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The mean skin-friction drag in a wall-bounded turbulent flow can be decomposed into
different physics-informed contributions based on the mean and statistical turbulence
quantities across the wall layer. Following Renard & Deck’s study (J. Fluid Mech., vol.
790, 2016, pp. 339–367) on the skin-friction drag decomposition of incompressible
wall-bounded turbulence, we extend their method to a compressible form and use
it to investigate the effect of density and viscosity variations on skin-friction drag
generation, using direct numerical simulation data of compressible turbulent channel
flows. We use this novel decomposition to study the skin-friction contributions
associated with the molecular viscous dissipation and the turbulent kinetic energy
production and we investigate their dependence on Reynolds and Mach number. We
show that, upon application of the compressibility transformation of Trettel & Larsson
(Phys. Fluids, vol. 28, 2016, 026102), the skin-friction drag contributions can be only
partially transformed into the equivalent incompressible ones, as additional terms
appear representing deviations from the incompressible counterpart. Nevertheless,
these additional contributions are found to be negligible at sufficiently large equivalent
Reynolds number and low Mach number. Moreover, we derive an exact relationship
between the wall heat flux coefficient and the skin-friction drag coefficient, which
allows us to relate the wall heat flux to the skin-friction generation process.

Key words: high-speed flow, compressible boundary layers

1. Introduction

In a wall-bounded turbulent flow, the mean skin-friction drag has been identified
to be much higher than that in a laminar case at the same Reynolds number. It
contributes to the total drag up to 50 % for commercial aircraft, 90 % for submarines
and almost 100 % for long pipe and channel flows (Gad-el Hak 1994). Understanding
the mean skin-friction drag generation and its associated near-wall dynamical
system is of fundamental and practical importance, particularly for the evaluation
of aerodynamic/hydrodynamic performance and design of drag reduction approaches.

† Email address for correspondence: liweipeng@sjtu.edu.cn
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102 W. Li, Y. Fan, D. Modesti and C. Cheng

Although the mean skin-friction drag is a wall property, as can be directly
calculated from the normal gradient of the mean streamwise velocity at the wall,
it is connected to the mean and statistical turbulence quantities across the wall layer
and can be further decomposed into various physics-informed components according
to different mathematical derivations and physical interpretations. Fukagata, Iwamoto
& Kasagi (2002) derived a simple relationship (also referred to as the FIK identity)
between the skin-friction coefficient and the Reynolds shear stress distribution for
three canonical wall-bounded turbulent flows, with three successive integrations of
the mean momentum balance equation. For instance, in a smooth incompressible
turbulent channel flow the relation can be cast as

Cf =
6

Reb︸︷︷︸
Cf 1,FIK

+
6
u2

b

∫ h

0

(
1−

y
h

)
(−〈u′v′〉)

dy
h︸ ︷︷ ︸

Cf 2,FIK

, (1.1)

where Reb= hub/ν is the bulk Reynolds number (with h being the channel half-height,
ub the bulk velocity, ν the kinematic viscosity), y is the distance from the wall surface
and −〈u′v′〉 is the Reynolds shear stress. Equation (1.1) provides a decomposition
of the skin-friction coefficient into a ‘laminar’ (Cf 1,FIK) and a ‘turbulent’ (Cf 2,FIK)
contribution, allowing us to quantify the effect of the relative amount of skin-friction
drag directly associated with the Reynolds stress. Several modifications to the FIK
identity have been proposed in the literature. For instance, Peet & Sagaut (2009) and
Bannier, Garnier & Sagaut (2015) extended the FIK identity to complex geometries,
to investigate the skin-friction drag reduction with riblets. Modesti et al. (2018)
generalized the FIK identity to arbitrarily complex geometries by interpreting the
mean momentum balance equation as a Poisson equation for the mean velocity and
using it to study the skin-friction drag generation in square duct flows. For flat-plate
boundary layers, Mehdi & White (2011) modified the FIK identity by replacing the
explicit streamwise gradients with the wall-normal gradient of the total stress on the
basis of the Navier–Stokes equation, in order to avoid experimental measurements
of streamwise gradients affected by large uncertainties. Moreover, to overcome the
difficulty in measuring complete statistics across the whole boundary layer, Mehdi
et al. (2014) proposed another modified FIK identity in which the upper integration
bound may end at any arbitrary location within the boundary layer. Over the years,
the FIK identity has been widely used in numerous studies: Iwamoto et al. (2005),
Deck et al. (2014), Kametani et al. (2015), de Giovanetti, Hwang & Choi (2016), to
name a few.

Despite the additional insights provided by (1.1), the FIK identity can be difficult
to physically interpret (Renard & Deck 2016). One of the key controversial issues
is that there is no simple interpretation for the three successive integrations and
no physics-informed explanation for the linearly weighted Reynolds shear stress.
An alternative and more objective skin-friction drag decomposition method was
proposed by Renard & Deck (2016), referred to as the RD identity hereafter. The RD
identity was derived from the mean streamwise kinetic-energy equation in an absolute
reference frame in which the undisturbed fluid is not moving. It characterizes the
power of skin-friction drag as an energy transfer from the wall to the fluid by means
of dissipation of molecular viscosity and turbulent kinetic energy (TKE) production.
The authors showed that this method overcomes some of the drawbacks of the
FIK identity, allowing an improved physical interpretation of the skin-friction drag
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Decomposition of the mean skin-friction drag in compressible channel flows 103

generation mechanism. In the case of turbulent channel flow the RD identity can be
written as

Cf =
2
u3

b

∫ h

0
ν

(
∂〈u〉
∂y

)2

dy︸ ︷︷ ︸
Cf 1,RD

+
2
u3

b

∫ h

0
(−〈u′v′〉)

∂〈u〉
∂y

dy︸ ︷︷ ︸
Cf 2,RD

, (1.2)

where 〈u〉 is the mean streamwise velocity, Cf 1,RD represents the contribution
from direct molecular viscous dissipation and Cf 2,RD characterizes the contribution
associated with the production of TKE. Renard & Deck (2016) further analysed
the Reynolds number dependence of the decomposed terms, and shed light on the
importance of logarithmic-layer dynamics in the skin-friction drag generation.

Yoon et al. (2016) related the mean skin-friction drag to the motions of vortical
structures by integrating the mean vorticity transport equation, and identified
contributions from advective vorticity transport, vortex stretching, viscosity and
heterogeneity. Hwang & Sung (2017) employed this method to examine the significant
contributions associated with large-scale turbulent motions. Kim et al. (2017) used
this method to evaluate the influence of a large-eddy breakup device on the near-wall
turbulence and skin-friction drag reduction.

