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SUMMARY
We propose a novel control approach for cooperative dual-arm manipulation tasks. Our scheme has
three typical features: (1) the task performed by two robots is represented as a motion of a virtual
mechanism and the task execution is accomplished by controlling the virtual mechanism; (2) the
two arms and the task form a joined kinematic chain; (3) the scheme allows a cooperative dual-arm
system to perform the task also when robot base is moving. The calculation of the Jacobian matrix
of a chained two-arm mechanisms is based on a methodology which is using the Jacobian matrices
of particular robot mechanisms and their end-effector positions and orientations. The proposed
algorithm for dual-arm manipulation is verified by simulations of two cooperating planar robots and
by experiments on a dual-arm robot consisting of two KUKA LWR arms.
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1. Introduction
Many industrial robot applications and service robotics tasks require dual-arm robot systems.
Cooperative manipulation of objects with a dual-arm robot provides more flexible and versatile
task execution than the manipulation of object with a single-arm robot. For example, two arms can
perform independent or coordinated complex bimanual assembly tasks without the aid of fixtures
or jigs, transfer voluminous and heavy objects. Control policies for cooperative manipulators can
be roughly divided into two categories: symmetric formulation and task-oriented formulation. The
kinetostatic symmetric formulation proposed in ref. [1] is based on mappings between forces and
velocities at the tightly grasped object and their counterparts in the “virtual sticks”. The major problem
in this formulation is that the task-space kinetostatic variables are often unsuitable for the description
of the cooperative task.

The task-oriented formulation fully characterizes a cooperative operational space and allows
the user to specify the task in terms of geometrically meaningful motion variables defined at the
position/orientation level.2, 3 The main advantage of defining the cooperative task-space is that the
control can be applied even for tasks which do not require physical interaction of both arms with
the object. The differential kinematics of the system is formulated using the relative Jacobian of two
manipulators as relation between velocities of the first robot end-effector relative to the second robot
end-effector and joint velocities of both robots.4, 5 However, when the robot arms are mounted on
mobile or free-floating platforms, the modeling of dual-arm manipulators systems becomes more
complex.

The paper presents a method for obtaining the Jacobian matrix of the kinematic chain. The
derivation of the Jacobian matrix of chained robot mechanisms is already well described.6–8 However,
if the kinematics of the particular robots composing the kinematic chain is already known then
using this information can simplify the calculation of the kinematics of the whole system. We
derive the Jacobian matrix using already known Jacobian matrices Ji and end-effector homogeneous
transformations Ti of all robot arms composing the chained mechanism. This method is especially
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2 Virtual mechanism approach for dual-arm manipulation

useful for the calculation of the Jacobian for the dual-arm robot system augmented with a virtual
mechanism representing the task.

Several authors used the term “virtual”9–13 for an object, which is being manipulated by the robot.
Usually, this “virtual object” is used in the framework of internal forces for grasping tasks. Our paper
uses the term “virtual mechanism” to denote a virtual mechanism which has the same kinematics
as the task. The task is represented as a virtual mechanism, which has as many degrees of freedom
(DOF) as required by the task.14 Task execution is performed with controlling internal joints of the
virtual mechanism on a position/orientation level.

In our paper, we propose an approach to control the cooperative manipulators performing a task
based on a representation of two robot arms and a task as an augmented kinematic chain.15 We
modeled the augmented kinematic with chaining three serial mechanisms (both robots and the virtual
mechanism). In this approach, the base frame of the augmented kinematic chain is located at the
base frame of the first robot, while the end-effector of the augmented kinematic chain is located
at the base frame of the second robot. The proposed formulation allows cooperative manipulators
performing a task also in the case of moving bases. An example of such case is cooperative mobile
manipulators, where the relative position and orientation between the robot bases is considered as the
end-effector of the augmented kinematic chain. Many authors16–20 already well described the control
of the manipulator mounted on a mobile platform (vehicle). In these works, the system is modeled
as a macro-/mini-structure. Major problem in these approaches is that is necessary to introduce the
additional DOF of the moving platform in the system.

