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Magnetic reconnection, especially in the relativistic regime, provides an efficient
mechanism for accelerating relativistic particles and thus offers an attractive physical
explanation for non-thermal high-energy emission from various astrophysical sources.
I present a simple analytical model that elucidates key physical processes responsible
for reconnection-driven relativistic non-thermal particle acceleration in the large-system,
plasmoid-dominated regime in two dimensions. The model aims to explain the
numerically observed dependencies of the power-law index p and high-energy cutoff
y. of the resulting non-thermal particle energy spectrum f(y) on the ambient plasma
magnetization o, and (for y,) on the system size L. In this self-similar model, energetic
particles are continuously accelerated by the out-of-plane reconnection electric field E.
until they become magnetized by the reconnected magnetic field and eventually trapped
in plasmoids large enough to confine them. The model also includes diffusive Fermi
acceleration by particle bouncing off rapidly moving plasmoids. I argue that the balance
between electric acceleration and magnetization controls the power-law index, while
trapping in plasmoids governs the cutoff, thus tying the particle energy spectrum to the
plasmoid distribution.
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1. Introduction

Non-thermal acceleration of relativistic particles is one of the most outstanding and
important problems in theoretical plasma astrophysics. Vast numbers of astrophysical
sources, scattered throughout our Galaxy and beyond, shine to us with powerful outbursts
of high-energy (X-ray and gamma-ray) radiation. This radiation, routinely observed to
reach into MeV, GeV and, in some systems, TeV energy ranges, indicates that the emitting
charged particles (electrons and, in some systems, positrons) are ultra-relativistic, with
Lorentz factors y > 1. It is therefore not surprising that most classes of the observed
gamma-ray astrophysical sources are associated with relativistic objects — neutron stars
(NSs) and black holes (BHs) — and their relativistic outflows. The most notable examples
are pulsar magnetospheres and pulsar wind nebulae (PWN); magnetars; accretion-disk
coronae and radiatively inefficient accretion flows of both stellar-mass BHs in galactic
X-ray binaries (XRBs) and supermassive BHs, e.g. in active galactic nuclei (AGN),
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including the Event Horizon Telescope (EHT) sources M87 and Sgr A*; BH-powered
relativistic jets emanating from XRBs in their low—hard spectral state and from AGN,
including blazars, as well as the jet-fed giant radio lobes; and gamma-ray bursts (GRBs),
both long GRBs produced by core collapse of massive stars and in short GRBs produced
by in BH-NS or NS-NS mergers (including gravitational wave events like GW170817).!

The high-energy (gamma-ray) radiation from many of these sources, both
quasi-stationary (persistent) and violently flaring (bursty), is often observed to have
non-thermal spectra, characterized by extended power laws covering several orders of
magnitude in photon energy. Because the most common emission mechanisms capable of
emitting photons in this energy range — synchrotron, inverse Compton (IC) and curvature —
involve just single individual particles interacting with ambient background magnetic
or soft-photon fields and are characterized by simple power-law relationships between
the emitting particle’s energy ym,c* and the resulting photon energy €, (e.g. € ~ ¥~
for synchrotron and IC), the power-law radiation spectrum implies a power-law energy
distribution, f(y) ~ ¥y (where p is the particle spectral index), of the emitting particles.

In fact, non-thermal spectra are so prevalent in gamma-ray (and some hard X-ray)
sources that one is led to think that they are more of a norm rather than an exception. This,
by itself, is not surprising; the very fact that we can observe non-thermal radiation of such
high energy, i.e. that the gamma-ray photons can escape from the system and its immediate
surroundings, often suggests that we are dealing with environments with a modest or
small optical depth to Compton scattering. This, in turn, means that the plasma density
is low and, since the Coulomb cross-section for relativistic particles becomes comparable
to the Thomson cross-section, that the plasma is collisionless. Therefore, there is no a
priori reason for the energy conversion processes that energize the plasma and power the
emission to produce thermal particle populations. Nevertheless, it is an important and
interesting intellectual challenge to understand the concrete physical mechanisms at work
driving non-thermal particle acceleration (NTPA); in particular, one would like to build a
predictive theory, capable of explaining the key characteristics of NTPA, such as its overall
energy efficiency, the power-law index p and the high-energy cutoff y..

Charged particle acceleration requires work to be done on the particle by an electric
field, and, for the resulting energy gain to be large, one has to have strong electric fields
coherent over substantial distances. Since highly conducting, collisionless astrophysical
plasmas tend to efficiently screen electric fields that are parallel to the magnetic field
in the plasma comoving frame, most of the required macroscopic electric fields would
have to be ideal magnetohydrodynamic (ideal-MHD), motional (z x B) electric fields
associated with rapid bulk motions of magnetized plasmas. For this reason, most of
the astrophysically relevant NTPA mechanisms are based on some dynamic, often rather
violent, plasma processes. Namely, the three such candidate processes that are most often
invoked in theoretical models of relativistic NTPA are collisionless shocks, turbulence
and magnetic reconnection. It is now generally believed that all three provide plausible,
viable mechanisms for particle acceleration under different conditions. They all have
been extensively studied as NTPA drivers both analytically (Bulanov & Sasorov 1976;
Blandford & Ostriker 1978; Blandford & Eichler 1987; Schlickeiser 1989; Chandran
2000; Larrabee, Lovelace & Romanova 2003; Giannios 2010) and numerically. In

INot all GeV and TeV sources, however, are directly associated with, or powered by, NSs or BHs; in particular,
an important class of gamma-ray sources are non-relativistic shocks driven through the interstellar medium by powerful
blast waves in supernova remnants.

2In addition to inferring astrophysical non-thermal particle acceleration through the non-thermal electromagnetic
radiation that these particles produce, we have a direct evidence of non-thermal relativistic particles pervading our
Galaxy — cosmic rays.
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particular, their viability as relativistic particle accelerators has been recently established
in first-principles particle-in-cell (PIC) kinetic plasma simulations (see, e.g. Spitkovsky
(2008), Sironi & Spitkovsky (2011a,b), Caprioli & Spitkovsky (2014) for shocks; Zhdankin
et al. (2017), Zhdankin et al. (2018), Zhdankin et al. (2019), Comisso & Sironi (2018),
Comisso & Sironi (2019), Wong et al. (2020) for turbulence; and Zenitani & Hoshino
(2001), Zenitani & Hoshino (2005), Zenitani & Hoshino (2007), Zenitani & Hoshino
(2008), Jaroschek et al. (2004), Lyubarsky & Liverts (2008), Liu et al. (2011), Bessho &
Bhattacharjee (2012), Cerutti et al. (2013, 2014a,b), Sironi & Spitkovsky (2014), Melzani
et al. (2014b), Cerutti et al. (2015), Sironi, Petropoulou & Giannios (2015), Sironi,
Giannios & Petropoulou (2016), Guo et al. (2014, 2015, 2016, 2019), Nalewajko et al.
(2015), Werner et al. (2016), Werner & Uzdensky (2017), Werner et al. (2018), Ball,
Sironi & Ozel (2018), Werner, Philippov & Uzdensky (2019), Schoeffler et al. (2019),
Hakobyan, Philippov & Spitkovsky (2019), Mehlhaff et al. (2020) and Hakobyan et al.
(2021) for relativistic magnetic reconnection; see also Hoshino & Lyubarsky (2012) and
Kagan et al. (2015) for recent reviews). In fruitful combination with these numerical PIC
studies, researchers have also pursued analytical approaches to understand the formation
of non-thermal power-law particle spectra in relativistic reconnection, in particular,
investigating the relative roles of non-ideal and ideal electric fields in the initial injection
and further acceleration of energetic particles (e.g. Guo et al. 2014; Sironi & Spitkovsky
2014; Guo et al. 2015, 2019; Kilian et al. 2020). Finally, there has also been a notable body
of influential theoretical and numerical work on non-relativistic NTPA in reconnection,
e.g. in the context of solar and space physics (Drake et al. 2006, 2010; Oka et al. 2010;
Drake, Swisdak & Fermo 2013; Dahlin, Drake & Swisdak 2014, 2015; Li et al. 2015;
Dahlin, Drake & Swisdak 2016, 2017; Li et al. 2017).

The main goal of the present paper is to develop an analytical theory of relativistic
NTPA in one of these processes — collisionless magnetic reconnection. In particular,
we are interested in the large-system, plasmoid-dominated regime (see Loureiro &
Uzdensky (2016) for review). In this regime, the system size is much greater than the
microphysical (kinetic) plasma scales and hence the reconnection current layer is no longer
quasi-stationary and laminar, but becomes unstable and breaks up into a highly dynamic,
stochastic chain of plasmoids (magnetic islands) that form a complex hierarchy. We are
especially interested in connecting the accelerated particle distribution with the statistical
properties (e.g. size distribution) of the plasmoid chain.

In its full generality, this problem, of course, is extremely complicated; after all,
we are dealing here with a three-dimensional (3-D), inherently kinetic (since we are
interested in NTPA) system, characterized by a very large separation of length (and
hence time and particle energy) scales and consequently exhibiting chaotic dynamical
behaviour. However, as mentioned above, this problem has been extensively studied in
recent years with kinetic (PIC) numerical simulations, especially in two dimensions.
These studies, while computationally challenging, have produced a wealth of insightful
results, essentially mapping out the NTPA quantitative characteristics — most notably,
the non-thermal particle energy power-law index p = —dInf/dIn y and the high-energy
cutoff y.m,c* — as functions of various system parameters across several physical regimes.
The most relevant parameters of the covered multi-dimensional parameter space include
the hot and cold upstream plasma magnetizations (o}, and o, respectively; see discussion
in §2.1), the guide magnetic field B, and the system size L. Importantly, it appears that
the key results from these 2-D numerical studies can be summarized in terms of a few
simple statements as follows. In the most commonly studied case of pure anti-parallel
reconnection, i.e. reconnection without a guide magnetic field component, B, = 0, one
has the following picture. First, in the ultra-relativistic reconnection limit o, — 00,
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the electron power-law index p approaches a constant close to and consistent with 1,
independent of L if L is large enough (e.g. Guo et al. 2014; Werner et al. 2016). The
high-energy cutoff y, of the non-thermal power-law segment has a non-trivial behaviour.
For small systems, L < L. >~ 40py0,, where py = m.c*/eB, and By is the reconnecting
upstream magnetic field, y. scales linearly with system size L as y. ~ 0.1L/p,. This
direct linear dependence simply corresponds to the available potential drop associated
with the relativistic reconnection electric field E.. >~ 0.1B, and the global system size L;
it is sometimes called ‘extreme particle acceleration’ (see Aharonian et al. 2002) and
corresponds to the Hillas limit (Hillas 1984). It is, however, understood that, due to
the finite energy budget, a hard spectrum with p < 2 (where the total energy budget is
dominated by the most energetic particles) cannot continue to arbitrarily high energies.
Indeed, in the large-system regime, L > L., the strong linear L-dependence of the cutoff
breaks down: y, rises quickly in time (roughly linearly) up to a multiple of o, e.g. up
to y. =~ 4o0. (Werner et al. 2016; Kagan, Nakar & Piran 2018), but then drastically slows
down, and the final, asymptotic . has a much weaker scaling with L, perhaps as L'/?
(Petropoulou & Sironi 2018; Hakobyan et al. 2021). Next, as the ambient oy, is decreased
and, in particular, drops below 1, so that one enters the non-relativistic reconnection
regime (the particles are still relativistic), the power-law index increases, consistent with
p=C+ Co, 12 (Ball et al. 2018; Werner et al. 2018), while the cutoff also decreases.
Finally, a strong guide magnetic field B, suppresses NTPA for all 0y, resulting in a steeper
power law and smaller y. (Werner & Uzdensky 2017; Rowan, Sironi & Narayan 2019).

The simplicity of these findings instils hope that it might be possible to explain them and
capture the essence of 2-D reconnection-driven NTPA with a relatively simple minimal
model, which would retain only the main, most critical elements of the system while
perhaps neglecting various less important, secondary details. Constructing such a model
is the main objective of this paper.

The paper is organized as follows. In §2 we present a qualitative discussion of
the basic physical picture. This section has two subsections: in § 2.1 we describe the
general properties of the plasmoid-dominated reconnection and in § 2.2 we consider how
individual particles are accelerated in such a chain. § 3 is devoted to the mathematical
development of the proposed theory. In particular, we present the general form of the
kinetic equation in §3.1 and then discuss its various key ingredients in subsequent
subsections: the acceleration by the main reconnection electric field in § 3.2, particle
magnetization by the inter-plasmoid reconnected magnetic field in § 3.3, particle trapping
by large plasmoids in §§ 3.4-3.6 and Fermi acceleration by particle bouncing off moving
plasmoids in § 3.7. We then return to the discussion of the general, full kinetic equation
in § 3.8. In § 4 we summarize our main findings and in § 5 we present a comparison with
previous works (§ 5.1), and also discuss the limitations of our present model and outline
the directions for future research (§ 5.2).

2. Physical picture
2.1. Plasmoid-dominated reconnection regime

The main focus of this paper is on NTPA. Efficient high-energy NTPA requires strong
electric fields coherent over substantial distances, at least comparable to or larger than
the Larmor radii of energetic particles and therefore much larger than the plasma kinetic
microscales. On such scales the electric field should be the motional (z x B) ideal-MHD
electric field (cf. e.g. Drake et al. 2019). This simple reasoning underlies the need to
understand the origin and structure of bulk plasma motions. For the resulting electric
fields to be strong, these motions need to be fast, e.g. Alfvénic. Often, including in
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the plasmoid-dominated magnetic reconnection regime, the relevant fast motions arise
as a result of the nonlinear development of various instabilities. Thus, it is important
to identify what instabilities operate in a reconnecting current layer (or a reconnecting
plasmoid chain) and what motions they drive. We will argue that 2-D plasmoid-mediated
reconnection layers are subject to two important instabilities: the secondary tearing (aka
plasmoid) instability, leading to the growth of plasmoids, and the coalescence instability,
causing the plasmoids to move towards or away from each other along the global layer.
These two instabilities lead to bulk plasma motions along the layer, and the associated
electric fields lead to two channels for NTPA, as we will explain below.

In this section, we outline the basic physical picture of plasmoid-dominated
reconnection that we believe adequately captures the physics most relevant for NTPA.
This underlying picture is qualitatively the same for any plasma-physical framework of
2-D reconnection: resistive or collisionless, relativistic or non-relativistic.

2.1.1. Two-dimensional plasmoid-dominated reconnection layer: general picture

For simplicity, we will consider only 2-D reconnection, thus ignoring 3-D effects.
In addition to the simplicity considerations, this approximation is motivated by the
observation that recent 3-D PIC studies (e.g. Werner & Uzdensky (2017); see also
Sironi & Spitkovsky 2014) indicate that 3-D collisionless magnetic reconnection produces
non-thermal particle spectra that are quite similar to the spectra produced by its
2-D counterpart, at least for relativistic reconnection in pair plasmas (see, however,
Dahlin et al. (2015, 2017) for 2-D/3-D comparison studies of NTPA in non-relativistic
reconnection with a finite guide field, and Werner & Uzdensky (2021), for trans-relativistic
reconnection), even though the layer’s morphology may be quite different. In addition,
most of the numerical PIC studies of magnetic reconnection have so far been done only in
two dimensions and hence most of what we know about reconnection-driven relativistic
NTPA is limited to the 2-D case; it therefore makes sense to focus on the 2-D case first,
before tackling the general 3-D situation. We acknowledge, however, that the role of the
system dimensionality remains an open issue and should be investigated further.?

For convenience, we introduce the following system of coordinates (see figure 1): x is
the direction of the reversing reconnecting magnetic field By (the outflow direction); y is
the direction perpendicular to the current layer (the inflow direction); and z is the direction
of the electric current and of the main reconnection electric field E,.. (sometimes called
the out-of-plane, or ignorable direction). In general, there may also be a guide magnetic
field B, in the z direction. Together, x and y form what is often called the ‘reconnection
plane’, and x and z form the reconnection-layer midplane (at y = 0).

We envision a vigorous reconnection process taking place in the large-system,
plasmoid-dominated regime (e.g. Shibata & Tanuma 2001; Bhattacharjee er al. 2009;
Daughton et al. 2009; Huang & Bhattacharjee 2010; Uzdensky, Loureiro & Schekochihin
2010; Loureiro et al. 2012; Petropoulou, Giannios & Sironi 2016; Sironi et al. 2016; Werner
& Uzdensky 2017; Petropoulou et al. 2018; Werner et al. 2018; Schoeffler et al. 2019).
The reconnection layer is broken up into a highly dynamic hierarchical plasmoid chain

3We also limit the present paper to the case of non-radiative magnetic reconnection. We note, however, that the case
of radiative reconnection, where radiation back reaction on the emitting particles has a strong influence on high-energy
NTPA and may even affect the general dynamics and energetics of the reconnection process is a vibrant and rapidly
developing area of current research with strong astrophysical motivation, and we refer the interested reader to the recent
papers on this subject (Jaroschek & Hoshino 2009; Nalewajko et al. 2011; Uzdensky 2011; Uzdensky & McKinney 2011;
Uzdensky, Cerutti & Begelman 2011; Cerutti, Uzdensky & Begelman 2012a; McKinney & Uzdensky 2012; Nalewajko
et al. 2012; Cerutti et al. 2013, 2014b; Beloborodov 2017; Nalewajko, Yuan & Chruslifiska 2018; Hakobyan et al. 2019;
Schoeffler et al. 2019; Werner et al. 2019; Mehlhaff e al. 2020; Ortuiio-Macias & Nalewajko 2020; Sironi & Beloborodov
2020; Mehlhaff e al. 2021), see Uzdensky (2016) for a review.
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FIGURE 1. The coordinate system (blue) used in this article. The black lines show magnetic
field lines in a plasmoid-dominated reconnection layer. The x-direction is the direction of the
reversing reconnecting magnetic field, the y-direction is across the current layer (the direction of
the field reversal) and the z-direction is that of the main electric field and current in the sheet (the
ignorable direction).

as a result of the secondary tearing, aka plasmoid, instability (Loureiro, Schekochihin
& Cowley 2007; Bhattacharjee et al. 2009; Daughton et al. 2009; Samtaney et al.
2009; Uzdensky et al. 2010; Loureiro et al. 2012; Loureiro, Schekochihin & Uzdensky
2013); (see Loureiro & Uzdensky (2016) for a recent review). The chain is essentially
one-dimensional, consisting of a broad distribution of plasmoids (aka magnetic islands,
centred around magnetic O-points) of different sizes, strung on a single line y = 0 (which
is a projection of the reconnection midplane) and connected to each other by reconnecting
inter-plasmoid current layers containing magnetic X-points (see figure 1). The plasmoids
grow (i.e. accumulate magnetic flux and mass) continuously via reconnection taking place
in these inter-plasmoid layers. The E, electric field associated with these inter-plasmoid
reconnection processes would exist even if the plasmoids were themselves stationary; this
field is responsible for one of the channels of particle acceleration and thus will play an
important role in our analysis, as discussed in § 2.2.