These mean skin-friction drag decomposition methods have all been developed for
incompressible flows, whereas only few studies can be found for compressible
wall-bounded turbulence. Gomez, Flutet & Sagaut (2009) generalized the FIK
identity to compressible flows and studied the compressibility effects on the mean
skin-friction drag generation, but they actually have not fully clarified the effect
of compressibility on the different contributions. In particular, in their study only
the components associated with viscosity variations are ascribed to compressible
effects, but compressibility also remarkably impacts the density and therefore these
contributions from density variations should be marked as ‘compressible’ contributions
as well. One objective of this study is to extend the physics-informed RD identity
into a compressible form and use it to evaluate compressibility effects more precisely.

As for the compressibility effects, they can be classified into two kinds: (i)
indirect effects due to the variation of the thermodynamic properties, such as density
and viscosity; (ii) genuine effects caused by dilatational velocity fluctuations and
thermodynamic fluctuations. Based on the Morkovin hypothesis (Morkovin 1962),
the latter could be neglected for non-hypersonic boundary layers (say, Mach number
M<5), since the local root mean square (r.m.s.) fluctuating Mach number is negligible.
The effect of density and viscosity variations in wall-bounded turbulence can be
accounted for by using appropriate transformations of the mean streamwise velocity
and Reynolds stresses, allowing us to collapse the compressible flow statistics onto
the ‘universal’ incompressible distributions. A classical transformation of the mean
streamwise velocity and Reynolds shear stress has been developed by van Driest
(1951) using inner-layer similarity arguments. This transformation is rather accurate
in the case of adiabatic walls but fails on isothermal walls (Huang & Coleman 1994),
especially for cases with strong heat transfer. Huang, Coleman & Bradshaw (1995)
proposed a semi-local scaling for transforming the turbulent stresses which yields
better collapse onto the corresponding incompressible distributions in a wide Mach
number range, 0.3–3.5 (Foysi, Sarkar & Friedrich 2004). Patel et al. (2015), Trettel
& Larsson (2016) showed that the semi-local Reynolds number is the appropriate
equivalent Reynolds number to compare flows across Mach numbers. Moreover, Patel,
Boersma & Pecnik (2016) showed that near-wall streaks are less coherent in the
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104 W. Li, Y. Fan, D. Modesti and C. Cheng

cases where the semi-local Reynolds number increases away from the wall. Pecnik &
Patel (2017) also applied the semi-local scaling for deriving transformed conservation
equation of the turbulent kinetic energy, which shows that the ‘leading-order effect’ of
variable density and viscosity on turbulence in wall-bounded flows can effectively be
characterized by the semi-local Reynolds number. Recently, Trettel & Larsson (2016)
proposed another transformation based on the logarithmic-layer scaling and near-wall
momentum conservation which shows satisfactory agreements with incompressible
flow data in a wide range of Reynolds and Mach numbers (Modesti & Pirozzoli
2016). The good accuracy of Trettel & Larsson (2016) transformation suggests that it
can be used to scale the decomposed skin-friction constituents, to obtain ‘universal’
distributions that match the incompressible ones.

In addition to the skin-friction drag, wall heat transfer is another subject of
concern in this paper. Wall heat transfer can be directly linked to the skin-friction
drag using temperature–velocity correlations, such as the one proposed by Walz
(1959). Direct numerical simulation data have shown that Walz’s relation is rather
accurate on adiabatic walls, whereas large deviations are observed for increasing
wall heat transfer (Duan, Beekman & Martin 2010, 2011; Zhang et al. 2014). Zhang
et al. (2014) replaced the recovery factor in Walz’s equation and generalized it
for non-adiabatic flows. Although these correlations give an analogy between the
temperature and velocity, they are derived empirically under specific conditions or
assumptions. Regarding incompressible boundary layers, Ebadi, Mehdi & White
(2015) proposed an integral formula of wall heat flux, which ascribes the wall
heat flux to contributions related to mean temperature profile, turbulent heat flux
and gradient of total (molecular and turbulent) heat flux. In the present study, we
will provide an exact correlation between the wall heat flux and skin-friction drag
coefficient, from the energy conservation equation of compressible turbulent channel
flows, giving the relationship between momentum transport and heat transfer at the
wall.

This paper is organized in the following way. A compressible counterpart of
the RD identity (1.2) for the skin-friction coefficient is derived in § 2, as well
as the formulation for the wall heat flux. Direct numerical simulations of five
supersonic turbulent channel cases are described in § 3. In § 4, contributions of the
molecular viscous dissipation and the TKE production are quantified. We investigate
the Reynolds number and Mach number dependence of the mean skin-friction drag
generation via the assessment of the turbulence quantities across the channel. In order
to obtain universal distributions such as those in incompressible channel flows and
capture the ‘compressible’ contributions caused by the density and viscosity variations,
compressibility transformations are employed to scale the decomposed constituents.
Finally, concluding remarks are given in § 5.

2. Decomposition of the mean skin-friction drag and wall heat flux in compress-
ible turbulent channel flows

Firstly, the RD identity is generalized into a compressible form for compressible
turbulent channel flows, and the physical interpretations of each component are
discussed. For flat-plate boundary layers, the compressible RD identity is given in
appendix A. Secondly, we derive an exact correlation between the wall heat flux
coefficient and the skin-friction drag coefficient.
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Decomposition of the mean skin-friction drag in compressible channel flows 105

2.1. Mean skin-friction drag decomposition
The mean skin-friction drag coefficient Cf can be cast as

Cf =
2τw

ρbu2
b
=

2
Reb

∂(〈u〉/ub)

∂(y/h)
|wall, (2.1)

where 〈·〉 is the Reynolds averaging operator, τw is the wall shear stress, u is the
streamwise velocity, y is the wall distance and Reb is the bulk Reynolds number. In
compressible channel flows, Reb (= ρbubh/µw) is based on the channel half-height h,
bulk density ρb = (1/h)

∫ h
0 〈ρ〉 dy, bulk velocity ub = (1/ρbh)

∫ h
0 〈ρu〉 dy and dynamic

viscosity at the wall µw. Hereafter, x, y and z stand for the streamwise, wall-normal
and spanwise directions, respectively.