By introducing the proposed augmented kinematic chain, it was necessary to consider an extended
task-space to control the main task defined with the virtual mechanism. The extended fingers concept
presented in ref. [21] allows execution of multiple additional tasks, which are arranged in a priority
order. However, these additional tasks are all executed as a secondary task in the null-space of the
main task. When virtual mechanism is used then the task associated with is has to be executed together
with the end-effector task as the primary task. Therefore, we used the extended task-space control as
proposed in refs. [22, 23], where additional tasks are fulfilled along with the end-effector task, i.e.
all tasks in the extended task-space have the same priority. Actually, when the base position of the
second robot is not strictly prescribed, it can be treated as a lower-priority task and other redundancy
resolution schemes can be used.

The paper is divided in four sections. Initially, in Section 2, we introduce the method for chaining
of serial mechanisms. Next, in Section 3, task-space definition is presented and we introduce the
virtual mechanism. We use this knowledge to derive the Jacobian of the dual-arm system which is
modeled as an augmented kinematic chain in Section 4. Closed-loop velocity control for the dual-arm
system executing a task is presented in Section 5. In Sections 6 and 7, simulation and experimental
results to corroborate the proposed control scheme are presented. In Section 8, final remarks are given
in conclusions. The conclusion section is followed by Appendices A and B.

2. Chaining of Serial Mechanisms
In this section, we propose a methodology for deriving of the Jacobian matrix of the augmented
kinematic chain. The augmented kinematic chain is a representation of two or more serial robot
manipulators connected serially. The Jacobian of the chained mechanisms is calculated based on the
known Jacobian matrices Ji and end-effector positions/orientations Ti of all manipulators composing
the chained mechanism

JNk = f (J1, T1, J2, T2, . . . , Jk, Tk). (1)

2.1. Kinematics of serially chained manipulators
Consider a robot manipulator consisting of k chained manipulators as it is shown in Fig. 1, where
index i denotes individual manipulators, i = 1, . . . , k. In general, the position/orientation of the ith
end-effector can be represented in the base frame T b

i of that ith robot with the positional vector
pi and the rotation matrix Ri , which compose the homogeneous transformation Ti representing the
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Fig. 1. With the proposed methodology, it is possible to chain serial mechanisms together and describe them as
a one kinematic chain.

transformation from T b
i to T e

i .

Ti =
[

Ri pi

0 1

]
. (2)

Let ni denote the number of joints of the ith robot and qi the ni-dimensional vector of joint variables,
respectively. Then, the differential kinematics representing the relation between end-effector velocities
ẋi and joint velocities q̇i equals Ji(qi),

ẋi = Ji q̇.i (3)

In general, ẋi is a six-dimensional vector, which can be divided into two parts: the linear velocity vi

and the angular velocity ωi of the end-effector6

ẋi =
[

vi

ωi

]
. (4)

Consequently, the Jacobian matrix can be split into the position part Ji,v and the orientation part
Ji,ω

Ji =
[

Ji,v

Ji,ω

]
(5)

and using Eqs. (4) and (5) in Eq. (3), we obtain the relations

vi = Ji,v q̇i , (6)

ωi = Ji,ω q̇i . (7)

On the other hand, the linear velocity vi can also be obtained as the time derivative of the positional
part pi in Eq. (2),

vi = ∂pi

∂t
. (8)

Using the time derivative of the rotation matrix8 in Eq. (2), we obtain the angular velocity in the form

Ṙi = S(ωi)Ri , (9)

where S(ωi) is the 3 × 3 skew-symmetric matrix.8 Note that these equations are expressing the
velocities of the ith robot in the base frame T b

i .
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4 Virtual mechanism approach for dual-arm manipulation

