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Clear differences in turbulence intensity profiles in smooth, transitional and fully
rough zero-pressure-gradient boundary layers are demonstrated, using the diagnostic
plot introduced by Alfredsson, Segalini & Örlü (Phys. Fluids, vol. 23, 2011,
p. 041702) – u′/U versus U/Ue, where u′ and U are the local (root mean square)
fluctuating and mean velocities and Ue is the free stream velocity. A wide range
of published data are considered and all zero-pressure-gradient boundary layers yield
outer flow u′/U values that are roughly linearly related to U/Ue, just as for smooth
walls, but with a significantly higher slope which is completely independent of the
roughness morphology. The difference in slope is due largely to the influence of
the roughness parameter (1U+ in the usual notation) and all the data can be fitted
empirically by using a modified form of the scaling, dependent only on 1U/Ue.
The turbulence intensity, at a location in the outer layer where U/Ue is fixed,
rises monotonically with increasing 1U/Ue which, however, remains of O(1) for
all possible zero-pressure-gradient rough-wall boundary layers even at the highest
Reynolds numbers. A measurement of intensity at a point in the outer region of the
boundary layer can provide an indication of whether the surface is aerodynamically
fully rough, without having to determine the surface stress or effective roughness
height. Discussion of the implication for smooth/rough flow universality of differences
in outer-layer mean velocity wake strength is included.

Key words: turbulent boundary layers

1. Background
There is now a substantial literature on issues concerning universality of

smooth- and rough-wall boundary layers, particularly focused on the question of
the circumstances under which an aerodynamically rough flow has outer-layer
characteristics identical to those for a smooth-wall flow, consistent with the original
hypothesis of Townsend (1976). For three-dimensional roughness, Flack, Schultz &
Shapiro (2005) provide support for this, at least for small roughness height (k) to
boundary layer height (δ) ratios, as do Krogstad & Efros (2012) in the context of
two-dimensional (2D) roughness (very small spanwise bars). Recent papers (Castro
2007; Amir & Castro 2011) present further experimental data and cite much of the
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surrounding and sometimes contradictory literature but, likewise, conclude that zero-
pressure-gradient rough-wall boundary layers are (in the outer flow) indistinguishable
from smooth-wall flows, independently of the nature of the roughness, provided k/δ
is sufficiently small. Furthermore, this seems to be valid for surprisingly large k/δ
– perhaps up to 15 %. Despite this apparent universality, however, there is also
considerable evidence that the mean velocity profiles differ in the strength of the
wake component. The classical profile can be expressed as

U+ ≡ U

uτ
= 1
κ

ln
(yuτ
ν

)
+ A−1U+(k+)+ 2Π

κ
w
(y

δ

)
(1.1)

in the usual notation. Note that the y origin is located at the zero-plane displacement
height, d (so that the actual height from the bottom of the roughness is y+ d), and the
roughness height k is measured from the bottom of the roughness elements to the top
of the tallest ones. The roughness function 1U+ is zero for a smooth-wall flow and
Π is the usual Coles (1956) wake parameter, which is typically ∼0.55 for smooth-wall
flows provided the Reynolds number is high enough (see e.g. Nagib & Chauhan 2008).
However, there is little doubt that it can rise to at least 0.7 for fully rough flows (as
found, for example, by Krogstad, Antonia & Browne 1992; Bergstrom, Akinlade &
Tachie 2005; Castro 2007).

This difference in wake strength implies that full universality between smooth
and rough boundary layers does not exist. However, there are major, well-known
difficulties in assessing the extent to which the classical two-parameter scaling
embodied in the above expression for U+ accurately describes zero-pressure-gradient
boundary layers and, if so, over what range of Reynolds numbers. These include the
accurate determination of the wall stress and hence uτ , assessing whether spatial
resolution of probes is adequate (especially near the wall), and determining the
precise probe distance from the wall. The latter two difficulties, in particular, become
increasingly serious as the Reynolds number becomes very large (especially for
smooth-wall flows). In the context largely of smooth-wall flows at high Reynolds
numbers, Marusic et al. (2010) have recently explored these issues in examining much
of the available data. In commenting on rough-wall flows, they state that the possible
interactions between inner and outer regions ‘require further investigation’ and that,
more generally, ‘there is a pressing need for further investigation of the rough-wall
case’.