Considering the channel flow, we assume (i) no-slip condition at the wall surfaces,
(ii) statistical homogeneity in the spanwise and streamwise directions and (iii)
symmetry with respect to the central plane of the channel. Under these hypotheses the
compressible Reynolds-averaged momentum equation in the streamwise (x-) direction
is

∂〈ρu〉
∂t
+
∂〈ρuv〉
∂y

=
∂〈τyx〉

∂y
+ 〈ρf 〉, (2.2)

where u and v are respectively the streamwise and wall-normal components of the
transient velocity, ρ is density, t is time and τyx is the shear stress in the streamwise
direction. A uniform body force f is added to drive the flow in the streamwise
direction (Huang et al. 1995). Integrating (2.2) from the wall surface to the central
plane gives

∂Q
∂t
=−τw + ρbhf , (2.3)

where Q =
∫ h

0 〈ρu〉 dy is the mass flow rate across the traverse plane. To ensure the
flow stability and continuity, ∂Q/∂t= 0 is set up. Then we get

f =
τw

ρbh
. (2.4)

For an arbitrary variable φ, its Favre average {φ} is defined as 〈ρφ〉/〈ρ〉, and the
double prime ′′ denotes the turbulent fluctuations with respect to the Favre average, i.e.
φ′′ = φ − {φ}. If we rewrite the left-hand side of (2.2) in the form of Favre average,
we have

∂〈ρu〉
∂t
+
∂〈ρuv〉
∂y

= {u}
(
∂〈ρ〉

∂t
+
∂〈ρv〉

∂y

)
+ 〈ρ〉

(
∂{u}
∂t
+ {v}

∂{u}
∂y

)
+
∂〈ρ〉{u′′v′′}

∂y
.

(2.5)

Using the continuity equation and the total derivative D{·}/Dt= ∂{·}/∂t+{v}(∂{·}/∂y)
and substituting (2.4) and (2.5) into (2.2), we have

〈ρ〉
D{u}
Dt
=−

∂〈ρ〉{u′′v′′}
∂y

+
∂〈τyx〉

∂y
+
〈ρ〉

ρbh
τw. (2.6)
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106 W. Li, Y. Fan, D. Modesti and C. Cheng

Following the derivation of the original RD identity (Renard & Deck 2016), we
transform the initial reference frame (attached to the wall) into an absolute reference
frame, where the wall is moving at the speed of −ub. Let the subscript a represent
the variables in the absolute frame. Then the time ta, density ρa, coordinates xa and
ya and velocity ua and va satisfy

ta = t, ρa = ρ, xa = x− ubt, ya = y, ua = u− ub, va = v. (2.7a−f )

Substituting (2.7) into (2.6) yields

〈ρa〉
D{ua}

Dta
=−

∂〈ρa〉{u′′av
′′

a }

∂ya
+
∂〈τyx〉

∂ya
+
〈ρa〉

ρbh
τw. (2.8)

In the absolute reference frame, the averaged streamwise kinetic energy of unit mass
{Ka} is defined as {ua}

2/2. Thus multiplying both sides of (2.8) by {ua}, we have the
energy budget equation,

〈ρa〉
D{Ka}

Dta
=−{ua}

∂〈ρa〉{u′′av
′′

a }

∂ya
+ {ua}

∂〈τyx〉

∂ya
+ {ua}

〈ρa〉

ρbh
τw. (2.9)

Moreover, in statistically temporally and spatially homogeneous channel flows, the
rate of mean streamwise kinetic energy in the absolute frame, D{Ka}/Dta, is definitely
zero for that {v} = 0.

A single integration over the half-channel is then performed on (2.9), using no-slip
boundary conditions at the wall and symmetry boundary conditions at the centreline
leads to the formula of the skin-friction coefficient in the absolute reference frame,

Cf =
2
ρbu3

b

∫ h

0
〈τyx〉

∂{ua}

∂ya
dya︸ ︷︷ ︸

Cf 1

+
2
ρbu3

b

∫ h

0
〈ρa〉{−u′′av

′′

a }
∂{ua}

∂ya
dya︸ ︷︷ ︸

Cf 2

. (2.10)

The skin-friction coefficient has been decomposed into two components, Cf 1
represents the direct molecular viscous dissipation, transforming the power of the
skin-friction drag into heat, and Cf 2 represents the power converted into turbulent
kinetic energy production induced by turbulent fluctuations, before being dissipated.

For practical reasons, (2.10) is reformulated back into the initial reference frame,
and the direct viscous dissipation explicitly associated with the thermodynamic
fluctuations is isolated. Thus the skin-friction drag is expressed as

Cf =
2
ρbu3

b

∫ h

0

〈
µ

(
∂u
∂y
+
∂v

∂x

)〉
∂{u}
∂y

dy︸ ︷︷ ︸
Cf 1

+
2
ρbu3

b

∫ h

0
〈ρ〉{−u′′v′′}

∂{u}
∂y

dy︸ ︷︷ ︸
Cf 2

, (2.11)

where

Cf 1 =
2
ρbu3

b

∫ h

0
〈µ〉

∂〈u〉
∂y

∂{u}
∂y

dy︸ ︷︷ ︸
Cf 1,m

+
2
ρbu3

b

∫ h

0

〈
µ′
∂u′

∂y
+µ′

∂v′

∂x

〉
∂{u}
∂y

dy︸ ︷︷ ︸
Cf 1,f

. (2.12)
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Recalling the incompressible RD identity (1.2) (Renard & Deck 2016), similarities
and differences are observed with the compressible formulation (2.11). In particular,
as in the incompressible case, the skin-friction drag is decomposed into two branches,
associated with molecular viscosity dissipation and TKE production. On the other
hand differences can be found in the additional term Cf 1,f in (2.12) which embeds
the viscosity variations. In compressible isothermal channel flows, direct viscous
dissipation consists of Cf 1,m and Cf 1,f , which are respectively dependent on the mean
flow and thermodynamic fluctuations. In § 4.3, we apply classical compressibility
transformation to take into account the mean density and viscosity variations and
compare the contributions in the compressible cases to those in the incompressible
ones.