As shown in Fig. 1, the end-effector frame of the ith manipulator coincides with the base frame
of the i + 1th manipulator. We can write the homogeneous transformation matrix that describes the
transformation between the end-effector frame T e

i+1 and the base frame T b
1 as

T∗
i+1 = T∗

i Ti+1 =
[

R∗
i Ri+1 R∗

i pi+1 + pi

0 1

]
. (10)

The vector of joint velocities of the chained mechanism is

q̇∗
i+1 =

[
q̇∗

i

q̇i+1

]
. (11)

Using Eq. (8) and the position part of T∗
i+1 in Eq. (10) yields

v∗
i+1 = Ṙ∗

i pi+1 + R∗
i vi+1 + v∗

i . (12)

Rearranging this equation using Eqs. (9) and (52) and using Eqs. (6) and (7) for vi , vi+1, ωi ,
respectively, we obtain the equation

J∗
i+1,v q̇∗

i+1 = S(R∗
i pi+1)T J∗

i,ω q̇∗
i + R∗

i Ji+1,v q̇i+1 + J∗
i,v q̇∗

i , (13)

where we can extract the position part J∗
i+1,v

J∗
i+1,v = [

J∗
i,v + S(R∗

i pi+1)T J∗
i,ω R∗

i Ji+1,v

]
. (14)

Similarly, differentiating the rotation part of the homogeneous transformation (10) yields

Ṙ∗
i+1 = Ṙ∗

i Ri+1 + R∗
i Ṙi+1. (15)

Using the properties given in Appendix A and rearranging the result to a form as in Eq. (7)

J∗
i+1,ω q̇∗

i+1 = J∗
i,ω q̇∗

i + R∗
i Ji+1,ω q̇i+1, (16)

where we can obtain the orientation part of the Jacobian matrix J∗
i+1,ω in form

J∗
i+1,ω = [

J∗
i,ω R∗

i Ji+1,ω

]
. (17)

Combining Eqs. (14) and (17) yields the Jacobian matrix J∗
i+1 of i + 1 serially chained robots.

J∗
i+1 =

[
J∗

i,v + S(R∗
i pi+1)T J∗

i,ω R∗
i Ji+1,v

J∗
i,ω R∗

i Ji+1,ω

]
. (18)

Note that J∗
i+1 is a 6 × n∗

i+1 dimensional matrix, where n∗
i+1 = n∗

i + ni+1.

2.2. Reverse chained manipulators
In the previous section, we presented how to obtain the Jacobian matrix when the robots are joined
in the normal way, i.e. the base frame T b

i+1 coincides with the end-effector frame T e
i . However, when

the robot mechanisms are joined by their end-effectors, i.e. the end-effectors frames T e
i and T e

i+1

coincide, and the base frame T b
i+1 is the new end-effector frame of the chained robot (see Fig. 2), we

have to use the reverse kinematics of the i + 1 robot,

T∗
i+1 = T∗

i TR
i+1, (19)
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Fig. 2. As both robot arms are actually connected by the end-effectors, we have to reverse the kinematic
transformation for one arm.

where TR
i+1 is the reversed homogeneous transformation, TR

i+1 = T−1
i+1. Furthermore, for obtaining

the Jacobian matrix J∗
i+1 of such chained kinematic structure, the knowledge of the reversed Jacobian

matrix JR
i+1 is necessary. The Jacobian matrix JR

i+1 can be obtained by separately differentiating the
position and the rotation part of T−1

i+1 defined as

T−1
i+1 = [

RT
i+1 −RT

i+1 pi+1
]
. (20)

After some calculations, we get

JR
i+1 =

[−RT
i+1Ji+1,v − S(−RT

i+1 pi+1)T Ji+1,ω

−RT
i+1Ji+1,ω

]
, (21)

where the upper term is the position part and bottom term is the rotational part of the Jacobian matrix.
The derivation of the Jacobian matrix J∗

i+1 is the same as given in Section 2.1, except that we have to
use T−1

i+1 and JR
i+1 instead of Ti+1 and Ji+1, respectively.