In reality, however, the plasmoids are not stationary — they move about in the
reconnection midplane (i.e. in the x direction) with different velocities (generally, of order
the Alfvén speed V,) in a complicated, chaotic fashion, a kind of 1-D plasmoid turbulence.
Sometimes they merge with each other, overall maintaining a broad statistical distribution
of sizes (see §§ 3.5-3.6 for a more detailed description). The flow dynamics that controls
plasmoid motions in the x-direction is complex and is governed by the interplay of
two factors: the coalescence instability, developing on a broad range of scales, and the
large-scale inhomogeneities along the global layer, which drive divergent large-scale flows
(Hubble flow, u, ~ x) out of the layer. Overall, one may distinguish between two somewhat
different situations, discussed next, which we may call (i) the nonlinear evolution of a
tearing-unstable plasmoid chain and (ii) reconnection proper; this distinction is somewhat
similar in spirit to that made in turbulence studies between, respectively, decaying and
driven turbulence.

2.1.2. Nonlinear evolution of a plasmoid chain vs. reconnection proper

In the first situation, which can be appropriately called the nonlinear evolution of
a plasmoid chain and which represents a standard choice for numerical studies of
reconnection (e.g. Zenitani & Hoshino 2001; Jaroschek et al. 2004; Zenitani & Hoshino
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2005, 2008; Cerutti et al. 2012b, 2013; Guo et al. 2014, 2015; Werner et al. 2016; Werner
& Uzdensky 2017; Werner et al. 2018), one imposes periodic boundary conditions in the
x-direction. One then considers the evolution of a pre-existing current sheet, usually taken
to be rather thin. The current sheet is often set up initially to be translationally symmetric
in the x-direction or may have a small initial magnetic perturbation (often sinusoidal
in x) imposed to trigger the onset of tearing faster. In either case, a true statistical steady
state is not possible and, instead, the system undergoes a complicated evolution, which,
however, has well-defined initial and final states. The long and thin initial current layer
becomes unstable to the tearing instability and quickly breaks up into a multitude of
primary, first-generation plasmoids, corresponding to the fastest growing tearing mode
(Samtaney et al. 2009), thus breaking the translational symmetry in the x-direction. As
these plasmoids grow, first linearly and then nonlinearly, at some point they start feeling
and interacting with each other. Namely, the still-growing plasmoid chain becomes subject
to the coalescence instability (Finn & Kaw 1977; Jaroschek et al. 2004; Daughton &
Karimabadi 2007; Oka et al. 2010) that makes a given plasmoid decide to move towards
its neighbour either on the left or on the right, thus causing the plasmoids to pair up
and merge (coalesce) with their neighbours. Since the coalescence instability requires
the existence of plasmoids in the first place, and since its growth rate increases as the
plasmoids grow, it can be regarded as a secondary, or parasitic, instability with respect to
the primary tearing mode. The coalescence instability initiates plasmoid motions along
the x-axis, which are, however, constrained by the imposed periodic boundary conditions.
As these primary plasmoids merge with each other hierarchically, their number decreases
and the distance between them increases. Correspondingly, the secondary inter-plasmoid
current sheets between these plasmoids get stretched and can themselves become tearing
unstable, resulting in the production of the next generation of secondary plasmoids, and
so on, establishing a hierarchical structure. Importantly, any large plasmoid perturbs the
magnetic field, and hence the magnetic forces and the flow structure, around it, serving
as an attractor for nearby small plasmoids; thus, the secondary current layer (which,
in general, is itself a hierarchical plasmoid subchain) between any two large plasmoids
develops an internal relative stagnation point directing the plasma outflows towards the
two large plasmoids. In addition, when two large plasmoids merge with each other, they
do this via reconnection taking place in a secondary current sheet that is perpendicular
to the main one, and, if the merging plasmoids are large enough, may itself become a
reconnecting secondary plasmoid chain (Daughton & Karimabadi 2007; Pritchett 2008;
Oka et al. 2010). All these interacting and concurrent processes result in a non-trivial
and complicated intermediate nonlinear dynamical stage that we can call the active
reconnection phase. The system, however, is continuously evolving even in the statistical
sense and does not have a clear long-term actively reconnecting statistical steady state.
Eventually, the largest plasmoids grow so big that their size in the y direction becomes
comparable to the x-separation between them, forcing the current sheets between them to
shrink back into nearly 90° X-point configurations. This causes reconnection to stop: the
tearing mode saturates and the plasmoids stop growing. The system then approaches the
final relaxed state characterized by a small number of remaining big plasmoids, dictated
essentially by the aspect ratio of the box L,/L,: if L, 2 L., one has just one plasmoid (and
hence just one magnetic O-point and one X-point); but in the case of an elongated box,
L, < L, one may have a stable chain of many plasmoids (e.g. Jaroschek et al. 2004). The
time evolution of the system in either case thus has a well-defined end state, which can be
used for characterizing the properties and overall effectiveness of NTPA in this scenario.
The situation is somewhat different, however, in the second situation, which we will
call reconnection proper. In this case, instead of periodic boundary conditions, one uses
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free outflow boundary conditions in the x-direction (Daughton, Scudder & Karimabadi
2006; Loureiro et al. 2012; Sironi et al. 2016) which, however, are somewhat difficult
to implement in PIC (Daughton et al. 2006; Daughton & Karimabadi 2007). These
outflow boundary conditions in the x-direction are usually supplemented with free inflow
boundary conditions at the y-boundaries or an indefinitely expanding box in the y-direction
(Sironi et al. 2016). In this case, generically, there is a dominant global stagnation point
(coinciding with the main magnetic X-point) that plays the role of a continental divide that
separates (causes a bifurcation of) the overall, large-scale reconnection outflows from the
layer. These outflows are sheared, i.e. u, ~ x (like the Hubble flow), as the flow accelerates
along the sheet; this longitudinal shear may stabilize the tearing instability somewhat (e.g.
Bulanov, Syrovatskii & Sakai 1978; Loureiro et al. 2007, 2013), but cannot suppress it
completely for sufficiently large systems (Tolman, Loureiro & Uzdensky 2018). One then
has all the complex intermediate-stage dynamics of the nonlinear tearing chain described
above in the previous paragraph, plus the overall large-scale outward motion and eventual
ejection of plasmoids out of the layer (Uzdensky et al. 2010). Because the large-scale flow
is sheared, the inter-plasmoid current layers continuously get stretched and become tearing
unstable, giving birth to new, next-generation plasmoids. The lifetime of an individual
plasmoid is limited by the time before it gets swallowed by a bigger plasmoid or is ejected
out of the system (Uzdensky et al. 2010; Loureiro et al. 2012; Sironi et al. 2016), the latter
typically of the order of the Alfvén crossing time along the layer (although it may be
longer by a logarithmic factor of a few for so-called ‘monster plasmoids’ born very close
to the global main X-point, see Uzdensky ez al. 2010). As plasmoids continuously appear,
grow, merge, move out, get ejected and are replaced by new plasmoids, the system may
exist indefinitely in a statistical steady state (Loureiro et al. 2012; Sironi et al. 2016), which
makes this configuration attractive for numerical studies.

2.1.3. Self-similar electric and magnetic fields

In any case, we envision that the hierarchical plasmoid chain during the active
reconnection stage has a self-similar, fractal structure (see figure 2), as was first proposed
by Shibata & Tanuma (2001) and then confirmed numerically in both the resistive-MHD
regime (Bhattacharjee ef al. 2009; Huang & Bhattacharjee 2010; Loureiro et al. 2012)
and collisionless regime (Daughton et al. 2009, 2011; Sironi et al. 2016; Werner et al.
2016, 2018). This means that, when one looks closely at an inter-plasmoid current
layer between two neighbouring plasmoids of similar size w at some given level in the
middle of the hierarchy, one again finds a plasmoid-dominated reconnection region with
essentially the same, universal characteristic values of three key electromagnetic (EM)
field components as found at all other levels in the hierarchy. These field components are:
the reconnecting (x-direction) upstream magnetic field B, (and hence the corresponding
Alfvén speed V4, which sets the characteristic scale for the plasma motions along the
layer), the inter-plasmoid reconnected (i.e. in the y direction) magnetic field B; (e.g.
averaged over one half of the inter-plasmoid layer under consideration) and the effective
reconnection rate E.. (i.e. the electric field in the z direction). This self-similarity extends
all the way from the global layer as a whole (of size L) at the top of the hierarchy down
to the smallest elementary current layers (which are marginally stable to tearing and thus
essentially laminar) at the very bottom of the hierarchy, of characteristic thickness é and
length €. In the case of collisionless reconnection without a strong guide field, § ~ p
(the typical Larmor radius of particles in the layer in the upstream reconnecting magnetic
field By) and £ ~ 10-305. At these smallest scales, the self-similarity of the EM field
structure breaks down; in particular, in the case of electron—ion plasma reconnection, the
Hall effect becomes important at these scales, leading to the emergence of a quadrupole
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SRS

FIGURE 2. Characteristic Larmor radius of a given energetic particle (red circle) appears
different relative to the sizes of the neighbouring plasmoids in a self-similar hierarchical
(Shibata—Tanuma) plasmoid chain (black), when viewed at different levels in the hierarchy. It
is smaller than its flanking plasmoid sizes at the top level, comparable to them at the middle
level and bigger at the bottom level.

out-of-plane (z-direction) magnetic field and an in-plane bipolar electrostatic electric field
(Sonnerup 1979; Terasawa 1983; Shay et al. 1998; Uzdensky & Kulsrud 2006; Melzani
et al. 2014a; Werner et al. 2018). We will ignore these fields in the present analysis
because they only affect the typical, average-energy particles, but not the highly energetic,
non-thermal particles of interest to us here.

All three above-mentioned field quantities — By, B, and E,.. — will play important roles
in our analysis. Since we are ultimately interested in the effects that these fields have on
NTPA, it is important to recognize that what matters is how the structure of these fields
appears to a given energetic (i.e. with energy ym,c? well above the average particle energy
in the layer, ym,c?) particle under consideration. Such a particle will have a large Larmor
radius p(y) and so its motion will be blind, nearly insensitive to small-scale EM structures
of modest field strength. It will interact most strongly with EM structures that exist on
scales of order its Larmor radius or larger. It is thus important to look at the EM fields
as a function of scale A (in the x-direction). This philosophy is similar to the one used
in analysing the self-similar dynamics in the inertial range of turbulence (on scales much
smaller than the large driving scale but much larger than the dissipative scale) and, more
specifically, turbulent NTPA, where one is interested primarily in the resonant interaction
of a particle with turbulent eddies or waves of a given size.

https://doi.org/10.1017/50022377822000046 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377822000046

10 D.A. Uzdensky

While By is relatively straightforward, the other two quantities (B, and E..) are less
trivial and deserve a careful discussion. We first discuss the nature of the reconnected
magnetic field B, (in the y-direction) in the plasmoid-dominated reconnection regime.
Let us consider it somewhere in the middle of the plasmoid hierarchy, i.e. on the scale
of an inter-plasmoid reconnecting layer (or, more precisely, inter-plasmoid reconnecting
chain) between two plasmoids of some intermediate size w such that § < w <« L. The
length of this inter-plasmoid current layer, A, is then much smaller than the global length
of the layer L, but larger than the length ¢ of the shortest elementary inter-plasmoid
current sheets; in simulations it is typically ~10 times greater that the width w of the
two plasmoids flanking it. The reconnected magnetic field B, can be defined, e.g. in
terms of the net reconnected (B,) magnetic flux between the layer’s X point and the
edge of adjacent plasmoid, divided by A/2. While there may be many smaller-size (i.e.
belonging to the next levels of the plasmoid hierarchy) magnetic islands inhabiting the
inter-plasmoid layer under consideration, they consist of closed magnetic flux surfaces
and thus do not contribute to the A-scale B;. Instead, this field is build up from patches
of ‘semi-open’ reconnected flux — the field lines that intersect the reconnection midplane
only once in the region between the two big (w-scale) islands under consideration; these
field lines may then envelope these plasmoids and close (i.e. intersect the reconnection
midplane again) somewhere outside the inter-plasmoid layer in question (see Uzdensky
et al. 2010). The self-similarity of the plasmoid chain then dictates that the typical value
of B, is independent of the scale within the hierarchy. It is thus comparable to the typical
reconnected magnetic field values in the outflow exhaust regions of elementary current
layers at the very bottom of the hierarchy, i.e. approximately e By =~ 0.1 By, for collisionless
reconnection (and approximately 0.01 B, for collisional, resistive MHD reconnection; but
in this study for concreteness we will adopt the fiducial collisionless value of 0.1 By). This
point will be important in our analysis when we consider the motion of energetic particles
in such a layer.

Likewise, the self-similar reconnecting plasmoid chain is characterized by a universal
(scale-independent) typical average value of the out-of-plane electric field |E,| = E.. in
the inter-plasmoid current sheet at all levels of the hierarchy. This effective reconnection
rate is thus equal to the characteristic microscopic reconnection rate at individual
inter-plasmoid X-points in the elementary current layers (Uzdensky et al. 2010). This
electric field is associated with the nonlinear development of the secondary tearing
instability. It can be conveniently parametrized in terms of the upstream asymptotic
magnetic field By as

Erec = vrecBO/C = ﬂrecBO = EBOVA/C7 (21)

where the dimensionless coefficients Bic = vee/c and € = v,./V4 represent the
reconnection inflow speed v, normalized, respectively, to the speed of light ¢ and to
the Alfvén speed V, defined with the upstream reconnecting field By and discussed in
more detail below. First-principles PIC simulations (e.g. Hesse et al. 1999; Birn et al.
2001; Werner et al. 2018) and analytical theories (Comisso & Bhattacharjee 2016; Cassak,
Liu & Shay 2017; Liu ef al. 2017) indicate that the dimensionless reconnection rate €
for collisionless reconnection is typically € >~ 0.1 in both relativistic and non-relativistic
regimes, the value that we will adopt in this paper.* This is true even for electron—positron
pair plasmas Bessho & Bhattacharjee (2005, 2007), despite the absence of the Hall effect
that has been linked to fast (¢ ~ 0.1) collisionless reconnection in electron—ion plasmas in
previous studies (e.g. Birn et al. 2001).

4For reference, the dimensionless reconnection rate € is approximately 0.01 in plasmoid-dominated resistive MHD
reconnection (Bhattacharjee e al. 2009; Huang & Bhattacharjee 2010; Uzdensky et al. 2010; Loureiro et al. 2012).
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In a laminar and stationary 2-D reconnection layer, the electric field £, would be steady
and uniform, as dictated by Faraday’s law. In contrast, however, a realistic stochastic
reconnecting plasmoid chain is highly dynamic and E, can vary dramatically in both space
and time due to rapid (Alfvénic) chaotic plasmoid motions up and down the chain, e.g.
driven by the plasmoid coalescence instability as discussed above. The electric field at any
given point can then have strong fluctuations on top of the average value of 0.1 V,By/c.
These fluctuations may have the form of rapid, intense alternating-sign spikes of the
motional electric field of amplitude as high as E; = V,B,/c (i.e. 10 times the mean),
e.g. when a circularized plasmoid with B, ~ By passes by with v, ~ V, (e.g. Zenitani &
Hoshino 2001, 2005; Sironi et al. 2016; Philippov et al. 2019). It is this strong motional
electric field that is responsible for short intense particle acceleration events associated
with an energetic particle bouncing off a rapidly moving plasmoid — a key element in what
is described as stochastic Fermi acceleration.’

As will be described in more detail in § 2.2, the model presented in this paper will
incorporate both acceleration mechanisms, viewed as separate channels: acceleration by
E.., as a particle traverses an inter-plasmoid current layer (the motional component
of this electric field is associated with the reconnection outflows out of the individual
inter-plasmoid current sheets); and acceleration by E,; as it bounces off a large rapidly
moving plasmoid. An essential assumption that is important to us here is that the statistical
properties of the electric field, e.g. the distribution of the electric field strengths and the
average value, be the same at all levels of the hierarchy, i.e. for reconnecting sublayers of
each scale.