2.2. Correlation between wall heat flux and skin-friction drag coefficient
Heat transfer in the compressible isothermal channel flow is taken into consideration
in this subsection. The Reynolds-averaged energy equation incorporating the channel-
flow hypotheses gives

∂〈ρv(e+ V2/2)〉
∂y

=
∂

∂y

(
K
∂〈T〉
∂y

)
−
∂〈vp〉
∂y

+
∂〈uτyx〉

∂y
+
∂〈vτyy〉

∂y
+
∂〈wτyz〉

∂y
+ 〈ρfu〉, (2.13)

where e and V2/2 are respectively the internal energy and kinetic energy per unit mass,
K is thermal conductivity, T is temperature, p is static pressure, w is spanwise velocity
and τyx, τyy, τyz are viscous stresses respectively along the x-, y-, z-direction. Wall heat
flux qw is defined as the local power per unit area transferred between the wall and
fluid, and calculated by −K(∂〈T〉/∂y)|wall. To obtain the wall heat flux qw, we integrate
(2.13) from the wall surface to the central plane, leading to

qw =−ρbubhf . (2.14)

Equation (2.14) shows that the heat transfer to the wall comes from the power done
by the external body force, which is balanced by the skin-friction drag. Substituting
(2.4) into (2.14) gives

qw =−ubτw. (2.15)

As for the wall heat flux coefficient Bq, it is defined to be qw/(ρwCpuτTw), where
subscript w denotes variables at the wall surface, Cp is the specific heat at constant
pressure and uτ is friction velocity defined as

√
(τw/ρw) (τw denotes the wall shear

stress). Then we have

Bq =−
0.5Mb

2(γ − 1)
(ρwuτ )/(ρbub)

Cf , (2.16)

where Mb is the bulk Mach number based on the bulk velocity and the sound speed at
wall temperature, and γ is the specific heat ratio. Equation (2.16) constitutes a direct
relationship between Bq and Cf , allowing us to predict the wall heat flux coefficient
and decompose it into different contributions, such as the skin-friction drag coefficient.
Thus considering (2.11), Bq is also related to the statistical quantities across the whole
wall layer, and no longer strongly dependent on the temperature gradient at the wall
surface, which is difficult to accurately obtain.
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3. Direct numerical simulation of compressible turbulent channel flows
Direct numerical simulations (DNSs) of compressible turbulent channel flows

have been performed with a finite difference code, by solving the three-dimensional
unsteady compressible Navier–Stokes equations. The convective terms are discretized
with a modified seventh-order weighted compact nonlinear scheme (WCNS)
(Nonomura & Fujii 2009; Nonomura, Iizuka & Fujii 2010; Nonomura et al.
2011). The viscous terms are evaluated with an eighth-order central difference
scheme. A third-order total-variation-diminishing Runge–Kutta scheme (Jiang & Shu
1996) is adopted for the time integration, and the time step is set to ensure the
Courant–Friedrichs–Lewy number is less than unity. A constant molecular Prandtl
number Pr of 0.72 and specific heat ratio γ of 1.4 are used. To drive the channel
flow, a body force is imposed in the streamwise direction, maintaining a constant
mass flow rate (Huang et al. 1995).

We carry out five DNSs to investigate the effects of Reynolds and Mach number
variation in supersonic isothermal channel flows. Details of the flow conditions,
computational domains and grid resolutions are listed in table 1. In particular we
carry out three simulations at a bulk Mach number Mb= ub/cw= 1.5 (where cw is the
speed of sound at wall temperature), and bulk Reynolds numbers Reb = 3000, 9400
and 20 000, respectively. As discussed in Modesti & Pirozzoli (2016), compressible
wall-bounded flows can be compared to incompressible flow data at the matching
equivalent Reynolds number. To this end we introduce the following mapping for the
wall-normal coordinate (Huang et al. 1995; Trettel & Larsson 2016),

yT(y)=
(〈ρ〉/ρw)

1/2

〈µ〉/µw
y, (3.1)

and the transformed friction Reynolds number is defined accordingly (Modesti &
Pirozzoli 2019),

Re∗τ = yT(h)/δv. (3.2)

The modified wall distance in viscous units is indicated with a plus superscript, y+T =
yT/δv.

Based on the local and wall properties, we also define the semi-local friction
velocity and viscous length scale as u∗τ =

√
(ρw/〈ρ〉)uτ and δ∗ν = (〈µ〉/µw/

√
〈ρ〉/ρw)δν ,

respectively (Huang et al. 1995). In the first three cases, the transformed Reynolds
numbers are Re∗τ = 140, 400 and 800, respectively. Moreover we carry out two flow
cases at Mb = 3.0, and Reb = 4880 and 14 000 (Re∗τ = 150 and 400), respectively.

The computational domain for the cases at Mb = 1.5, Reb = 3000 and Mb = 3.0,
Reb = 4880 is Lx × Ly × Lz = 4πh × 2h × 3πh/2. For the other cases simulated, the
computational domain is set as Lx × Ly × Lz = 2πh × 2h × πh. According to del
Álamo et al. (2004) and Lozano-Durán & Jiménez (2014), this computational domain
is sufficiently large to reproduce accurate turbulent statistics in the current range of
Reτ . To prove the adequacy of the domain size, we check the two-point correlations
both in the streamwise and spanwise directions, as discussed in appendix B. The
computational domain is discretized using Nx × Ny × Nz grid points in the x-, y- and
z-directions, respectively. A uniform mesh spacing is employed in the spanwise and
streamwise directions, whereas in the wall-normal direction the mesh is hyperbolically
clustered towards the walls. The minimum and maximum wall-normal grid spacing in
classical viscous units are 1y+min≈0.5 and 1y+max≈10 for all flow cases; 1x+ and 1z+
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FIGURE 1. (Colour online) Profiles of (a) mean streamwise velocity, (b) temperature,
(c) Reynolds shear stress for the two cases at Mb = 1.5, Reb = 3000 and Mb = 3.0,
Reb = 4880.

are the uniform grid spacings in the streamwise and spanwise directions, respectively.
Table 1 also gives the grid spacing normalized by the transformed Reynolds number
(as in (3.2)), i.e. 1y+T,min /0.5, 1y+T,max /10, 1x+T /10 and 1z+T /5. Periodic boundary
conditions are employed in the spanwise and streamwise directions, and isothermal
no-slip conditions are imposed at the walls. The flow is initialized with a parabolic
velocity profile with random perturbations superposed, and with uniform values of
density and temperature (Modesti & Pirozzoli 2016).

DNS data at Mb = 1.5, Reb = 3000 and Mb = 3.0, Reb = 4880 are compared to
flow statistics of Huang et al. (1995), Morinishi, Tamano & Nakabayashi (2004) and
Modesti & Pirozzoli (2016). Figure 1 shows the profiles of mean streamwise velocity,
temperature and Reynolds shear stress, which agree well with the previous studies.
Flow cases at Mb = 1.5, Reb = 9400 and Mb = 1.5, Reb = 20 000 are compared to
approximately matching reference data of Modesti & Pirozzoli (2016) at Mb = 1.5,
Reb = 7667 and Mb = 1.5, Reb = 17 000, respectively, as shown in figure 2. Minor
differences between the distributions are observed due to the difference in bulk
Reynolds numbers, thus confirming the accuracy of the present dataset.