3. Task-Space Definition
The motion necessary to perform a task can be represented as a transformations in the task coordinate
system Tt with a homogeneous transformation Tt

Tt =Tt (t)

Tt =
[

Rt pt

0 1

]
,

(22)

where pt and Rt represent the task position and orientation, respectively.
Each task has its constraints and to describe it is optimal to use natural coordinates. For example,

for describing dual-arm apple peeling task, the most suitable is the spherical coordinate system. We
propose to represent a task with a virtual mechanism, with a kinematic structure corresponding to the
nature of the task. Let assume that the task requires mt degrees of motion for its execution. Then, it
can be represented by an nt -DOF virtual mechanism and a corresponding structure (see Fig. 3). Note
that mt = nt .

The kinematics of this virtual mechanism can be expressed in general as

xt = f (q t ), (23)
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Fig. 3. Task-space definition.

Fig. 4. Dual-arm system performing a task.

where xt and q t are the end-effector positions and generalized coordinates of the virtual mechanism.
As this is a virtual mechanism, we select such generalized coordinates in the joint-space of the virtual
mechanism that they are equal to the operational space coordinates of the task, giving

q t = xt . (24)

Hence, the differential inverse kinematics is very simple

q̇ t = ẋt . (25)

4. Two Cooperating Robot Arms System
Consider, we have a dual-arm robot arm system which is executing a task as shown in Fig. 4. To exploit
the advantages of a dual-arm system, a suitable kinematic formulation for such system has to be used.
Most of the published formulations use the absolute and the relative position to describe the task,
both expressed as a function of the positions/orientations of the two end-effectors.2–5 In this paper,
we propose to represent the task with a virtual mechanism (see Fig. 3). When the task is represented
with a virtual mechanism, we can join both robots and the virtual mechanism in serially chained
mechanism, which we denote in the following as the augmented kinematic chain. The augmented
kinematic chain has the base in the base of one robot arm and the end-effector in the base of the other
robot arm. Adding the virtual mechanism to the kinematic structure of the whole system adds mt

DOFs to the system, where mt is the dimension of the task-space. Note also that the end-effector of
the augmented system also represents a task. So, we have now actually two tasks: the first task is the
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“original” task and the second task is the position of new end-effector, i.e. the position of the robot
arm base. Remarkably, this formulation is convenient for the dual-arm robot systems where one of
the arms is movable (e.g. mounted on a platform).

The kinematics of this augmented kinematic chain can be solved using the methods presented in
previous sections.

We can represent the homogeneous transformation for the above system as a kinematic chain from
base of the first robot via the virtual mechanism to the base of the second robot as

Ta = T1TtT−1
2 , (26)

where the transformation Tt represents the task in its base frame Tt .
Substituting Eqs. (2) and (22) into Eq. (26) yields

Ta =
[

R1RtRT
2 p1 + R1 pt − R1RtRT

2 p2

0 1

]
. (27)

Let q̇a denote the vector of joint velocities of the augmented kinematic chain,

q̇a =
⎡
⎣ q̇1

q̇ t

q̇2

⎤
⎦ , (28)

which is composed of joint vector qi of individual robot, and vector of internal variables of the
virtual mechanism q t . If ẋa denote the end-effector velocity of the augmented kinematic chain, direct
kinematics can be described as

ẋa = Ja q̇a, (29)

where Ja is the Jacobian matrix of the augmented kinematic chain. We obtained it as described in
Section 2.

Ja =
⎡
⎣ J1,v + AJ1,ω J1,ω

R1(Jt,v − BJt,ω) R1Jt,ω

CJ2,ω − DJ2,v DJ2,ω

⎤
⎦

T

, (30)

where

A = S(R1xt)
T − S(R1RtRT

2 x2)T,

B = S(RtRT
2 x2)T,

C = R1RtRT
2 S(x2)T,

D = R1RtRT
2 .