2.1.4. Hot and cold magnetization parameters and relativistic reconnection

The relativistic Alfvén speed V,, that appears in (2.1) is associated with the reconnecting
magnetic field By and is defined in terms of the ambient upstream plasma conditions. In
particular, it is convenient to express it in a dimensionless form

Op
1+O’h’

Va=Pac=c (2.2)

in terms of the so-called ‘hot’ upstream magnetization parameter o;, defined as the ratio
of the enthalpy density of the reconnecting magnetic field B, to the relativistic (including
rest-mass) enthalpy density 4 of the upstream plasma (Melzani et al. 2014a; Werner et al.
2018),

op = —>. (2.3)

For example, in the case of a pair plasma that is relativistically cold, i.e. has an upstream
background temperature T, = 6,m.c*> < m,c?, or in the case of a pure electron—ion plasma
(with n,, = n;;) that is non-relativistic (7, < m,c?) or semi-relativistic (m,c> < T), K
m;c?), the enthalpy is dominated by the rest mass of the dominant particle species
(electrons and positrons in the pair-plasma case and ions in the electron—ion plasma case).
In these cases, the ‘hot’ upstream magnetization becomes the same as the ‘cold’ plasma

SIn principle, the motional electric field may sometimes even exceed V4Bo/c; indeed, in the absence of a strong
guide field, the circular magnetic field deep inside a large plasmoid’s core is squeezed by the pinch force to values
much higher than By, especially when radiative cooling is strong (e.g. Schoeffler e al. 2019; Werner et al. 2019); when
such a plasmoid moves with v, ~ V4, the local motional E; = v,By/c can be larger than V4Bo/c. Furthermore, when
two plasmoids approach each other and start merging, the so-called anti-reconnection electric field in the perpendicular
secondary reconnecting current sheet between them is reversed relative to £, in the main layer. In this paper, however, we
will ignore these complications, leaving them for future study.
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magnetization for this dominant species

2
__ B
O,

=20 2.4
47tn,m,c? 2.4)

for the pair case with n, = 2n,, being the total (electron + positron) particle number
density, and
B;

—’
4mtnm;c?

O, X 0,4 = (25)
for the electron—ion case.

However, in the opposite case of an upstream plasma that is ultra-relativistically hot, i.e.
Ty, = O.m,c?® > m,c* for the pair-plasma case (as found in, e.g. PWN) or T}, > m;c” for the
electron—ion plasma case, the rest-mass contribution to the upstream enthalpy is negligible
and so the enthalpy density becomes simply & ~ 4P, = 4n, T, = 4n,0,m.c* (where n,
is the total background particle density). In this case, the ‘hot’ magnetization simply
becomes (apart from a factor of 1/2) the inverse of the upstream plasma-f parameter
(By = 8P, /By),

o (T > myc? m'cz)—B—%—L (2.6)
P e e T Nomn, T, 2B '
and thus differs dramatically from the ‘cold’ magnetization, e.g. o, = 0./46, < o, for the
pair-plasma case and o}, = 0.;/86; < o,; for the electron—ion case with n; , = n, .

Both o0}, and o, are useful quantities that will play important roles in our analysis.
In particular, o, reflects (up to a factor or order unity) the upstream magnetic energy
per background particle and thus sets the basic characteristic energy scale for particles
energized by the reconnection process (normalized by the particle rest mass). And the hot
magnetization o, controls how relativistic the upstream Alfvén velocity — and hence the
bulk fluid motions in the layer — are. Namely, it allows us to distinguish two limiting cases:

(i) the relativistic reconnection regime: o, > 1 and hence B4 = Vi/c=[o/(1 +
0)]"? - 1 and E,.. =~ €By >~ 0.1By;

(i1) the non-relativistic reconnection regime: o, < 1 and hence S, =~ ahl ? « 1 and
Ew. ~ €0,°By.

For the sake of completeness, we mention here how some of the above key relationships
are modified in the presence of a guide (z-component) magnetic field B,, even though
this paper focusses on the zero-B, case. Following Werner & Uzdensky (2017), in the
case of a finite guide field, the plasma outflows that control the reconnection electric
field correspond not to the full Alfvén velocity but to its projection onto the outflow (x)
direction, i.e. to the in-plane Alfvén velocity (see also Liu et al. 2015)

Vi, B} B B}

U tot — , 27
c? B2 B2 +4nh B2 +4wh &7
where B2, = B} + B;. This expression can be rewritten as

T B+ (B t4nh) B+ 4whg

where we have introduced the effective total enthalpy, heg = h + B; /4m, that includes
the contribution of the guide magnetic field, B§ /41, in addition to the relativistic plasma
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enthalpy /. Physically, this additional contribution needs to be included because the guide
field is advected together with the plasma out of the layer by the (Alfvénic) reconnection
outflows, and this its inertia (and, more specifically, its enthalpy) has to be taken into
account (Werner & Uzdensky 2017). With this in mind, we can write the relevant in-plane
Alfvén velocity in the standard form

V2 .
CENL . 2.9)
C2 1 + Oeff
where we have defined the effective hot magnetization (Werner & Uzdensky 2017)
B2 BZ
Oeff 0 0 (2.10)

~ dmhy (B +4mh)

Thus, in the case of a relativistically strong guide field, B> > 4mh, when the plasma
enthalpy is negligible and we are dealing with a relativistic force-free field, we get oo —
B} /Bi, and so V4 ,/c — By/Bi. And in the opposite, non-relativistic case, Bﬁ L 41h,
(note that this does not imply that the guide field is weak compared with the reconnecting
field By), the effect of the guide field on o, and V, , can be ignored and we recover the
standard expression V. = c[o},/(1 + o)]"/%.

2.2. Acceleration of relativistic particles in a reconnecting plasmoid chain

We shall now discuss the motion and acceleration of energetic relativistic particles in the
reconnecting plasmoid chain. We will focus here on relativistic particles with energies
ym.c? in the high-energy non-thermal tail of the distribution function, far above the
average particle energy ym,c>. We will call such particles simply ‘energetic particles’ or
‘high-energy particles’. The Larmor radii of such particles (corresponding to the upstream
magnetic field By), given by p(y) = ypo, where py = m.c?/eB,, are much greater than the
average electron Larmor radius, p = y p,. Since the thickness § of the smallest elementary
current layers in collisionless reconnection is usually of order p, this means that the
energetic particles under consideration will have Larmor radii greater than §.

Because of this, the questions of whether the acceleration of such highly energetic
particles is done by a non-ideal electric field or by an ideal (motional) electric field, or
whether this accelerating electric field is mostly parallel or perpendicular to the local
magnetic field, may not be very relevant or even well posed. A given highly energetic
particle does not know or care whether the electric field accelerating it is ideal or non-ideal.
What matters is just the electric field component along the particle’s direction of motion,
smoothed on the appropriate scale of the particle’s motion. For a particle with y > y, this
scale is generally larger than the microscopic plasma scales (like § or p), on which one can
determine whether the electric field is ideal or not. Thus, the electric field responsible for
energetic particle acceleration may in general have both ideal and non-ideal components,
but in our view this question is not particularly relevant for understanding NTPA of highly
energetic particles.® Moreover, the distinction between ideal and non-ideal electric fields
may be even less relevant in the kinetic picture; this concept requires identifying the
plasma bulk velocity u, i.e. the average particle velocity, but individual particles will
have velocities that may in general be very different from u. Furthermore, in relativistic
plasmas even defining the plasma’s bulk velocity is not a completely trivial task, as there
are two different ways of doing this (the Landau & Lifshitz (1959) and the Eckart (1940)

OThis issue may, however, still be important for analysing the energization of just slightly supra-thermal particles,
which governs the particle injection into the non-thermal tail.
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frames). In this case, it may be sensible to define the non-ideal parallel electric field in
the de Hoffmann—Teller frame, which corresponds to the £ x B drift and in which the
perpendicular (to the magnetic field) electric field component vanishes.’

Let us now discuss the main characteristics of an accelerating energetic particle’s
motion. The first two key features of this motion are: (i) confinement to the reconnection
layer in the y direction (i.e. across the layer) by the reversing upstream magnetic
field, which always deflects the particle back towards the layer; and (ii) the particle’s
continuous and relatively steady acceleration along the layer in the z direction by the main
reconnection electric field E.; along with the electric field £, involved in the Fermi
acceleration by particle reflection off of moving large plasmoids (discussed below), it is
this electric field that is ultimately responsible for primary particle acceleration in our
model. Thus, the predominant motion of the particle in the yz plane during its acceleration
stage (i.e. until it gets magnetized by the reconnecting (B,) field and eventually trapped
by a large plasmoid, see below) can be described by the relativistic version of a Speiser
orbit (Speiser 1965; Zenitani & Hoshino 2001; Uzdensky et al. 2011; Cerutti et al. 2012a),
where the particle wiggles in and out of the thin current layer into the region of stronger
(Bo) upstream magnetic field, crossing the reconnection midplane y = 0 multiple times as
it continuously gains energy. Since the particle’s Larmor radius in the upstream magnetic
field is greater than §, as we discussed above, the particle may initially spend a substantial
fraction of time in one of the two upstream regions on either side of the current sheet.
However, as the particle moves along this trajectory and is accelerated by the reconnection
electric field, over time its relativistic Speiser trajectory focusses closer and closer to the
midplane, with the y-meandering getting progressively smaller (Kirk 2004; Contopoulos
2007; Uzdensky et al. 2011; Cerutti et al. 2012a), and hence the particle’s confinement to
the layer becoming tighter.

2.2.1. Motion of particles in the xz plane

The most interesting and non-trivial dynamics thus takes place in the x direction,
i.e. along the reconnecting magnetic field. The main field component controlling this
motion is the reconnected magnetic field B,. The particle’s interaction with B, governs the
lifetime of the particle in the active acceleration region before it effectively escapes from
it (see below); it involves its deflection away from X-points by the distributed reconnected
magnetic field B, and the particle’s interaction with sufficiently large magnetic islands
(plasmoids).

We stress that the motion of an energetic particle of a given energy ym.c* in the
x-direction through a hierarchical plasmoid chain should be analysed at the appropriate
level of the plasmoid hierarchy (see figure 2), corresponding to intermediate-scale
plasmoid-mediated reconnection layers between adjacent plasmoids of size w(y) ~
pL(y), large enough to reflect of confine the particle. To this particle, the space between
two such large plasmoids effectively looks like a reconnecting current layer of length
corresponding to the typical inter-plasmoid separation Ay[w(y)], with a reconnection
electric field E,.. and the reconnected magnetic field B,(x) varying from approximately
—B, at the left end of the layer to approximately +B; at the right end of the layer,

7T also would like to clarify the following. One can always make a purely motional, ideal-MHD electric field Eiq =
—u X B/c vanish locally by going to the comoving (de Hoffmann—Teller) plasma frame at the instantaneous position
of a given particle. The instantaneous electric acceleration of the particle will then vanish in this frame. However, this
comoving (with the plasma flow velocity u) frame is, in general, not uniform and not stationary. Therefore, if one follows
the particle and continuously transitions to the local de Hoffmann—Teller frame at the particle’s instantaneous position,
one finds that one works in a non-inertial, accelerating frame, in which the particle’s motion is affected by inertial forces
that can perform work on the particle and thus change its energy.
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as discussed in § 2.1 above.® The fact that this layer is not a small elementary layer at
the very bottom of the plasmoid hierarchy, but instead is somewhere in the middle of it
and hence itself has a non-trivial plasmoid-hierarchical substructure, is irrelevant for the
particle in question. When the particle moves in such a layer, it only sees, and interacts
with, EM fields that exist on length scales comparable to or larger than its Larmor radius
in the reconnected field (B,), while remaining essentially blind to the layer’s smaller-scale
substructure. Any EM structures on scales significantly smaller than the Larmor radius are
smoothed out and are effectively invisible to the particle.

In particular, as a high-energy particle traverses the intermediate-scale inter-plasmoid
layer (itself a plasmoid-mediated chain), it may encounter many small secondary
plasmoids with closed magnetic lines. However, the motion of the particle will not be
strongly affected by its encounters with these plasmoids. Since the reconnected magnetic
field in such a plasmoid reverses in the x-direction on a relatively small scale, it just
deflects the particle a little bit in the xz plane first one way and then the opposite way, with
the two contributions cancelling each other. The particle will thus effectively pass right
through the plasmoid. Likewise, even though the small plasmoids may have rapid motions
that cause the E, field to fluctuate wildly, making it non-stationary and non-uniform as
discussed in §2.1, these small-scale electric fluctuations will not affect the particle’s
acceleration. As the particle passes through a small moving plasmoid, it will experience
the E, field of one sign and then of the other, so the effects of the two halves of the
plasmoid cancel each other, resulting in a zero net change. To sum up, as long as a particle
is unmagnetized on the scale of a small plasmoid it encounters in the course of its motion
through a reconnecting plasmoid chain, such an encounter does not result in a significant
change in the particle’s regular and more or less steady acceleration by E..

2.2.2. Magnetization of particles by the reconnected magnetic field

This process of regular acceleration by E.. proceeds for a while, but then there is a
certain probability per unit time, or unit path length, for the particle to encounter a patch
of reconnected field B, that is strong and extended enough to magnetize it, i.e.

2

. B
YIS o= < Ax, @.11)

eB B,

p(y,By) =

where Ax is the extent of the patch in the direction perpendicular to the reconnected
field B,. A more general and precise (but basically equivalent) formulation of this
condition is

€ = ym,’ < eAY, (2.12)

where A¥ = AxB, is the magnetic flux (i.e. the z-component of the magnetic vector
potential) of the patch. Interestingly, this condition is similar to that for electrostatic
trapping in an electrostatic potential well of depth A¢g, with the electrostatic potential
Ag replaced by the drop in the vector potential |AA,| = AY. That is, particle trapping
in plasmoids can be viewed as a magnetic analogue of particle trapping in electrostatic
potential wells of nonlinear electrostatic waves (electron holes, etc.).

When this happens, the particle may with some probability be reflected back into
the acceleration region and continue accelerating, or it may be taken out of the active

8Detailed particle trajectories in a laminar and stationary current sheet with this basic, single X-point structure
have been investigated analytically (Bulanov & Sasorov 1976; Bessho & Bhattacharjee 2012) and numerically (Larrabee
et al. 2003; Zenitani & Hoshino 2007; Cerutti e al. 2012a). Incorporating such solutions as basic building blocks into a
multi-scale statistical hierarchical model like the one developed in the present paper represents a promising direction of
research, which is, however, beyond the scope of our present study.
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acceleration process, at least temporarily. In a plasmoid-dominated reconnection layer, the
reconnected field B, can be thought of as having a more-or-less bimodal distribution:

(1) the relatively weak, distributed reconnected field of typical strength B; ~ €Bj ~
0.1B, present almost everywhere in inter-plasmoid current layers outside of
circularized plasmoids (see § 2.1);

(ii) the By ~ By field inside fully formed, circularized plasmoids with aspect ratios of
order 1 (Sironi et al. 2016) (this field can be even stronger deep inside plasmoid
cores).

Because of this bimodal nature of the B,-distribution, in our analysis we will treat the
magnetization by B; (see § 3.3) and particle interaction with large plasmoids as separate
processes, with the latter further subdivided into particle trapping inside plasmoids (§ 3.4)
and particle reflection by moving plasmoids (§ 3.7). Here, we present a qualitative physical
discussion of these processes.

First, if a particle becomes magnetized by the B, field in an inter-plasmoid reconnection
layer, it starts performing electric drift associated with E.. and B, thus moving with
the general bulk plasma outflow in the £x-direction, away from that layer’s X-point.
Its acceleration then slows down dramatically. However, since the reconnected magnetic
field B, generally strengthens in the outflow direction, the particle’s energy still increases
gradually, responding adiabatically to the magnetic field compression while obeying the
conservation of the particle’s magnetic moment (the first adiabatic invariant), and also to
the field-line shortening while preserving the second adiabatic invariant. Eventually, this
stage ends when the particle reaches a big plasmoid at the end of the inter-plasmoid layer
under consideration (see below); the particle then is either trapped by the plasmoid or
kicked out back into the active acceleration zone where it can resume rapid acceleration.
One may, therefore, examine whether it is possible for a particle that got caught in a patch
of cross-layer reconnected magnetic field extended enough to magnetize it and thus inhibit
its acceleration, to ever be ‘released back into the wild’ again. To investigate this question,
let us suppose that the patch initially has a field ~ B, representing the typical field at
the edge of a reconnection-layer outflow, and is subsequently pulled and absorbed into an
adjacent big magnetic island (plasmoid). This phase corresponds to the contraction and
circularization of this newly added part of the island, with the field strength in the patch
increasing from B; to By while preserving its flux AY. Will the particle continue to be
magnetized within this patch of reconnected flux? If this were indeed so, then during this
contraction phase the particle’s perpendicular energy would rise in betatron acceleration
due to the conservation of the relativistic particle’s magnetic moment, & ~ €>/B = const.
Thus, the particle’s energy would increase by a factor of (By/B;)'/> ~ 3. Therefore, if the
magnetization condition (2.12) was initially satisfied only marginally, i.e. € >~ e AW, then
it may no longer be satisfied by the end of this process; the particle may then escape from
the patch under consideration, perhaps receiving a modest (order-unity) energy boost. It
may then again be able to enter another acceleration region, e.g. another inter-plasmoid
reconnection layer, and be accelerated by E,.. once again. If, however, the plasmoid is
sufficiently large then even if the particle is no longer magnetized to the patch in question,
it would still continue to be trapped by this plasmoid.