4. Results and discussion
The relations between the mean skin-friction drag coefficients and Reynolds

numbers are plotted in figure 3, in which the mean skin-friction drag coefficients
are directly calculated from the normal gradients of mean streamwise velocity at
the wall. They are compared to the empirical correlation of incompressible turbulent
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FIGURE 2. (Colour online) Profiles of (a) mean streamwise velocity, (b) temperature,
(c) Reynolds shear stress for the two cases at Mb = 1.5, Reb = 9400 and Mb = 1.5,
Reb = 20 000.
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FIGURE 3. Mean skin-friction drag coefficients for compressible turbulent channel flows
with regard to (a) Reτ and (b) Re∗τ compared with the incompressible empirical results.

channel flows given by Abe & Antonia (2016), Cf = 2/(2.54 ln(Reτ ) + 2.41)2. Both
the friction Reynolds number Reτ and the transformed Reynolds number Re∗τ are
used to check the Cf − Re correlation. Figure 3(a,b) shows that the compressible
friction coefficient increases for increasing Mach number, at given Reτ , and using the
equivalent Reynolds number Re∗τ is not sufficient to account for the thermodynamic
property variation effects.
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Mb Reτ Re∗τ Cf 1,m/Cf Cf 1,f /Cf Cf 1/Cf Cf 2/Cf Relative error

1.5 220 140 62.40 % 0.36 % 62.76 % 37.03 % −0.21 %
1.5 600 400 51.59 % 0.30 % 51.89 % 47.03 % −1.08 %
1.5 1170 800 45.63 % 0.26 % 45.89 % 51.29 % −2.82 %
3.0 450 150 61.66 % 0.87 % 62.53 % 36.44 % 1.02 %
3.0 1160 400 49.81 % 0.73 % 50.54 % 46.84 % −2.62 %

TABLE 2. Contributions of the decomposed skin-friction drag components.

According to the theory developed in § 2.1, the mean skin-friction drag coefficients
are decomposed into three contributing constituents, Cf 1,m, Cf 1,f and Cf 2. Their
proportions in terms of the total skin-friction drag coefficient, as well as Cf 1/Cf
(Cf 1 = Cf 1,m + Cf 1,f ), are listed in table 2. The relative errors, [(Cf 1 + Cf 2) − Cf ]/Cf ,
are confined within ±2.82 %, indicating that the decomposition method is fairly
reliable in estimating the mean skin-friction drag coefficients. The decomposed
results suggest that at low Reynolds numbers the direct viscous dissipation Cf 1 is
the predominant drag component, reaching approximately 63 % at Re∗τ ≈ 150. As the
Reynolds number increases, the predominance of Cf 1 is gradually overtaken by the
component of TKE production Cf 2. This phenomenon is consistent with the study of
Renard & Deck (2016) in incompressible flows. At the same Re∗τ , varying the bulk
Mach number Mb from 1.5 to 3.0 does not have any significant influence on the
decomposed results.

To further quantify the effects of Reynolds and Mach number on the mean
skin-friction drag generation, in the following two subsections we will investigate
the profiles of Cf 1/Cf and Cf 2/Cf across the channel.

4.1. Effects of Reynolds number on the mean skin-friction drag generation
The formulas for Cf 1/Cf and Cf 2/Cf are rewritten in the intrinsic scales, viz.

Cf 1

Cf
=

∫ Reτ

0

uτ
ub

〈
µ

µw

(
∂u+

∂y+
+
∂v+

∂x+

)〉
∂{u}+

∂y+
dy+, (4.1)

Cf 2

Cf
=

∫ Reτ

0

uτ
ub

〈ρ〉

ρw
{−u′′v′′}+

∂{u}+

∂y+
dy+, (4.2)

where the superscript + denotes normalization with viscous variables.
To assess the effects of Reynolds number on the mean skin-friction drag generation,

profiles of the pre-multiplied integrands in (4.1) and (4.2) are plotted in figures 4
and 5, respectively, as a function of viscous wall distance y+ (= y/δν, δν = νw/uτ ).
Integrating the pre-multiplied integrands over the wall layer gives the corresponding
proportions of Cf 1 and Cf 2 in the total skin-friction drag.

As shown in figure 4, the pre-multiplied integrands of Cf 1/Cf share similarity in
curve shape and peak at almost the same y+ location for the flows at the same
bulk Mach number. Their peaks are reduced when we increase the Reynolds number,
indicating a negative correlation between the contribution of viscous dissipation and
the Reynolds number. The contribution of viscous dissipation is mainly located in the
near-wall region, for instance y+ / 30, as seen in figure 4.

As for the pre-multiplied integrands of Cf 2/Cf , a similar feature of the peak
location and peak value is observed for flows at the same bulk Mach number, as
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FIGURE 4. Pre-multiplied integrands of Cf 1/Cf as a function of y+. (a) Mb = 1.5 and
(b) Mb = 3.0.
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FIGURE 5. Pre-multiplied integrands of Cf 2/Cf as a function of y+. (a) Mb = 1.5 and
(b) Mb = 3.0.

displayed in figure 5. The majority of TKE-production contributions are generated
in the region where y+ ' 10. The profiles in the near-wall region (y+ / 30) collapse
well onto a single curve, indicating that the Reynold number has little impact
on the TKE production in this region. A secondary peak emerges in the outer
layer as the Reynolds number increases, which is ascribed to the generation of the
large-scale turbulent motions. The existence of large-scale turbulent motions in the
outer layers at large Reynolds numbers has been confirmed in many studies, e.g.
Kim & Adrian (1999), Balakumar & Adrian (2007), Hutchins & Marusic (2007a),
Monty et al. (2009) and Lee & Sung (2011). The large-scale turbulent motions lead
to the generation of large amounts of turbulent kinetic energy in the outer layer, and
correspondingly contribute to the generation of the skin-friction drag. Meanwhile,
large-scale turbulent motions have actions that modulate the small-scale turbulent
motions in the near-wall region (Hutchins & Marusic 2007b), which leads to the
redistribution of turbulent kinetic energy between the near-wall region and the outer
region. This possibly explains the decrease of the (first) peak values in figure 5 as
the Reynolds number increases.
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FIGURE 6. Pre-multiplied integrands of Cf 1/Cf as a function of y+. (a) Re∗τ ≈ 150 and
(b) Re∗τ ≈ 400.
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FIGURE 7. Pre-multiplied integrands of Cf 2/Cf as a function of y+. (a) Re∗τ ≈ 150 and
(b) Re∗τ ≈ 400.