Note that Ja is an ma × na dimensional matrix, where na = n1 + nt + n2.
Considering Eq. (28) and using the relation Eq. (25), the Jacobian matrix associated with the

virtual mechanism is

Jt = [
01 I 02

]
, (31)

where I is an nt × nt identity matrix and 0i are mt × ni zero matrices, where ni is the number of
DOF of the ith robot manipulator.

5. Closed-Loop Velocity Control
We are considering the tasks where the positions of the manipulators end-effectors are important,
i.e. the control has to assure good position tracking. However, if the manipulators hold the same
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object, the serial link mechanisms are in a closed-loop configuration and internal forces between
robot end-effectors arise, which influence the tracking accuracy. Therefore, it is necessary to control
these internal forces. As the problem of internal forces is beyond the scope of this paper, we rely
on a two-level control system and assume that the low-level controller24 compensates the internal
forces. In the following, we describe the proposed control algorithms at the upper level where the
redundancy resolution is resolved.

In the framework of the proposed control strategy, there are actually two tasks: first, the tasks the
robot arms should primary do and, second, the position of the end-effector of the augmented robot
system, i.e. the base of the moving robot arm. Therefore, our approach allows a simple task motion
control of a dual-arm robot system when the robot base is not fixed. In multi-task systems, there is
always a question if all tasks are equally important or they can be prioritized.25

When both tasks, i.e. the end-effector motion and the robot base motion, have to be fulfilled
simultaneously, then they have the same priority. To solve the inverse kinematics, we have to use the
extended task-space formulation,22, 23 which can be defined as

ẋe =
[

ẋt

ẋa

]
. (32)

Then, the relation between the extended task-space velocities and joint space velocities is given as

ẋe = Je q̇a, (33)

where Je is an me × na extended Jacobian matrix given in the form

Je =
[

Jt

Ja

]
(34)

and me = mt + ma . The solution of Eq. (33) is given in the form

q̇a = J#
e ẋe + Neξa, (35)

where

J#
e = W−1JT

e (JeW−1JT
e )−1 (36)

is a weighted generalized-inverse of the Je, W is the (na × na) weighting matrix, Ne = (I − J#
eJe)

is an (na × na) matrix representing the projection into the null-space of Je, and ξa is an arbitrary
na-dimensional vector26 of the augmented kinematic chain joint velocities. Note that all primary
tasks are included in ẋe and the homogenous part of solution, Ne q̇n, is used in secondary tasks (e.g.
obstacle avoidance) and the joint space velocities q̇n are projected into the null-space of the extended
Jacobian Je. To avoid any drifts, a task-space controller is usually implemented for ẋ, namely

ẋe = ẋd,e + Ke, (37)

where ẋd,e is the desired task-space velocity, e = xd − x is the task-space error, and K is a positive-
definite gain matrix.

In the cases where the robot base is movable and its position and/or orientation is not so important
as the main task, i.e. the position of the end-effector of the augmented kinematic chain xa is not strictly
prescribed, then the positioning of the robot base can be treated as a lower-priority task. We propose to
use the augmented inverse-based method proposed in ref. [27] where velocities for the lower priority
are projected in the null-space of the augmented Jacobian considering all higher-priority tasks. Using
this formulation, the primary task is given by Eq. (25) and the secondary tasks by Eq. (29). The
inverse kinematic solution is then given in the form

q̇a = J#
t ẋt + (JaNt )

#(ẋa − JaJ#
t ẋt ). (38)
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The first term guarantees the joint motion necessary for the execution of the desired task with the
virtual mechanism. The homogeneous solution of Eq. (38) represents the part of the joint velocity
causing the motion of the augmented chain end-effector. The term JaJ#

t ẋt is the velocity of the
augmented chain end-effector due to the virtual mechanism motion. The above solution guarantees
the exact achievement of the desired motion ẋa only in the case of sufficient degree of redundancy.
Note that if there are any other less-important tasks to be fulfilled together with the two main tasks,
the algorithm (38) can be generalized for more tasks.25 To avoid any drifts, the same task-space
controller given by Eq. (37) is also used in Eq. (38).