2.2.3. Particle trapping by large plasmoids

Next, let us consider what happens when an energetic particle encounters a fully formed,
circularized plasmoid large enough to confine it. This can happen either when the particle
comes out unmagnetized from the inter-plasmoid current sheet and suddenly hits upon the
plasmoid in question, or when it first gets magnetized by B; and then [E x B]-drifts along
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with the general outflow from the inter-plasmoid reconnection layer and gets pulled into
the plasmoid by the contracting reconnected magnetic flux, as described above. In either
case, the condition for the plasmoid to be large enough to be able to interact strongly (e.g.
trap) with the particle is that the plasmoid width (i.e. radius, for a circularized plasmoid)
w is equal or larger than the particle’s Larmor radius in the plasmoid’s magnetic field B;:
w > wy(y) = pr(y, By). Assuming a circularized plasmoid of reasonable size, we can
simply take B, =~ By, and thus write this condition as w > w(y) = p.(y, Bo) = ypo =
ym.c?/eBy. According to (2.12), this condition can also be recast equivalently in terms of
the plasmoid’s flux ¥ =~ Byw as € = ym,c® < eW. We will call any plasmoid that satisfies
this condition, a large plasmoid. Thus, in our terminology, ‘large plasmoid’ is a technical
term, defined not in some vague absolute sense but only in relation to a particle of a
given energy. For example, a typical, average-energy (y ~ y) particle attains its energy
while being accelerated over only one elementary layer at the bottom of the plasmoid
hierarchy. Then, any plasmoid of width w larger than the elementary layer thickness &,
which in collisionless reconnection without a strong guide field is comparable to the
average particle Larmor radius, § ~ p, is considered to be a large plasmoid for such a
particle. If, however, we consider an energetic particle in the non-thermal tail, with energy,
y > y, then the smallest ‘large’ plasmoid that can trap this particle is somewhere in
the middle of the plasmoid hierarchy. Consequently, the intermediate reconnection layer
between two neighbouring such large plasmoids is, in general, not an elementary layer but
itself a hierarchical plasmoid chain, with a number of smaller plasmoids and reconnecting
X-points between the two large plasmoids. Thus, an energetic particle may cross multiple
small plasmoids and inter-plasmoid current layers while on its way to becoming eventually
trapped in a large plasmoid.

When a particle finally encounters a large plasmoid, one of three things can happen.
First, the particle may just go around it (by circling it in the xy-plane) and continue its
motion essentially unchanged in the same direction on the other side, with no substantial
energy change.

Second, there is a finite probability that the particle will get captured and trapped inside
the plasmoid. The particle is then essentially removed from the active acceleration zone,
at least for some substantial interval of time. Thus, perhaps counter-intuitively, in our
model particle trapping in plasmoids plays the role of a particle escape mechanism in
the language of Fermi acceleration (see, e.g. Werner et al. 2018). In other words, a particle
‘escapes’ from the acceleration process not by flying away, leaving the reconnection region
altogether, but by leaving the active acceleration zone within the reconnection region by
being trapped and sequestered inside a quiet large plasmoid.

As mentioned above, a particle with a large energy may pass many small plasmoids
before it meets a plasmoid large enough to magnetize and trap it. Because such large
plasmoids are rare, the particle will cover a rather large distance before meeting one;
and since it is being continuously accelerated during all this time, its energy and
hence its Larmor radius will grow substantially. The interplay between this continuous
Larmor-radius growth and trapping in large plasmoids ties the spectrum of accelerated
particles to the distribution function of plasmoids and ultimately determines the efficiency,
and the high-energy cutoff of NTPA.

Once trapped, a particle effectively stops accelerating, at least for a while, and is
just carried around inside a large plasmoid. More precisely, it no longer undergoes a
continuous vigorous, rapid acceleration by E.. or by Fermi acceleration. Nevertheless,
it can still get a further increase in energy via a number of ways. First, it has a chance to
be reenergized if its host plasmoid undergoes a merger with another plasmoid (Oka et al.
2010; Sironi & Spitkovsky 2014; Nalewajko et al. 2015; Sironi et al. 2016; Li et al. 2017).
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For example, there is numerical evidence that the most energetic particles accelerated
by reconnection gain their energy in a two-stage process: first, pre-accelerating by the
main reconnection electric field in an inter-plasmoid reconnection layer and then getting
an additional energy boost in a plasmoid merger (Sironi & Spitkovsky 2014). Since such
a merger is also a reconnection event (sometimes called ‘anti-reconnection’ because the
corresponding reconnection electric field points in the direction opposite to E. in the
main reconnection layer), further particle acceleration is expected. The key parameters
of this secondary reconnection event, however, differ from those of the original, primary
reconnection. First, the length of the perpendicular secondary reconnection layer, roughly
the size of the smallest of the two merging plasmoids, and is typically shorter than the
length of the inter-plasmoid reconnection layer where the particle had been accelerated
before it was captured by one of the plasmoids. This, in turn, implies that the reconnecting
magnetic flux and hence the maximum electric potential drop involved in the secondary
reconnection event are also smaller than those in the primary reconnection event (and
certainly less than those corresponding to the global reconnection layer). In addition,
since roughly one half of the upstream magnetic energy density has been converted into
the plasma energy density during the primary reconnection process that has led to the
creation of the two merging plasmoids, the energy content of these plasmoids is split
roughly equally between the magnetic field and the plasma internal energy. Therefore,
this secondary reconnection event generically takes place at a plasma g of order unity
(and hence, for an ultra-relativistic plasma, a hot magnetization o;, of order unity), which
further limits the effectiveness of the secondary particle acceleration.’

Another way in which energetic particles trapped inside a large circularized plasmoid
may be energized further, even without plasmoid mergers, is the additional gradual
adiabatic heating caused by the host plasmoid’s inner core’s readjustment and contraction
in response to the plasmoid’s growth on the outside (Petropoulou & Sironi 2018). Long
after a particle gets trapped on some closed flux surface (a closed field line loop in 2-D
reconnection without guide field) inside a large plasmoid, the plasmoid continues to grow
by accretion and minor mergers with smaller plasmoids, piling up fresh accumulated
mass and reconnected magnetic flux. This leads to a continuous readjustment of the
plasmoid’s internal magnetic structure, and the given particle’s flux surface gets buried
deeper and deeper inside. The magnetic pinch force of the newly accreted outer flux slowly
compresses the plasma and the magnetic field in the inner part (the core) of the plasmoid,
so that the closed magnetic field line that the particle circles becomes shorter while the
field strength increases. As a result, the conservation of both first (magnetic moment)
and second adiabatic (bounce; in this case, the angular momentum of the particle going
around along the circular closed field line) invariants leads to a gradual increase of the
perpendicular (due to field strengthening) and parallel (due to line shortening) particle
energy, respectively. This process is, however, relatively slow, with the particle’s energy
increasing perhaps as t'/? (Petropoulou & Sironi 2018); hence we shall it ignore it in our
analysis.

This energization mechanism can operate even when the plasmoid trapping the particle
is not yet fully circularized — or, more precisely, when the particular closed flux surface
on which the particle is trapped is not yet fully circularized, i.e. if it is still elongated in
the x-direction. Then, as this flux surface contracts and becomes more circular (while
preserving the mass-per-flux ratio enclosed by it), it shortens, while the B, magnetic
field strength at the intersection of this flux surface with the reconnection-layer midplane

We also would like to note that there are interesting similarities, which should be explored further, between
hierarchical plasmoid mergers and galaxy mergers in the process of hierarchical structure formation.
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(y = 0) increases. As the now-magnetized energetic particle moves along this surface, it
may or may not find itself mirror trapped to an area near the y = 0 midplane because the
magnetic field is weakest there and increases along the surface, attaining a maximum at
the largest |y| (approximately directly above or below the plasmoid’s O-point).!? If the
particle is trapped along the field in this way, it will gain energy due to both first (magnetic
moment) and, in some cases, second (bounce-motion) adiabatic invariant conservation.
And if instead the particle is passing, not trapped by the mirror force, and is able to fully
circulate around the plasmoid, it will also gain energy as its host flux surface contracts,
again due to the second adiabatic invariant conservation, in a Fermi acceleration process
associated with the converging motion of the plasmoid’s edges (Drake et al. 2006). The
energy ultimately comes from the work done on the particle by the out-of-plane (E.)
motional (ideal) electric field associated with the contracting motion of the field lines;
the particle’s z-displacement, necessary for this electric field to be able to do work on the
particle, can be attributed to the particle’s curvature drift as it turns around the contracting
plasmoid’s edges in its parallel motion (Drake ef al. 2006; Dahlin et al. 2014; Guo et al.
2014; Li et al. 2017). This process has been investigated numerically in great detail in
several recent PIC studies, in both relativistic and non-relativistic plasmas (see, e.g. Dahlin
et al. 2014; Guo et al. 2014, 2015; Dahlin ez al. 2016, 2017; Ball, Sironi & Ozel 2019; Guo
et al. 2019; Kilian et al. 2020). We note that, strictly speaking, one can invoke the second
adiabatic invariant conservation only in the case of non-relativistic reconnection, V4 < c,
because then the edges of the flux surface, contracting at most at roughly the Alfvén
speed, move much slower than the relativistic particle, and hence the particle can circle
around the plasmoid (or undergo many bounces if it is mirror trapped) many times during
this contraction process, justifying the adiabatic assumption. In contrast, in relativistic
reconnection, V4 ~ ¢, the Alfvénic contraction of the flux surface is itself relativistic, and
the large time-scale separation required for the adiabatic description is lost — the plasmoid
contracts on the same time scale as the particle moves around it. Nevertheless, even if the
mathematical language of the second adiabatic invariant conservation and the associated
Fermi acceleration is not applicable, the particle still gains energy in this process.

2.2.4. Particle reflection off large plasmoids and Fermi acceleration

The third possible outcome of an energetic particle’s encounter with a large plasmoid is
that it can bounce off the plasmoid and get back into the main acceleration region; during
this bounce, however, the particle interacts with the motional electric field associated with
the plasmoid’s motion as a whole. This interaction is brief, of order the gyro-period of
the particle in the By, magnetic field of the plasmoid, which for circularized plasmoids is
of order Bj; however, this interaction can be quite intense because the electric field here
is ~ V4By/c. As a result, the particle may gain or lose a substantial amount of energy.
Namely, assuming that an individual reflection is elastic in a moving plasmoid’s frame,
when considered in the laboratory frame, the particle can either gain or lose energy to
the plasmoid depending on whether the plasmoid moves (in the x-direction) head-on or
tail-on relative to the particle. From the microscopic point of view, this interaction can be
understood as follows (see figure 3). Let us for definiteness consider a positively charged
particle approaching a large plasmoid from the left, i.e. emerging from the inter-plasmoid
layer located to the left of the plasmoid and moving to the right (positive x, say), i.e. in
the direction of the general reconnection outflow. The plasmoid, however, can be moving
either to the left, opposite to the particle’s direction of motion (a head-on collision), or

10In addition, there may be electrostatic trapping of electrons along the field lines in the case electron—ion plasma
reconnection.

https://doi.org/10.1017/50022377822000046 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377822000046

20 D.A. Uzdensky

direction of plasmoid motion

Vol
| plasmoid
: boundary
Y
X particle’s Az

trajectory

©®®®®® 50

S0 I N N A O A %

FIGURE 3. Trajectory of an energetic positively charged particle (shown in blue) initially
moving to the right (positive-x) direction in the xz-plane (the current-layer midplane) as it is
being reflected by a large plasmoid moving to the left (negative-x direction). The vertical dashed
line shows the plasmoid’s left boundary. As the particle’s z-component of motion is reversed by
the strong reconnected magnetic field By ~ By (out of the page) inside the plasmoid (to the right
of the vertical dashed line), it maintains its alignment with the plasmoid’s motional electric field,
and thus continuously gains energy.

to the right, in the same direction as the particle (a tail-on collision). If the interaction
is head-on (as in figure 3), the plasmoid moves in the direction opposite to the overall
large-scale reconnection outflow, and, because By in the left half of the plasmoid (facing
the approaching particle) is in the same direction as in the adjacent inter-plasmoid current
sheet, the motional electric field (£,) in this part of the plasmoid is opposite to the
main reconnection electric field E... Then, when the particle approaching from the left
encounters this plasmoid, it gets partially magnetized by it for a short period of time: the
plasmoid’s B, field deflects the particle so that it performs an incomplete gyro-orbit (more
than a half but less than full) inside this plasmoid, thereby reversing its x-motion, and
then escapes from the plasmoid back into the inter-plasmoid current layer from which it
came. Effectively, the particle is reflected by the plasmoid’s magnetic field. Importantly,
while the particle is covering this incomplete gyro-orbit inside the plasmoid, it is moving
backwards in z relative to its z-motion prior to the encounter. Thus, both the particle’s z
direction of motion and the electric field are reversed relative to what they were in the
main current-layer acceleration zone; therefore, they are again aligned and so that the
particle gains energy from the plasmoid (see § 3.7 for quantitative details). This process is
a special version of gyro-resonance acceleration over one gyro-orbit: the electric field and
the particle’s velocity (z components) stay aligned during one gyro-orbit.

In the opposite case (a tail-on collision), when the plasmoid in moving to the right, the
reconnected magnetic field on its left side (interacting with the particle) is still in the same
direction as in a head-on collision, and so the particle gets temporarily magnetized for =
half of a gyro-orbit and reflected by the plasmoid leftward, back into the layer, in a way
similar to a head-on collision. However, the direction of the motional E, electric field in
this part of the plasmoid is now the same as, not opposite to, that in the inter-plasmoid
layer on the left. Hence, this electric field and the backward z-motion of the particle in
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its half gyro-orbit inside the plasmoid are now counter-aligned and thus the particle loses
energy in the encounter.

The net effective result of many such encounters is Fermi (1949) acceleration. If
plasmoid motions are random, uncorrelated, then one gets second-order diffusive Fermi
acceleration (considered in § 3.7). However, if a particle bounces repeatedly between two
approaching large plasmoids, the energy kicks are strongly correlated and the particle
rapidly gains energy in a first-order Fermi acceleration.

In summary, we would like to reiterate that here we try to avoid concepts like parallel
or perpendicular electric field acceleration. The particles are primarily accelerated by the
out-of-plane reconnection electric field, E,. In the absence of a guide magnetic field, as is
the main focus of the paper, and of the quadrupolar out-of-plane Hall magnetic field that
arises in collisionless electron—ion plasma reconnection, the accelerating electric field is
naturally perpendicular to the magnetic field almost everywhere. But this fact may not
be very important; the exact orientation of the electric field relative to the actual local,
microscopic magnetic field (e.g. whether it is parallel or perpendicular) is not particularly
relevant to high-energy particles. A given energetic particle is not sensitive to EM fields
with scales much smaller than its Larmor radius. In particular, even though the electric
field is perpendicular to the local magnetic field, this does not necessarily mean that
its acceleration is due to a drift motion (such as, e.g. the curvature drift) along the
perpendicular electric field, since, in order to describe a particle’s motion as a drift, the
particle needs to be magnetized in the first place.

3. Theoretical model

In our picture we split the whole particle population into two sub-populations:
(1) particles currently undergoing active acceleration and (ii) particles that are captured by
the reconnected magnetic field and eventually trapped inside large plasmoids. The overall
flow of particles is from the upstream region into the actively reconnecting current layers,
where they can experience significant acceleration, and from there into their comfortable,
quiet ‘retirement’ inside plasmoids (although some particles go directly from the upstream
into the plasmoids). In two dimensions it is relatively rare for a particle already trapped
deep in a large plasmoid to escape back into an active acceleration zone; this only
happens occasionally during plasmoid mergers. The discussion in this paper will focus on
the actively accelerating particles outside plasmoids. Since these particles are ultimately
injected into plasmoids, the resulting particle energy distribution function f(y) studied in
this paper can provide the source term for theories concerned with the evolution of the
particle population trapped inside plasmoids, such as that presented in the recent paper by
Hakobyan et al. (2021).

3.1. Kinetic equation for NTPA in a plasmoid-dominated reconnection layer

We describe relativistic particle acceleration by reconnection quantitatively in terms of
a kinetic equation governing the energy distribution function f(y) of the particles in the
acceleration zone

3 (1) = S&) — 8, Gaeef) — % +0,(D,0,0). 3.1

Here, the first term on the right-hand side, S(y), is the source term describing the injection
of the particles into the reconnection layer from the upstream region; y,.. in the next term
is the rate of regular, continuous acceleration by the reconnection electric field E,..; the
third term, —f(y)/t, represents the effective escape of particles from the acceleration
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process by their capture onto cyclotron orbits around the reconnected field By; and the
last term represents diffusive Fermi acceleration due to the particle bouncing off moving
plasmoids.

We shall now make several simplifications. First, we will focus on the quasi-steady-state
solution, which is appropriate for the subpopulation of energetic particles undergoing
active, rapid acceleration before they are taken out of this process by being magnetized
by the reconnected magnetic field and trapped inside plasmoids. In contrast, the
subpopulation of energetic particles trapped in plasmoids grows continuously and is thus,
of course, not stationary; it is being constantly fed by the escape (the f/r term) of
particles from the actively accelerating subpopulation under consideration here; however,
we relegate the analysis of this trapped subpopulation to future studies (see, e.g. Hakobyan
et al. 2021). As for the actively accelerating particles, it is reasonable to expect that they
may develop a quasi-stationary spectrum governed by the balance between the injection
S(y) at small energies, a flow up in energy due to the regular reconnection acceleration
¥ace and Fermi acceleration by moving plasmoids (the second and last terms in (3.1)), and
escape, —f/t.

Our second simplification is based on the assumption that the background upstream
plasma is cold (magnetically dominated, 8, < 1). Then, the source term is concentrated
at small energies characteristic of the upstream conditions, y;,;, much less than the energies
y ~ o, of accelerated particles of interest to us here. We will therefore ignore the injection
term in our analysis of acceleration of high-energy non-thermal particles; this is similar in
spirit to ignoring the details of energy injection at the large driving scale when analysing
the inertial range of turbulence.

