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Direct numerical simulations are conducted to study the receptivity and transition
mechanisms in a solitary wave boundary layer developing over randomly organized
wave-like bottom topography. The boundary layer flow shows a selective response to
broadband perturbations from the bottom, and develops streamwise-elongated streaks.
When the streaks reach high amplitudes, they indirectly amplify streamwise-elongated
vortices through modulating small-scale fluctuations and pressure fields. These stronger
vortices in turn stir the boundary layer more effectively and further intensify streaks via the
lift-up mechanism. This nonlinear feedback loop increases the sensitivity of the boundary
layer to the roughness level and yields dramatic variations among cases sharing the
same Reynolds number with differing roughness height. Three different local breakdown
scenarios are observed depending on the amplitude of the streaks: (i) two-dimensional
wave instabilities in the regions with weak streaks; (ii) inner shear-layer instabilities in
the regions with moderate-amplitude streaks; and (iii) rapidly growing outer shear-layer
instabilities in the regions with highly elevated high-amplitude streaks. Inner instabilities
have the slowest growth rate among all transition paths, which confirms the previous
predictions on the stabilising role of moderate-amplitude streaks (Önder & Liu, J. Fluid.
Mech., vol. 896, 2020, A20).
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1. Introduction

Surface gravity waves in shallow waters often travel over random bottom topography
composed of disorganised bedforms or coarse sediments, e.g. gravel or sand.
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These small-scale features act as hydrodynamic roughness in the wave boundary layers
developing over them. While in fully developed turbulent wave boundary layers the
effect of roughness is usually well parameterised using classical concepts, e.g. Nikuradse
roughness and logarithmic velocity profile, there are relatively few studies addressing
the transitional regimes beneath mild waves. Such random topography-induced transition
is complicated and its building steps are not well understood. Using direct numerical
simulations (DNS), the present work investigates the mechanics of boundary layer
transition over a random bed topography beneath a solitary wave, which can be viewed
as a simple reproducible prototype for long regular waves in the shoaling zone (e.g.
Munk 1949). The primary objective of this study is to establish direct links between
topography and precursor structures of transition and subsequent transition modes. The
bed is modelled as randomly organized wave-like corrugations and its geometry is well
resolved by conducting DNS on a transformed coordinate system.

A solitary wave is a symmetric long wave with a single crest. It imposes an
approximately constant horizontal velocity across the water column. A given point beneath
an approaching wave experiences successive stages of accelerating and decelerating
onshore velocities (figure 1b) driven by favourable and adverse pressure gradients (FPG
and APG), cf. figure 1(a). Unlike the irrotational flow above, the near-bed velocity in
the boundary layer begins to decelerate at the end of the FPG stage and eventually
reverses its direction at the beginning of the APG stage (Liu & Orfila 2004; Liu, Park
& Cowen 2007), cf. figure 1(c). In this process the adverse pressure gradient and frictional
forces give rise to inflectional velocity profiles rendering the flow linearly unstable above
critical wave amplitudes (Blondeaux, Pralits & Vittori 2012; Sadek et al. 2015). As a
result, two-dimensional instability waves can develop and grow into coherent spanwise
vortex rollers with regular spacing (Sumer et al. 2010). For higher wave amplitudes, these
coherent vortices themselves are unstable and break into small-scale turbulence (Vittori
& Blondeaux 2008; Ozdemir, Hsu & Balachandar 2013). Scandura (2013) showed in a
two-dimensional numerical setting that the instability waves and coherent vortices can
also be generated by wall imperfections of small amplitude.

The orderly two-dimensional path to transition is often accompanied or ‘bypassed’ by
transitional features of a more disorganised stochastic nature, i.e. turbulent spots. Sumer
et al. (2010) studied the solitary wave boundary layer (SWBL) in an oscillatory water
tunnel and turbulent spots were the first turbulent features emerging in such a flow. They
were initially observed after the flow reversal in the APG stage. With increasing Reynolds
number (to be defined in § 2.1) the spots were nucleated in earlier phases. A mixed
transition scenario is demonstrated in figure 2 using a sequence of video frames from
the APG stage (cf. supplementary movie 3 in Sumer et al. 2010). Turbulent spots emerge
at the early APG stage and start to grow, cf. figure 2(a–c). Before they spread everywhere
in the boundary layer, coherent vortex rollers spontaneously emerge in the laminar regions
surrounding the spots (figure 2d). The rollers quickly become unstable (figure 2e) and
break into smaller scales, which completes the transition to turbulence (figure 2f ).

Compared with the linear stability theory for instability waves, the theory behind
the onset of turbulent spots is much less established and is largely phenomenological
(Durbin 2017). This stochastic transition path is initiated by the receptivity of the
flow to finite-amplitude external perturbations such as bottom roughness or free-stream
turbulence. The boundary layer flow amplifies these perturbations and develops
streamwise-elongated regions of streamwise velocity fluctuations, termed as streaks.
The early stages of streak amplification is usually explained mathematically by linear
non-modal growth theory (Butler & Farrell 1992; Trefethen et al. 1993). Physically, the
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Figure 1. Temporal variation of the flow fields at a fixed location beneath a passing solitary wave. (a) Pressure
gradient. Two stages are defined: (i) favourable pressure gradient (FPG) stage (t < 0); (ii) adverse pressure
gradients (APG) stage (t > 0). (b) Irrotational (free-stream) velocity above the solitary wave boundary layer
(SWBL). (c) Velocity u in the laminar SWBL. Vertical profiles of u at phases t = {−5π/6, −4/π6, . . . , 5π/6}
are overlaid on contours. The red contourline is the level u = 0. The definitions for free-stream fields and
normalizations for lengths, velocities, pressure and time are introduced in § 2.1.

(a)

(d )

(b)

(e)

(c)

( f )

Figure 2. A sequence of video frames illustrating the transition modes in a SWBL at Reδ = 1483: (a)
streamwise streaks; (b–f ) turbulent spots; (d–f ) spanwise vortex rollers. The frames are extracted from the
supplementary movie 3 in Sumer et al. (2010) and reproduced with permission from Cambridge University
Press. Black arrows demonstrate the decelerating free-stream velocity. The red arrow in (a) indicates maximum
free-stream velocity. Time is normalized using the wave frequency, i.e. t = t∗ω∗ (cf. § 2.1). Video frames at (a)
t = 0.2. (b) t = 0.46. (c) t = 0.72. (d) t = 1.07. (e) t = 1.24. ( f ) t = 1.47.

streaks are generated by streamwise-oriented vortices stirring the streamwise momentum
across the boundary layer, an effect knows as the lift-up mechanism (Landahl 1980). Once
the streaks reach high amplitudes, the boundary layer becomes strongly corrugated along
its span and each streak hosts inflectional velocity profiles across vertical and spanwise
cross-sections. As a result, streaks become susceptible to inviscid instabilities (Andersson
et al. 2001; Cossu & Brandt 2002). The most energetic streaks locally broke down due to
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these secondary instabilities, and the formation of turbulent spots begins (Vaughan & Zaki
2011). Several streaks prior to the formation of turbulent spots can be seen in figure 2(a).

Unlike oscillatory boundary layers (e.g. Carstensen, Sumer & Fredsøe 2012; Biau
2016; Mazzuoli & Vittori 2016, 2019), only a few studies focused to date on the
stability characteristics of SWBLs in the presence of finite-amplitude perturbations.
Verschaeve, Pedersen & Tropea (2017) studied linear non-normal growth in the SWBL.
They showed that initial perturbations in the form of streamwise-constant counter-rotating
vortex pairs can strongly amplify streamwise-constant streaks in the FPG stage with
a maximum growth proportional to the square of the Reynolds number. Later in the
APG stage, the non-normal growth of streaks is dominated by the non-normal growth of
two-dimensional instability waves, which grow exponentially in Reynolds number. Önder
& Liu (2020) modelled external perturbations as distributed body forces and analysed the
receptivity of the SWBL to these perturbations in a linear framework. They also identified
streamwise-constant vortices as the most effective perturbations to generate streaks. They
further deployed these optimal perturbations into nonlinear governing equations and
analysed the stability of the SWBL for various perturbation magnitudes. The resulting
streaks have been found to play a dual role in the boundary layer stability. Low-to-moderate
amplitude streaks have a dampening effect and delay the transition in the APG stage. In
contrast, if the streaks are strongly amplified and elevated deep into the free stream, they
can develop sinuous oscillations and initiate a bypass-transition scenario in the FPG stage.

In the present work we focus on a natural bypass-transition scenario, in which a
solitary wave passes over random bottom topography containing wave-like undulations
of finite amplitude. Particular attention is paid to the receptivity stage, where broadband
perturbations introduced by irregular bottom roughness is filtered by the SWBL and
converted into energetic streamwise streaks. The linear and nonlinear stages of the
phenomenon are identified with special emphasis on dynamic feedback mechanisms
between streamwise streaks and vortices. In the last step, the various transition paths to
turbulence are illustrated for different roughness heights.

The paper is organized as follows. First, the SWBL model along with the bottom
topography function will be introduced in § 2.1. Subsequently, numerical details of DNS
will be presented in § 2.2. The analysis of results consists of two parts. In § 3 we will first
focus on the boundary layer response to bottom perturbations. The generation of streaks
will be analysed in detail in this section. Subsequently, in § 4 various transition scenarios
will be investigated. Finally, conclusions will be summed up in § 5.

