle corresponding to 60°.
After further rotation of the metasurface, the matching decays.
Thus, the metasurface plays an integral role in achieving the fre-
quency reconfiguration property. Table 4 shows the summarized
results of the proposed antenna with respect to different orienta-
tion angles. Slight disagreement is there between the simulated
and measured results. This dissimilarity is basically due to the sol-
dering bumps, fabrication, and measurement tolerances.

Current distribution

The surface current distribution at different orientation angles is
depicted in Fig. 12. It has been elucidated from these figures
that the current distribution is intensively concentrated near the
center of the metasurface and edges of the patch at 0° orientation
angle. At 30° orientation angle, the distribution is strong across
the right-portion of metasurface and left/right edge of the
patch. More current flows near the extreme right part of both
metasurface and patch corresponding to 60° orientation angle.
In the case of 90° orientation angle, the current distribution is
intensively accumulated along the center of the metasurface and
edges of the patch.

Gain

Gain is an important performance parameter that describes how
efficiently information is to be sent or received by an antenna in a
particular direction [39]. The simulated and measured gain

obtained at orientation angles corresponding to 0, 30, 60, and
90° [20] is presented in Fig. 13.

Radiation pattern

Figure 14 shows the designed antenna placed in an anechoic
chamber. The 2D simulated and measured radiation characteris-
tics of an antenna analyzed at resonant frequencies corresponding
to different orientation angles are shown in Fig. 15. These patterns
are defined for both the principal planes (w = 0° and w = 90°). At
w = 0°, the pattern exhibited by the antenna is bidirectional and w
= 90°, the radiation pattern obtained is omnidirectional in shape.
The radiation pattern plots indicate that the co-polarization
observed along the y-axis radiates highly as compared to the
cross-polarization that is observed along the x-axis. The value
of the front-to-back ratio examined is also more than 20 dB at
all orientation angles. Thus, the metasurface only reconfigures
the operating frequency of an antenna without much affecting
the shape of the radiation pattern and polarization at different
orientation angles.

Table 5 compares the performance parameters of the proposed
work with other existing frequency reconfigurable antennas. It is
apparent from Table 5 that the proposed antenna achieves 19,
88.2, 48.16, and 48.16% reduction in size as compared to [20],
[21], [41] and [25], respectively. On considering the bandwidth,
it is observed that 50.66 and 169% hike as compared to [20]
and [40], respectively. The comparative tuning range of the pro-
posed antenna with other research in Table 5 indicates a 6.3
1.3, 6.3% rise in tuning range as compared to recent research in

Fig. 14. Designed antenna in an anechoic chamber.

Fig. 13. Simulated and measured gain at different orien-
tation angles.
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[20], [21], and [40], respectively. It can be examined from the
comparison that the proposed antenna possesses smaller dimen-
sions with acceptable gain, wide bandwidth, and tuning range at
all orientation angles.

Conclusion

In this paper, the design of FRPA-MSS using the ANN has been
proposed and investigated. The compounded double split ring-
shaped resonator unit cells arranged periodically forming the
metasurface are mounted atop the superstrate layer for

accomplishing the desired tuning range. By mechanically tuning
the metasurface with respect to the reference patch antenna, fre-
quency reconfiguration is achieved within the 4.99–6.12 GHz
tuning range. A good correlation is seen between the measured
results and simulated predictions. Also, the proposed antenna
owns wide bandwidth and acceptable gain at all orientation
angles. The developed ANN model demonstrates its utility for
the prediction of resonant frequencies at different orientation
angles.

Acknowledgement. The authors would like to thank Rogers Corporation for
providing support material for fabricating the antenna prototype and the

Fig. 15. Simulated (solid line) and measured (dotdot line) radiation pattern of FRPA-MSS at orientation angles (a) 0° (b) 30° (c) 60° (d) 90° in x–z plane and in y–z
plane (e) 0° (f) 30° (g) 60° (h) 90°.

Table 5. Comparison of proposed work with other existing frequency reconfigurable antennas.

[20] [21] [40] [24] Proposed work

Size 40 mm 105 mm × 105 mm 50mm 50mm 36mm

Electrical size 0.67λ 0.735λ × 0.735λ 0.5λ – 0.66λ

Operating frequency 5 GHz – 3 GHz – 5.55 GHz

Antenna Patch Slot Slot Slot Patch

Metasurface Rectangular loop
unit cells

Meandered
unit cells

Rectangular loop
unit cells

Ellipse type and wire type unit cells CDSRR unit cells

Tuning range 4.76–5.51 GHz 1.9–2.3 GHz 2.78–3.2 GHz 3.97–4.74 GHz and 3.84–4.55 GHz
(ellipse) and 3.82–4.87 GHz (wire)

4.99–6.12 GHz

Bandwidth 750 MHz – 420 MHz – 1.13 GHz

Fractional tuning range 14% 19% 14% 21.1%, 18.9% (ellipse) and 24.2%
(wire)

20.3%

Gain 5 dBi 5 dBi 4.8 dBi – > 6 dB

Technique used – – – Radially homogenous model ANN
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National Institute of Technical Teachers Training and Research (NITTTR),
Chandigarh, and the Indian Institute of Technology (IIT), New Delhi for pro-
viding the facility to test the fabricated prototype.
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