The steady-state kinetic equation (3.1) at ¥ > y;,; then becomes

8, (aedf) — J;((—Z)) +9,(D,3,f) = 0. (32)

Next, as discussed in §2, the reconnected magnetic field B, has a roughly bimodal
distribution in a reconnecting plasmoid chain, corresponding to two types of regions:
inter-plasmoid current layers with a relatively weak distributed reconnected field of order
B; ~ €By, and circularized plasmoids where the field is of order By. To reflect this
dichotomy, it is convenient to split the escape term in the kinetic equation into two
separate terms encapsulating the two effective escape channels that check the continuous
particle acceleration: magnetization in the general reconnected field B, and trapping in
large plasmoids (see § 2)

1 1 1

= + .
(V) Tmagn(Y)  Tap(¥)

We will now discuss the individual terms in (3.2) one by one to better understand their
underlying physics and the role they play in shaping up the particle distribution. For most
of this discussion, however, for the sake of simplicity and analytical tractability, we will
ignore the diffusive acceleration term. We will come back to it only in § 3.7, where we will
evaluate its importance in different regimes and will obtain an explicit analytical solution
in one special case. We will then discuss the general kinetic equation in § 3.8.

(3.3)

3.2. Regular acceleration by the reconnection electric field

Consider a particle that is moving in the layer before it gets magnetized by the reconnected
field By or trapped in a big plasmoid. The particle then undergoes a regular, steady
acceleration by the main reconnection electric field E... = €f4B,, with the acceleration
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rate given by

)./ 'E_l eErchz - ,3 Q Erec
acc — = ZR40
fes m,c? By

V
= ﬂfzoe?" = €B.B4$2, (3.4)

where §2y = eBy/m,.c is the nominal non-relativistic electron cyclotron frequency and
B. = v./c. As long as the particle is not yet strongly deflected in the x direction by the
Lorentz force due to the reconnected field B, (which is related to the condition that it is
not magnetized by this field), it should have a finite, sizable velocity component in the z
direction, so that 8, >~ 1 (assuming the particle is ultra-relativistic). Importantly, we then
see that the acceleration rate (3.4) is independent of the particle energy,

Yace = €420 = const. (3.5)

Substituting this expression into the kinetic equation (3.1) without the diffusion term,
we see that a steady-state distribution is governed by

i _ S odmg 1 1

Vacc_ —_— — T —_ .
dy (y) dy VaceT(¥) €Bas20T(y)

Integrating (3.6), we obtain the stationary distribution function as

F(y) = Cex (—1fy d’/>~Cex (— ! /V d”/) (3.7)
W= L) o) T E P U ] o) '

Recalling (3.3), this distribution function can be represented as a product of two factors,
one due to magnetization and one due to trapping

f(y) = Cexp (— _1 /V d—y,) xexp(— ,1 /‘V ' ) 3.8)
Vace Tmagn ()/ /) Yacc Tirap (J/ /)

We will now proceed to discuss the two escape terms on the right-hand side of (3.3).
As we will see, these two terms affect the mathematical shape of the resulting distribution
function in different ways, because their characteristic time and length scales have different
scalings with the particle energy ym,c*. Thus, Ty, is basically directly proportional to y,
while 7y,, is tied to the plasmoid distribution function. As we will show below, the first
term controls the power-law slope and the second one controls the high-energy cutoff.

(3.6)

3.3. Particle magnetization by inter-plasmoid reconnected magnetic field B,: governing
the power-law index

As a particle moves through a reconnection region and experiences acceleration by the
E,. field, it also interacts with the reconnected magnetic field B, ~ B, > €B,, which
continuously deflects it more and more towards £x direction, out of the accelerating layer.
At some point, after the particle travels a certain distance /n,g, in the x-direction, this
deflection may become so large that the particle becomes effectively magnetized by this
field. Its subsequent motion in the xz plane then becomes dominated by the cyclotron
motion associated with the field B;, coupled with E x B drift in the x-direction, which
corresponds to the particle moving with the general (fluid-level) reconnection outflow.
The resulting inability of the particle to move unimpeded along the reconnection electric
field (in the z direction) means that its rapid energy gain becomes greatly diminished and
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its acceleration slows down.!! This phase continues until the particle encounters a large
plasmoid, at which point it will have a finite chance to get absorbed into it (see § 3.4
below).

The distance €, () that a particle of a given energy ym.c? has to travel in the
x-direction before becoming effectively magnetized can be estimated simply as the Larmor
radius corresponding to B; (e.g. Zenitani & Hoshino 2001): £yen(y) ~ pr(y, By) ~
(Bo/B1)pL(y, By) ~ € 'p(v, By) = € 'ypy ~ 10y p,. Since a particle in the acceleration
region typically moves with a finite angle with respect to the z axis, so that v, ~ v, ~ ¢,
we can estimate the time for a particle to get magnetized as

Tonagn (V) ~ Lonagn /€ ~ € 'y 257" (3.9)

Furthermore, the typical amount of energy that the particle gains by regular acceleration
while it crosses the distance £, before becoming magnetized is of order 8y (£yagn) ~
eErecEmagn/”nec2 = (Erec/BO)Kmagn/pO ~ V(Erec/EBO) ~ y(Erec/Bl) ~ VIBA Thus, the frac-
tional energy gain, 8y (€mag)/y ~ Pa, is of order unity in the case of relativistic
reconnection (o, > 1 and hence 4 >~ 1, see (2.2)), but becomes small, of order 8, ~ ohl 2
in the non-relativistic reconnection case.

Importantly, the magnetization time (3.9) is directly proportional to the particle’s
energy, and this enables a power-law distribution to develop. Indeed the corresponding
factor in (3.8) is

Gl mm) o (ga  5) o (5[ 5) -
EXp | —= — | =exp| — =exp|—— — ~y P
Vace Tmagn(y) EﬂA QO 14 ,BA 14 (3 10)

where the power-law index is given by

1 [14+0
p =pmagn(0h) ~ o= —h- (3.11)
Ba O

Thus we see that the balance between regular acceleration by the reconnection electric
field E... ~ €f4B, and particle magnetization by the reconnected magnetic field B; ~ €B
produces NTPA with a power-law index p,q that exhibits the same dependence on the hot
magnetization o, as was observed in recent numerical PIC studies (e.g. Guo et al. 2014;
Sironi & Spitkovsky 2014; Guo et al. 2015; Werner et al. 2016; Ball et al. 2018; Werner
et al. 2018), namely:

(i) p — const of order unity in the ultra-relativistic reconnection limit, o), > 1, V4, =~ ¢;

(i) p~o, "2 in the non-relativistic case, o), < 1 and hence V, =~ co, " «e.

We also note that this physical picture and the theoretical arguments are similar to
those presented by Zenitani & Hoshino (2001) for a simple laminar (without secondary
plasmoids) reconnection layer in the ultra-relativistic limit.

3.4. Particle trapping in plasmoids and the high-energy cutoff: general discussion

We shall now discuss the effects of the second factor in (3.8) — particle trapping in large
plasmoids — and will argue that, in large systems, where reconnection proceeds in the
plasmoid-mediated regime, this process controls the extent of the power-law segment of

W As discussed in § 2.2, however, the magnetized particle can still gain energy slowly, e.g. by betatron acceleration
as it drifts into a region of stronger By.
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the particle energy distribution; in particular, it induces an exponential-like high-energy
cutoff y.. Thus, in our model the particle spectrum at highest energies is shaped by the
distribution of plasmoids. We will postpone the discussion of the other important aspect of
particle—plasmoid interaction, i.e. the Fermi acceleration by particle reflections off rapidly
moving plasmoids, until § 3.7.

As discussed in § 2.2, we use the term ‘large plasmoid’ as a technical term with a specific
meaning: a plasmoid that is large enough to trap a particle of a given energy ym.c?, i.e.
a plasmoid with the size comparable to, or larger than, the particle’s Larmor radius in the
plasmoid’s magnetic field. Also as discussed in § 2.2, the trapping condition is actually
most accurately cast in terms of the plasmoid’s magnetic flux v, i.e. the absolute value of
the difference in the out-of-plane (z) component of the EM vector potential A, between the
plasmoid’s centre (i.e. the O-point) and its edge: € = ym,c*> < eyr. Thus, strictly speaking,
we should be dealing with the plasmoid distribution function with respect to their fluxes.
However, while the formulation of the theory in terms of plasmoid fluxes is more rigorous,
its formulation in terms of sizes w is arguably more intuitive and easier to visualize, and
so this is the language we will use in this paper.

Once fully formed, plasmoids tend to be roughly circularized, with aspect ratios of
order 1, and with characteristic magnetic fields comparable to By.'> Then, as discussed in
§ 2.2, we postulate a 1-to-1 correspondence between plasmoid fluxes and sizes, v = wBy,
and then the trapping condition can be written as

w = wi(y) = pL(y, Bo) = ypo- (3.12)

Correspondingly, there exists a characteristic distance that a given particle is able to
travel in the x-direction before it is trapped by a large plasmoid: this is the characteristic
separation Ay [wy(y)] between plasmoids of this size w,(y). This separation, in turn,
is controlled by the plasmoid-size distribution function in the reconnecting plasmoid
chain, i.e.

L

Here, L is the global length of the layer, and N(w) is the number of plasmoids with size
equal or greater than w, i.e. the cumulative plasmoid-size distribution function. It is related
to the plasmoid distribution density F'(w) as

F(w) = —dN/dw, (3.14)
ie.
Nw) = / F(w') dw’ + const. (3.15)

Using (3.13), the characteristic trapping time T,,()) that enters the kinetic equation
(3.2) can be estimated as

/lpl[Wtr(y)] _ é 1
¢ Nlwe(p)]’

where we have assumed that a relativistic particle’s motion through the acceleration region
before it is trapped or magnetized is generally at a finite angle with respect to the z-axis, so

(3.16)

Tiap (V) ~

12For simplicity, here we shall ignore the internal structure of plasmoids and, in particular, the fact that the magnetic
field can be substantially compressed inside them, especially in the no-guide-field case and for relativistically hot plasmas,
which are more compressible than non-relativistic plasmas due to their lower adiabatic index (4/3 instead of 5/3). We note,
however, that in the version of our theory cast in terms of plasmoid fluxes instead of sizes this issue does not arise.
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that its typical velocity in the x-direction (i.e. along the layer) is relativistic, v, ~ c. From
(3.16) we see that higher-energy particles take longer to get trapped because they need to
encounter a large enough plasmoid, which is rare.

The corresponding term in the kinetic equation is

f) c c
B ~ oy~ MO 3.17
ftrap('}/) f/lpl[wtr(]/)] fL [w (J/)] ( )

and the resulting suppression factor in the particle energy distribution function (3.8) is

- = - - W
P ]}acc Ttrap(yl) P G,BA.QO L Y Y
= exp (——— / Niwe(y")] dy ) (3.18)
€Ba L

These expressions explicitly embody the relationship between particle acceleration and
plasmoid distribution N (w).

In order to evaluate the effect of this factor on particle acceleration in more concrete
terms, we need a model for the plasmoid-size distribution function. For illustration, let us
first consider a chain of equidistant identical plasmoids of a single size w, separated by a
distance A,; thus, the number of such plasmoids in the chain is N, = L/A,. The plasmoid
distribution density then is F'(w) = N,6(w — w,) and the cumulative distribution function
is given by the Heaviside step function: N(w) = N, [l — & (w — w,)]. These plasmoids
can trap all particles with energies y < y, = w,/py, and cannot trap particles with higher
energies. Then the resulting suppression factor for particles with y < y, is

1 N)OU /
exp (___/ Nlwe(y )]dy> —exp< efs L / dy)
1 po _ v
oxp <_£Zy) _exp< y) (3.19)

where the exponential cutoff y, is given by

Ay Ay
Ve = €Ba— = €Ba—Vs. (3.20)
Lo Wi

This simple example illustrates the idea that (at least in two dimensions) large plasmoids
can serve as particle traps, effectively taking the particles out of the rapid acceleration
process, at least temporarily (see Dahlin et al. 2015; Werner et al. 2016; Dahlin et al.
2017; Kagan et al. 2018). The origin of the exponential cutoff can then be understood
as follows. To get to a certain high energy, a particle has to spend proportionally longer
time in the acceleration region, while all the while being subject to a certain, constant
in this case, probability per unit time of being trapped and sequestered in a plasmoid,

T (v < v2) ~ ¢/ ..

In the next two subsections we shall discuss two more realistic examples of N(w),

characterized by broad, power-law distributions.
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3.5. Hierarchical plasmoid chain i: a single power-law model

Let us now consider the case when the plasmoid distribution function in the chain is given
by a single power law,

F(w) ~w™. (3.21)

We normally expect o € [1, 2] in realistic reconnecting plasmoid chains (Uzdensky et al.
2010; Huang & Bhattacharjee 2012; Loureiro et al. 2012; Sironi et al. 2016; Petropoulou
et al. 2018), but here we shall keep the discussion general.

The cumulative distribution N(w) is given by

Nw) ~const — Inw ifa =1, (3.22)
Nw) ~w'™ ifa> 1. (3.23)

Let us now further imagine that this power-law distribution extends up to some
maximum plasmoid size wp,x, which we will tentatively associate with the size of the
so-called ‘monster plasmoids’ (Uzdensky er al. 2010; Loureiro et al. 2012), typically
of order €L ~ 0.1L (Uzdensky et al. 2010; Loureiro et al. 2012; Sironi et al. 2016;
Petropoulou et al. 2018). Then, we can establish the normalization of the plasmoid
distribution function by demanding that the number of these largest plasmoids of
maximum size wp,, found in the chain at any given time is approximately 1. In addition,
we should account for the finite length L of the layer, which imposes a strict limit on a
particle’s free accelerating motion set by the ejection time when a given particle traverses
the entire layer, 7.; ~ ¢/L. This can be effectively taken into account by requiring that N
cannot be less than 1, so that A,; < L. Thus, we shall write

N(wfwmax):l—ln< i ) a=1, (3.24)
Wmax
w l—«
NW < Whpayx) = , a>1. (3.25)
WmaX

Now, let us consider the interaction of energetic relativistic particles with such a
plasmoid chain, using the trapping condition w = w(y) = pr(y, Bo) = ypo as discussed
above. It is convenient to define the maximum particle energy that can be confined by the
largest plasmoids of size Wy, i.e.

ymax = Wmax/pO' (326)

We can then express the inter-plasmoid separation A, (wy), and hence the typical path
length that a particle can travel before it is captured, as follows. First, in the special case
a =1 (3.24) yields

L L
NIwe()] 14+ 1[Waa/We ()] 1+ 10 ma/7)

A we(y)] = (3.27)

which for y < ymax (and hence for w, < wp,,) can be approximated as /lglzl [we(y <
Yma)] 2 L/ In(Yinax /Y)-
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Next, for « > 1, we have

L . a—1 a—1
Awe(Y)] = ——— ~ L (Wt ()/)) ~ L( 4 ) , o> 1. (3.28)
N[Wtr(y)] Wmax ymax
In particular, in the important special case o =2, we have N(W) ~ wp./w and
consequently
a= wi () 14
A7 we ()] = L= = L—— = p.(y) (3.29)
max Vmax Wmax
For example, adopting wy.x =~ 0.1L, we can estimate this as
A2 we()] = 10wy (y) = 10p.(y). (3.30)

These expressions allow us to estimate the corresponding trapping rates (for y < $inax)

Trap (V) ™ [ —ln(yy )} a=1, (3.31)

approaChing (¢/L) In(Ymax/y) for y K ymax; and

-«
14
trap()/) ~ —N[W(J/)] ~T <Vmax> , a>1, (3.32)
and, in particular,
c )/max
Trap (V) ~ , o =2. (3.33)

Let us now investigate the 1mphcat10ns of these estimates for our model of particle
acceleration. Substituting them into (3.18), we find the corresponding expressions for the
suppression factors (for Y < Yinax):

Ha=1:

exp ( y[2—1In(y/ ymax)]) : (3.34)
Lpae

)l <a<?2:
Winax ( % )2_“ _ 1)2_” 135
exp _GIBAL(2 - 0[) Vmax B exp a ()/c ’ ( . )

1/2~a)
2 - a)] ) (3.36)

where

€L
Ye = Vmax IBA

max

Interestingly, for « — 1 this factor approaches a simple exponential cutoff

exp| =211 = expoy /) (3.37)
p L Bae V| =eXpl=Vy/VYe), .
where the cutoff Lorentz factor is
L
Ve = Bac—, (3.38)
Lo

corresponding to p(y.) = y.po = Pa€eLl and formally independent of wy,,. This case
corresponds to a situation where the plasmoid distribution function is so shallow that small
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plasmoids are not sufficiently numerous to have a strong effect on particle acceleration.
The cutoff y, then simply corresponds to the voltage drop due to the electric field
E... = €B4By over the entire layer’s length L. This limit is thus equivalent to the natural
high-energy cutoff expected in small laminar reconnection layers not succumbing to
secondary tearing and plasmoid formation (Larrabee et al. 2003), as has been confirmed
in numerical PIC simulations (e.g. Lyubarsky & Liverts 2008; Werner et al. 2016). It is
interesting to note that, if wy,.x >~ €L =~ 0.1L, then we can express the cutoff as

Wmax

Lo

Ve = IBA = IBAymax- (3.39)
Thus, in the case of ultra-relativistic reconnection, o3, > 1 and 84 — 1, this cutoff energy
¥, is simply equal to Y., the maximum energy of particles that can be confined in
the largest plasmoid (consistent, e.g. with numerical observations by Sironi et al. 2016).
However, in the case of non-relativistic reconnection, 8, ~ oh] 2 < 1, the cutoff may in
principle be smaller than yy,,,. Thus, in this case there may be a substantial, measurable
range of particle energies where the energy distribution is exponentially suppressed.