2. Methodology

2.1. Flow configuration
We consider a SWBL model in which streamwise scales are much larger than vertical
scales such that a parallel boundary layer model can be applied. Consequently, the
irrotational velocity (free-stream velocity hereafter) in this model depends only on time,
i.e.

u∗
0(t

∗) = U∗
0msech2(ω∗t∗), (2.1)

where ω∗ is the effective wave frequency. The wave event takes place in −∞ < t∗ < ∞
with maximum free-stream velocity U∗

0m occurring at time t∗ = 0. The reader is referred
to Önder & Liu (2020) for the relation of these quantities to wave parameters. Using the
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wave frequency and kinematic viscosity, the Stokes length

δ∗
s =

√
2ν∗/ω∗ (2.2)

is defined as the length scale of the boundary layer and employed in the definition of the
Reynolds number

Reδ = U∗
0mδ∗

s

ν∗ . (2.3)

The problem is defined in a Cartesian coordinate system x∗ = (x∗, y∗, z∗), where x∗ is
the direction of wave propagation (also called streamwise direction), y∗ is the spanwise
direction parallel to wave crest and z∗ is the vertical direction extending from the bed
upwards. The velocity components associated with these directions are u∗ = (u∗, v∗, w∗).
We introduce the following normalizations to the spatial coordinates, time, velocity and
pressure fields, respectively:

x = x∗/δs; t = t∗ω∗; u = u∗/U∗
0m; p = p∗/ρ∗U∗2

0m. (2.4a–d)

The non-dimensional pressure gradient satisfying the free-stream momentum balance is
given by

−∂p0

∂x
= 4

Reδ

sech2(t)tanh(−t). (2.5)

This pressure gradient drives the incompressible Navier–Stokes equations, which, together
with the continuity equation, represent the governing equations for the three-dimensional
instantaneous velocity in the boundary layer

2
Reδ

∂ui

∂t
+ uj

∂ui

∂xj
= 1

Reδ

∂2ui

∂xj∂xj
− ∂p

∂xi
− ∂p0

∂x1
δi1, (2.6)

∂ui

∂xi
= 0, (2.7)

where summation over repeated indices are applied, and subscripts correspond to
(u1, u2, u3) = (u, v, w) and (x1, x2, x3) = (x, y, z).

At the bottom boundary, we consider a random topography parameterized by the
roughness height h, and the grain sizes lx and ly in the streamwise and spanwise directions,
respectively. For specified h, lx and ly, an ensemble of bottom topographies η{r}(r =
1, . . . , R) can be generated using a set of statistically independent topography functions
W{r}(r = 1, . . . , R), i.e.

η{r}(x, y) = hW{r}(x, y; lx, ly), (2.8)

where W{r} is defined as the sum of two-dimensional sinusoidal modes equipped with
random amplitudes A{r} and phases φ{r}, i.e.

W{r}(x, y; lx, ly) =
Lx/lx∑
n=0

Ly/ly∑
m=−Ly/ly

A{r}
nm cos

(
2πnx

Lx
+ 2πmy

Ly
+ φ{r}

nm

)
. (2.9)

Here, the grain sizes lx and ly are specified as the cut-off wavelengths, and Lx and Ly are
the length of the domain in the streamwise and spanwise directions, respectively. Here Lx
and Ly are enforced to be integer multiples of lx and ly. We have normalized the amplitudes
such that their Euclidean norm is unity, i.e. ‖A{r}‖ = 1 and the mean mode is set to zero

912 A21-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1141


A. Önder and P.L.-F. Liu

Cases h R z{1}
c (Lx, Ly, Lz) (N0

x , N1
x , N2

x ) Ny (N0
z , N1

z , N2
z ) (N0

p , N1
p , N2

p )

h0.01 0.01 1 0.027 (60, 40, 60) (400, 400, 240) 320 (50, 190, 96) (4, 4, 2)

h0.04 0.04 1 0.11 (60, 40, 60) (480, 480, 320) 400 (60, 228, 128) (5, 5, 3)

h0.05 0.05 1 0.137 (60, 40, 60) (480, 560, 320) 480 (60, 266, 128) (5, 6, 3)

h0.055 0.055 1 0.154 (60, 40, 60) (480, 560, 320) 480 (60, 266, 128) (5, 6, 3)

h0.06 0.06 8 0.165 (60, 40, 60) (560, 560, 320) 480 (70, 266, 128) (6, 6, 3)

h0.07 0.07 1 0.192 (60, 40, 60) (560, 640, 320) 720 (70, 304, 128) (6, 7, 3)

Table 1. Summary of cases. In all cases Reδ = 2000. We denote by h the roughness height and Lx, Ly and
Lz the dimensions of the computational domain. Three subdomains defined in the vertical direction (see text
for details). Here (N0

x , N1
x , N2

x ) and (N0
z , N1

z , N2
z ) are the number of grid points in each subdomain in the

horizontal and vertical directions, respectively, Np is the polynomial orders of high-order finite elements, R
is the number of realizations over different topography functions W {r}(r = 1, . . . , R), cf. (2.8) and (2.9), and
z{1}

c = h max{W {1}} is the highest elevation over the topography function W {1} (figure 3), which is employed
in all cases.

(A{r}
00 = 0). A similar bottom model was applied in Vittori & Verzicco (1998) to represent

bottom imperfections in an oscillatory boundary layer. Vittori & Verzicco considered very
small h, and modelled the wall using a Neumann boundary condition derived from the
first-order Taylor expansion. In the present work, h is not restricted to very small values
and the corrugations are fully represented using coordinate transformation, cf. § 2.2 for
details.

The flow data at a time instant t can be analysed by combining ensemble averaging with
horizontal-plane averaging, i.e. for a generic variable ϕ,

〈ϕ〉(z, t) = 1
RLxLy

R∑
r=1

∫ Lx

0

∫ Ly

0
ϕ{r}(x, y, z, t) dx dy, (2.10)

where ϕ{r}(r = 1, . . . , R) are the realizations obtained over the topographies η{r}(r =
1, . . . , R). Streamwise and spanwise averaging can be similarly combined with ensemble
averaging using the operators 〈ϕ〉x and 〈ϕ〉y. When we need to distinguish the plane
averaging in a single realization from ensemble averaging (2.10), we will use 〈ϕ{r}〉 instead
of 〈ϕ〉. For simplicity, we will drop the superscript {r}, when we refer to instantaneous
fields, or when a case has only single realization (R = 1). We denote the instantaneous
fluctuating fields as ϕ′ = ϕ − 〈ϕ〉.

For the present flow configuration, the transition scenario depends on four parameters:
Reδ , h, lx and ly. In this study we investigate the receptivity and transition by varying the
roughness height between h = 0.01 and 0.07. The details of cases are given in table 1. The
Reynolds number is set to Reδ = 2000. This is the highest Reynolds number in Sumer et al.
(2010), where turbulent spots mediated the transition to turbulence in the corresponding
case. We will show that a rich variety of transition scenarios are possible at this Reynolds
number depending on the roughness height.

In order to fully resolve the roughness sublayer without excessive computational
demand, the smallest corrugation wavelengths are set to a moderate value: lx = ly = 2.
All cases are simulated over a bottom topography with identical topography function
W{1} (figure 3). In case h0.06 seven additional realizations over different topography
functions (W{2} − W{8}) are run to conduct some additional spectral and correlation
analysis in the receptivity stage. These additional realizations are continued only until
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Figure 3. A randomly distributed topography function with cut-off corrugation wavelengths lx = 2 and ly = 2
in the streamwise and spanwise directions, respectively, (2.9). This topography function is employed in all
cases, and it is referred to as W {1} in the manuscript.

the onset of transition (t = π/9). Therefore, they are not used in the breakdown stage. All
instantaneous visualizations in forthcoming sections will employ the data over W{1}. The
maximum bed elevation over W{1}, i.e. z{1}

c = h max{W{1}}, can be found in table 1 for all
cases. In the literature, irregular roughness is often characterized by amplitude parameters
such as the r.m.s. roughness height Sq = h

√
〈(W{r})2〉, the maximum peak to valley

height Sz = h(max{W{r}} − min{W{r}}), skewness Ssk = 〈(W{r})3〉/S3
q, r.m.s.slopes S′

x =
h
√

〈(∂W{r}/∂x)2〉 and S′
y = h

√
〈(∂W{r}/∂y)2〉, cf. e.g. Busse, Lützner & Sandham (2015).

For W{1}, these parameters read as Sq = 0.7h, Sz = 5.69h, Ssk = −0.03, S′
x = 1.23h and

S′
y = 1.26h. Other realizations have very similar characteristics, e.g. W{2} has Sq = 0.7h,

Sz = 5.74h, Ssk = 0.0015, S′
x = 1.26h and S′

y = 1.25h.

