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Peracarid crustaceans are an important component of the vagile fauna associated with coralline algal beds, which often char-
acterize the infralittoral fringe of tropical rocky shores. Among other variables affecting faunal assemblages, sedimentation,
food supply and oxygen concentration within mats or turfs of coralline algae may greatly depend on the exposure to waves. In
this study, peracarid assemblages were compared at replicated rocky shores within different levels of wave exposure, along a
coastline in south-eastern Brazil. Overall amphipod diversity (11 species) was much higher than tanaidacean diversity (two
species). Correlation analyses did not support any biological interactions between amphipods and tanaidaceans. Habitat com-
plexity, while apparently limiting amphipod populations, did not affect tanaidaceans at a local scale. Amphipod abundance,
not assemblage structure, was positively affected by wave exposure, probably improving oxygen concentration levels and
renewal of food resources. Rather than abundance, which remains fairly stable, exposure to waves determined species identity
in tanaidaceans, with Zeuxo coralensis found at exposed shores and Leptochelia aff. dubia found at sheltered shores, except
for two L. aff. dubia individuals found at one of the exposed sites. Differences in the supply of sediment and the ability of these
species in manipulating grains for tube building may explain such a striking pattern.
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I N T R O D U C T I O N

Wave-swept habitats are prone to physical disturbance, result-
ing in major changes of community diversity and structure
(Denny, 2006). Among other parameters, wave exposure can
determine the relative biomass of dominant functional
groups in intertidal areas (McQuaid & Branch, 1984), allow-
ing composition estimates from measures of wave intensity
(Burrows et al., 2008; Blamey & Branch, 2009). Higher abun-
dance of filter-feeding invertebrates such as mussels and bar-
nacles at exposed areas contrasts with the predominance of
macroalgae on more protected environments (Blockley &
Chapman, 2008; Christofoletti et al., 2011). Direct effects of
wave impact include mortality owing to dislodgement or
damage (e.g. Dayton, 1971; Paine & Levin, 1981), while indir-
ect effects may be related to responses to enhanced flow, such
as increased larval settlement (Hunt & Scheibling, 1996) and
reduced sediment deposition (Kennelly, 1989).

Interstitial spaces within biogenic habitats, such as mussel
beds (O’Donnell, 2008), provide shelter from wave action due
to drag and water retention, and are often colonized by diverse

invertebrate assemblages. Coralline algae can also provide
suitable topographic complexity for the establishment of a
wide array of invertebrates. Their hard calcareous branches
and potential for sediment accumulation result in mechanical
protection and water retention, lowering the impact of
wave splash on the associated fauna. Calcium carbonate
layers over cell walls, visible as a pink coating (Joly, 1967;
Johansen, 1974), provide high resistance to both herbivory
and hydrodynamism (Littler & Littler, 1980). As wave expos-
ure increases, turfs tend to be more compact, thus enclosing
smaller interstitial spaces and different invertebrate assem-
blages (Dommasnes, 1968). The upper limit of coralline habi-
tats usually delimit the lower shore level in tropical rocky
shores (Stephenson & Stephenson, 1972) and usually host
diverse invertebrate assemblages including molluscs, poly-
chaetes and crustaceans (e.g. Bussell et al., 2007).

Among crustaceans, peracarids are the most common cor-
alline dwellers (e.g. Izquierdo & Guerra-Garcı́a, 2011). They
undergo direct development, with the eggs being laid into
the female marsupium, where they hatch and juveniles
develop. Therefore, species may settle and find stable popula-
tions regardless of immigration from distant turf habitats.
Also, algal turfs may be colonized by many different peracar-
ids, because they exhibit a variety of lifestyles, even among
closely related species. Within free-living and tube-building
species, peracarids can be herbivorous, detritivorous,
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carnivorous or omnivorous (for review, see Guerra-Garcı́a
et al., 2014). Frequent predation of peracarids by nearshore
fish (Nelson, 1979) may constitute an important trophic link
between the benthic and pelagic environments.