Recently, Alfredsson, Segalini & Örlü (2011) and Alfredsson, Örlü & Segalini
(2012) have introduced what they call the ‘diagnostic plot’ as a means of assessing,
as the Reynolds number increases, the adequacy of scaling laws and of experimental
data, including those for the turbulence (at least, the axial intensity). Alfredsson et al.’s
diagnostic plot is a convenient way of addressing some of the difficulties mentioned
above: u′/U (or u′/Ue, where Ue is the free stream velocity) is plotted against U/Ue,
as this avoids use of both y and uτ and helps to determine whether features identified
in the data are genuinely physical. Their interest was restricted to smooth-wall flows
and secondary ‘outer’ peaks in the u′+ profiles in the near-wall region. However, in
view of the even more serious difficulties for rough-wall flows in determining wall
stress, wall distance and the zero-plane displacement, the approach would seem to
have considerable merit for that case too. Initial work on such cases was reported by
Segalini et al. (2012); this paper pursues the matter more fully, by re-analysis of many
rough-wall data available in the literature. We demonstrate that the diagnostic plot
emphasizes the clear differences between smooth-wall and fully rough-wall boundary
layers and can provide a rapid assessment of whether or not the flow is transitionally
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FIGURE 1. (Colour online) (a) Turbulence intensity, u′/U, plotted against the mean velocity
for a collection of smooth-wall, zero-pressure-gradient boundary layer data (from Alfredsson
et al. 2012). (b) Rough-wall data, from some of the data sets listed in table 1. The legend
includes values of δ/k for the labelled data; symbols not in the legend are for the Amir mesh
surface with smaller δ/k. The solid line provides a reasonable linear fit in the outer layer and
the dashed line is the smooth-wall outer-layer straight line from Alfredsson et al. (2012).

rough. We also discuss the reasons for the high value of wake strength in many
rough-wall flows and the implications for true universality.

2. The diagnostic plot
Alfredsson et al. (2011, 2012) have shown that, in a region starting within the

logarithmic region and continuing through almost the entire outer wake flow, the
turbulence intensity u′/U decreases linearly with U/Ue. Also, the extent of this linear
region increases with increasing Reynolds number. This is illustrated in figure 1(a),
for a collection of smooth-wall zero-pressure-gradient boundary layers. The behaviour
conforms to the expected scaling for the axial turbulence, expressed by

u′

U
= g

(
U

Ue
; Ue

uτ

)
. (2.1)

The linear region is well fitted by

u′

U
= a+ b

U

Ue
, (2.2)

where a= 0.286 and b=−0.255 are empirical constants determined from the smooth-
wall data compilation of Alfredsson et al. (2011). Note that this linear relationship is
independent of the Reynolds number (characterized by Ue/uτ in (2.1)) but becomes
more extensive as the Reynolds number rises. Similar collapse to a linear behaviour
was shown to occur for (circular) pipe flows and planar (2D) channel flows, although
with different values of the slope, which, as Alfredsson et al. (2012) pointed out, is
probably a result of the different strengths of the wake component (Π ) in the three
flow classes. This would suggest that, if rough-wall boundary layers really do have
a significantly larger Π than that in smooth-wall flows, it would be apparent in the
diagnostic plot. Figure 1(b) shows a selection of fully rough boundary layer data
from various sources, and it is immediately clear that the slope of the linear collapse
region is indeed significantly larger than it is for smooth-wall flows. Figure 1(b)
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Experiment Label Roughness δ/k δ/ks 1U+ y+o

Castro &
Snyder (1980)