2.2. Numerical details
The incompressible Navier–Stokes and continuity equations in (2.6) and (2.7) are solved
using the high-order spectral/hp element library Nektar++ (Cantwell et al. 2015). Using the
formulation in Serson, Meneghini & Sherwin (2016), the equations are first transformed
to generalized coordinates (x̄, ȳ, z̄) via

x = x̄, y = ȳ, z = z̄ + sech2
(

z̄
Lm

)
η(x, y), (2.11a–c)

with Lm varying between 0.5 and 1 depending on the case. This mapping transforms
the physical domain with undulated bottom to a rectangular box, which is suitable for a
mixed discretization, where a bi-dimensional spectral-element discretization (Karniadakis
& Sherwin 2005) can be combined with Fourier expansions (Karniadakis 1990). The
mixed representation allows significant cost reduction and was employed in previous DNS
works on bottom boundary layers (Önder & Yuan 2019; Önder & Liu 2020; Xiong et al.
2020). We employ a bi-dimensional modified Legendre basis (Karniadakis & Sherwin
2005) in the streamwise-wall normal (x̄–z̄) plane, and Fourier expansions are defined in
the spanwise (ȳ) direction. The 2/3 rule is applied to avoid aliasing errors (Boyd 2001).
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The height, width and length of the computational domain are Lx = 60, Ly = 40 and
Lz = 60 (normalized with δ∗

s ), respectively. The computational domain is sufficiently
large to allow the transition modes and their secondary instabilities to develop, e.g. the
vortex rollers have a streamwise spacing of approximately 
x ≈ 15 (Vittori & Blondeaux
2008) and the linear non-normal theory predicts a spanwise streak spacing 
y ≈ 4–5
(Verschaeve et al. 2017; Önder & Liu 2020). Periodic boundaries are employed in the
streamwise and spanwise directions. The no-slip boundary condition (u = 0) is applied
on the bottom wall and the zero-Neumann condition (∂u/∂z = 0) is applied at the top
boundary. The simulations are started at time t = −π with zero initial fields, i.e. u(x, t =
−π) = 0.

The computational domain is discretized using a structured grid. In the vertical direction
the domain is partitioned into three subdomains: Ω0 := z̄ ∈ [0, 0.2], Ω1 := z̄ ∈ [0.2, 8],
Ω2 := z̄ ∈ [8, 60]. Here Ω0 is designed to resolve the roughness sublayer with a finer
resolution in the vertical with 10 elements, whose size increases gradually with an
expansion ratio of 1.08 between adjacent elements; Ω1 is the domain where the transition
and consequent turbulence takes place. This partition is designated with 38 elements in
the vertical, and an expansion ratio of 1.05 is employed. In the outer most partition, Ω2, 32
elements are defined with an expansion ratio of 1.05. Eighty elements are designated to the
streamwise direction. The laminar flows in all cases are simulated using the polynomial
order Np = 4 in Ω0 and Ω1, Np = 2 in Ω2, and 60 Fourier modes (Ny = 120 spanwise grid
points). Wall units are defined using the average skin-friction drag imposed by the bed, i.e.
τ ∗

b := ∑
{r}(
∫
Γ

F ν,{r} dΓ ) · êx/LxLyR, where Γ is the bottom surface, and F ν,{r} is the
viscous drag force at a point on the surface in a given realization. In a laminar SWBL
over a flat bottom (h = 0), the maximum mean skin-friction drag over the entire phase
space is τmax∗

b := max{τ ∗
b } = 1.21ρ∗U∗2

0mReδ
−1 (figure 20 in § 4). This peak value is not

significantly modified in the laminar stage of rough bottom cases and can be employed
to analyse the resolution until the onset of transition. At Reδ = 2000, the maximum
laminar friction velocity is u∗

τ := √
τmax∗

b /ρ∗ = 0.025U∗
0m, and the corresponding viscous

length scale is δ∗
ν := ν∗/u∗

τ = 0.02δ∗
s . Consequently, in Ω0 and Ω1, the grid spacings in

wall units (i.e. normalized with δ∗
ν ) are 
x̄+ = 7.38 and 
ȳ+ = 16.4 in homogenous

directions. A spectral analysis in § 3 assesses the resolution in these directions for the
receptivity stage and shows no spurious accumulation of energy in high wavenumbers.
In the vertical direction, the resolution at the wall is 
z̄+ = 0.16. As we aim to resolve
all scales of the flow in our DNS experiments, no artificial stabilization technique such
as spectral vanishing viscosity (Kirby & Sherwin 2006) is employed. This results in
significant numerical instabilities when the flows start to break down into finer scales
during the transition. To avoid these numerical problems due to under-resolution, we
employed a p-type refinement (Karniadakis & Sherwin 2005) in which polynomial orders
and dimension of the Fourier space are increased. Following the grid refinement, the
simulations are rerun from the onset of transition onward. This process is repeated until
stability is achieved. The high-order refinements yield very dense grids, whose final
resolution are presented in table 1 for each case. Since τ ∗

b in the turbulent stage does
not exceed the peak of the laminar stage in h0.01–h0.06 (figure 20), grid refinements
improve aforementioned grid spacings in wall units in these cases. This condition does
not apply to h0.07 in which the mean skin-friction drag exhibits a peak at the start of the
APG stage at τ ∗

b = 3.21ρ∗U∗2
0mReδ

−1. Table 1 specifies N0
p = 6, N1

p = 7 and Nz = 720 for
h0.07. Consequently, the streamwise grid spacings at the peak skin-friction phase become

x̄+ = 14.01 and 
x̄+ = 12.26 in Ω0 and Ω1, whereas spanwise grid spacing and the
resolution at the wall become 
ȳ+ = 19.38 and 
z̄+ = 0.3, respectively.
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Transition in rough solitary wave boundary layers

A system of differential algebraic equations is obtained using the continuous Galerkin
method, and the coupled system is segregated using a velocity-correction scheme designed
for transformed coordinates, cf. Serson et al. (2016) for details and validations. The
momentum equations are integrated in time using a second-order scheme, in which both
advection and diffusion terms are treated implicitly (Vos et al. 2011). The additional
viscous and pressure terms due to coordinate transformation are solved explicitly whenever
possible to benefit from the lower cost of the explicit scheme. In cases with high roughness
(h0.06 and h0.07 in table 1), the explicit scheme was unstable and we switched to implicit
mapping. A varying time-step size is utilized, which is refined adaptively with increasing
velocities in the wave event. The maximum Courant–Friedrichs–Lewy numbers in all cases
are kept below 0.15 to ensure a good temporal resolution. All the resulting computational
fields are mapped back to physical coordinates (x) when analysing the results.

3. Receptivity stage: development of streaks

In this section we study the response of the SWBL to bottom topography until the onset of
transition. The vertical profiles of ensemble-averaged velocities 〈u〉 in cases h0.01, h0.04
and h0.06 are presented in figure 4(a). Only the realization over W{1} is considered for case
h0.06 to allow a comparison over identical topography function. Velocity profiles over a
flat bottom (h = 0) are also presented as reference. The profiles over random topography
start at z = z{1}

c , cf. the enlarged view in figure 4(b). Above this level, there is an excellent
match among different cases until the end of FPG stage. Starting from phase t = −1/9π,
noticeable deviations occur for h0.06, whereas cases h0.01 and h0.04 appear to strictly
follow the reference laminar profile for all presented times.

The evolution of streamwise and vertical instantaneous velocities on a subplane at
z = 0.5 are shown in figure 5 for case h0.06. In the initial stages of the event, both
velocity components directly respond to bottom roughness and have irregular fluctuations
on the plane (figure 5a–d). When the presence of the wave becomes stronger, the
boundary layer starts to amplify streaks of low and high streamwise momentum, cf.
figure 5(e,g). The development of streaks in h0.06 is also demonstrated in supplementary
movie 1 available at https://doi.org/10.1017/jfm.2020.1141, where the time evolution of the
streamwise velocity contours (u/u0(t)) is shown for the whole horizontal plane at z = 0.5.
At the end of the FPG stage, these structures already dominate the flow, and the streamwise
velocity becomes approximately streamwise constant. This can be also seen in figure 6(a),
where u(t = 1/9π) is demonstrated in the full domain. The boundary layer is modulated
along its span by streamwise-constant streaks. The prevalence of streamwise-constant
streaks is consistent with the predictions of linear non-normal growth theory (Verschaeve
et al. 2017; Önder & Liu 2020). These streaks are accompanied by counter-rotating
vortices (figure 6b), which are arranged to transport low-momentum fluid upwards and
high-momentum fluid downwards. This is the lift-up mechanism (Landahl 1980), which
is discussed in detail in Önder & Liu (2020) for SWBLs. As the cross-stream velocity
components building the vortices are of the same order (figure 6b), we will consider
hereafter only the vertical velocity to discuss the dynamics of vortices. The streamwise
alignment of vertical velocity in figure 5( j,l) implies that the counter-rotating vortices
are, like the streaks they generate, longitudinal structures. However, unlike the streamwise
streaks, streamwise vortices do not dominate the momentum in their direction, as we
observe considerable smaller-scale fluctuations in figure 5( j,l). This is because streamwise
vortices are much weaker structures than the streamwise streaks, as indicated by the values
in the quiver key and colourbar in figure 6(b). In fact, the linear streamwise-constant
perturbation equations for smooth wall-bounded flows suggest that the cross-stream
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Figure 4. (a) The vertical profiles of ensemble-averaged steamwise velocities between times [−4/9π, 1/9π]
for cases h0.01, h0.04 and h0.06. Reference profiles obtained over a perfectly smooth wall (h = 0) are also
plotted. The profiles are shifted by unity at each time instance. The highest crest level (z{1}

c , cf. table 1) for each
case is shown with a horizontal line of the same type. (b) Enlarged view of the near-bed region. The profiles
are shifted by 0.4 at each time instance.

components are one-order lower in Reynolds number than the streamwise components
(Waleffe 1995; Önder & Liu 2020). The same principle carries over here to the SWBL
over rough bottom topography, and the amplification concentrates almost entirely in one
(streamwise) component.