4.2. Effects of Mach number on the mean skin-friction drag generation
Keeping the transformed Reynolds number the same, we plot profiles of the
pre-multiplied integrands of Cf 1/Cf and Cf 2/Cf in figures 6 and 7, respectively, aiming
to discuss the effects of Mach number on the mean skin-friction drag generation. Two
incompressible turbulent channel flows at Reτ = 180 and 395 (Moser, Kim & Mansour
1999) are also included for discussion.

The area below the integrands describes the contributions of molecular viscous
dissipation or TKE production to the total skin-friction drag. If the transformed
Reynolds number is the same, varying the bulk Mach number from 1.5 to 3.0
has little influence on the total area below the integrands, which corresponds to
the results in table 2. However, as the Mach number increases, the peaks of the
pre-multiplied integrands apparently shift away from the wall as shown in figures 6
and 7. It indicates that the thermodynamic property variations have non-negligible
impacts on the distributions of both decomposed constituents respectively related
to the molecular viscous dissipation and the TKE production. Figure 8 quantifies
the variation of dynamic viscosity with respect to the Mach number. It is a vital
parameter in the viscous dissipation distributions and is positively relevant to the
temperature through Sutherland’s law. In turbulent isothermal channel flows, the
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FIGURE 8. Profiles of dynamic viscosity.

viscosity coefficient increases dramatically in a wider region of y+, as we increase
the Mach number. For instance, the dramatic rise of 〈µ〉/µw is limited in the region
of y+ / 30 at Mb = 1.5; if we change the bulk Mach number to 3.0, this region is
extended to y+/100. Thus the maximum of the direct viscous dissipation contribution
shows up at a larger y+. Correspondingly, the dissipation is no longer limited in the
inner region (y+ / 30), as the bulk Mach number reaches high values, which means
that Mach number increase leads to the reinforcement of dissipative effect across the
channel and thus the intensification of heat transfer.

4.3. ‘Compressible’ contributions to the skin-friction drag generation
As mentioned in § 2.1, Cf is split into Cf 1,m, Cf 1,f and Cf 2, where Cf 1,f is generated
due to the fluid compressibility as it contains viscosity fluctuations, and it cannot
be transformed into an ‘incompressible’ contribution. Whereas, the effect of density
and viscosity variations on Cf 1,m and Cf 2 can be accounted for by applying the
compressibility transformations to the streamwise velocity and Reynolds shear stress,
viz.

u+T =
∫ u+

0

〈µ〉

µw

dy+T
dy+

du+ and τ+T =
−〈ρu′′v′′〉
ρwu2

τ

. (4.3a,b)

These transformations should allow us to obtain the Mach-number-invariant
contributions of Cf 1,m and Cf 2 to the total skin-friction drag coefficient.

Substituting these transformations in (2.12) and (2.11),

Cf 1,m

Cf
=

∫ y=h

y=0

∂〈u〉+T
∂y+T

∂{u}+T
∂y+T

u∗τ
ub

dy+T +
∫ y=h

y=0

∂〈u〉+T
∂y+T

∂{u}+T
∂y+T

u∗τ
ub

y+T
δ∗ν

dδ∗ν , (4.4)

Cf 2

Cf
=

∫ y=h

y=0
τ+T
∂{u}+T
∂y+T

u∗τ
ub

dy+T +
∫ y=h

y=0
τ+T
∂{u}+T
∂y+T

u∗τ
ub

y+T
δ∗ν

dδ∗ν . (4.5)

The integrands in (4.4) and (4.5) depend both on the Mach and Reynolds numbers
through the ratio u∗τ/ub. In order to isolate the effect of mean density and viscosity
variations and obtain universal distributions across Mach and Reynolds numbers, we
follow the C1.5

f scaling as in Fan, Cheng & Li (2019) for incompressible channel flows.
To this end, we divide the first terms on the right-hand sides of (4.4) and (4.5) by
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FIGURE 9. Pre-multiplied integrands of (a) (Cf 1,m/C1.5
f )incomp and (b) (Cf 2/C1.5

f )incomp as a
function of y+T .√

ρw/ρb(uτ/ub)2 (recall Cf = 2ρw/ρb(uτ/ub)
2), and recast (4.4) and (4.5) as

Cf 1,m

C1.5
f
= C

∫ Re∗τ

0

∂〈u〉+T
∂y+T

∂{u}+T
∂y+T

dy+T

+C
∫ Re∗τ

0

∂〈u〉+T
∂y+T

∂{u}+T
∂y+T

(√
ρb

〈ρ〉
− 1+

y+T
δ∗ν

√
ρb

〈ρ〉

dδ∗ν
dy+T

)
dy+T , (4.6)

Cf 2

C1.5
f
= C

∫ Re∗τ

0
τ+T
∂{u}+T
∂y+T

dy+T

+C
∫ Re∗τ

0
τ+T
∂{u}+T
∂y+T

(√
ρb

〈ρ〉
− 1+

y+T
δ∗ν

√
ρb

〈ρ〉

dδ∗ν
dy+T

)
dy+T , (4.7)

where C= 1/(
√

2).
Given the generally good accuracy of the compressibility transformation used

(Modesti & Pirozzoli 2016), the first terms in (4.6) and (4.7) are expected to be
Mach-number invariant and they are referred to as the incompressible components, and
labelled as (Cf 1,m/C1.5

f )incomp and (Cf 2/C1.5
f )incomp. Distributions of these pre-multiplied

integrands are given in figure 9, in which good collapse is observed for cases
at the same transformed Reynolds number Re∗τ . Areas beneath the distributions
denote the specific values of (Cf 1,m/C1.5

f )incomp and (Cf 2/C1.5
f )incomp, respectively. The

maximum mismatch of both (Cf 1,m/C1.5
f )incomp and (Cf 2/C1.5

f )incomp for cases at the
same Re∗τ but different Mb is within ±1.8 %, which indicates that the influence
of the thermodynamic property variations on each contribution has been removed,
as expected. In addition, coincidences of the peak locations at y+T ≈ 6.5 and 17.0
are observed in figures 9(a) and 9(b), respectively, regardless of the variation of
Reynolds number and Mach number. This phenomenon is interestingly consistent
with the results for incompressible boundary layers (figure 5 in Renard & Deck’s
(2016) paper) and incompressible channel flows (figures 4b and 5b in Fan et al.’s
(2019) paper).