Investigating the interactive effects of physical and bio-
logical factors on peracarid assemblages may help in under-
standing the functioning of turf habitats. In this study, we
focused on gammaridean amphipods and tanaidaceans, the
most abundant peracarids in our study region. We specifically
investigated the effect of hydrodynamics on abundance and
assemblage structure by sampling natural habitat patches
exposed to different degrees of wave action. We expected
that effects of wave exposure on the physical structure of cor-
alline habitats would result in important changes in the asso-
ciated peracarid assemblages.

M A T E R I A L S A N D M E T H O D S

Study area and sampling
In this study we focused on the structure of peracarid assem-
blages in the intertidal zone, where wave exposure and sedi-
mentation are likely to be particularly relevant. Four rocky
shores at Ubatuba, São Paulo, Brazil were chosen to
provide spatial replication of habitats of varying wave expos-
ure, along a 20 km coastline (Figure 1). Enseada and Itaguá
are relatively protected shores formed by small boulders,
while Bravinha and Praia Grande are moderately exposed
areas where larger boulders and platforms make the most
of the rocky habitat. Exposure categories were based on the
indices reported by Bueno & Flores (2010), using the
method described in Palumbi (1984). Dense coralline algal
patches were found at low-shore heights on all these local-
ities and were sampled during emersion periods. On

protected sites, coralline algae form homogeneous mat-like
habitats, whereas patches are sparser and turf-like on
exposed shores. The most abundant algal species were
Corallina officinalis Linnaeus, Jania rubens (Linnaeus) J. V.
Lamouroux and Amphiroa beauvoisii J. V. Lamouroux
(Joly, 1967). Since they usually co-occur at any given
patch, and form an overall common turf habitat (although
of variable height and structure), we did not identify algal
species in each sample. We occasionally observed sponges
Hymeniacidon heliophila growing among coralline fronds,
especially at sheltered shores, which may affect amphipod
species composition.

Fieldwork was conducted from September to November
2010, thus minimizing the influence of seasonal trends. We
sampled each shore by haphazardly taking three samples,
separated by an approximate distance of 20 m along shore-
lines, during three sampling events (22 September, 22
October and 7 November). We tested for variation among
sampling events and did not find any. Therefore, we pooled
samples obtained at these different times and used a sample
size of nine replicates. Samples were taken at 100% coralline
cover areas during diurnal low-tide periods, using a 10 cm
diameter corer. Turfs were frozen and later analysed under a
dissecting microscope to sort out amphipods and tanaida-
ceans, which were counted and identified to species level.
Abundance was calculated as individuals per plot. After
removing the vagile fauna and trapped sediment, habitat com-
plexity was estimated as coralline biomass (dry weight) per
plot for the two last events. For that, samples were dried at
608C for 48 h and weighed on a precision weighing scale.

Statistical analyses
We first investigated the co-occurrence of amphipods and
tanaidaceans in the coralline algae through correlation

Fig. 1. Map of the study area. Rocky shores are indicated by black dots. It, Itaguá; Pg, Praia Grande; En, Enseada; Br, Bravinha.
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analyses using the Statistica software (Stat Soft Inc., 2005).
A positive correlation would suggest these groups require
similar environmental conditions, clustering at favourable
spots, while a negative correlation would indicate exclusion
through competition or preference for different environmen-
tal conditions. No relation was expected if their occurrence is
independent at the sampled local scale. Correlational trends
were then tested between habitat complexity and peracarid
abundance, to evaluate whether habitat size may be a limiting
factor.

We applied a nested ANOVA design to test the effect of
wave exposure on habitat complexity and abundance of
both amphipods and tanaidaceans using the WinGMAV5
software (Underwood & Chapman, 2002). The nested
design included the factors exposure (fixed, two levels:
moderately exposed and sheltered) and shore (random,
nested in exposure, two levels: Praia Grande and Bravinha;
Enseada and Itaguá). Nesting shores within exposure levels
allowed us to test the consistency of wave exposure effects.
Amphipod and tanaidacean abundance data were trans-
formed to ln(x + 1) to achieve homoscedasticity when
needed. Dominant amphipod species were analysed according
to the degree of exposure through a one-way ANOVA.