FMS,
FMF

Gravel/blocks 31, 24 36, 28 8.7, 11.4 4.3, 13.5

Snyder &
Castro (2002)

SC2002 Plates 59, 59 36, 44 8.3, 3.4 3.7, 0.5

Cheng &
Castro (2002)

CC2002 Cubes 4.2–10.4 3.4–7.2 14.1–12.4 19.1–41.3

Flack et al.
(2005)

FSC2005 Mesh 19.1–109 5.1–55 12.6–6.7 22.6–1.8

Flack, Schultz
& Connelly
(2007)

FSC2007 Sand grain 54–15.7 91–7.0 6.0–13.5 1.4–24.3

Brzek et al.
(2008)

BCJC08 Grit 30, 86 15.7, 142 9.7, 2 6.7, 0.3

Amir & Castro
(2011)

AC2011 Mesh 8.1–29 6.0–8.6 10.7–13.4 9.7–31

Amir & Castro
(2011)

AC2011 Random
blocks

4.6–18 109–311 3.6–10.3 10.7–17

Amir & Castro
(2011)

AC2011 Grit 29–31 72–38 3.0–8.2 0.43–3.5

Volino, Schultz
& Flack
(2011)

VSF2011 2D bars 32,
159

2.3, 17.7 12.7, 7.7 23.5, 3

Volino et al.
(2011)

VSF2011 Staggered
cubes

27.6 7.3 9.5 6.3

Krogstad &
Efros (2012)

KE2012 2D bars 131 41 13.6 36.4

TABLE 1. Details of the experimental data used in the figures. (Note that δ/yo is 32.6δ/ks.
Where two comma-separated entries appear in the δ/k column, all subsequent pairs in that
row have corresponding entries (i.e. in the same order). Where ranges appear, minima and
maxima are shown in each column, but the variations for the different parameters are not
necessarily monotonic between the limits.) a‘Three naturally grown and simulated boundary
layers’. Fluid Modelling Facility Report (unpublished), US Environmental Protection
Agency.

also includes smooth-wall data from Hutchins et al. (2011), Amir & Castro (2011)
and Krogstad & Efros (2012), which collapse in the outer layer and lie close to
(although marginally above) the linear smooth-wall line fit from Alfredsson et al.
(2012). (Higher-Reynolds-number smooth-wall data lie closer to the Alfredsson line.)
It is important to emphasize here that, although the scaling implied by (2.1) arises
essentially from a dimensional argument, there is no obvious physical reason for the
appearance of a linear region in the outer layer; this seems to be merely a convenient
empirical finding.

A significant feature of the data shown in figure 1(b) is the wide range of δ/k
covered. In particular, Krogstad & Efros’s (2012) rough-wall data have δ/k > 100,
which ensures a much more significant separation of inner and outer length scales
than is often the case for aerodynamically fully rough-wall experiments, and is perhaps
the main reason for expecting universality between smooth and rough cases (Jiménez
2004). Another significant feature is the very different types of roughness morphology
the data represent. The surfaces include the expanded mesh of Flack et al. (2005)
(with Reθ ≈ 13 000), the similar but not identical mesh of Amir & Castro (2011)
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FIGURE 2. (Colour online) (a) Turbulence intensity, u′/U, plotted against the mean velocity
for a sample of rough-wall and transitional boundary layers. (b) The same data as in (a)
plotted using U′ (U + 1U) as the scaling velocity. In both panels, the dashed line is the
smooth-wall line of Alfredsson et al. (2011) and the solid line is the same as in figure 1(b).
The legend in both plots gives values of (k+s , 1U+) for each case.