(i) o = 2:

This case is indeed special. There is no exponential cutoff in this case; instead, particle
trapping in plasmoids leads to an additional power-law factor, y 7, similar to the effect of
magnetization by B, (see § 3.3). The corresponding power-law index is given by

~ meax
o éﬂA L

Pu (3.40)
This expression is similar to that for the power-law index pp,g, due to magnetization, see

(3.11). The combined effect of the two processes leads to a power law y 7 with an index
given by the sum of the two

P = P + o~ B (14202 (3.41)
eL
That is, trapping in plasmoids in the @ = 2 case leads to a steepening of the non-thermal
power law compared with expected from magnetization alone, while preserving (in
contrast to the @ < 2 case) the overall power-law shape of the distribution function.

The relative importance of the magnetization and trapping processes for o = 2 does
not depend on y and is instead controlled by the ratio wy,,,/€L. In particular, if the chain
is truncated at relatively small sizes, i.e. if wy, < €L, then py < pPagn and the trapping
correction to the total power-law index is relatively minor. If, however, the plasmoid chain
extends all the way up to nearly the monster plasmoid scale, wy.x ~ €L ~ 0.1L, then we
get

Pe = By~ Pragn, (3.42)
and hence the two processes generally play comparable roles for y < .. The total
power-law index is then greater by a factor of order unity (e.g. double) than that due to
magnetization alone, i.e. the resulting steepening is significant. We will see, however, in

§ 3.7 that Fermi acceleration by moving plasmoids tends to compensate this steepening
tendency to some degree and may even cancel it completely.

3.6. More realistic double power-law plasmoid chain

Numerical simulations of 2-D reconnection in the large-system, plasmoid-dominated
regime, done both in the non-relativistic resistive-MHD case (Huang & Bhattacharjee
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FIGURE 4. A more realistic, broken power-law plasmoid-size distribution with a shallow

small-w power law F' oc w™%! transitioning at w = wy, to a steeper large-w power law F' o« w™2,
with oy > «.

2012; Loureiro et al. 2012) and in the relativistic collisionless pair-plasma case (Sironi
et al. 2016) (see also Petropoulou et al. 2018 for an associated semi-analytical model),
show that realistic reconnecting systems develop plasmoid-size distributions that are more
complex than a single power law discussed in the previous section. Namely, the resulting
plasmoid distributions are best described by a double power law, i.e. a relatively shallow
power law with some index o/, below a certain break plasmoid size wy, and another, steeper
power law with an index o, > «; above wy,

F~w™ w<wy, (3.43)

F~w™ wy, <w < Whax, (3.44)

with a sharp, perhaps exponential, cutoff above wp,, (see figure 4). The large-w cutoff
Wmax Of the second power law may correspond to the monster plasmoid size, typically 0.1L,
as in § 3.5. Also, based on the above-mentioned simulation studies and analytical theory
(Uzdensky et al. 2010), we generally expect oy ~ 1 and a, ~ 2, but here will consider
these indices as free variable parameters.

The intermediate break scale wy, that marks the transition between the two power laws
will play an important role in our analysis. Unfortunately, what governs it and how it
depends on the system parameters is not yet understood; in particular, it is not known
whether this size scales with (i.e. just some finite fraction of) the global size L, or with (is
a fixed multiple of) the thickness of the smallest elementary inter-plasmoid layers § ~ p =
¥ po ~ o.po (where the latter estimate assumed that the upstream region is magnetically
dominated, so that the average particle energy of the heated plasma in the layer is just
a finite fraction of o.m,c?). Answering these important questions is beyond the scope of
this paper and should be obtained by more careful numerical studies, e.g. similar to Sironi
et al. (2016), in conjunction with analytical and semi-analytical studies (e.g. Petropoulou
et al. 2018). The analysis presented in this paper provides a strong motivation for such
studies as it underscores the strong connection between the statistical properties of the
plasmoid chain and NTPA. In the meantime, in this study we will consider wy, to be a
variable parameter.
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For w € (W, Wmax)» the cumulative plasmoid distribution function is
NWor < W < W) ~ w70 (3.45)

Using the normalization condition N (Wp,,) =~ 1, we can write

1—0{2
NWor < W < W) = ( d ) , (3.46)

Wmax

thus also fixing the normalization for F'(w) in this range

—1 o2
F(Wbr <w= Wmax) = _N/(Wbr <w= Wmax) = * ( v ) . (347)

Wmax Wmax

We will also introduce

0[2—1

Nop = N(w = wyy) ~ (W“““) , (3.48)

Whr

L Wbr 0(271
Apr = (W) = No. ~L (wmax> , (3.49)
and

Whr
Yor = ¥ (W) = —, (3.50)

Lo

to denote, respectively, the total number of plasmoids larger than the critical break size wy,,
the characteristic separation between them, and the corresponding particle energy.

We shall now consider the plasmoid distribution below wy,, which will allow us to
estimate the particle-trapping factors for y < y,,. The normalization of the plasmoid
distribution function F(w) in this range is determined by the requirement that F(w) be
continuous at wy,

o — 1 w\ " =1/ wy N 2w\
Fw < wy) =~ Ny ~ . (3.51)
Whor Wor Wmax Wmax Wor

The cumulative plasmoid distribution function below wy, is then determined by a
straightforward integration of F(w < wy,) with the condition that N(w) be continuous
at wy;.

In particular, in the case o; = 1 we get

—1
Fw < wy) >~ ——— Ny (3.52)
Nw < wy) = / FW) dw' + N(Wyr) 2 Ny |:1 — (s —1)In i] ; (3.53)
w Whr
Y <Vbr )/
/ Nwu(y)1dy" = Niy |:0lz —(xx—Dln y_:| . (3.54)
br
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Then, using the formalism developed in the previous two subsections (see (3.18)), we
obtain the exponential factor describing the particle trapping in plasmoids, for y < p,

exp(— ! /V dy/,)zexp[ W‘”f Nlwu(y")]d (V)]
Yace Ttrap ()’ ) Vor

~ 1wy L B _ L
— o |: IBA € Apr <ybr) |:a2 (@ D) ln ybr:|:| ’ (3.55)

where we used Ay, = L/N,,. Thus, ignoring the logarithmic correction, we see that there
is simple exponential cutoff, exp(—y /y.), with a cutoff energy that is of order

E/lbr /lbr
Ye ™ VorBa " = ,3A— (3.56)

Next, for the case «; > 1, integration of (3.51) yields

Whr

1—a _
N(WSWbr):/ F(W)dW +N(Wbr)—Nbr( 1) [(l) _052 a1j|
w ) — 1 Wpr Oy — 1

(3.57)

Then, using (3.57), we can calculate, for y < yy,,

v 1 W (y)
/ N[Wtr(y/)] d)// = ,0_ / N(W’) dw’
0

2—a
oy — 1 1 w oy — 0O W
> YorNor — -
Oll—l 2—061 Whr 062—1 Whr
w=wy(y)
— N, o — 1 1 by 1= m—a
a; —1 2—ar \ Yo a, — 1

—1 1= —
= ¥Ner * (1) _eman (3.58)
(a0 —1D2 —oa1) \ Vor ap —1

and thus obtain the particle-trapping factor for y < yi,

ex (—I/V ' )—ex< /N[w()]d)
P yacc Ttrap(]//) B P 6,BASZO wty 4

~ exp _L Wor V- oy — 1 (L)l_al_az—al (3.59)
N Ba €or Vor | (1 — D2 — o)) \ Yor o —1 ' '

We see that there are two cutoff factors here: one pure exponential, ~ exp(—y/.1),

with
o — 1 (€A o — 1 Ay
Vel = YouBa— ( : ) =ef—— (3.60)
Oy — 01 \ Wir ®r — 01 Po

(similar to what we have obtained above for the o) =1 case, apart from the
logarithmic correction and factors of order unity), and the other sub-exponential,
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~ exp[—(y/¥2)*""], with

e 1/@—ap)
yczzybr[ﬁA(“l DE =) (ﬁ)] . (3.61)

Oy — 1 Whor

As we can see, there is an important factor € A, /wy, that governs the ratio of the cutoff
to yy, in all these expressions for any «;. Assuming first that o, < 2, this factor can be
evaluated, using (3.49), as

e L (W \T? €L e
L (W ) — S NG (3.62)

Wor Wmax Wor

which is large if wyac > wy,, (and hence Ny, >> 1). Substituting this into (3.60)—(3.61), we

get
a—1 [ €L Wi \ -2
Yel = VorBa ) (3.63)
Oy — Whax Wor
and
/@)
(@ — D@ —a1) [ €L\ (Waax |
Ye2 = Yor | Ba ) (3.64)
o, — 1 Wnax Whr

Thus we can see that, in the case of relativistic reconnection, 8, = O(1), the cutoffs
are large compared with y, if o, < 2; this means that particle trapping in plasmoids is
not important for y < .. For non-relativistic (84 ~ ahl ? « 1) reconnection, however,
particle trapping may become important below 34, (i.e. one of the cutoffs may drop
below yy,) if the scale separation between wy,,x and wy, is not too large. Provided that
the numerical coefficients (o; — 1), (2 — «y), (an — 1), etc., are not close to zero, we can
regard them as finite constants of order unity; ignoring them for simplicity, we can then
write the condition ¥, < Y as

L max e
By (W ) <1 (3.65)

Wnax Whor

If this condition is satisfied, we have y,» < Y.1 < Vi, 1.€. the cutoff is dominated by y,,.
Next, we will investigate the relative importance of particle trapping above the break
energy .. 1o do this, we need to evaluate the integral in (3.18) for y > y,. We will do
this by splitting the whole region of integration into two sub-regions: up to y,, and from
Yo t0 ¥, and correspondingly obtain two multiplicative factors.
The first factor is a constant (independent of y) that can be evaluated as

c Yor 0y Wiy
— Nw,(y)H]dy' | = - fi =1, 3.66
eXP( Brs2oL Wi (y)] V) exp[ ﬂAé/lbr] or o (3.66)
c Yor 1 wee 1+ — o
— Niw.(y)H1dy" | =~ - _ f 1.
exp( o) N0l y) exp( Bredy 2-—a ) e
(3.67)

Once again, in light of (3.62), and adopting the assumptions Wy /€L = O(1), Wiax > Wi,
and o, < 2, we see that in both cases this exponential factor is unimportant for relativistic
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reconnection (B4 ~ 1). But it does become important for extremely non-relativistic

reconnection, namely, when 8, =~ ahl /? becomes comparable to (Wyr/Wimax)> %2, see (3.65).
To evaluate the second factor, involving the integral of 7' (') from y' = y, 0y > i,
we combine (3.16) and (3.46) to get

l—Olz
. c c 14
ru— (ybr <Yy =< Vmax) =~ ZN(Wbr <w= Wmax)|w=w“(y) x~ Z ()/ )
max

170[2
Cc Y
> =Ny | — , 3.68
L ( ) ( )

where Ymax = Wmax/pO-

The resulting particle-trapping factor is then naturally independent of «; and, for o, < 2,
is given by

I c f " Niwe(y)1dy’ W L y 7" (3.69)
exp | — — W ~exp| — , .
P\Tpas2o ], VY Pl Bl 2 — o \yom

which is, of course, identical to (3.35) obtained in the single power-law plasmoid
distribution case. The resulting cutoff energy

el 1/Q2—a2)
Ye = Ymax |:ﬂA 2- 052)] (3.70)

max
can also be expressed in terms of y, as

1/Q2—a)

eL Wonax -2
Ye = Yor | Ba (2—a2)< ) ) (3.71)

max Whor

We then see that y. is above yy,, unless the inequality (3.65) is satisfied. If, however, the
extreme non-relativistic condition (3.65) is satisfied, then . formally drops below y, (and
even below y.; and y.,, as one can see by by comparing (3.71) with (3.63)—(3.64) and
ignoring order-unity factors like (2 — «,)). This means that the particle distribution suffers
even more severe suppression above y, in this case.

The case o, = 2 is, again, special. Examining this case is motivated by analytical
arguments (Uzdensky et al. 2010) and numerical evidence (Loureiro et al. 2012; Sironi
et al. 2016) that this situation is indeed realized in practice. In this case, Ay >~ Wy L/ Winax
(see (3.49)), and hence

Apr L
o o 2 (3.72)
Wor Wiax

Thus, since we generally expect wp,, ~ €L, the cutoff of the small-y (y < ;) segment of
the particle distribution (see (3.56) and (3.60)—(3.61)) can be estimated, ignoring factors
of order unity and the logarithmic correction in the o; = 1 case, as

G/lbr el

~ YorBa
Whor Wmax

Ve © ybr:BA ~ ybrﬂA- (373)

That is, the cutoff is comparable to y, for relativistic reconnection, and small compared
with 4, for non-relativistic reconnection. This indicates that the trapping of particles
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by plasmoids is important in this case even for moderate-energy (y < ) relativistic
particles. In particular, in the ultra-relativistic reconnection case, 84 >~ 1, we get y, ~
Yor = Wi/ Po, Which can be recast as y,. ~ o.wy /0y, Where p, = o.po. We then see that if
wy, scales as a finite multiple of § ~ p,, then we get a result consistent with Werner et al.
(2016), i.e. the existence of an exponential cutoff proportional to o, e.g. v, = 4o..

Furthermore, for particles above the break energy y4,, the trapping by large plasmoids
manifests itself not via an exponential or quasi-exponential suppression factor but, just as
in the case of a single power-law plasmoid chain with o = 2 (see (3.40)), via a power-law
steepening due to an additional power-law factor

1 £o 4 Whmax Y V4 P
——— | Niwu(yH1dy' ) = — In| —)|~|— , (374

with the same power-law index as in (3.40)

~ g1 Wmax
Pu = By o (3.75)
Once again, assuming that wy,., ~ €L, we see that this additional power-law index
resulting from particle trapping in plasmoids scales as p, ~ ;' ~ (1 4+ 1/0,)"/%.

To sum up, for o, < 2 and relativistic reconnection (84 ~ 1) we find that the existence
of the power-law break in the plasmoid distribution at wy,, << wy.x does not result in
any significant changes to the particle energy distribution relative to the case of a single
power law with o = o,. However, in the case of non-relativistic reconnection (84 < 1),
the presence of the break in the plasmoid spectrum F(w) may lead to a modification in
the particle distribution if the dynamic range wy.x/wy, of the second (o = ;) power-law
segment of F(w) is not too large, namely if the condition (3.65) is satisfied. In this case,
the high-energy cutoff of the particle distribution falls below 4, and is given by (3.64).

In the special case o, =2 we expect a power-law distribution, with the usual index
Pmagn Scaling inversely with B4, at moderately suprathermal energies (¥ < ), checked
by an exponential or quasi-exponential cutoff (3.73). At higher energies, above y,, the
distribution transitions to a second, steeper power law with index pit = Pmagn + pw. The
cutoff y. connecting the two power laws is of order 4,84, and is thus fundamentally
controlled by the break wy, = 400 in the plasmoid-size distribution; in particular, it can be
much smaller than the extreme-acceleration Hillas limit of ~ L/ p,, and may even just scale
with o.8, if wy, ~ 0,.09. Moreover, in the case of strongly non-relativistic reconnection,
Ba ~ ohl ? &« 1, the cutoff ¥. becomes much smaller than y,, thus greatly reducing the
dynamic range of the first power-law segment of the particle distribution. This has a strong
effect on the normalization of the second, high-energy power-law segment above yy,: its
normalization is suppressed by the exponential factors (3.66)—(3.67); the suppression is
just by a finite factor of order unity in the ultra-relativistic case 84 >~ 1 but could be
exponentially strong, viz. exp(—1/8,), in the non-relativistic case S, < 1. This may
explain the difficulties in obtaining robust extended non-thermal relativistic power laws
in numerical PIC studies of 2-D non-relativistic magnetic reconnection.

3.7. Fermi acceleration by reflection off moving plasmoids

In this subsection we discuss the diffusive Fermi acceleration due to a particle’s reflection
off moving plasmoids that fly chaotically up and down along the plasmoid chain (see also
Guo et al. 2015; Nalewajko et al. 2015). We stress again that this acceleration avenue
is distinct from the above-considered acceleration by the main (regular) reconnection
electric field E,.. responsible for the growth of plasmoids (see § 3.2). Indeed, since the
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Fermi acceleration process under consideration here is related to the relative motions
of plasmoids along the layer (i.e. in the x-direction), it is fundamentally driven by the
nonlinear development of the coalescence instability, as opposed to the tearing instability
associated with E,... Building on the qualitative discussion of the underlying physics of
this process in § 2.2, here we develop a more quantitative description.

The detailed microphysical underpinning of this acceleration process can be described
as follows (see figure 3). When a particle in its motion in the (xz)-plane encounters a
large plasmoid moving (relative to the laboratory frame) with a speed vy, it interacts with
the plasmoid’s motional electric field of magnitude |E,| ~ E, = vyB,i/c; the sign of this
electric field can be positive or negative depending on the plasmoid’s direction of motion.
During this interaction, as discussed in § 2.2, the particle completes a = 1/2 fraction of its
cyclotron orbit in the plasmoid’s magnetic field, thus moving backward in the z-direction
by about the orbit’s diameter, |Az| ~ 2ym,c*/eBy,. Thus, the magnitude of the resulting
particle’s energy change due to the work done on it by the electric field £y during this
interaction can be estimated as

|A€| > eEy|Az| > (vp/c)ymec® = (vy/c)e. (3.76)

For simplicity, we shall take the characteristic plasmoid velocities to be independent of
plasmoid size, namely, of order vy, ~ V4 = B,c for all plasmoids."® Then, the particle’s
fractional energy change is of order

Ae A v
| I _ | V| ~ “pl '\’ﬁAa (377)
€ y c

which is consistent with the result of an elastic collision in the plasmoid frame.