The development of longitudinal streaks and vortices can be further inspected using
longitudinal and transverse spectra at a selected height. The longitudinal spectral density
for fluctuating velocities is approximated on the discrete grid by

Ex,ij(kx, z, t) ≈ 2

kx

〈ûi(kx, y, z, t)û∗
j (kx, y, z, t)〉y for kx ≥ 0, (3.1)

where û are the Fourier modes that are associated with the streamwise wavenumber kx,

kx = 2π/Lx is the wavenumber spacing. The subscript x demonstrates the direction of
Fourier decomposition, whereas i and j denote the fluctuating velocity components under
inspection, e.g. Ex,uw is the longitudinal cross-spectral density function for components u′
and w′. Integrating over spectral densities delivers the Reynolds stress, 〈u′

iu
′
j〉 = ∫

Ex,ij dkx.
Similarly, the transverse spectral density function is obtained by

Ey,ij(ky, z, t) ≈ 2

ky

〈ûi(ky, x, z, t)û∗
j (ky, x, z, t)〉x for ky ≥ 0, (3.2)

where û(ky, x, z, t) are the spanwise Fourier modes associated with ky.
Figure 7 presents the evolution of the longitudinal spectral densities (3.1) for streamwise

and vertical velocity fluctuations at z = 0.5 for case h0.06. Wall undulations with
streamwise cut-off wavenumber lx = 2 (cf. figure 3) are defined in the spectral band
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Figure 5. Temporal evolution of streamwise (a,c,e,g,i,k) and vertical (b,d,f ,h,j,l) velocities on plane z = 0.5
between 28 < y < 34 is shown for case h0.06. The velocities are normalized by the free-stream velocity u0(t)
at the respective phase. The contours levels span 12 levels between: (a) [0.25, 0.28]; (b) [−0.06, 0.052]; (c)
[0.52, 0.6]; (d) [−0.034, 0.037]; (e) [0.57, 0.63]; ( f ) [−0.016, 0.02]; (g) [0.52, 0.63]; (h) [−0.0083, 0.012]; (i)
[0.26, 0.69]; (j) [−0.0062, 0.0073]; (k) [−0.04, 0.53]; (l) [−0.0043, 0.008].
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Figure 6. The instantaneous fields at t = 1/9π in case h0.06. (a) Contours of streamwise velocity on a
horizontal plane z = 0.5 (50 % opaque), and on four vertical cutplanes evenly spaced in the streamwise
direction. The contours are normalized with the instantaneous free-stream velocity u0(t = 1/9π). (b) Enlarged
view of a streak at cutplane x = 0. Arrows show in-plane velocity components (vêy + wêz)/u0.

0 ≤ kx ≤ π, i.e. (2.8). Therefore, the flow is subject to a broadband forcing in this spectral
band. In this regard, a step-like abrupt decay is observed at the end of both spectra
at kx = π due to cut-off in forcing. The boundary layer responds evenly to broadband
forcing in 1 � kx < π, and we observe a flat spectrum in this band. Below this band, the
response is far greater due to intrinsic noise amplification in the boundary layer and the
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Figure 7. Longitudinal spectral densities (3.1) for streamwise (a) and vertical (b) velocity fluctuations at z =
0.5 at phases t = {−8π/9, −7π/9, . . . , π/9} for case h0.06. The colour coding is the same for both figures.
The energy in streamwise-constant modes (kx = 0) are shown with circles.

streamwise-constant mode (kx = 0) prevails with a very distinctive peak in the streamwise
velocity spectra (figure 7a). Streamwise-constant modes are initially negligible in the
vertical velocity spectra (figure 7b). They only become prevalent in the late FPG stage
(starting from t = −3π/9 in the figure). Interestingly, this late amplification is limited
to streamwise-constant modes while the rest of the low-frequency band remains below
the plateau level. This fine-tuned amplification hints to a mechanism in which energetic
streamwise-constant streaks induce streamwise-constant vortices. Details of this process
will be investigated later in this section. Consistent with the visualizations in figure 5,
streamwise-constant vertical motions are not as dominant as their streamwise counterparts,
e.g. the peaks at kx = 0 at late phases are located 5–6 decades higher than the plateau
1 � kx < π in figure 7(a), whereas the difference is only 1–2 decades in figure 7(b).

Transverse velocity spectra at z = 0.5 are presented in figure 8 for case h0.06. The
forcing by bottom topography focuses in the band 0 ≤ ky ≤ π as the spanwise cut-off
wavenumber of the bed undulations is ly = 2. At earlier times we see again a step-like
decay for ky > π. However, in the transverse spectra, the energy spreads soon to higher
wavenumbers and the step profile disappears. This is due to the development of internal
shear layers around streaks, which promotes fine-scale energy. A peak at ky ≈ 1.5 starts
to appear in the streamwise energy spectra at t ≈ −π/3 and becomes more prevalent at
later times, cf. figure 8(a). These peaks indicate that the average spanwise spacing between
adjacent streak pairs is l∗s ≈ 2π/1.5δ∗

s ≈ 4.2δ∗
s . Using a linear non-normal analysis based

on a body forcing model, Önder & Liu (2020) also observed a high amplification in
the range ky ≈ 1.5. This suggests that a similar non-normal amplification mechanism
(lift-up mechanism) becomes prominent for t ≥ −π/3 in the present problem. The spacing
l∗s ≈ 4.2δ∗

s is also remarkably close to the spacing of transitional streaks in Mazzuoli &
Vittori (2019), where an oscillatory boundary layer over spherical roughness elements
is studied in an intermittently turbulent regime. They reported a spacing of l∗s ≈ 4.5δ∗

s
slightly above the crest of roughness elements (z∗ − z∗

c ≈ 0.2δ∗
s ).

A peak is observed only at t = π/9 in the vertical spectra, cf. figure 8(b). Besides the
relative weakness of streamwise-constant vertical fluctuations compared with background
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Figure 8. Transverse spectral densities (3.2) for streamwise (a) and vertical (b) velocity fluctuations at z = 0.5
at phases t = {−8π/9, −7π/9, . . . , π/9} for case h0.06. See figure 7(a) for the colour coding of the lines.

fluctuations, this delayed appearance of the peak in the vertical spectra again suggests a
mechanism, in which streamwise-constant streaks, when they become sufficiently strong,
feed streamwise-constant vortices.

The receptivity process can be further elaborated by studying the dynamics of
streamwise streaks and vortices in isolation. Önder & Meyers (2018) employed a simple
sharp spectral filter to distinguish between long streaks in the atmospheric boundary layer
and wakes of wind turbines. It is based on removing streamwise wavenumbers above a
cut-off wavenumber kc

x using the filter G(kx; kc
x). We adapt the same filter here to extract

long streaky components. We have seen above that streamwise-constant motions clearly
dominate. Therefore, kc

x = 0 is selected as the cut-off wavenumber. As a result, the filter
becomes equivalent to the streamwise-averaging operator

ũ′( y, z, t) := G(kx; kc
x = 0) ◦ u′(x, t) = 〈u′〉x. (3.3)

The residual finer scale velocity components are then expressed by u′′ := u′ − ũ′. This
results in the following triple decomposition of the instantaneous velocity field:

u = 〈u〉 + ũ′ + u′′︸ ︷︷ ︸
u′

. (3.4)

The streaks are characterised by the streamwise-constant component of fluctuating
streamwise velocity fields, i.e. ũ′, and streamwise vortices are characterised by the
streamwise-constant components of the cross-stream velocities, i.e. ṽ′ and w̃′. The triple
decomposition is defined only in the fluid domain above the highest topography (z > z{r}

c ).
Reynolds stresses can now be decomposed into two components,

〈u′
iu

′
j〉 = 〈ũ′

iũ
′
j〉 + 〈u′′

i u′′
j 〉. (3.5)

The filtered, or streamwise-averaged, fields have the following properties:

∂ũ′

∂x
= 0; ˜̃u′u′′ = 0; ˜̃u′ũ′ = ũ′ũ′. (3.6a–c)
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Figure 9. Vertical profiles of streamwise velocity fluctuations for cases h0.01, h0.04 and h0.06. (a) Intensity of
streamwise-constant fluctuations 〈ũ′ũ′〉1/2. The profiles are shifted by 0.16 at each time instance. (b) Intensity
of three-dimensional fluctuations 〈u′′u′′〉1/2. The profiles are shifted by 0.02 at each time instance. The highest
crest level (z{1}

c ) for each case is shown with a horizontal line of the same type.