(for a range of δ/k and Reθ ), the array of random-height rectangular blocks of Amir
& Castro (2011) (Reθ ≈ 12 600) and the two-dimensional spanwise bar surface of
Krogstad & Efros (2012) (Reθ = 32 800). Other data could have been included: for
example, the fully rough sand-grain surface cases of Flack et al. (2007) and Amir
& Castro (2011). The fact that all these data collapse suggests that, for fully rough
boundary layers, the diagnostic plot is universal in the outer region, independent of
roughness morphology. However, the data shown cover flows with roughness functions
(1U+) varying between about 9.5 and 14. A much wider range might not be expected
to yield such good collapse (not least because boundary layers with sufficiently low
1U+ are transitionally rough – i.e. viscous effects become non-negligible). This is
demonstrated by figure 2(a), which shows profiles from a range of flows having
increasing values of k+s , the traditional ‘equivalent sand-grain roughness length’,
chosen to yield flows with gradually increasing values of k+s . Common values of κ and
A in (1.1) (0.41 and 5.0 respectively) and the classical (Schlichting 1968) empirical
relationship for sand-grain roughness, 1U+ = κ−1 ln k+s + A − 8.5, yield ks = 32.6yo,
where yo is the roughness length defined by the alternative form of (1.1):

U+ ≡ U

uτ
= 1
κ

ln
(

y

yo

)
+ 2Π

κ
w
(y

δ

)
. (2.3)

Equations (1.1) and (2.3) together imply that 1U+ = κ−1ln(y+o ) + A; thus k+s , y+o and
1U+ are equivalent ways of characterizing the roughness. We prefer the use of y+o
rather than k+s , as it is a more direct measure of roughness ‘strength’ than the rather
artificial construct provided by the latter for general roughness morphologies. Also, y+o
is certainly more appropriate than k+, since yo/k can vary very widely, being highly
dependent on roughness morphology. It is clear from figure 2(a) that, as k+s rises, a
roughly linear outer region is still found but the slope of this linear part increases.

Although the differences between smooth- and rough-wall data in figures 1(b) and
2(a) might initially be thought to be a consequence solely of wake strength (and can
actually be parametrized on that basis alone), this is not so. The full profile model
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provided by (1.1) with 1U+ 6= 0 properly requires a more appropriate general scaling
to that embodied in (2.1), with U+ being enhanced by the roughness parameter 1U+

(zero for a smooth wall). Equation (2.1) then becomes

u′

U′
= h

(
U′

U′e

)
(2.4)

(ignoring possible Reynolds-number effects) and, analogously to (2.2), one might
anticipate that the data follow

u′

U′
= ã+ b̃

U′

U′e
, (2.5)

where U′ = U + 1U and U′e = Ue + 1U. In the limit of 1U+ → 0, (2.5) will
coincide with (2.2) and therefore ã = a and b̃ = b, where a and b are the diagnostic
constants determined from smooth-wall data only. Defining the parameter 1Un by
1Un =1U+/U+e , (2.5) can be rewritten as

u′

U
= U/Ue +1Un

U/Ue

(
a+ b

U/Ue +1Un

1+1Un

)
. (2.6)

Note that this is not linear in U/Ue, but the degree of curvature implied by non-zero
1Un is small.

The profiles in figure 2(a) are re-plotted in figure 2(b) using the scaling implied by
(2.4), and it is evident that all the profiles collapse onto the smooth-wall result in the
outer layer, independent of 1U+ (or, equivalently, y+o ). We have not found any data
that have a slope greater than that of the solid line in figures 1(b) and 2; this suggests
an upper limit to the right-hand side of (2.6), which would require an upper limit on
1Un (since u′/U should remain bounded). Now it can be shown that

1Un ≡ 1U+

U+e
= ln(y+o )+ κA

ln(δ/yo)+ 2Π
, (2.7)

which does not immediately indicate such a limit. However, on physical grounds,
the outer-layer local turbulence intensities cannot rise without limit as y+o increases.
Figure 3(a) shows contours of constant 1Un (with Π = 0.7) in the δ/yo–y+o plane
along with the data for all the cases in figures 1(b) and 2 (and others from the
same sources). It is clear that, for these laboratory flows, 1Un hardly exceeds ∼1.0.
Even in flows with very much larger Reynolds numbers, typified by neutrally stable
atmospheric boundary layers (ABLs), 1Un rarely reaches 1.4 – for extreme winds in
very urban (i.e. high roughness length) environments. (The three ABL data points were
extracted from compilations in Cook (1985).) Noting that w(1) = 1, (1.1) can be used
directly to deduce a relation for 1Un, viz.