As discussed in §2.2, the sign of this energy change can be positive or negative
depending on whether the encounter is head-on or tail-on. If we ignore correlations in
the neighbouring large plasmoids’ directions of motion'* and thus regard the scatterings
as random, the particle’s energy undergoes a random walk, resulting in diffusive
second-order Fermi acceleration.

For a high-energy particle with a Lorentz factor y >> y, the characteristic time step of
this random walk, i.e. the interval between successive encounters with large plasmoids,
is approximately the particle’s flight time over the typical inter-plasmoid distance
between such large plasmoids, i.e. At(y) ~ Ay[wi(y)]/c. Then, the corresponding energy
diffusion coefficient can be estimated, ignoring factors of order unity, as

2

Ay 2.2 ¢ 2.2€ 2.2 1
D ~ - —N, c = s 3.78
y ) At a¥ Api[wi ()] Piy Vb = Bay T (v) (3.78)

and the corresponding term in the kinetic equation (3.1) or (3.2) becomes

3, (D, ,f) ~ ﬁj%ay (V> Natlwe()19,f) = Bi0y (¥ Ty ()0 f) - (3.79)

BWe acknowledge, however, that this assumption may be too simplistic; in reality, big plasmoids may take longer
to accelerate to the full Alfvén speed and thus may be moving slower than smaller ones, and hence somewhat slower
than V4 (see, e.g. Sironi et al. (2016) and Petropoulou et al. (2018), for discussion). Since higher-energy particles can
be reflected only by sufficiently large plasmoids, the vpi(y)/Va factor may be a decreasing function of particle energy,
suppressing the reflection-based Fermi acceleration for higher-energy particles.

4 This assumption is not necessarily justified in the case of a particle trapped between two large plasmoids heading
towards each other (and subsequently merging); in this case the particle can experience first-order Fermi acceleration.
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We can get further insight by defining the nominal characteristic diffusive Fermi
acceleration time

yz ~ ﬂfz/lpl[wt.r(y)] — ,22 1
D,(y) c Ao Nlwe ()1

and comparing it with the characteristic time scales corresponding to the other terms in
the kinetic equation (3.2).

First, the ratio of 74 to the particle escape time due to trapping by plasmoids is
particularly simple and is independent of the particle energy

Tae(y) = (3.80)

Tair(Y)
Ttrap (V )

~Br=1+1/o. (3.81)

Thus, the two time scales are automatically comparable in the case of relativistic
reconnection, o, = 1, B4 = 1; but for non-relativistic reconnection, o, < 1, we find that
Tait > Ttrap‘

Next, by comparing (3.80) with the magnetization time scale Ty, (see (3.9)) and the
regular acceleration time scale Ty (V) = ¥ /Vace ~ P(¥)/c€Ba (see (3.5)), we find

Tdif(y) _z/lpl[wtr(y)] E‘(20 ) 6/lpl[wlr(y)] ) 6/lpl(w)

V) g2 T VI e300 g EAIVIL | o S . (3.82

Tmagn (V) Pa c 14 P p(y) A w w=wi(y) ( :
and

Tdif(y) 2 /lpl[Wtr(y)] CGﬁA -1 E/lpl[wlr(y)] -1 E/lpl(w)

AL SRV e LA SR e PN v s LU AY L A’ Jof i I 3.83

Tree (V) Pa c e Y p) i R -89

We can make two observations from these two expressions. First, the last factor in
these expressions, € A, (w)/w = €L/[wN(w)], already familiar from the discussion in § 3.6,
manifestly underscores that the relative importance of Fermi acceleration (compared with
particle magnetization by By and regular acceleration by E...) depends on the plasmoid
distribution function N(w). Thus, further analysis requires adopting a specific choice
for N(w). For concreteness, let us consider the case of a single power-law plasmoid
distribution (3.25) with o > 1 (see § 3.5): N > (W/Wmax)' ~%. We then have

3—«
c 14

Dy(y) ~ BiVmaT (ymax> , (3.84)

L a—1
Tair(y) ~ ,BA_ZE ( Y ) , (3.85)

and the factor e Ay (w)/w, controlling the ratios of 7yt t0 Tagn and .., can be written as
SERETER N 550
w w Wnax Wmax \ Wmax
Substituting this estimate into (3.82)—(3.83), we obtain
' L a—2
Tanly) _ poa € ( ! ) , (3.87)
Tmagn (V) Winax \ Vinax
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and

Tair(y) ~ B! eL ( 14 )az, (3.88)

A
Tre g (J/ ) Wmax Vmax

Considering first the case o < 2 and adopting a reasonable assumption that wy,,x ~
eL ~ L/10, we see that the ratio €A, (w)/w given by (3.86) can be expected to be of order
unity only for the biggest plasmoids, w ~ wy,. For the majority of plasmoids, however,
W < Whax, and this ratio becomes large. Then, since 84 < 1, (3.87)—(3.88) imply that, for
the majority of the non-thermal particles, namely those with ¥ < Yax, the diffusive Fermi
acceleration by moving plasmoids is relatively unimportant compared with the regular
acceleration by E... and magnetization by By, and, furthermore, that its relative importance
decreases as the particle energy is lowered. In other words, while smaller plasmoids, which
are capable of scattering lower-energy particles, are more numerous, they are not numerous
enough as long as the plasmoid spectrum is sufficiently shallow, « < 2. On the other hand,
however, for the highest-energy particles with y ~ . (corresponding to wy.(¥) ~ Wiax)
the diffusive Fermi acceleration by moving plasmoids may still be important, provided
that the ﬂA_l and ,BA_2 factors can be circumvented (see below).

Next, let us consider the practically important case o = 2, which is, again, special.
In this case, (3.86) tells us that €A, /w is independent of w, and hence the ratios
Taif/ Tmagn and Tgir/Treg are the same for all particles in the non-thermal power law, and
are just governed by B4. For reference, the diffusion coefficient and the nominal diffusive
acceleration time in this case are given by

_ C
DL 0) ~ By (3.89)

_ L
() ~ 5A2;y” . (3.90)

The second observation we can make by looking at (3.82)—(3.83), as well as (3.81),
is that the relative strength of the Fermi acceleration appears to be suppressed in the
non-relativistic (84 < 1) reconnection case relative to the relativistic (84 =~ 1) case by
the factors of B4 or B3. We point out, however, that it is not quite fair to judge the
relative importance of Fermi acceleration just by the ratios of g to the other characteristic
time scales in the kinetic equation, especially in the non-relativistic case. The reason for
this is that the diffusion term involves higher-order (namely, second-order) derivatives
of f(y) than the other terms. Thus, if f(y) has a strong dependence on y (e.g. declines
rapidly), then this term may become important (although not dominant). In particular, for
a power-law spectrum f(y) ~ y P, corresponding to a power-law plasmoid distribution
with an index «, we can estimate the diffusion term (3.79), using (3.84), as

F)
Tdif(y)’

Y

max

1—«
9, (D, 9,f) ~p(a+p—2)ﬂ§%( ) f(y) ~pla+p—2) (3.91)

which thus can be significantly greater than just the naive estimate f/ 74 if p >> 1. This is
in fact expected in the non-relativistic reconnection case, where p ~ ;' > 1 (see (3.11)
and (3.41)); in this case, the diffusion term is by a factor ;2 ~ o, ' > 1 greater than
f/zais if p > 1, and becomes automatically comparable to the plasmoid-trapping term.

https://doi.org/10.1017/50022377822000046 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377822000046

Particle acceleration in magnetic reconnection 39

In the special case o = 2 expression (3.91), for any B4, simplifies to

2 F)
Tdif(V),

€ Yimax
Ly

0y (Dy dyf)lama ~ P*Bi —=f () ~ p (3.92)
which is, again, by a factor p> ~ ;> ~ o, ' greater than f /7 ; in the non-relativistic limit.

We can then see that the Fermi diffusion term may affect our calculation of the particle
spectrum power-law index p. To remind the reader, in our theory this index is governed, in
the absence of Fermi acceleration, by the interplay between the regular acceleration ..
by the main reconnection electric field E,.. and particle magnetization by the reconnected
field B, (see §§ 3.2 and 3.3). And in the special case & = 2, particle trapping in plasmoids
also affects the power-law index, resulting in a moderate steepening (see § 3.5 and, in
particular, (3.41)). We can now examine the role of diffusive Fermi acceleration in the
balance between all these terms, which controls p.

To do this, let us consider the steady-state kinetic equation (3.2) and focus on the
power-law part of the particle distribution function, i.e. f ~ y 7", thus ignoring a possible
high-energy cutoff due to trapping by large plasmoids. Then, considering first the
case 1 < a < 2, and hence excluding the plasmoid-trapping term, we can write this
equation as

14

max

f f c -«

Pa2op - — e+ ploctp— 287 f) =0, (3.93)
where we have used (3.5) and (3.9) to evaluate the first two terms (regular acceleration
by E.. and magnetization by B;). Cancelling f, multiplying through by y /€ £2y, and using
Wmax = VmaxP0o = Vmaxcgo_l, we obtain

2—a

Bap — 1+ pla +p — 2)p2lmm ( Y ) =0. (3.94)
€L\ Vimax

Since we here assume « < 2, we again see that, with the exception of the most energetic

particles with y ~ yn.x, the last term, corresponding to Fermi acceleration by moving

large plasmoids, is small — consistent with our discussion after (3.88) above. We then get

a familiar result p >~ ;.

Next let us consider the special case o = 2. In this case, the problem can be solved
exactly. The particle trapping by plasmoids now affects the power-law index instead of
introducing a high-energy cutoff (see § 3.5), and needs to be included in the above kinetic
equation (3.93). Using (3.33) to evaluate this term, (3.93) is modified as

f f c Vmax
eBrf2p- — 2= — - (12
14 14 14

L
which simplifies to the following quadratic equation for ppB,, involving a single
dimensionless parameter Wy, /€L:

)f(y) + P (%)ﬂw =0, (9

w w
- (14 22) gt <o, 3.96
pB— (14+222) + A (3.96)
The positive solution of this equation, for any wy,,, /€L, is simply
P = (3.97)

coinciding with (3.11). Thus, in the o =2 case, diffusive Fermi acceleration by
rapidly moving plasmoids effectively cancels, or negates, the steepening of the particle
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distribution due to particle trapping in plasmoids described by (3.41). Note, however, that
in reality the diffusion term may not lead to an exact complete cancellation of the trapping
effect because, in a more precise and realistic model, both of these terms would in general
come in with some numerical coefficients of order unity, which don’t have to be equal. We
discuss this more general situation in the next subsection.

3.8. General form of the kinetic equation

Finally, for completeness and to set the stage for future, more detailed studies of this
problem, in this subsection we present, for reference, the general second-order linear
ordinary differential equation for the stationary particle distribution function including all
the terms, for an arbitrary plasmoid distribution. To obtain it, we plug in the estimates
(3.5), (3.9) and (3.79) into the steady-state kinetic equation (3.2). Note however, that,
generally speaking, all these estimates are uncertain up to factors of order unity; we will
treat these uncertainties by assigning some unknown positive constant coefficients, cy, ¢,
cs, to the last three terms when we enter these expressions into (3.2). We then obtain

For+easl por I cﬁ(Z;f’)/—O (3.98)
gy T B et ) T\ c0tepy) ) T '

where prime denotes derivative with respect to y .
Using Tyap(¥) = Ap[wie(y)]/c, and ¢/$20 = py = wy(y)/y, it is convenient to define a
new function encapsulating the information about the plasmoid distribution

= — S S (3.99)
= €4 (W) w=wi(y¥)=ypo - E.Q()‘L’trap()/). '
Then, (3.98) becomes
1 f
f)+ 5y [e1 + c2q)] = e3Ba (ya)f) = (3.100)
AY
Using the substitution y = e’ and g(f) = g[y (¢)], we can rewrite this as
. d .
J(@O +fOler + c2q0] — b (@(nf) =0, (3.101)

where f = df/d.
In particular, if the plasmoid distribution is a single power law with « > 1, then, using

(3.32)
% 2—«a
q(7) = qo ( ) = qoexp((2 — &) Ba(f — fmax)), (3.102)
where we defined gy = Wyax /€L, and t = ﬂ;l In Ynax. Equation (3.101) then transforms
into

F@&) +FOler + c2g0exp((2 — @) Balt — timax))]

d .
— 3 (@0exp(2 = ) Balt = ta))f) = 0. (3.103)
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For example, in the special case o =2, we get g(y) = q(t) = qo = const, (3.100)

becomes an Euler equation

1 ,
o)+ IB—J;C[Cl + ¢2q0] — c3Ba (CIOVf/) =0, (3.104)
A

while the corresponding equation (3.103) simplifies to a linear homogeneous ordinary
differential equation with constant coefficients

F@) +£Oler + 20l — c3qof = 0. (3.105)

This can be readily solved as

ft) = Ce" + Cye™, (3.106)
where C,, C, are arbitrary constants and A; and A, are the roots of the characteristic
polynomial

2 1 ¢+ 9o
PA) = A" — A— . (3.107)
€390 €390
For illustration, for the case ¢; = ¢; = ¢3 = 1 considered in this paper, these roots are
Ay =—1, 4, =1+ 1/q, and the corresponding solution is

f=C el C, el — Cly/h/ﬁA + Czy/lz/ﬁA — Cly—(l/ﬁA) + Czy(l“‘qo)/‘loﬂA‘ (3.108)

Imposing the condition that f(y) be a declining function of y, we have to discard
the second solution and thus recover the result f(y) ~ ¥~/ we obtained previously,
see (3.97). We note that the solution A; = —1, f(y) ~ y~'/f+ remains valid even more
generally, as long as ¢; = 1 and ¢; = c;.

4. Summary

In this paper we presented a physical picture and developed a theoretical model for
non-thermal acceleration of relativistic particles in 2-D magnetic reconnection (with no
guide field) in the limit of very large system sizes where reconnection takes place in the
plasmoid-dominated regime. We focus here on the population of energetic particles in the
active reconnection zone, before they are trapped inside plasmoids. The main premise of
this work is that, just as one should approach describing the dynamics of reconnection
in the plasmoid regime in a self-similar manner, viewing a large-scale reconnection layer
as a self-similar hierarchical chain of plasmoids with a broad range of sizes (§ 2.1), one
should apply an analogous self-similar reasoning to the problem of particle acceleration.
The motion of a highly energetic particle is not strongly sensitive to EM field structures
on scales much smaller than the particle’s Larmor radius. Thus, the motion — and
acceleration — of each such particle should be analysed by looking at it on the
corresponding scale, i.e. by blurring the complex EM field structure of the reconnecting
plasmoid chain to the scale commensurate with the given particle’s characteristic Larmor
radius. In particular, this means ignoring the interaction of this particle with small
plasmoids, which may constitute the majority of the plasmoid population. A given
energetic particle effectively sees a truncated plasmoid hierarchy and interacts only with
plasmoids comparable to or larger than its Larmor radius. Since the Larmor radius of a
relativistic particle is directly proportional to the particle’s energy, higher-energy particles
interact with a smaller number of large plasmoids, hence covering larger distances between
such interactions while being continuously accelerated by the main reconnection electric
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field. Thus, the properties of non-thermal particle acceleration are fundamentally tied
to the statistical characteristics of the plasmoid population, namely, to the plasmoid
distribution function.

In particular, particle acceleration in our picture (§2.2) is governed by the interplay
between direct acceleration by the electric field E, in the ignorable (z) direction and
particle deflection towards the x-direction (the direction along the reconnecting magnetic
field) and magnetization by the reconnected magnetic field By, followed by the particle’s
eventual trapping inside a large plasmoid. We argue that in a self-similar reconnection
layer these field components are approximately scale-invariant over a broad range of
scales. The accelerating E, electric field has two principal components, reflecting the
nonlinear dynamical development of two instabilities acting in the layer. The first one is
the (secondary) tearing, or plasmoid, instability, almost synonymous with the reconnection
process itself; it provides the main reconnection electric field, —E,..Z, in the inter-plasmoid
reconnection layers at every step in the hierarchy and leads to the growth of plasmoids
of all sizes. The second instability is the plasmoid coalescence instability that drives
rapid (up to the Alfvén speed) plasmoid motions along the layer in the £x direction,
and thus generates intense double-layer spikes of the associated motional electric field; in
its linear stage this instability acts as a secondary, parasitic instability with respect to the
tearing mode because it feeds upon the growing plasmoids. This motional electric field can
accelerate or decelerate energetic particles as they collide and bounce off a large moving
plasmoid by executing about one half of a cyclotron orbit in the plasmoid’s B, magnetic
field. The result of a single such encounter depends on the relative orientation between
the particle’s and the plasmoid’s x-components of motion: the particle gains energy if the
collision is head-on and loses energy if the collision is tail-on. The overall net effect after
many such collisions can be described as Fermi acceleration: in general, it is a mixture
of second-order diffusive acceleration (present if the motions of different plasmoids are
uncorrelated), and rapid first-order acceleration if a given particle bounces many times
between two approaching plasmoids before they finally collide and merge with each other;
in either case, particles gain energy on average.

The reconnected magnetic field By also plays an important role: it limits the acceleration
of particles by deflecting them away from the direction of the accelerating electric field
E. and eventually magnetizing them onto cyclotron orbits. While in a real reconnecting
plasmoid chain this field can have a rather complex spatial structure (along the x-axis),
here for simplicity we represent it as being roughly bimodal, at any scale in the
self-similar hierarchy. Namely, we regard |B,| as being of order B, = €By ~ 0.1B, in
the inter-plasmoid current layers and being of order B in fully formed and circularized
plasmoids. More precisely, B, varies (roughly linearly) from —eB, to +e€B, in the
x-direction along the midplane of any given inter-plasmoid current layer, reversing sign
as it passes through that layer’s X-point; and it varies from +B, to —B; across a
plasmoid, reversing sign as it passes through the O-point. At any given moment of
time the reconnected field lines in the inter-plasmoid current layers are moving roughly
Alfvénically towards an adjacent plasmoid, where they will eventually join the plasmoids’
magnetic flux and compress. Both types of the reconnected magnetic field exert a negative
effect on particle acceleration by magnetizing energetic particles and thus preventing
them from moving freely in the z direction along the accelerating electric field. Thus,
the reconnected field effectively removes energetic particles from the active acceleration
zone, eventually placing them into quarantine inside large plasmoids — large enough to
confine them.