These properties also apply to triply decomposed pressure fields, i.e. p = 〈p〉 + p̃′ + p′′.
The vertical profiles of streamwise fluctuation intensities for streamwise-constant

(〈ũ′ũ′〉1/2) and residual (〈u′′u′′〉1/2) motions in cases h0.01, h0.04 and h0.06 are plotted
in figures 9(a) and 9(b), respectively. In all three cases, residual fluctuations peak at
z = zc and decay rapidly upwards from there. Their intensities peak at t = −1/9π when
the bottom shear is maximum (cf. figure 20 in § 4). Streamwise-constant fluctuations
have very different characteristics compared with residual fluctuations. The peaks are
located significantly above the crest level and move progressively to higher levels with
lifting up of streaks, cf. figure 9(a). Their intensities are an order of magnitude or more
higher than residual intensities. The peak values in 〈ũ′ũ′〉1/2 profiles represent an average
value for streak amplitudes. These amplitudes increase with roughness height h with an
increasingly nonlinear rate, i.e. their scaling with roughness height is hp with p > 1. There
is a significant jump between cases, e.g. at t = 1/9π, the peak intensities are 0.0018,
0.042 and 0.15 for h0.01, h0.04 and h0.06, respectively. Case h0.01 develops very weak
streaks whose intensity is almost indistinguishable in figure 9(a). This suggests a nonlinear
threshold mechanism for onset of streak amplification.

Figure 10(a) shows the profiles of the streamwise-constant component of vertical
fluctuation intensities (〈w̃′w̃′〉1/2). The peak values of 〈w̃′w̃′〉1/2 represent an average
measure for the amplitude of streamwise-constant vortices. Similar to 〈ũ′ũ′〉1/2, 〈w̃′w̃′〉1/2

peaks significantly above the crest levels (zc) and the relationship to the roughness height
is nonlinear. As discussed above, these intensities are an order of magnitude lower
in Reynolds number. At t = 1/9π, the peak values are 5.95 × 10−6, 1.86 × 10−4 and
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Figure 10. Vertical profiles of vertical velocity fluctuations for cases h0.01, h0.04 and h0.06. (a) Intensity
of streamwise-constant fluctuations 〈w̃′w̃′〉1/2. The profiles are shifted by 0.0005 at each time instance. (b)
Intensity of three-dimensional fluctuations 〈w′′w′′〉1/2. The profiles are shifted by 0.004 at each time instance.
The highest crest level (zc) for each case is shown with a horizontal line of the same type.

1.06 × 10−3 for h0.01, h0.04 and h0.06, respectively. These values are lower than the peak
residual fluctuation intensities 〈w′′w′′〉1/2 in figure 10(b).

The relationship between bottom topography and the spatial organization of streaks, and
the origins of the nonlinear receptivity process remain to be elaborated. Some insights
can be obtained by analysing the perturbation and energy equations. The governing
equations for the ensemble-averaged velocity field 〈u〉 = (〈u〉, 0, 0) in the region above
the topography (z > z{r}

c ) are expressed by

2
Reδ

∂〈u〉
∂t

= 1
Reδ

∂2〈u〉
∂z2 − ∂〈u′w′〉

∂z
− ∂p0 + 〈p〉

∂x
, (3.7)

0 = −∂〈w′w′〉
∂z

− ∂〈p〉
∂z

. (3.8)

We obtain the governing equations for the fluctuating velocity fields u′ by subtracting
(3.7)–(3.8) from (2.6),

2
Reδ

∂u′

∂t
+ 〈u〉∂u′

∂x
+ w′ ∂〈u〉

∂z
+ ∇ · (u′u′) = 1

Reδ

∇2u′ + ∂〈u′w′〉
∂z

− ∂p′

∂x
, (3.9)

2
Reδ

∂v′

∂t
+ ∇ · (v′u′) = 1

Reδ

∇2v′ − ∂p′

∂y
, (3.10)

2
Reδ

∂w′

∂t
+ ∇ · (w′u′) = 1

Reδ

∇2w′ + ∂〈w′w′〉
∂z

− ∂p′

∂z
, (3.11)

912 A21-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1141


A. Önder and P.L.-F. Liu

where ∇ = ∂/∂xêx + ∂/∂yêy + ∂/∂zêz and ∇2 = ∇ · ∇. The governing equations for
streamwise-constant fluctuating fields ũ′ are obtained by applying the filtering operation
(3.3) to the individual terms in the fluctuation equations (3.9)–(3.11) and imposing further
simplications using (3.6a–c),

2
Reδ

∂ ũ′

∂t
+ w̃′ ∂〈u〉

∂z
+ ∂ ũ′v′

∂y
+ ∂ ũ′w′

∂z
= 1

Reδ

∇̃2ũ′ + ∂〈u′w′〉
∂z

, (3.12)

2
Reδ

∂ṽ′

∂t
+ ∂ṽ′v′

∂y
+ ∂ṽ′w′

∂z
= 1

Reδ

∇̃2ṽ′ − ∂ p̃′

∂y
, (3.13)

2
Reδ

∂w̃′

∂t
+ ∂ṽ′w′

∂y
+ ∂w̃′w′

∂z
= 1

Reδ

∇̃2w̃′ + ∂〈w′w′〉
∂z

− ∂ p̃′

∂z
, (3.14)

where ∇̃ = ∂/∂yêy + ∂/∂zêz. These equations are supplemented with the pressure-Poisson
equation for the filtered pressure, which is obtained by taking the y-derivative of (3.13) and
the z-derivative of (3.14) and then summing up the resulting equations,

−
(

∂2p̃′

∂y2 + ∂2p̃′

∂z2

)
= ∂2ṽ′v′

∂y2 + 2
∂2ṽ′w′

∂y∂z
+ ∂2w̃′w′

∂z2 − ∂2〈w′w′〉
∂z2 . (3.15)

Equation (3.12) is the momentum equation for streaks. Equations (3.13)–(3.15) are
the governing equations for streamwise-constant vortical motions. We note that
streamwise-constant pressure is decoupled completely from streamwise fluctuations. It
is observed that streak and vortex equations are only connected by nonlinear terms
containing the residual fluctuations. We will see later in this section that this link
plays a key role for the feedback from streaks to vortices. Multiplying (3.12) by ũ′ and
ensemble-averaging the resulting equation, we obtain the energy budget for streaks

1
Reδ

∂〈ũ′2〉
∂t︸ ︷︷ ︸

E11

= −
〈

ũ′
(

∂ ũ′v′

∂y
+ ∂ ũ′w′

∂z

)〉
︸ ︷︷ ︸

T11

−〈ũ′w̃′〉∂〈u〉
∂z︸ ︷︷ ︸

P11

+ 1
2Reδ

∂2〈ũ′ũ′〉
∂z2︸ ︷︷ ︸

D11

− 1
Reδ

〈(
∂ ũ′

∂y

)2

+
(

∂ ũ′

∂z

)2〉
︸ ︷︷ ︸

ε11

, (3.16)

where T11 contains the terms for mean and turbulent transport and redistribution, P11 is
the production term, D11 is the diffusive transport term and ε11 is the dissipation term.
Figure 11 demonstrates the vertical profile of each budget term at three representative
phases t = −2π/3, −π/3 and 0 for case h0.06. Two different streak generation
mechanisms are observed. Initially, when the free-stream velocity and boundary layer
shear are still weak, the streaks are generated by diffusive transport from the bed
upwards, cf. figure 11(a). At this initial stage, the production term is negligible, and
vertical fluctuations and the lift-up mechanism play no role. At later phases of the FPG
stage, vertical fluctuations and shear strengthen, and the lift-up mechanism is activated.
Consequently, the production term becomes the dominant gain term, cf. figures 11(b) and
11(c).
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Transition in rough solitary wave boundary layers
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Figure 11. Energy budget for streamwise-constant streamwise fluctuations (ũ′), (3.16), in case h0.06. Results
for (a) t = −2π/3; (b) t = −π/3; (c) t = 0.

Although the energy of the early streaks is very low, these streaks determine the initial
positioning over the randomly distributed bed undulations. As they are produced by
diffusive transport upwards from the bed, direct connections between streak locations and
bed topography are to be expected. Assuming a linear process, streamwise-constant streaks
are excited by streamwise-constant modes of the topography. In a single realization, this
relationship can be quantified using the correlation coefficient

C{r}(ũ′, η̃, z, t) = 〈ũ′{r}η̃{r}〉√
〈(ũ′{r})2〉

√
〈(η̃{r})2〉

, (3.17)

where η̃ = G(kx; kc
x = 0) ◦ η = 〈η〉x is the filtered bed elevation function. The time

evolution of C{r}(ũ′, η̃) at z = 0.5 is plotted in figure 12(a) for case h0.06 for five different
realizations. Until t ≈ −π/2, there is an almost perfect negative correlation between
the filtered topography and streaks, i.e. C{r}(ũ′, η̃) ≈ −1. Therefore, at this initial stage,
low-speed streaks develop on high filtered topography and vice versa. The anticorrelations
reduce in the second half of the FPG stage when the lift-up mechanism takes over the
diffusive generation of streaks. There is a large scatter among different realizations at this
stage. As the streaks are the largest features of the flow, their statistical convergence is
slow. Despite low anticorrelations, the energetic streaks at these later stages build on the
orientation history before them. This is shown in figure 13 for three representative time
instances t = −2π/3, −π/3 and 0 in case h0.06 (r = 1). Initially, the relationship between
high topography and low-speed streaks and low topography and high-speed streaks is
very strong as expected from cross-correlations, figure 13(a). This association reduces
with streaks getting stronger but it never completely disappears (figure 13b,c). In fact, the
most unstable streak for this realization is the low-speed streak at y = 32, which breaks
down into turbulent spots at early APG stage (cf. § 4). We see that this streak is initially
seeded by a wide bump in 30 < y < 33 in the diffusive growth stage (figure 13a), and it
grows further from there in the lift-up stage. Figure 12(b) further compares C{1}(ũ′, η̃) for
different roughness heights. The initial stage with strong anticorrelations lasts longer with
decreasing roughness height due to slow development of streaks. In general, C{1}(ũ′, η̃)
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Figure 12. Time evolution of the correlation coefficient C{r}(ũ′, η̃), (3.21), between streamwise-constant bed
elevation and streamwise-constant velocity ũ′ at z = 0.5. (a) Five different realizations of case h0.06; (b)
C{1}(ũ′, η̃) for different roughness heights. Red markers show the phases at which ũ′ and η̃ are shown in
figure 13.
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Figure 13. Contours of streamwise-constant fluctuation velocity ũ′/u0(t) are shown along with the
streamwise-constant bed elevation η̃ in case h0.06 at times: (a) t = −2π/3; (b) t = −π/3; (c) t = 0. Contours
are normalized with the local free-stream velocity at the respective phases (u0). The thick contour lines show
the level ũ′ = 0. Bed elevation is magnified 12 times for visibility.

decays with increasing roughness height but differences between h0.04, h0.06 and h0.07
are marginal.