1Un ≡ 1U+

U+e
=
√

Cf

2

(
1
κ

ln(δ+)+ B+ 2Π
κ

)
− 1, (2.8)

where δ+ = δuτ/ν is the Kármán number. Now, the maximum Cf in any zero-pressure-
gradient boundary layer is unlikely to exceed 0.01 at the very most, and (2.8) implies
that, even for such an extreme case, 1Un|max ranges from about 0.74 to 2.15 for
δ+ values between 103 and 106. It seems clear that, for fully rough boundary layers,
1Un must remain an O(1) quantity whatever the Reynolds number and whatever the
roughness.
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FIGURE 3. Data for all the cases in previous figures (and given in table 1). (a) Values of
δ+/y+o versus y+o . Solid lines (from (2.6)) indicate constant values of 1Un (with Π = 0.7),
ranging from 0.2 to 1.4. Dotted line is for 1Un = 0.6, Π = 0.55. Large solid symbols
(labelled ABL) are typical values for the neutral atmospheric boundary layer, from rural to
urban roughness (from Cook 1985) and are surrounded by the ‘cloud’ to indicate the likely
range of all possible ABL data. The vertical dashed line indicates the smooth-wall limit,
whose lower bound is chosen to start when δ+ = 1000; y+o = e−κA = 0.129 for smooth flows
and the upper value of δ/yo is unbounded. (b) Plot of u′/U at U/Ue = 0.55 as a function
of 1Un.

For all the profiles used to deduce the data in figure 3(a), figure 3(b) shows how
the turbulence intensity at a fixed location in the boundary layer, chosen (arbitrarily)
as the point where U/Ue = 0.55, i.e. usually in the upper half of the log law region
for a smooth flow, varies with 1Un. The data are compared with what would be
expected from (2.6) – recall that the latter follows (2.5) exactly provided (2.5) yields a
reasonable fit to the profile data (as figure 2b indicates). There is clearly a monotonic
increase in u′/U|0.55 with 1Un but, as just argued, we do not expect the latter to
much exceed unity even at very high Reynolds numbers – not least because that would
imply unphysically large turbulence intensities. Note that alternative choices of the
fixed U/Ue point (e.g. 0.65) would not alter these conclusions. Note also that cases for
which 1Un / 0.5 are almost certainly transitionally rough (i.e. y+o is not large enough
to prevent viscous effects being significant).

3. The influence of k/δ, y+o and δ+

The Townsend hypothesis (i.e. that all that roughness does is to affect the boundary
layer thickness and the local skin friction, without altering the structure of the
boundary layer in any way) is usually reckoned to be valid provided there is a
sufficiently large separation of inner and outer length scales, which is often thought
to require k/δ to be sufficiently small. The former can only occur at sufficiently large
Reynolds numbers. Jiménez (2004) suggested that δ+ needs to exceed ∼4000 and that
k/δ should be below 2.5 % at most. The u′/U data shown in figure 3(b) are re-plotted
in figure 4(a) as a function of k/δ and appear to asymptote to a value around 0.22
but have increasing scatter below about k/δ = 0.05. Some data below this value have
u′/U|0.55 values similar to those in the large (high-roughness) k/δ range. The clearest
example is provided by the Krogstad & Efros (2012) data, for which k/δ is only
0.0076 and yet has u′/U|0.55 = 0.225; this result was anticipated by the entire profile
shown in figure 1(b), which collapses very well with the other fully rough data. There
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FIGURE 4. (Colour online) Axial turbulence intensities at the point where U/Ue = 0.55, as a
function of (a) k/δ, (b) y+o , (c) δ/yo and (d) δ+. The key in panel (c) applies to the first three
panels. The horizontal solid and dashed lines represent the average for values of k+s larger
than ∼200 and values ±4 % from that average. In panels (c) and (d), the smooth-wall data (i.e.
for yo→ 0) are shown by the dotted lines.