In the mathematical formulation of the proposed theory (see §3) the main object
of study is the energy distribution function f(y) of energetic particles present in the
active acceleration zone, i.e. in inter-plasmoid current layers (which themselves can be
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plasmoid-dominated plasmoid chains), not yet trapped inside plasmoids. Each of the
physical processes discussed above is represented by a separate term in the kinetic equation
for f(y) (see (3.1)). Thus, the steady, regular acceleration by the main reconnecting
electric field E. is described by the energy-advection term —0,, (¥,..f); the second-order
Fermi acceleration due to particle reflections off moving plasmoids is described by the
energy-diffusion term 0, (D, d,f) (for simplicity we ignore first-order Fermi acceleration
due to a particle bouncing back and forth between two converging plasmoids); the removal
of particles from the active acceleration zone by their magnetization by the reconnected
magnetic field B, is described by the escape term —f /7 (y). The latter is further subdivided
into two contributions: due to the magnetization by the O(B; = €B,) reconnected field in
the layers, —f/Tmagn(y), and due to particle trapping inside large plasmoids, —f /Tiap ().
In principle, there is also a source term at small energies that describes the injection of
particles into the reconnection region from the upstream region; however, assuming that
the upstream plasma is magnetically dominated, so that its plasma-f parameter is small,
this term can be neglected in the supra-thermal high-energy range of interest to this study.

By analysing the resulting kinetic equation in a steady state, we find that different
terms influence the key characteristics of the resulting non-thermal particle distribution —
e.g. its power-law index p and its high-energy cutoff y. — in different ways. Thus, if
one ignores the diffusive Fermi-type acceleration by moving plasmoids, then the balance
between the direct, regular acceleration by E,.. and magnetization by the reconnected
magnetic field B, controls the power-law index of the particle spectrum: p(o;) >~ B,' =
(14 0,")!/2 (see (3.11)). Particle trapping by large plasmoids, on the other hand, mostly
affects the high-energy part of the distribution, governing the high-energy cutoff. The
functional shape of the cutoff and the value of the cutoff energy y. are controlled by the
details of the plasmoid-size (or flux) distribution function F(w) (see § 3.4). For example,
if the plasmoid spectrum is a truncated power law, F(w < wpy.x) ~ w™* [with o € (1, 2)],
then the high-energy cutoff of the particle spectrum is exponential like, ~ exp[—(y/¥.)"],
with v =2 — « and y, determined by the truncation size of F(w) in combination with
other parameters such as 4 and o (see § 3.5 for details). The case o = 2 is, however,
special: instead of an exponential cutoff, in this case one gets a steepening of the particle
power law, with the net spectral index p increasing by a factor of order unity relative to
what it would be just due to the magnetization by B, alone (see (3.41)). We also consider
a more general and realistic case of a double power-law plasmoid distribution (see § 3.6).

The inclusion of the second-order diffusive Fermi acceleration due to particle bouncing
off randomly moving plasmoids raises the order of the differential kinetic equation and
thus increases the mathematical complexity of the problem (see § 3.8). We find, however,
(§3.7) that for a single power-law plasmoid distribution with an index 1 < o < 2, the
diffusive term is small for most the particles and is only important for particles near the
maximum energy ymax that can be confined only by the largest plasmoids, of size Wyax.
Interestingly, in the special case o = 2 the full problem, including the diffusive Fermi
acceleration effects, can be solved exactly; the Fermi acceleration in this case effectively
cancels the effect of particle trapping by large plasmoids, producing a remarkably
simple solution f ~ y " with p ~ B,' — the same as would result without both of these
plasmoid-related effects.

To summarize, the main concrete findings regarding the non-thermal particle power-law
indices and high-energy cutoffs can be described as follows:

(I) The particle power-law index generally scales as p ~ B,' >~ /T + 1 /oy, see (3.11).
(II) Single power-law plasmoid distribution F(w) ~ w™ truncated at w = wy,, (see
§ 3.5 for details):
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(1) a = 1:simple exponential cutoff (ignoring logarithmic corrections) exp(—y/y.)
with y, =~ BaeL/py, see (3.37)—(3.38).

(ii)) 1 <a < 2: sub-exponential cutoff exp[—(y/y.)* %] with ¥, > Vnul(2 —
&) Br€L/Wimax ], Where Yimax = Winax/ 00, see (3.35)—(3.36).

(iii)) a = 2: no exponential cutoff but a steeper power law with an index roughly
P72~ BN (1 4 Wi /€L), see (3.41).

(ITI) Double power-law plasmoid distribution with indices o, >, with a break at wy, (see

§ 3.6 for details):

(1) a; =1, for y < yur = wi/po: simple exponential cutoff exp(—y /y.) with y, =~
Ba€ v/ po, see (3.56).

(1) 1 < a; <2, for y < p,: two cutoffs:

a simple exponential: exp(—y /y.1) with y.; = [(a; —1) /(a2 —a1)]1Ba€ Aue/ 00,
see (3.60);

and a sub-exponential: exp[—(y/¥w2)> "] with Y2 >~ Y [[(2 — o) () — 1)/
(@2 — 1)1Ba€dbe/ W]/, see (3.61).

(iii) a; < ay < 2, for y > yp: sub-exponential cutoff exp[—(y/y.)>~*] with y, ~
ymax[(2 - aZ)ﬂAEL/Wmax]l/(27a2)’ see (369)_(370)

(iv) a; < ay; =2, for y > p,: a steepening in the power law with p*=2 ~ g, ' (1 +
Wimax/€L), see (3.75); (i.e. the same as in the single power-law case, see (3.41)).

(IV) Second-order Fermi diffusive acceleration by particles reflecting off randomly
moving plasmoids — for concreteness, with a single truncated power-law size
distribution F'(w) ~ w™* (see § 3.7 for details):

(i) If o < 2: diffusive Fermi acceleration seems to be relatively unimportant for
most particles except for the most energetic ones, with ¥ ~ Y., for which it
becomes competitive, namely, comparable to the plasmoid-trapping term.

(1) If o = 2: diffusive Fermi acceleration is important for energetic particles of all
energies and effectively negates the steepening effect of particle trapping in large
plasmoids, resulting in a single power-law particle energy distribution with the
standard index p ~ g, .

5. Discussion and conclusions
5.1. Comparison with previous works

The problem of relativistic NTPA in plasmoid-dominated magnetic reconnection has
recently received a lot of attention in the literature. While most of the studies have been
numerical, utilizing PIC simulations, there have also been several concerted efforts to
understand this process analytically, often in close combination with the PIC studies.
Among these efforts, there is a model developed by F. Guo and collaborators (Guo
et al. 2014, 2015); see also their follow-up papers (Guo et al. 2016, 2019, 2020; Kilian
et al. 2020). I would like to clarify here the differences between their model and the one
advanced in this present paper.

While both models are formulated in terms of a kinetic equation for the particle energy
distribution function, the populations of particles they describe and the physical meaning
of some of the terms differ. First, my paper focuses on high-energy particles that are
still being actively accelerated in inter-plasmoid current layers of different sizes and
are not yet trapped inside a large plasmoid or magnetized by the reconnected field. In
contrast, the Guo et al. model deals with the acceleration of magnetized particles inside
plasmoids. A key feature of my model is that it adopts a self-similar approach to particle
acceleration, postulating that a given energetic particle’s motion should be analysed
using EM fields smoothed on the appropriate scale dictated by the particle’s energy,
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i.e. commensurate with the particle’s gyroradius. This picture thus envisions a multi-level
hierarchical plasmoid chain in the large-system limit, with EM structures (plasmoids and
inter-plasmoid layers) existing on a very broad range of scales. One then adopts the view
that only sufficiently large (and hence relatively rare) plasmoids/structures can interact
with the particle in question, while smaller-scale structures can be ignored. Therefore,
the plasmoid-trapping and plasmoid-reflection terms in my model are proportional
to the number density of plasmoids of a given size; this relationship provides an
important, non-trivial connection between the plasmoid distribution function and the
resulting particle energy spectrum. Guo et al.’s approach does not seem to make such a
distinction between the scales and does not relate the properties of particle acceleration
to the distribution of plasmoids. On the other hand, while both models accept that
the high-energy particle acceleration is mostly done by the perpendicular, ideal-MHD
motional electric field, I do not put much emphasis on this issue, whereas Guo et al.
do. Next, the two main acceleration mechanisms considered in my theory are the direct
acceleration by the main, scale-invariant E,..z effective reconnection electric field as an
unmagnetized particle travels along the z direction in its inter-plasmoid reconnection
layer, and the Fermi acceleration (and here I focus on its second-order, diffusive variety)
due to the particle bouncing back and forth in the x direction between rapidly moving
plasmoids. In contrast, the Guo et al. model, building upon the ideas and approaches
developed recently by J. Drake and collaborators (Drake et al. 2006, 2013; Dahlin et al.
2014, 2016; Drake et al. 2019), focuses on first-order ‘Fermi-like’ acceleration of a particle
moving inside a contracting, circularizing magnetic island/plasmoid, as I discussed in
detail in §2.2. In this picture, the necessary ‘reflection’ element of Fermi acceleration
is effectively provided by the convergent motion of the two opposite turning points of
the magnetic flux surface to which the given magnetized particle is confined. The exact
micro-physical nature of this process is traced to the work done on the particle by the
perpendicular electric field (associated with the contracting motion of the field line)
as the particle executes the curvature drift in the z direction. In this interpretation, the
characteristic acceleration time o' = €/¢ is independent of the particle energy, while
in my model it is essentially proportional to particle energy. Finally, in my model the
magnetization of particles by the reconnected magnetic field and their trapping inside large
plasmoids is seen an ‘escape’ route out of the inter-plasmoid active acceleration zones.
The corresponding escape times (and hence the particle lifetimes in the active acceleration
zones) are not constant, but increase with the particle energy. One can think of these escape
terms in my kinetic equation as corresponding to the source/injection terms in the kinetic
equations describing subsequent acceleration of particles trapped inside plasmoids, like
those in Guo et al. (2014, 2015, 2019) and Hakobyan et al. (2021). I thus hope that the two
theoretical approaches can be bridged together in the future.

5.2. Limitations of the model and directions for future research

The theory developed in this paper represents one of the first steps towards
building comprehensive statistical understanding of relativistic NTPA in 2-D magnetic
reconnection in the complex large-system, plasmoid-dominated regime, with simultaneous
inclusion of several intertwined acceleration and escape channels. One should, however,
fully recognize the theory’s limitations and hence take the specific predictions,
summarized at the end of the previous section, with a grain of salt. The presented theory
is, admittedly, too crude to furnish accurate quantitative agreement with, for example, the
results of PIC simulation studies. There may well be various numerical constants, e.g.
coefficients of our unity in the estimates for various characteristic rates and time scales,
which are systematically ignored in the theoretical model, and these may easily affect
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the specific values of, e.g. power-law indices and cutoffs. One should view the proposed
theory as qualitative, aimed at outlining the overall physical picture, elucidating the basic
physical processes at play in reconnection-driven particle acceleration, highlighting the
connections between the plasmoid spectrum and the particle energy spectrum. It also sheds
light on various qualitative trends, such as the steepening of the power-law spectrum with
lowered oy, observed by several authors in PIC simulations (Guo et al. 2014; Sironi &
Spitkovsky 2014; Guo et al. 2015; Werner et al. 2016; Ball ef al. 2018; Werner et al. 2018),

and perhaps consistent with the general form p(o;,) >~ C; + Czah_l/ : reported by Werner
et al. (2018) and Ball et al. (2018). Overall, however, the proposed theory does not claim
to be quantitatively accurate.

In addition, the theory is, admittedly, incomplete. First, even within the idealized
2-D, purely anti-parallel (zero guide field) scenario, the conceptual model outlined
in this article ignores the population of particles already trapped inside plasmoids
and, in particular, does not consider their possible subsequent acceleration due to the
contraction and circularization of newly added plasmoid flux surfaces, or due to the
slow, adiabatic compression of plasmoid cores, or due to plasmoid mergers. The model
also does not account for the first-order Fermi acceleration due to particles bouncing
multiple times between two large plasmoids that are steadily approaching each other and
eventually merging; in this case, the changes in the particle energy due to subsequent
encounters with the plasmoids are correlated and thus result in a fast, monotonic energy
gain, in contrast with the random-walk energy evolution in the case of uncorrelated
plasmoid motions, which results in slower, diffusive second-order Fermi acceleration
considered in this article. All these additional acceleration processes will need to be
incorporated into the theory in future studies. It would also be interesting to perform
direct, dedicated tests of some of the key elements of the physical picture adopted in
this model against first-principles PIC simulations. For example, one could statistically
examine the trajectories of highly energetic tracked particles to see whether the majority
of them indeed pierce through (or go around) small plasmoids, including plasmoids that
move relativistically in the same direction along the x-axis as the particle, or whether the
particles can travel together with such plasmoids for some part of the trajectory. Likewise,
one could examine the relative prevalence of the Fermi acceleration by particles bouncing
repeatedly between neighbouring large plasmoids: first-order when the two plasmoids
move coherently toward each other, and second-order when the plasmoids’ relative motion
can be viewed as random.

Moreover, the presence of a finite magnetic field component in the z direction — either
due to the pre-existing guide magnetic field or the quadrupole Hall magnetic field that
arises spontaneously in reconnection taking place in collisionless electron—ion plasmas —
can substantially modify the particles’ trajectories and thus affect the dynamics and
relative importance of the various acceleration and escape processes discussed in this
paper. An additional potentially important aspect of the Hall effect in electron—ion
reconnection is the development, concurrently with the Hall quadruple magnetic field, of
a bipolar in-plane (xy) electrostatic electric field; this electric field might not be strong and
extended enough to significantly affect highly non-thermal particles in the high-energy
tail of the distribution (which is the focus of this article) but it may affect the injection
of particles into this tail from the thermal bulk. Furthermore, in the case of relativistic
reconnection (o >> 1), a finite guide magnetic field B,, in addition to its direct effect on
particles trajectories, can also influence the acceleration process indirectly: its enthalpy,
B? /4, adds to the enthalpy of the plasma, and thus increases the overall relativistic inertia
of the fluid that needs to be moved by the reconnection outflows. This effectively reduces
the relevant Alfvén velocity and slows down all plasma motions (including plasmoid
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motions), hence reducing the accelerating E, electric field, inhibiting particle acceleration.
In addition, the pressure of the guide field inside plasmoids reduces the compressibility of
the plasmoid cores, thereby limiting the effectiveness of adiabatic particle acceleration in
the plasmoids.

Finally, the present model is purely two-dimensional, which greatly restricts its ability to
describe reconnection-driven particle acceleration in real 3-D plasmas. Three-dimensional
effects can modify particle acceleration in a variety of ways. For example, 3-D instabilities,
such as the drift-kink instability, can destroy the neatly organized, nested flux surfaces that
comprise 2-D magnetic islands/plasmoids (or their 3-D generalizations — flux ropes). This
allows the particles that would be permanently trapped inside plasmoids in two dimensions
to escape along chaotic 3-D field lines back into the upstream region. This giving the
particles a new chance to be accelerated again, thus enhancing particle acceleration,
especially in the presence of a modest guide field. On the other hand, a strong guide
field suppresses the drift-k-ink instability, and 3-D effects in general, thus making a
3-D reconnection layer more structurally similar to its 2-D counterpart and, in particular,
inhibiting particle’s ability to escape from flux ropes and re-enter the active acceleration
zones. Thus, a guide magnetic field may play a non-trivial role in 3-D reconnection-driven
particle acceleration.

All these processes and complex aspects of the problem will need to be investigated in
greater detail further. We hope that the theoretical ideas expressed in this paper can provide
some useful guidance in building a more comprehensive and realistic theory. But the main
tool for developing our physical understanding of particle acceleration in reconnection
will undoubtedly be computational — namely, PIC simulations. Numerical studies are
rapidly becoming more powerful, opening the doors to rigorous and systematic ab initio
exploration of reconnection in very large 2-D and 3-D systems where reconnection
takes place in the plasmoid-mediated, turbulent regime. Increasing computing power
also enables us to study systematically broader parameter spaces, e.g. allowing us
to investigate the effects of guide field, system size (in principle, in all 3 directions
separately), upstream plasma beta and magnetization, plasma composition (i.e. pair,
electron—ion or mixed-composition plasmas), and even more exotic radiative and quantum
electrodynamic (QED) regimes. In addition, because of the inherently stochastic nature
of the large-system, plasmoid-dominated reconnection regime, one will need to conduct
statistical ensembles of nearly identical simulations to probe the effects of stochasticity and
characterize random variability of these processes. Finally, in addition to numerical and
analytical studies, one may expect a strong growth of experimental contributions to our
understanding of reconnection-driven particle acceleration in the coming years, including
those from both traditional (magnetic confinement based), and high-energy-density
(laser-plasma and pulsed-power) experiments.

The result of these efforts will be a thorough characterization of reconnection-driven
NTPA that will enable us to formulate useful, practical prescriptions that can be
reliably extrapolated to real astrophysical system sizes and thus applied to high-energy
astrophysical objects.
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