The same nested design was used to examine changes in
the assemblage structure of amphipods. In this case,
PERMANOVA (Clarke & Gorley, 2006) analyses were run,
using Bray–Curtis distances after 999 permutations.
Singletons were removed. The SIMPER test was used to
detect the main species underlying the formation of clusters.
Only two tanaidacean species were found, precluding any stat-
istical procedures. However, patterns of occurrence of these

two species were strikingly different and simple numerical
trends sufficed.

R E S U L T S

Habitat complexity was similar between moderately exposed
and sheltered shores (F ¼ 0.01; df ¼ 1; P ¼ 0.936). Also, we
observed no variation between shores of the same exposure
level (F ¼ 0.55; df ¼ 2; P ¼ 0.587), suggesting a homogeneous
turf at the local scale. No correlation was found between amphi-
pod and tanaidacean abundances (r ¼20.0690; P ¼ 0.690),
indicating their independent occurrence on coralline algae.
Peracarid abundance, as a whole, did not show any correlation
with habitat complexity (r ¼ 0.1074; P ¼ 0.617). Separately,
we found a positive correlation between amphipod abundance
and coralline complexity (r ¼ 0.4720; P ¼ 0.020) but no cor-
relation for tanaidaceans (r ¼ 0.1119; P ¼ 0.603).

We found 589 amphipods distributed on 11 species. Details
on life, feeding habits and counts for all species are shown in
Table 1. Higher overall amphipod abundance was observed on
moderately exposed sites (Table 2, Figure 2A). We did not
observe differences between shores, within each category of
exposure, further suggesting that amphipod abundance is con-
sistently higher at more exposed areas, as observed for the
most abundant species Apohyale media, Hyale niger and
Cymadusa filosa (Figure 3). Apohyale media dominated both
exposed and sheltered shores, while H. niger and C. filosa
occurred at lower numbers. However, differences between
degrees of exposure were not significant for all three species
(A. media: F ¼ 2.21; df ¼ 1; P ¼ 0.147; H. niger: F ¼ 0.15;

Table 1. Lifestyle and feeding habits of peracarids occurring at Praia Grande, Bravinha, Enseada and Itaguá.

Order Family Species (N) Lifestyle Feeding

Amphipoda Amphilochidae Hourstonius wakabarae (1) FL C
Amphitoidae Cymadusa filosa (37) TD H
Aoridae Aora spinicornis (9) TD D

Globosolembos smithi (2) TD D
Hyalidae Apohyale media (436) FL O

Hyale niger (78) FL O
Ischyroceridae Jassa slatteryi (1) TD D
Leucothoidae Leucothoe spinicarpa (10) I C
Lysianassidae Lysianassa tememino (1) FL D
Maeridae Elasmopus pectenicrus (3) FL D

Elasmopus brasiliensis (20) FL D
Tanaidacea Leptocheliidae Leptochelia aff. dubia (596) TD D

Tanaididae Zeuxo coralensis (535) TD D

N, number of individuals; FL, free-living; TD, tube-dwelling; C, carnivorous; H, herbivorous; O, omnivorous; D, detritivorous; I, inquiline; C, commensal.
From Leite et al. (2000); Guerra-Garcı́a et al. (2014).

Table 2. ANOVA results for peracarid abundance at moderately exposed (Praia Grande and Bravinha) and protected sites (Enseada and Itaguá).

Source df Amphipods Tanaidaceans

MS F P MS F P

Exposure 1 5.67 57.33 0.017 0.25 0.00 0.993
Shore (Ex) 2 0.10 0.13 0.883 2247.25 1.47 0.245
Residuals 32 0.79 1529.31

Ln(x + 1); C ¼ 0.3442 ns No transformation; C ¼ 0.4063 ns
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df ¼ 1; P ¼ 0.703; C. filosa: F ¼ 4.03; df ¼ 1; P ¼ 0.053). We
did not find an effect of wave exposure on the structure of
amphipod species assemblages, but we did find differences
between shores (Table 3). Pair-wise post-hoc tests showed
that between-shore contrasts were significant for more
exposed assemblages at Praia Grande and Bravinha (t ¼
1.63, P ¼ 0.048), but not for Enseada and Itaguá (t ¼
1.0492, P ¼ 0.365). Main contributors to these results were
identified through SIMPER analysis and included A. media
(60.5%), C. filosa (20.8%) and H. niger (13.1%).