6. Simulation Results

6.1. Dual-arm planar robot
In order to demonstrate the efficiency of the proposed approach, we first present simulation results
of two cooperating planar 7-DOF robots. The first robot has fixed base and the second robot’s base
is movable, i.e. is mounted on a moving conveyor. The system is modeled as a augmented kinematic
chain, where base of the first robot is the base of the augmented kinematic chain, while the base of
the second robot is the end-effector of the augmented kinematic chain and its motion is constrained
to the linear motion on a conveyor.

For demonstration, we have selected a balancing task, where both robots are holding together a
bar. Additionally, the task requires to keep the bar in the horizontal position. Hence, the task-space
is two-dimensional: the translational motion in the x direction for holding the bar, and the rotation
around the z axis for maintaining the bar in horizontal position. For this task, the virtual mechanism
is defined as a 1-DOF manipulator with a prismatic joint with variable a. For orientation, we have to
control absolute orientation of the base of the virtual mechanism. As the virtual mechanism base is
fixed to the end-effector of the first robot, the orientation task can be accomplished by controlling the
orientation ωz of the end-effector of the first robot.

Additionally, the base of the second robot has to follow the desired motion on a moving linear
conveyor which defines the motion of the end-effector of the augmented kinematic chain ẋa . For
simplicity, the motion of the conveyor was defined as a sinusoidal function in the y direction.

Assigning both tasks the same priority and using the extended task-space definition (32), we can
write

ẋe =
[

ẋt

ẋa

]
, (39)

where

ẋt =
[

ȧ

ωz

]
. (40)

The generalized coordinates qa are defined as in Eq. (28) and the extended Jacobian matrix is
defined as in Eq. (34), where

Jt =
[

0 Jt1 0
Jt2 0 0

]
. (41)

Selecting joint coordinates as proposed by Eq. (24), the task matrices Jt1 and Jt2 are identity matrices.
The 0 are zero matrices of corresponding dimensions.

The controller is based on the algorithm (Eq. (35)) with the task controller (Eq. (37)). The null-
space motion of the augmented kinematic chain was not used in this simulation. Therefore, the
velocities ξa in the controller (Eq. (35)) were set to zero.

Simulation results show that the cooperative robots can effectively perform the given task. The
snapshots of six instances of given task are presented in Fig. 5.

In the second simulation example, these two robots are performing the same task of balancing and
simultaneously avoiding a moving obstacle in their workspace. The first planar robot is mounted on a
fixed support, and the second robot base is mounted on a floating platform. In this case, the position
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Fig. 5. The task of balancing a ball on a bar with two planar robot while one robot’s base is fixed on a linear
conveyor: robot configurations at six time instances.

Fig. 6. The task of balancing a ball on a bar with two planar robot while avoiding the obstacle in the robot
workspace: robot configurations at six time instances.

of the second robot base is not defined. The system is modeled as an augmented kinematic chain,
similar as in the first simulation example.

We assumed that the obstacle is movable along the y direction (on the conveyor) and the task
associated with the position of the end-effector of the augmented chain had lower priority as the
balancing task.

In the null-space of higher-priority tasks,25 the additional task was used for achieving the optimal
configuration of the dual-arm planar robot system. Therefore, we have selected the redundancy
resolution scheme as given by Eq. (38) generalized for more tasks,25 with the task-space controller
equation (37).

Simulation results show that the cooperative robots can effectively perform the balancing task
while avoiding the obstacle. The snapshots of six instances of given task are presented in Fig. 6.

The value of the positive-definite gain matrix in Eq. (37) was chosen empirically to achieve
necessary tracking accuracy.
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Fig. 7. Experimental setup with two Kuka LWR robot arms for task of winding a wool on a spool.