are other data around k/δ = 0.03 that have high values of u′/U|0.55. The great scatter
in figure 4(a) below k/δ ≈ 0.05, with data lying between the smooth and the fully
rough values, must be largely a result of the variability in y+o , rather than specific
roughness morphology. If y+o is too small, viscous effects become significant, although
the value of y+o at which this happens depends on the specific roughness morphology
(Snyder & Castro 2002). Figure 4(b) shows figure 4(a) plotted as a function of y+o
demonstrating a reduced scatter and an asymptotic trend towards the fully rough,
universal regime at large enough y+o . Note that in figure 4(b) the Krogstad & Efros
(2012) data appear at y+o = 36 – well above the value y+o ≈ 2 (k+s ≈ 70) generally
thought necessary for fully rough conditions. Using this value and Jiménez’s (2004)
lower-limit criterion for δ+ (4000), the lower limit of 1Un (given by (2.7)) for fully
rough conditions satisfying Townsend’s hypothesis is ∼0.30; this rises to ∼0.37 if one
relaxes the scale separation criterion to δ+ = 1000.

Although δ/k is the classical parameter used to indicate the degree of scale
separation, we suggest that, given the significant variation in yo (or, equivalently,
ks) that can arise from different roughness morphologies with the same k, a more
appropriate measure of scale separation would be provided by δ/yo. It is large enough
values of y+o and δ/yo that determine whether the flow can be both fully rough and
universal (i.e. the same as a smooth-wall flow in all its essential characteristics). The
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Krogstad & Efros (2012) data have δ/yo = 375 – more than adequate – whereas some
other data, although having values even larger than this, have too small a value of
y+o . Figure 4(c) shows the data plotted as a function of δ/yo. Notice that, at large
δ/yo – greater than ∼100, say – values of u′/U|0.55 can nonetheless fall below the
fully rough result, but entirely as a result of too low a value of y+o (cf. figure 4b).
This emphasizes the difficulties in designing appropriate experiments, for too large a
value of δ/yo usually means that the roughness is physically too small to make y+o
large enough. Unusually long wind tunnels with relatively high free stream speeds are
needed to achieve genuinely fully rough (i.e. large enough y+o ) boundary layers having
δ/yo in excess of, say, 400. If smaller tunnels are used, with a large roughness height,
y+o might be large enough to ensure fully rough conditions, but δ/yo might be so small
that the flow ceases to have genuine boundary layer characteristics – becoming merely
a flow over a set of large obstacles, as Jiménez (2004) argued.

An alternative way of plotting the data is shown in figure 4(d), where the abscissa
is the Kármán number, δ+. The figure includes data for a selection of smooth,
transitional and fully rough flows. In this plot, smooth-wall data from the unusually
high-Reynolds-number experiments of Fernholz et al. (1995) and Hutchins et al.
(2011) are included; these were obtained in large wind tunnels (in the Netherlands
and Australia, respectively). It is clear that, even at large δ+, the rough-wall values are
significantly higher than the smooth-wall ones (as expected from (2.6)). Incidentally,
the Hutchins et al. (2011) data suggest a slowly falling value with increasing
Reynolds number, as implied by the smooth-wall compilation given by Alfredsson
et al. (2011) and shown in figure 1(a). This would be less noticeable if intensities at,
say, U/Ue = 0.65 had been used. Notice also that, for the transitionally rough layers,
the rise between smooth and rough values occurs over a range of δ+ that depends
on the nature of the roughness, just as it does when plotted against the roughness
Reynolds number y+o (see figure 4b) or the more appropriate scale separation parameter
δ/yo (see figure 4c). Even at rather low δ+, a surface may yield high values of u′/U in
the outer layer if y+o and δ/yo are both sufficiently large.