Tanaidaceans occurred at higher numbers, summing up
1131 animals belonging to two species, Leptochelia aff. dubia
(after Bamber, 2010) and Zeuxo coralensis (Table 1).
Segregation of these two species according to levels of wave
exposure was virtually absolute. Leptochelia was restricted to
sheltered areas (Enseada and Itaguá), except for two animals
recorded at Praia Grande, while Zeuxo was only found at
exposed shores (Figure 2B). These two species apparently
fulfil the tanaidacean niche, since whole tanaidacean

abundance did not vary according to exposure levels, nor
between shores within the same level (Table 2).

D I S C U S S I O N

The occurrence of amphipods and tanaidaceans at a very local
scale, within turf samples of less than 80 cm2, was unrelated,
suggesting no substantial interactions between these two
major groups, neither positive or negative, nor any meaningful
similarity (or divergence) of habitat preferences. Despite no
apparent differences of habitat complexity between the
tested exposure levels, and our rather restricted sampling
effort (two shores in each exposure level), the peracarid com-
munity in our study region is clearly affected by wave action,
suggesting that other factors than habitat structure may affect
these assemblages. Because we found mostly changes in abun-
dance for amphipods and species composition for tanaida-
ceans, effects of wave exposure are apparently complex and
group-specific.

Amphipods were far less abundant than tanaidaceans but
much more diverse, as observed for Masunari (1982) for
turfs dominated by the coralline alga Amphiroa beauvoisii.
We found 11 amphipod species with different lifestyles and
feeding modes, suggesting they may exploit a wide array of
resources within the turf habitat. Habitat complexity, which
did not differ between turfs exposed to different wave
action, but did vary considerably within any given shore
(52%), positively affected overall amphipod abundance.
Habitat features can influence hydrodynamics at small scales
(Madsen et al., 2001) and more physically complex patches
may supply several different microhabitats. It would allow
resource partitioning, as observed for Corallina officinalis,
where six species of copepods are specialized on the use of dif-
ferent resources, probably mitigating interspecific competition
(Hicks, 1977).

Higher overall abundance of amphipods on more exposed
shores could be related to more frequent water renewal. This
could enhance oxygen saturation, a factor correlated to higher
abundance of several Eastern Atlantic caprellid and gammarid
species (Izquierdo & Guerra-Garcı́a, 2011), and supply of sus-
pended food particles (Fenwick, 1976), which could be used by
the prevailing omnivore species (Apohyale media). Also,
amphipods are highly mobile species which may rapidly
return to their algal hosts after being dislodged (Fenwick,
1976; Norderhaug et al., 2012), thus possibly overcompeting
more sedentary invertebrates. Wave exposure would likely
benefit in a similar manner all amphipod species since it did
not affect assemblage composition, in contrast to the results
obtained by Lancellotti & Trucco (1993) for Chilean rocky
shores. It should be noted, however, that a greater gradient
of wave exposure was sampled by these latter authors.
Shores within similar conditions of exposure to wave action
may however host distinct amphipod assemblages, as noted
here for the communities sampled at Bravinha and Praia
Grande. Therefore, any processes operating at spatial scales
of a few km may drive substantial environmental change
and alter the composition of the turf-dwelling amphipod
fauna. Among many possible factors, the identity of accom-
panying epiphytic algae (e.g. Schmidt & Scheibling, 2006;
Jacobucci & Leite, 2014), and patterns of sedimentation
(Whorff et al., 1995; Boström & Bonsdorff, 2000) may play
important roles. The effects of these and other possible

Fig. 2. Abundances at moderately exposed (Praia Grande and Bravinha) and
protected sites (Enseada and Itaguá). A: amphipods. B: tanaidaceans. Bars
indicate standard errors. Different letters indicate P , 0.05. For
tanaidaceans, all individuals at exposed shores were Zeuxo coralensis, and all
individuals at sheltered shores were Leptochelia aff. dubia, except for two
Leptochelia individuals found at Praia Grande.

Table 3. PERMANOVA results for amphipod species composition at
moderately exposed (Praia Grande and Bravinha) and protected sites

(Enseada and Itaguá).