Strong anticorrelations between streaks and bottom elevations at early phases suggest
that the boundary layer closely follows the features of the topography. It is shifted
up(down)wards over peaks (troughs) inducing negative (positive) streamwise velocity
fluctuations over plane-averaged velocity. The extent of these vertical shifts can be
quantified by measuring the local distance of a selected layer with constant velocity from
the rough surface. Busse, Thakkar & Sandham (2017) defined such a thickness function
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Figure 14. Probability densities of the thickness function 
D|u|(x, y, t; zd = 0.2) (3.18) in case h0.06.

utilizing the time-averaged turbulent velocity. We discard the time averaging and adapt a
similar metric,


D|u|(x, y, t; zd) := z − η{r}(x, y), (3.18)

such that

|u{r}(x, y, z, t)| = |U|(zd, t), (3.19)

which measures the vertical distance of the velocity isolevel (3.19) from the bottom. Here,
U is the one-dimensional laminar velocity over the flat bottom (h = 0). Therefore, when
h = 0, 
D|u| = zd. We chose zd = 0.2, which is close to the height of the roughness
features in case h0.06. The probability density functions (p.d.f.s) of 
D|u| for this case
(r = 1) are demonstrated in figure 14 for times t = −2π/3, −π/3 and 0. We note that
the p.d.f. over the flat bottom would be a delta function. Over the rough bottom the
local thickness varies but the probability densities still peak at 
D|u| = 0.2 with the
steepest peak occurring at t = −2π/3. At this early stage, the flow streamlines mostly
follow the curvature of bottom protrusions yielding high-speed (low-speed) streaks over
troughs (peaks). The p.d.f.s flatten over time and the boundary layer becomes increasingly
decorrelated from the details of the topography, which is consistent with the decays after
t > −π/2 shown in figure 12. At t = 0, the p.d.f. has a long positive tail due to low-speed
streaks pushing the boundary layer upwards.

Thus far, we have studied streamwise-constant streamwise fluctuations, i.e. streaks.
Production term P11 is the manifestation of the lift-up effect driven by streamwise-constant
vertical fluctuations w̃′. Therefore, an essential part of the receptivity process depends
on w̃′. The balance for the kinetic energy of streamwise-constant vertical fluctuations is
obtained by multiplying (3.14) by w̃′ and then ensemble averaging, i.e.

1
Reδ

∂〈w̃′2〉
∂t︸ ︷︷ ︸

E33

= −
〈

w̃′
(

∂w̃′v′

∂y
+ ∂w̃′w′

∂z

)〉
︸ ︷︷ ︸

T33

−
〈

w̃′ ∂ p̃′

∂z

〉
︸ ︷︷ ︸

Π33

+ 1
2Reδ

∂2〈w̃′w̃′〉
∂z2︸ ︷︷ ︸

D33

− 1
Reδ

〈(
∂w̃′

∂y

)2

+
(

∂w̃′

∂z

)2〉
︸ ︷︷ ︸

ε33

, (3.20)
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Figure 15. Energy budget for streamwise-constant vertical fluctuations (w̃′), (3.20), in case h0.06 for (a)
t = −2π/3; (b) t = −π/3; (c) t = 0.

where Π33 is the rate of work done by the pressure gradient, and the remaining
budget terms with the subscript 33 are analogous to the terms with subscript 11 above.
There is no production term for the vertical fluctuations. Figure 15 demonstrates the
vertical profile of each budget term in case h0.06 at three representative phases t =
−2π/3, −π/3 and 0. At t = −2π/3, the diffusive transport D33 and the pressure-gradient
work Π33 are the main contributors to the energy of vertical fluctuations (figure 15a).
At later times, Π33 is the prevalent gain term. In fully turbulent shear flows, this
term is usually decomposed into redistribution and transport components, among which
the redistribution term drives the transfer of energy from streamwise components to
cross-stream components (Pope 2000). This redistribution mechanism is turned off in
streamwise-constant fluctuations, as the streamwise derivative of the streamwise-constant
pressure, hence Π11, vanishes. Therefore, the redistribution and transport can only occur
between cross-stream components, and the decomposition does not provide much insight.
We need to inspect the instantaneous fields to unravel the origins of Π33.

Filled-contour distributions of ũ′ and p̃′ in case h0.06 are shown in figure 16 with
overlaid contours of w̃′ at a representative time instant for the lift-up stage (t = 0). We
observe alternating zones of velocities and pressure separated by zero contours of w̃′ (thick
contours). In these zones, low-speed streaks are associated with positive w̃′ and p̃′, and
high-speed streaks are associated with negative w̃′ and p̃′.

The filled contours in figure 16(a) further show that the magnitude of pressure in
every zone decays upwards from the bed. Moreover, the direction of vertical velocity
is aligned with the negative pressure gradient, i.e. vertical fluctuations are driven down
the pressure gradient, hence, the positive pressure-gradient work −w̃′∂ p̃′/∂̃z > 0. This
explains the positive correlation between w̃′ and p̃′, i.e. in positive pressure zones, upwards
decaying pressure drives the vertical velocity upwards, whereas in negative pressure zones,
downwards decaying pressure sets a vertical velocity downwards.

We have seen the alternating p̃′ zones play a key role in organizing the w̃′ zones. Here
p̃′ is forced by second-order variations of second-order terms based on total fluctuation
velocities v′ and w′, cf. (3.15). Among these forcing terms, ∂2〈w′w′〉/∂z2 has no effect on
spanwise variations in p̃′, and the cross-term between v′ and w′ is vanishingly small. The
remaining second-order terms can be decomposed into filtered and residual small-scale
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Figure 16. Filled contours of p̃′ (a) and ũ′ (b) in case h0.06 at t = 0 are plotted with overlaid contour lines
of w̃′. Ten levels of w̃′ between [−3.3 × 10−3, 3.3 × 10−3] are presented, where negative contours are shown
with dashed lines. The thick contour lines show w̃′ = 0.

components, e.g. w̃′w′ = w̃′w̃′ + ˜w′′w′′. Figure 17(b–e) depict the line contours of the
four decomposed forcing terms along with the filled contours of ũ′ in case h0.06 at the
instance t = 0. The term with small-scale vertical fluctuations clearly dominates over other
terms (figure 17b). The intensive regions of ∂2

˜w′′w′′/∂z2 are associated with energetic
small-scale vertical fluctuations, which are shown in figure 17(a). Therefore, the residual
fluctuations w′′ are the essential drivers of p̃′. These fluctuations are produced when
the boundary layer passes over bed topography and, therefore, they scale with the shear
imposed at the bed level. In this regard, the energy of small-scale vertical fluctuations
are clearly higher in zones of high-speed streaks (positive ũ′ zones) due to higher shear
imposed at the footprints of high-speed streaks. This large-scale amplitude modulation is
similar to the one driving inner–outer interactions in turbulent boundary layers (Mathis,
Hutchins & Marusic 2009). Enhanced small-scale energy along high-speed streaks leads
to stronger second-order derivatives (∂2

˜w′′w′′/∂z2) (figure 17b), thus, stronger forcing of
pressure along high-speed streaks. As this forcing is in the negative direction (note the
negative sign in (3.15)), this creates a negative pressure zone along high-speed streaks.
Therefore, the modulation of small-scale fluctuations by large-scale streaks plays a key
role in coupling high ũ′ with low p̃′, and vice versa.

The effect of large-scale amplitude modulation can be quantified by correlations
between large-scale velocity ũ′ and the energy of small-scale vertical fluctuations Ẽ′′

w :=
˜w′′w′′/2, i.e.