4. Final discussion

We emphasize first that any plausible higher value of the wake strength in rough-
wall flows (0.7, say) than for smooth walls (0.55) does not significantly alter the
relation between the scale ratio, δ/yo, and y+o at fixed 1Un ≡ 1U+/U+e . This is
demonstrated in figure 3(a), where, as an example, the implication of (2.7) for the
1Un = 0.6 contour but with Π = 0.55 rather than 0.7 is included. However, the
fact that the wake strength seems to be different for rough-wall flows, increasing
gradually with 1U+ (e.g. Bergstrom et al. 2005; Castro 2007), whilst not affecting the
collapse of smooth- and rough-wall Reynolds stress profiles, would appear to indicate
a lack of complete universality between smooth- and rough-wall flows. Figure 5(b)
confirms again the outer-layer collapse of Reynolds shear stresses for smooth and
rough walls. When plotted against U/Ue, rather than U′/U′e, smooth- and rough-wall
profiles separate, as anticipated – from figure 1(b), for example – and as shown
in figure 5(a). Since it is only the turbulent shear stress that appears in the (first-
order) mean momentum equation and can thus affect the mean velocity profile, one is
prompted to ask why the wake strength should be different. Might it not simply be a
result of too low a value of δ/yo to ensure sufficient scale separation, or is it because,
despite collapse of all second moments, the turbulence structure is rather different?
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FIGURE 5. Reynolds shear stress profiles for some of the cases used in previous figures,
plotted against (a) U/Ue and (b) U′/U′e.

There are many suggestions in the literature about why the turbulence structure in
the outer layer of a rough-wall flow may differ from that over smooth walls. One of
the first was that of Grass (1971), who argued that entrainment near rough surfaces
is much more violent than near smooth surfaces, associated with important differences
in the ejection-sweep cycles. Likewise, Antonia & Luxton (1971) found that energy
transfer via the triple velocity products is not a gradient diffusion process near a rough
surface, as later emphasized by Andreopoulos & Bradshaw (1981), who concluded that
turbulence energy sinks may exist near roughness elements. The latter authors found
significantly higher triple product levels in rough- than in smooth-wall flows. Orlandi
& Leonardi (2008) have argued that it is the vertical component of the fluctuation
velocity that may provide a better indication (than, say, y+o ) of the roughness effects.
Data from the experiments cited here certainly show that v′/U (at fixed y/δ) rises
monotonically with k/δ, as previously discussed by Orlandi & Leonardi (2008) and
Amir & Castro (2011). Furthermore, there have been a number of studies of the details
of the turbulence structure (e.g. Krogstad & Antonia 1999; Flack et al. 2005, 2007;
Krogstad & Efros 2012), some of which provide conflicting evidence concerning
structural characteristics in the outer layer and the extent to which they may be
influenced by the inevitable changes in the inner layer caused by roughness.

The recent flow described by Krogstad & Efros (2012) is again particularly
significant, however, since this is one of the few cases that has a fully rough surface
(y+o = 36), a high Reynolds number (δ+ = 13 650) and a high δ/yo (375), guaranteeing
adequate scale separation. This is probably because this case used two-dimensional bar
roughness, which is known to give a significantly larger yo/k (or, equivalently, ks/k)
ratio than most three-dimensional roughness morphologies. Their study demonstrated
that the detailed turbulence structure (triple velocity products, probability density
functions, quadrant analysis data, etc.) was in fact the same as in a high-Reynolds-
number smooth-wall flow. In particular, in the current context, the outer-layer wake
strength was only around 0.51 – typical of smooth-wall flows. On the other hand,
most of the other fully rough (y+o ' 2) data discussed here are from cases that had
too small a value of δ/yo to ensure adequate scale separation, and this presumably
allowed the altered near-surface flow to affect the outer flow at least to the extent of
altering the wake strength, even though outer-layer stress profiles collapse closely with
those over smooth walls. This would also explain the noticeable changes that occur in
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turbulence structure in the outer flow. Recognizing that most of the cases in figure 4
having δ/yo / 300 had wake strengths rather higher than the smooth-wall value, we
suggest that this value might provide a reasonable criterion to ensure sufficient scale
separation, with yo ' 10 ensuring (for many morphologies) fully rough conditions, so
that if both these are satisfied the boundary layer structure may be properly universal
in all respects. Note, however, that for some roughness morphologies rather smaller y+o
may be sufficient to ensure fully rough conditions.