Source df MS Pseudo-F P(perm)

Exposure 1 5610.7 1.24 0.319
Shore (Ex) 2 4542.2 1.84 0.048
Residuals 32 2473.6
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factors cannot be advanced here and should be addressed in
future experimental work.

We found both free-living and tube-dwelling amphipods.
Among the free-living species, hyalids prevailed, especially
Apohyale media. Hyalids are omnivorous and resistant to des-
iccation, thus capable of colonizing intertidal habitats span-
ning a considerable vertical height on rocky shores (Wieser,
1952; Tararam et al., 1986; Chavanich & Wilson, 2000).
Tube-building species are usually more patchily distributed
than free-living animals (Tanaka & Leite, 2003). They are
more sedentary, and juveniles build their tubes near their
parents, resulting in aggregated patterns, as observed for
Cymadusa filosa (Appadoo & Myers, 2003). This species was
the most abundant tube-dwelling amphipod in this study. It
occurred mostly at the exposed shore Bravinha, with no
animals found at Praia Grande. Distribution of C. filosa was
clearly patchy, since we found samples containing 10 and 14
animals, which together make up 65% of the whole sample.
We also found Leucothoe spinicarpa, a species frequently asso-
ciated with sponges and ascidians (Thiel, 2000). Although at
low numbers (N ¼ 10), its presence was probably related to
the co-occurring sponge Hymeniacidon heliophila, a structur-
ing organism associated with coralline algae mainly at shel-
tered shores.

Tanaidaceans were far more abundant than amphipods,
but much less diverse (only two species recorded). Overall
densities were similar in exposed and sheltered shores, but
species were segregated in these two environmental condi-
tions, with turf habitat being colonized by Leptochelia aff.
dubia at sheltered shores and Zeuxo coralensis at moderately
exposed sites. Spatial segregation of intertidal tanaidaceans
according to water motion was also reported by Kitsos &
Koukouras (2003) in the Greek coast. Although the authors
measured water flux, not wave exposure, they observed
Leptochelia savignyi and Pseudoleptochelia anomala at lower
hydrodynamism, and two species of Tanais, belonging to
the same family of Zeuxo (Tanaididae), at sites where higher
hydrodynamism prevailed. However, substrates varied from
coralline algal turfs to mussel beds, as sites varied from low
to high hydrodynamic intensity (Kitsos & Koukouras, 2003),

making it hard to separate the effects of hydrodynamism
and habitat type. Unlike amphipods, the abundance of tanai-
daceans was not related to habitat complexity. The distribu-
tion of tanaidaceans may be more directly linked to
sediment trapping in coralline algal turfs, since they use
grains to build their housing tubes and feeding. Krasnow &
Taghon (1997) observed the behaviour of L. aff. dubia and
noted that this species manipulates sediment particles using
their mouth parts and pereopods. Individuals may thus
obtain food from biofilms adhered to sand grains as they
build up their tubes. Our ongoing research is investigating
the role of trapped sediment in the distribution of tanaida-
ceans, and preliminary data suggest that coralline algal turfs
in sheltered areas contain higher organic contents due to sedi-
ment retention. It is thus possible that the functional morph-
ology of mouth and thoracic appendages will determine the
habitat type and niche breadth in these abundant peracarids.

Wave exposure is an important environmental variable
affecting the distribution of animals and plants on rocky shor-
elines. Regarding wave exposure and peracarid lifestyles, our
results challenged the general notion that tube-building pro-
vides protection against dislodgement (Dommasnes, 1968;
Fenwick, 1976). In spite of a diverse amphipod assemblage,
constituted of both free-living and tube-dwelling species, we
found no differences in composition structure suggesting a
higher occurrence of the latter group in more exposed
shores. Accordingly, both tanaidacean species build tubes
using mucus and sand grains, and, if this was the single
most important trait determining distribution patterns, we
would expect L. aff. dubia and Z. coralensis to be equally dis-
tributed in sheltered and exposed habitats. Clearly, further
observational and experimental studies should advance alter-
native hypotheses underlying distribution patterns of peracar-
ids in intertidal algal habitats.
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