7. Experimental Results
Experiments were conducted on upper body humanoid robot torso, composed of two 7-DOF KUKA
LWR robot arms as shown in Figs. 7 and 9. Both robots were controlled using Matlab/Simulink
library28 using the Fast Research Interface (FRI). The experiments were performed using joint
stiffness control mode.24 The dynamic decoupling in Kuka control unit (KRC) allowed us to use
simple velocity control given by Eq. (35), where the weighting matrix was set to W = I .

7.1. Winding the wool on a spool with the dual-arm Kuka LWR robot
In the first experiment, the task is to wind the wool on a spool. This is a typical operation, where the
absolute task position is not important. Namely, one robot holds in its gripper the spool and the other
is rotating around the spool to wind the wool. The experimental setup is shown in Fig. 7. To describe
the task, two control variables are required: the translational position along the z axis which prevents
tangling of the wool, and the angle ϕ around the z axis. The distance r from center of the spool to
the wool is not critical and can be constant during the task execution. The most suitable description
of the given task is in cylindrical coordinates. So, the virtual mechanism is defined as a 2-DOF robot
with one rotational and one linear joint. Our concept allows to use any type of the virtual mechanism.
Therefore, we select a mechanism, where the joint coordinates are actually the task coordinates.

x0 =
[

z

ϕ

]
= q0. (42)

Therefore, the corresponding Jacobian matrix equals to the identity matrix

J0 = ∂x0

∂q0
=

[
1 0
0 1

]
. (43)

The trajectory for the motion is defined in the virtual mechanism coordinate frame T0. To perform
the circular motion, the angle ϕ is a ramp function from 0 to 2π , while the linear movement along the
z axis is a 0.5Hz sine signal with amplitude 0.4m. Figure 8 shows the reference and actual trajectories
in the task of winding the wool on a spool.

It can be seen that the task can be effectively performed with configuring the movement of virtual
mechanism.

7.2. Balancing the plate with the dual-arm Kuka LWR robot
The next experiment is to balance a bottle on a plate with two robot arms. Two Kuka LWR robots,
with Barret-Hand grippers, are holding a plate as seen in Fig. 9. For performing this task, in addition
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Fig. 8. (Colour online) Reference trajectories (solid lines) and responses (dotted lines) for the virtual mechanism
task-space position control.

Fig. 9. (Colour online) Experimental setup with two Kuka LWR robot arms for task of balancing the plate.

to preserving the distance between the robot hands holding the plate, it is also necessary to control the
orientation of the plate. The desired distance is obtained by controlling the relative positions between
the grippers. For that, we defined a 3-DOF virtual mechanism with prismatic joints. For preserving
the desired orientation of the plate, we have to control the absolute orientation if the plate, which is
accomplished by controlling the orientation of the first (right) robot gripper. For this we need two
DOFs of the first robot. So, for the whole task, the extended task-space is defined as

ẋe1 =
⎡
⎣ ẋt1

ẋt2

ẋa

⎤
⎦ , (44)

where the subscript t1 denotes the positioning task defined with the virtual mechanism and the
subscript t2 denotes the orientation. Consequently, the extended Jacobian matrix equals

Je1 =
⎡
⎣Jt1

Jt2

Ja

⎤
⎦ . (45)
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We have defined the structure of the virtual mechanism in such a way that ẋt1 = q̇ t = ḋ and Jt1 = I.
The d = [

dx, dy, dz

]T
is the three-dimensional vector, which represents the relative position between

the hands. The desired position dd for controlling the virtual mechanism task (holding the plate)
depends on the diameter of the plate, dd = [0, 0, 0.48m].

The ẋt2 = ω1 is the task of preserving the orientation of the plate, and ω1 is the angular velocity
of the first robot (right robot on Fig. 9) end-effector considering only the rotation around the x and y

axes,

ω1 =
[

ψ̇

θ̇

]
= Jt2q̇a. (46)

Here, ψ̇ is the rotation velocity around the x axis and θ̇ is the rotation velocity around the y axis of
the world coordinate system. The orientations ψd = π/2 and θd = 0 assure a horizontal position of
the plate surface. Note that the rotation of the plate around the vertical axis is free. In Eq. (46), the
Jt2 is obtained easily by using a corresponding part of the Jacobian matrix of the first robot

Jt2 =
[

J1,ωx
0 0

J1,ωy
0 0

]
. (47)

The 0 are zero matrices of corresponding dimensions.
In this experiment also a secondary task is defined: to place the plate on the table (denoted as t3).