Furthermore, we note that additional terms appear which depend on the mean
density and viscosity, suggesting that compressibility transformations can only
approximately account for mean thermodynamic property variation effects on each
contributing term. The second terms in equations (4.6) and (4.7) are therefore
denoted as (Cf 1,m/C1.5

f )comp and (Cf 2/C1.5
f )comp, as they cannot be exactly written
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FIGURE 10. Pre-multiplied integrands of (a) (Cf 1,m/C1.5
f )comp and (b) (Cf 2/C1.5

f )comp as a
function of y+T .

in terms of transformed variables and they should be regarded as deviations from the
standard compressibility transformation. Profiles of the pre-multiplied integrands of
(Cf 1,m/C1.5

f )comp and (Cf 2/C1.5
f )comp are plotted in figure 10. Areas beneath the curves

explicitly indicate the total values and the figure shows that the relative contributions
of (Cf 1,m/C1.5

f )comp and (Cf 2/C1.5
f )comp are small compared to (Cf 1,m/C1.5

f )incomp and
(Cf 2/C1.5

f )incomp. We note that the peak values of (Cf 1,m/C1.5
f )comp and (Cf 2/C1.5

f )comp

occur in the near-wall region (y+T < 30 for instance) where density and viscosity
variations are higher, and figure 10 also suggests that these contributions becomes
negligible for increasing Re∗τ . In order to quantify the total ‘compressible’ contribution
to the skin-friction drag coefficient we introduce(

Cf

C1.5
f

)
comp

=

(
Cf 1,m

C1.5
f

)
comp

+

(
Cf 2

C1.5
f

)
comp

+
Cf 1,f

C1.5
f
, (4.8)

and we introduce the normalized deviation with respect to the total friction coefficient

Rcomp =
(Cf /C1.5

f )comp

(Cf /C1.5
f )incomp + (Cf /C1.5

f )comp
. (4.9)

Table 3 shows the different contributions to the skin-friction drag coefficient and
highlights that the terms (Cf 1,m/C1.5

f )comp, (Cf 2/C1.5
f )comp, and Cf 1,f /C1.5

f are negligible
compared the other components. In particular the term (Cf 1,m/C1.5

f )comp, associated with
deviations from compressibility transformations for the velocity, is found to be close
to zero for all flow cases, whereas the term (Cf 2/C1.5

f )comp, associated with deviations
from compressibility transformations for the Reynolds stress is found to be larger but
decreases with Re∗τ increasing and it is barely 3 % at Mb = 3, Re∗τ = 400.

As for the exactly transformed components, they are compared to those of
incompressible channel flows in figure 11. Statistical data of the incompressible
channel flows at Re∗τ = 180, 550, 1000, 2000, 5200 are used (Lee & Moser 2015).
For the incompressible cases, in contrast with the constancy of Cf 1,RD/C1.5

f (≈ 6.5),
Cf 2,RD/C1.5

f has a logarithmic relationship with Re∗τ , well fitted by Cf 2,RD/C1.5
f ≈

1.87 ln(Re∗τ )− 5.29. This conclusion is consistent with the findings for incompressible
flows of Laadhari (2007), Abe & Antonia (2016), Renard & Deck (2016) and
Fan et al. (2019). As for the five cases simulated in the present study, the results
of (Cf 1,m/C1.5

f )incomp and (Cf 2/C1.5
f )incomp agree fairly well with the incompressible
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(Cf1,m/Cf
1.5)incomp

(Cf2 /Cf
1.5)incomp

Cf1,RD/Cf
1.5

Cf2,RD/Cf
1.5

Re*
†

FIGURE 11. Distributions of (Cf 1,m/C1.5
f )incomp and (Cf 2/C1.5

f )incomp with regard to Re∗τ in
contrast with the results of incompressible channel flows.

Mb Re∗τ

(
Cf 1,m

C1.5
f

)
incomp

(
Cf 1,m

C1.5
f

)
comp

(
Cf 2

C1.5
f

)
incomp

(
Cf 2

C1.5
f

)
comp

Cf 1,f

C1.5
f

Rcomp

1.5 140 6.91 0.16 3.98 0.21 0.04 3.62 %
1.5 400 6.67 0.00 5.92 0.18 0.04 1.68 %
1.5 800 6.59 −0.10 7.18 0.12 0.04 0.40 %
3.0 150 6.95 0.42 3.91 0.45 0.10 8.13 %
3.0 400 6.74 −0.02 5.97 0.36 0.10 3.25 %

TABLE 3. ‘Incompressible’ and ‘compressible’ contributions to the total skin-friction
drag coefficient.

empirical rules, which confirms that the Trettel & Larsson (2016) transformation of
velocity and Reynolds stress can accurately take into account the effect of density
and viscosity variations.

4.4. Wall heat flux coefficient
Wall heat flux coefficient is an important wall property, which can be directly
calculated by

Bq,local =−
1

RebPrρwuτ/(ρbub)

∂T/Tw

∂y/h

∣∣∣∣
y=0

. (4.10)

In § 2.2, we derive an exact relation between the wall heat flux coefficient and the
skin-friction drag coefficient. The relation in (2.16) offers a means to predict Bq from
Cf , termed Bq,integral. Results of Bq,integral, Bq,local and their relative errors, (Bq,integral −

Bq,local)/Bq,local, are listed in table 4. Fairly good agreements are observed in table 4,
validating the accuracy of the (2.16).

The exact relation between the wall heat flux coefficient and the skin-friction
drag coefficient in (2.16) indicates a similarity between the heat transfer and the
momentum transport near the wall. This allows us to decompose the wall heat flux
from the perspective of energy budget. Therefore, similar to the decomposition of
the skin-friction drag, the wall heat transfer may be related to the molecular viscous
dissipation and the turbulent kinetic energy production. Correspondingly, Reynolds
and Mach number effects on the wall heat flux can be evaluated, as well. One of the
advantages of (2.16) is that it allows for the physical interpretation and prediction of
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Mb Re∗τ Bq,integral Bq,local Relative error

1.5 140 −4.80× 10−2
−4.70× 10−2 2.23 %

1.5 400 −4.19× 10−2
−4.11× 10−2 1.97 %

1.5 800 −3.80× 10−2
−3.70× 10−2 2.70 %

3.0 150 −1.35× 10−1
−1.37× 10−1

−1.53 %
3.0 400 −1.19× 10−1

−1.16× 10−1 2.24 %
TABLE 4. Wall heat flux coefficients at five operation conditions.

the wall heat flux coefficient based on turbulence quantities across the wall layer in
turbulent channel flows.