C(ũ′, Ẽ′′
w, z, t) = 〈ũ′( y, z, t)Ẽ′′

w( y, z, t)〉√
〈ũ′2〉

√
〈Ẽ′′

w
2〉

. (3.21)

The vertical profiles of these cross-correlation coefficients are plotted in figure 18 for cases
h0.01, h0.04 and h0.06. Here C(ũ′, Ẽ′′

w) increases dramatically with the roughness height.
While the amplitude modulation is ineffective in h0.01 (C(ũ′, Ẽ′′

w) < 0.1 at all times), it is
prevalent in h0.06 with C(ũ′, Ẽ′′

w) reaching approximately 70% correlation at later times.
Figure 19 summarizes the second stage of the receptivity process, in which streaks are

generated by the lift-up mechanism. This stage is characterized by a positive feedback loop
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Figure 17. Filled contours of ũ′ in case h0.06 at t = 0 are plotted with overlaid line contours of (a) ˜w′′w′′, (b)
∂2

˜w′′w′′/∂z2, (c) ∂2w̃′w̃′/∂z2, (d) ∂2ṽ′′v′′/∂y2 and (e) ∂2ṽ′ṽ′/∂y2. Line contours in (a) span 12 levels between
[2.5 × 10−6, 3 × 10−5], and line contours in (b–e) span 12 levels between [−2.64 × 10−4, 2.64 × 10−4], where
negative contours are shown with dashed lines.
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Figure 18. Profiles of cross-correlation coefficient C(ũ′, Ẽ′′
w), where Ẽ′′

w := ˜w′′w′′/2. Results for case (a)
h0.01; (b) h0.04; (c) h0.06. Colour coding is the same for all figures.
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Figure 19. Positive feedback loop between streamwise-constant streaks and vortices. The cross-stream
components have similar amplitudes, and only the vertical velocity component is considered to represent the
vortices.

between streamwise-constant streaks and vortices, i.e. cross-stream components (ṽ′′, w̃′′),
among which we only consider w̃′′ for brevity. Streaks (I) modulate the small-scale vertical
motions, ˜w′′w′′ (IIA), whose vertical derivatives (IIB) in turn impose alternating zones of
high and low streamwise-constant pressure (III) aligned with low- and high-speed streaks,
respectively. The pressure gradients in these zones induce stronger streamwise-constant
vertical velocities, hence vortices (IV). Finally, the vortices stir the boundary layer and
generate more intense streaks (IV → I).

4. Breakdown stage: transition modes

The receptivity stage was characterised by the dynamics of streamwise-constant
perturbations ũ′. The breakdown stage will now be characterized by the growth of residual
perturbations u′′ due to primary (orderly transition) or secondary (bypass transition)
instabilities. The paths leading to these instabilities are strongly mediated by streaks.
Depending on their amplitude, streaks can damp the growth in regions they occupy, trigger
local breakdown by rapidly growing secondary instabilities, or be completely dormant in
an orderly transition scenario (Önder & Liu 2020). We will study these scenarios in this
section.
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Figure 20. Temporal evolution of mean skin-friction drag for cases h0.01, h0.04, h0.06 and h0.07. Laminar
skin-friction drag over a flat bed (h = 0) is also plotted. Skin frictions are normalized by ρ∗U∗2

0mReδ
−1.

The time evolution of mean skin-friction drag τ ∗
b is plotted in figure 20 for cases h0.01,

h0.04, h0.06 and h0.07. In all cases, there is a rapid rise in the skin-friction drag, once the
transition sets in. It is clear that the breakdown to turbulence has a much faster time scale
compared with the wave time scale. Therefore, during breakdown the streamwise-constant
fields have much slower dynamics than the rapidly growing residual perturbations. In this
regard, the instantaneous streaky fields represent a new laminar base state on which the
instabilities grow. These base fields are obtained by applying the filter on instantaneous
velocity u,

ũ = (〈u〉, 0, 0) + (ũ′, 0, 0). (4.1)

We have neglected ṽ′ and w̃′, as ‖ṽ′‖ ≈ ‖w̃′‖ � ‖ũ′‖ for Reδ � 1.
The growth of secondary perturbations on a streak can be investigated by averaging the

small-scale energy over the streamwise direction, i.e. by filtering the small-scale energy
k̃′′( y, z, t) = ũ′′

i u′′
i /2. The instantaneous balance of k̃′′ is derived in four steps: (i) filter

(2.6); (ii) subtract the resulting filtered set of equations from (2.6) to obtain momentum
equations for u′′, (iii) apply a scalar product between vectorial terms in the resulting
momentum equation and u′′; (iv) filter the resulting energy equations. As a result, we
obtain

2
Reδ

∂ k̃′′

∂t
+ ∇̃ · T̃ ′′ = P̃ ′′ − ε̃′′, (4.2)

where P̃ ′′ represents the small-scale production rate expressed by

P̃ ′′ = −ũ′′v′′ ∂ ũ
∂y

− ˜u′′w′′ ∂ ũ
∂z

, (4.3)

ε̃′′ is the dissipative term for streamwise-varying fluctuations

ε̃′′ = 2
Reδ

s̃′′
ijs

′′
ij, (4.4)

with s′′
ij = 1/2(∂u′′

i /∂xj + ∂u′′
j /∂xi) being the rate of strain tensor involving small-scale

motions, and T̃ ′′ contains the turbulent transport terms

T̃ ′′
i = 1

2
˜u′′
i u′′

j u′′
j + ũ′′

i p′′ − 2
Reδ

ũ′′
j s′′

ij. (4.5)
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Figure 21. Orderly transition in case h0.01. The data at times (a,c,e) t = 12π/36; (b,d,f ) t = 15π/36. Line
contours in (a–d) show the distribution of ũ = 〈u〉 + ũ′ (4.1) using ten levels. Filled contours show the
distribution of the filtered small-scale kinetic energy k̃′′ (a,b) and the production rate P̃ ′′ (c,d). (e,f ) Filled
contours show the distribution of instantaneous streamwise velocity u. Vortical structures are visualized using
a positive isosurface of Q: (e) Q = 2.5 × 10−4; ( f ) Q = 8 × 10−3.

Among these budget terms we will focus only on the production term in (4.3), as the
instabilities are driven by this term.

The transition to turbulence in case h0.01 is shown in figure 21 using instantaneous
fields, small-scale kinetic energy (k̃′′) and production rate (P̃ ′′) at two time instances
t = 12π/36 and 15π/36, cf. also supplementary movie 2 where the time evolution of
the magnitude of instantaneous vertical velocity |w| on the horizontal plane at z = 1.3 is
shown for h0.01. An orderly transition scenario is observed, in which spanwise vortices
emerge (figure 21e). These vortices are visualized using a positive isosurface of the Q
field, which is the second invariant of the velocity gradient tensor (Hunt, Wray & Moin
1988),

Q = 1
2 (ΩijΩij − sijsij), (4.6)

where Ωij = 1/2(∂ui/∂xj − ∂uj/∂xi) is the rate of spin tensor, and sij = 1/2(∂ui/∂xj +
∂uj/∂xi) is the rate of strain tensor. The vortices have a constant streamwise spacing of
lv = Lx/4 = 15δs. This spacing perfectly matches the wavelength of the most linearly
unstable modes in a SWBL at Reδ = 2000 (cf. figure 12a in Önder & Liu 2020). The
production is localized at z ≈ 1.2 where the instability is generated (figure 21c). At
15π/36, the spanwise vortices have become two orders of magnitude more energetic
(figure 21b), and are elevated further into free stream. At this phase, the coherent vortices
are turbulent structures that are in the process of breakdown to chaotic small-scale motions,
cf. figure 21(f ). In this global transition scenario, streaks play no role, as they are very
weak.

912 A21-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1141


A. Önder and P.L.-F. Liu

0 5 10 15 20 25 30 35 40

2

4

6

z
S1 S2 S3 S4 S5 S6

0.32
0.64
0.96
1.28
1.60

0 5 10 15 20 25 30 35 40

2

4

6
S1 S2 S3 S4 S5 S6

0.36
0.72
1.08
1.44
1.80

0 5 10 15 20 25 30 35 40

y

2

4

6

z
S1 S2 S3 S4 S5 S6

0.34
0.68
1.02
1.36
1.70

0 5 10 15 20 25 30 35 40

y

2

4

6
S1 S2 S3 S4 S5 S6

0.28
0.56
0.84
1.12
1.40

(×10–3) (×10–2)

(×10–4) (×10–3)

k′′

P ′′

0
10

10

20

20

30

30

40

40

50
40

30
20

10

10

20

30

40

50

0

0

0

8
4

2

8 z

y

x

–0.08 0.66
u(e)

(a) (b)

(c) (d )

( f )
0

10

10

20

20

30

30

40

40

50
40

30
20

10

10

20

30

40

50

0

0

0

8
4

2

8 z

y

x

–0.11 0.62
u

Figure 22. Bypass transition in case h0.06 via a local streak instability. The data at times (a,c,e) t = 19π/90;
(b,d,f ) t = 22π/90. Line contours in (a–d) show the distribution of ũ = 〈u〉 + ũ′ using ten levels. Filled
contours show the distribution of the filtered small-scale kinetic energy k̃′′ (a,b) and the production rate P̃ ′′
(c,d). (e,f ) Filled contours show the distribution of instantaneous streamwise velocity u. Vortical structures are
visualized using a positive isosurface of Q: (e) Q = 2.5 × 10−4; ( f ) Q = 8 × 10−3.