To accomplish this task, the position of plate has to be defined in the world coordinate system. For
that, we defined this task as the position of the end-effector of the first robot (which is holding the
plate on one side) in the world coordinate system. Using Eqs. (4) and (5), we obtain

ẋt3 = v1 (48)

and

Jt3 = [
J1,v 0 0

]
. (49)

Using Eqs. (44), (45), (48) and (49) in Eq. (35), we obtain the joint velocities of the whole augmented
kinematic chain

q̇a = J#
e1 ẋe1 + Ne1J#

t3 ẋt3. (50)

These velocities were then used to control the motion of both robot arms with a compliant low-level
dynamic controller. In order to show the robustness against the external disturbances, we randomly
pushed one of the arms. The perturbation torques in joint space are shown in Fig. 11. Due to the
compliancy, the external torques caused motion in the null-space of the extended Jacobian, i.e. the
position and the orientation around the z axis of the plate changed, but the orientations around the x

and y axes of the plate were almost the same (see Fig. 10).
Experimental results show that the cooperative robots can effectively perform the given task in the

presence of external disturbances.

8. Conclusions
In this paper, a new control framework for a dual-robot arm system performing a cooperative task
is proposed. The task is presented as a virtual mechanism with as many DOFs as needed for the
task and the task is accomplished by controlling the virtual mechanism. We propose that both
robots and the task form a new augmented kinematic chain. This approach is especially suitable
for systems where one robot is mounted on a moving platform. As in this formulation, there are
actually two tasks: the “main” task and the position of the end-effector of the augmented kinematic
chain, we have to consider this when selecting the redundancy resolution method. To control both
tasks simultaneously, we used the extended task-space formulation and the corresponding extended
Jacobian matrix. When the base position of one robot is not determined by the task, i.e. has not
highest priority, redundancy resolution schemes for prioritized tasks can be used. Additionally, we
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Fig. 11. (Colour online) Measured torques in joints when external perturbation was applied by human.

can easily exploit the redundancy of the augmented system for some other tasks, such as obstacle
avoidance and maximizing kinematical advantage. We also present a procedure to obtain the Jacobian
matrix of serially chained robot manipulators by using only the Jacobian matrices of particular robot
mechanisms and their end-effector positions and orientations. The proposed approach allows chaining
of serial robots together on an effective, systematic and consistent manner, which can be applied to
macro–micro manipulators, reconfigurable robots, etc. Our algorithm can also cope with the systems
where one (or both) of cooperative manipulator bases is moving, which is the case in many industrial
and service robot applications.
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APPENDIX A

Def 1
Computing the derivative of the rotation matrix R is equivalent to a matrix pre-multiplication by a
skew-symmetric matrix S.8

Ṙ = S(ω)R. (51)

Def 2
Multiplying the skew-symmetric matrix with any vector p = (px, py, pz)T .8

S(ω)x = S(x)Tω. (52)

Def 3
Computing the derivative of the transposed rotation matrix R is equivalent to a transposed matrix
post-multiplication by a skew-symmetric matrix S.8

ṘT = −RT S(ω). (53)

Def 4
Because rotation matrix R is orthogonal, it can be shown that8

S(Rω) = RS(ω)RT . (54)

Def 5
An important property of the skew-symmetric matrix is linearity. For any vectors a and b belonging
to R3, we have

S(a) + S(b) = S(a + b). (55)

APPENDIX B
Multimedia extension is available for viewing online on:
http://abr.ijs.si/interno/video.php?id=193.
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