In any case, the results presented here demonstrate that, despite the different nature
of smooth, transitional and fully rough boundary layers in the near-surface region,
outer-layer turbulence intensities, when presented in the form of the diagnostic plot
introduced by Alfredsson et al. (2011) but re-scaled to account for the roughness
function, collapse (figure 2b). There is similar outer-layer collapse in profiles of the
normal component of the fluctuating velocity (not shown) and, as noted above, the
shear stress. Incidentally, the fall in shear stress below U′/U′e ≈ 0.62, evident in
figure 5(b), is not a result of increasing viscous effects, as in the smooth-wall case, but
simply because this marks the approximate top of the roughness sublayer (defined as
the region in which flow variables are inhomogeneous in horizontal planes). Below this
height, ytop RS say, Reynolds stresses (and mean velocity) depend on spatial location.

We make a final comment concerning the depth of this roughness sublayer, which
is known to vary widely for different roughness morphologies. By assuming that
the location where U′/U′e ≈ 0.62 corresponds to the top of the roughness sublayer,
the measured mean velocity at the same location will be U/Ue ≈ 0.62 − 0.381Un.
Equation (2.3) then implies that the associated y position is

ytop RS = yo exp[κU+e (0.62− 0.381Un)]. (4.1)

Consider as examples the Krogstad & Efros (2012) case of 2D bars and the Flack
et al. (2007) case having the largest mesh. The respective values of the (U+e ,1Un)
pair for these cases, (16.9, 0.819) and (16.1, 0.783), yield (using the appropriate yo/k)
ytop RS/k = 3.4 and 0.7. The corresponding measured values, taken as the location
where the shear stress begins to fall rapidly, are 2.3 and 1.05, respectively. Whilst the
calculated values are not too far from those measured, ytop RS < k (as in the second
case) is not physically realistic and is a result of too small a value of U′/U′e used in
(4.1), compared with that measured (0.646). The value of ytop RS is very sensitive to the
value of U′/U′e chosen, and it is clear that (4.1) is not a very precise way of estimating
the depth of the roughness sublayer.

Overall, we conclude that, following the spirit of Alfredsson et al. (2011) and
plotting mean flow profiles in a way that avoids the uncertainties associated with
determining surface stress, wall distance and roughness function (whose accurate
determination is equally problematic), data plotted simply as u′/U versus U/Ue – the
most easily measurable quantities – do not collapse (figure 2a). This is a result
predominantly of the non-zero roughness function 1U+ rather than any differences in
outer-layer wake strength, which, if present, are probably caused by inadequate scale
separation. However, data for fully rough situations (with 1U+ ' 7) do collapse quite
closely among themselves, as seen in figure 1(b), despite the very different surface
morphologies in all these cases. Given the continual rise in turbulence intensity with
increasing 1U/Ue at any arbitrary point in the outer region (but at the same U/Ue),
see (2.6) and figure 3(b), for example, it is not in principle possible to use the
measured intensity at such a point as a test for whether the flow is transitionally or
fully rough. Nevertheless, laboratory flows will almost never have 1U+ > 14 even at
the highest Reynolds number (δ+), and a measurement of u′/U at a fixed value of
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U/Ue (0.55, say) in the outer layer provides a rapid pragmatic assessment of whether
the flow is fully rough or not, since for transitional cases its value would lie between
the two limiting straight lines shown in figure 1(b).
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JIMÉNEZ, J. 2004 Turbulent flow over rough walls. Annu. Rev. Fluid Mech. 36, 173–196.
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