The transition to turbulence in case h0.06 is demonstrated in figure 22 using
instantaneous data at times t = 19π/90 and 22π/90. The boundary layer is corrugated
along its span by highly elevated streaks (figure 22a). We observe five such streaks (S1–S3,
S5 and S6 in figure 22a–d) and a relatively flat region at the centre with weak streaks (S4).
Unlike the transition in h0.01, the transition in h0.06 is of a local nature and is initiated
by a sinuous instability taking place on streak S5, cf. figure 22(e). Both production and
kinetic energy concentrate at an outer layer at z ≈ 2 marking the location of the critical
layer of the instability (figure 22a,c). The sinuous nature and strongly elevated critical
layer suggest that this instability is an instance of outer-streak instabilities cited by Önder
& Liu (2020). The outer instabilities have very high growth rates and rapidly lead to bypass
transition. This is observed in figure 22( f ), where streak S5 broke down into a turbulent
spot. Turbulence is contained in this region and the rest of the boundary layer is still
laminar. In later times, the turbulent spot spreads to the whole computational domain and
the breakdown to turbulence is completed. This can be seen in supplementary movie 3
where the time evolution of |w| on the horizontal plane at z = 1.3 is shown for h0.06. The
instability waves did not emerge in this case.

A mixed transition is demonstrated in figure 23, which occurs in case h0.055.
Figure 24(a) further shows the length-normalized kinetic energy in each subregion
(S1–S6),

kV,i(t) = 1
2Ly,i

∫∫
Ai

ũ′′
i u′′

i ( y, z, t) dy dz, (4.7)
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Figure 23. Mixed transition in case h0.055. The data at times (a,c,e,g) t = 27π/90; (b,d,f ,h) t = 30π/90.
Line contours in (a–f ) show the distribution of ũ = 〈u〉 + ũ′ using ten levels. Filled contours show the
distribution of the filtered small-scale kinetic energy k̃′′ (a,b), the vertical energy ˜w′′w′′/2 (c,d) and the
production rate P̃ ′′ (e,f ). (g,h) Filled contours show the distribution of instantaneous streamwise velocity u.
Vortical structures are visualized using a positive isosurface of Q: (g) Q = 2.5 × 10−4 and (h) Q = 5 × 10−4.
Streaky regions S1–S3, S5, S6 are coloured in yellow, and S4 is coloured in red.
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Figure 24. Temporal variations of (a) integrated small-scale kinetic energies (4.7), (b) the growth rates (4.8),
in regions S1–S6 in case h0.055. The vertical lines show the instances t = 27π/90 and 30π/90, for which the
instantaneous fields are shown in figure 23.
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Figure 25. Streak instabilities in region S5. (a) Integrated energies (4.7); (b) growth rates (4.8).

where Ai and Ly,i are the area and the spanwise length of the subregion, respectively.
Figure 24(b) additionally plots the growth rates of energy in each subregion,

ωi,i(t) = 1
2

d log kV,i

dt
. (4.8)

Small-scale kinetic energy, the vertical kinetic energy and the production rate at t =
27π/90 are plotted in figures 23(a), 23(c) and 23(e), respectively. In h0.055 streaks
are slightly weaker compared with those in h0.06, and none of them develops rapidly
growing outer instabilities. Streaks S1–S3, S5 and S6 all developed instabilities on
inner shear layers close to the bed. These inner instabilities have a slow growth rate
of ωi/Reδ ≈ 3 × 10−3, cf. figure 24(b). These slow growth rates are consistent with
the inner-streak instabilities analysed by Önder & Liu (cf. the case A = 15 in figure
12c in Önder & Liu 2020). Due to their slow growth, the observed inner instabilities
did not yet lead to any intense turbulent structure (figure 23g). In contrast to streaky
regions, region S4 is relatively quiet at t = 27π/90, and fluctuations are very weak
(cf. S4 in figures 23a and 24a). This condition changes abruptly due to spontaneously
emerging instability waves, and we later observe, at t = 30π/90, coherent spanwise
vortices with streamwise spacing of λx = 15 in S4, cf. red Q-isosurfaces in figure 23(h).
The quasi-two-dimensional instability taking place in S4 has a higher growth rate than
inner-streak instabilities with values in the range ωi,4/Reδ ≈ 0.01 (figure 24b). Compared
with the local transitional features in inner-streak instabilities, spanwise coherent vortices
are more global structures, which occupy the whole boundary layer thickness. This can
be seen in the distribution of vertical kinetic energy in figure 23(d). Filled contours have
spread everywhere in the boundary layer in S4, where the vertical perturbations in other
streak regions are still localized around the critical layer of the instability. At later times,
the quasi-two-dimensional instability in S4 spreads to neighbouring regions S3 and S5,
and due to rapid growth of this instability the energies in these regions are significantly
higher, e.g. kV,i of S3–S5 in the last data point in figure 24(a) is approximately four times
of that of S1, S2 and S6. The effect of spontaneously emerging spanwise vortices can
also be seen in supplementary movie 4 where the time evolution of |w| is shown on the
horizontal plane at z = 1.3.

Figure 25 compares the energy (kV,5) and growth rate (ωi,5) of streak instabilities in
region S5 for h0.055, h0.06 and h0.07. We note that case h0.07 follows a similar transition
path to h0.06, and breaks down to turbulence following an outer-streak instability in S5.
Case h0.07 has the earliest breakdown among the cases with transition completing at the
start of the APG stage. The maximum growth rate in this case is approximately ωi,5/Reδ ≈
0.028. This value perfectly matches the theoretical predictions for outer instabilities in
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Transition in rough solitary wave boundary layers

high-amplitude streaks in SWBLs (cf. the case A = 100 in figure 12c in Önder & Liu
2020). The outer instability in h0.06 occurs approximately 2π/9 later, and it has a
maximum growth rate of ωi,5/Reδ ≈ 0.019. The growth rates of outer-streak instabilities
are significantly higher than that of the inner-streak instability. When compared with ωi,4,
they dominate over orderly instabilities as well. Therefore, the outer-streak instabilities are
the fastest developing instabilities in SWBLs.

5. Conclusions

The present work studies the transition to turbulence in a bottom boundary layer
developing over random bottom topography beneath a solitary wave. The bed is composed
of the superposition of wave-like undulations with random amplitude. A set of direct
numerical simulations with various roughness levels is conducted, in which the flow
around bed corrugations is well resolved by using a coordinate transformation. A relatively
high Reynolds number (Reδ = 2000) is selected to allow a wide range of transition
scenarios.

In the first part, we analysed the receptivity of the boundary layer flow to
perturbations introduced by bottom topography. The boundary layer responds to these
broadband perturbations selectively and develops streamwise-elongated streaks, which
occupy the whole streamwise extent of the periodic computational domain. These
streamwise-constant streaks are generated by two successive physical mechanisms.
Initially, when the free-stream velocity is weak, the interaction of the boundary layer
with the topography of the bed is linear. To this end, streamwise-constant modes
of the topography induce streamwise-constant streaks by diffusive transport, where
high- and low-speed streaks are positioned on the depressed and elevated regions,
respectively. At later phases, the boundary layer shear becomes stronger and its interaction
with streamwise-constant vertical velocity further amplifies the streaks. Physically, the
amplification is driven by the convective transport known as the lift-up mechanism,
in which streamwise-constant vortices stir the mean flow. This second stage of streak
amplification is characterised by nonlinear feedback loops between streamwise-constant
streaks and vortices. When the streaks reach high amplitudes, they begin to modulate
the small-scale perturbations at their footprints. The vertical component of small-scale
fluctuations in turn force the streamwise-constant pressure field and create low- and
high-pressure zones along high- and low-speed streaks, respectively. The gradients in
these pressure zones drive the streamwise-constant vertical velocity, and generate stronger
vortices. Stronger vortices in turn generate even stronger streaks via the lift-up mechanism,
which completes the positive feedback loop. The consequence of this nonlinear feedback
loop is evident in the scaling of streak amplitudes with the roughness height. For instance,
at the start of the APG stage, the case with h = 0.06 has streaks approximately 85 times
stronger than the case with h = 0.01.

The transition path in the breakdown stage heavily depends on the amplitude of streaks
in the respective subregions of the boundary layer. In this regard, three different scenarios
are observed: (i) when the streaks are weak the flow goes through orderly transition
initiated by two-dimensional instability waves; (ii) inner-streak instabilities are observed
in the regions with moderate-amplitude streaks; (iii) outer-streak instabilities are observed
in the regions with high-amplitude streaks. Consistent with the previous analysis by
Önder & Liu (2020), inner-streak instabilities have slower growth rates than primary
modal instabilities, and the transition to turbulence is delayed in the regions occupied
by moderate-amplitude streaks. Therefore, the current work confirms the stabilizing role
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of moderate-amplitude streaks. In contrast to inner instabilities, outer instabilities grow
very fast on highly elevated streaks. Turbulent spots are nucleated in these regions, and a
bypass-transition scenario is initiated.

An essential element of the transition over randomly rough topography is the interaction
between different transition modes growing in exclusive parts of the domain. We
have presented an instance of this phenomenon, in which two-dimensional instabilities
and inner-streak instabilities grow separately and eventually interact. However, many
additional scenarios are possible that would require larger domains to study. Larger
domains will allow much longer wavelengths in the topography, hence, larger scale
modulations in the bed elevation. Such modulations can lead to boundary layers hosting
a wide spectrum of streak amplitudes. Consequently, bypass, orderly or damped transition
scenarios can be initiated separately, and spanwise vortices and turbulent spots can coexist
and interact as in the experiments of Sumer et al. (2010). Such mixed scenarios can
occur frequently in nature over inhomogeneous seabeds. Further study on their dynamics
is required to gain a more global perspective on roughness-induced transition in wave
boundary layers.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1141.
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