5. Conclusions
We focus on the decomposition of mean skin-friction drag in compressible turbulent

channel flows. Firstly, we generalize the original RD identity (Renard & Deck
2016) to a compressible form, obtaining two contributing components Cf 1 and Cf 2,
respectively associated with: (i) power of the friction transformed into heat via direct
molecular viscous dissipation, and (ii) power converted into turbulent kinetic-energy
production. Unlike the original RD identity, we further split Cf 1 into two parts, Cf 1,m
and Cf 1,f , representing the contributions of the mean flow and the thermodynamic
fluctuations, respectively.

Secondly, we investigate the Reynolds number dependence of the skin-friction
contributions due to molecular viscosity and the TKE production. At low Reynolds
number Cf 1 is dominant, whereas Cf 2 becomes dominant for increasing equivalent
Reynolds number Re∗τ , representing more than 50 % of the total skin-friction
coefficient.

Thirdly, we quantify the effect of density and viscosity variations on the skin-
friction coefficient by using Trettel & Larsson’s (2016) transformation to separate the
‘incompressible’ and ‘compressible’ contributions. The ‘incompressible’ contributions,
(Cf 1,m/C1.5

f )incomp and (Cf 2/C1.5
f )incomp, are found to be comparable to the equivalent

terms in incompressible turbulent channel flows (Fan et al. 2019), i.e. (Cf 1,m/C1.5
f )incomp

≈6.5 and (Cf 2/C1.5
f )incomp≈1.87 ln(Re∗τ )−5.29. Upon application of the compressibility

transformation, additional terms appear, which cannot be cast as equivalent incompre-
ssible contributions and constitute the total ‘compressible’ contribution together
with Cf 1,f , representing the thermodynamic fluctuations. The total ‘compressible’
contribution to Cf , mostly associated with an excess of TKE production, is
quite significant at low Reynolds numbers (up to 8 % at Mb = 3.0, Re∗τ = 150),
whereas it becomes negligible at sufficiently large Re∗τ and low Mb (barely 0.4 %
at Mb = 1.5, Re∗τ = 800), suggesting that Morkovin’s hypothesis holds and the
effect of thermodynamic property variations can be accounted for simply by using
compressibility transformations.

In addition, we derive and validate an exact relationship between the wall heat flux
coefficient and the skin-friction drag coefficient, which allows us to relate the heat flux
coefficient to the turbulence quantities across the wall layer in turbulent channel flows.
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Appendix A. Skin-friction decomposition in compressible flat-plate boundary
layers

For the compressible turbulent boundary layers, Reynolds number is characterized
by free-stream velocity u∞, free-stream density ρ∞, boundary-layer thickness δ and
dynamic viscosity at free-stream temperature µ∞. Three assumptions are made: (i)
no-slip conditions at the wall surfaces; (ii) statistical homogeneity in the spanwise
(z-) direction; (iii) no additional body force. Then the Reynolds-averaged momentum
equation in the streamwise (x-) direction is formulated as

∂〈ρu〉
∂t
+
∂〈ρuu〉
∂x

+
∂〈ρuv〉
∂y

=−
∂〈p〉
∂x
+

(
∂〈τxx〉

∂x
+
∂〈τyx〉

∂y

)
, (A 1)

where τxx is the normal stress in the x-direction.
Following the derivations in § 2.1, the mean skin-friction drag coefficient can be

expressed in the absolute reference frame

Cf =
2

ρ∞u3
∞

∫ δ

0
〈τyx〉

∂{ua}

∂ya
dya︸ ︷︷ ︸

Cf 1

+
2

ρ∞u3
∞

∫ δ

0
〈ρa〉{−u′′av

′′

a }
∂{ua}

∂ya
dya︸ ︷︷ ︸

Cf 2

+
2

ρ∞u3
∞

∫ δ

0
〈ρa〉

D{Ka}

Dta
dya︸ ︷︷ ︸

Cf 3

−
2

ρ∞u3
∞

∫ δ

0
{ua}

∂

∂(xa + u∞ta)
(〈τxx〉 − 〈ρa〉{u′′au′′a} − 〈pa〉) dya︸ ︷︷ ︸
Cf 4

. (A 2)

Four contributing constituents are obtained: Cf 1 and Cf 2 represent the direct viscous
dissipation and turbulence ‘dissipation’ into turbulent kinetic-energy production,
respectively; Cf 3 represents the variation of mean streamwise kinetic energy with
time, e.g. the time rate of fluid kinetic energy transferred from the moving wall in
the absolute frame; Cf 4 is created by the streamwise heterogeneity, which had better
be substituted with local information, in the case that streamwise derivatives are not
contained in the database or are unfeasible to obtain (Mehdi & White 2011).

Finally, equation (A 2) is allowed to be written equivalently in the wall-attached
reference frame for the convenience of calculation

Cf =
2

ρ∞u3
∞

∫ δ

0
〈τyx〉

∂{u}
∂y

dy︸ ︷︷ ︸
Cf 1

+
2

ρ∞u3
∞

∫ δ

0
〈ρ〉{−u′′v′′}

∂{u}
∂y

dy︸ ︷︷ ︸
Cf 2

+
2

ρ∞u3
∞

∫ δ

0
〈ρ〉({u} − u∞)

D{u}
Dt

dy︸ ︷︷ ︸
Cf 3

−
2

ρ∞u3
∞

∫ δ

0
({u} − u∞)

∂

∂x
(〈τxx〉 − 〈ρ〉{u′′u′′} − 〈p〉) dy︸ ︷︷ ︸
Cf 4

. (A 3)
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FIGURE 12. Streamwise and spanwise two-point correlations for streamwise velocity
fluctuation Ru′u′ for five channel-flow cases.

Appendix B. Two-point correlations of the streamwise velocity fluctuation
To prove the adequacy of the domain size, we check the two-point correlations

of the streamwise velocity fluctuation, Ru′u′ , both in the streamwise and spanwise
directions, with the designated computational domain in § 3, as displayed in figure 12.

Figure 12(a,c,e,g,i) shows Ru′u′ in the streamwise direction, and figure 12(b,d, f,h,j)
shows Ru′u′ in the spanwise direction. It can be seen that the correlations are limited
to small values at large separations, indicating that the domain sizes are sufficiently
long (wide).
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