
TLP 3 (4 & 5): 387–391, 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S1471068403001820 Printed in the United Kingdom

387

Introduction to the special issue on
Programming with answer sets

CHITTA BARAL

Department of Computer Science & Engineering, Arizona State University,

Tempe, AZ 85287, USA

(e-mail: chitta@asu.edu)

ALESSANDRO PROVETTI

Department of Physics – Computer Science Section, University of Messina,

Messina, I-98166 Italy

(e-mail: ale@unime.it)

TRAN CAO SON

Computer Science Department, New Mexico State University, Las Cruces, NM, USA

(e-mail: tson@cs.nmsu.edu)

Introduction

The search for an appropriate characterization of negation as failure in logic

programs in the mid 1980s led to several proposals. Amongst them the stable

model semantics – later referred to as answer set semantics, and the well-founded

semantics are the most popular and widely referred ones. According to the latest

(September 2002) list of most cited source documents in the CiteSeer database

(http://citeseer.nj.nec.com) the original stable model semantics paper

(Gelfond and Lifschitz, 1988) is ranked 10th with 649 citations and the well-founded

semantics paper (Van Gelder et al., 1991) is ranked 70th with 306 citations. Since

1988 – when stable models semantics was proposed – there has been a large body

of work centered around logic programs with answer set semantics covering topics

such as: systematic program development, systematic program analysis, knowledge

representation, declarative problem solving, answer set computing algorithms, com-

plexity and expressiveness, answer set computing systems, relation with other non-

monotonic and knowledge representation formalisms, and applications to various

tasks.

This large body of building-block results makes logic programming with answer

sets (sometimes called A-Prolog or AnsProlog) an attractive and suitable language

for declarative programming, knowledge representation, and further development.

In this direction, the new millennium has seen an AAAI Symposium (Spring 2001),

a Dagstuhl seminar (in 2002), and the publication of the first textbook on the topic

(Baral, 2003). This special issues follows those events.

https://doi.org/10.1017/S1471068403001820 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001820


388 C. Baral and others

The origin: AAAI Spring 2001 symposium

This special issue is, to some extent, consequential to the AAAI Spring 2001

Symposium: ASP2001: Answer Set Programming: Towards Efficient and Scalable

Knowledge Representation and Reasoning. It was held in Stanford University on

March 26-28 2001 and it was the first event ever dedicated to Answer set pro-

gramming. We believe that it was a very successful event, with a turn out of about

50. While the majority of the participants were academics and students working

on logic programming, several where from Silicon Valley industries or academics

from neighboring areas. The invited speaker, Bart Selman from Cornell University,

gave a survey on satisfiability techniques and algorithms. Overall, 32 articles were

presented, some as plenary presentations and some as posters. We felt that the

poster session was particularly successful in making attendees aware of each other’s

research, ask questions and sometimes offer hints for improvement. The idea of the

special issue grew out of that experience. Contributions were solicited with an open

call in summer 2001, and 15 articles were submitted. All the articles were very good,

and due to page limitations and time constraints (limiting another revision based

on referee’s suggestions) we could only accommodate eight articles in this volume.

Programming with answer sets and answer set programming

Programming with answer sets refers to the use of stable model semantics (Gelfond

and Lifschitz, 1988), which gives a declarative meaning to negation-as-failure and

establishes a very direct connection with Reiter’s Default logic and other relevant

non-monotonic reasoning formalisms. The crux of the stable model (answer set)

semantics is to consider rules (elsewhere called extended clauses) of a logic program

Π as if they were default inference rules. Then, an interpretation S of Π is an answer

set of Π if it is the minimal model of the Gelfond–Lifschitz transformation ΠS of

Π. Answer sets of a program Π are closed under the rules of Π and each element

of S is supported by at least one rule in Π.

The following short programs illustrate how the answer set semantics works.

The program {p← p.} has ∅ as the only answer set, since {p} although closed is

not minimal. The program {p← not q.} has the only answer set {p}, whereas the

interpretation {q} although closed and minimal, is not supported. The program

{p← not q. q← not p} has two answer sets {p} and {q}. The presence of two answer

sets represents a non-deterministic choice between p and q. Finally, the program

{p← not p, a. a← .} admits no answer set. It is supposed to represent contradictory

information: the first rule saying that a should result in contradiction, while the

second rule asserts a.

We can see two main differences between answer sets and many other logic

programming semantics such as the Well-founded semantics. First, the Well-founded

semantics (and many others), assign to a program one and exactly one model. The

Answer Set semantics, in contrast, can assign zero, one or several models to a

program. This choice may seem unusual from the point of view of programming,

since one thinks of the programmer as having in mind exactly one execution path.

https://doi.org/10.1017/S1471068403001820 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001820


Introduction 389

However, it seems particularly adequate from the point of view of Knowledge

Representation. Inconsistency (zero answer sets) describes a partial, conflicting state

of knowledge; one model describes total knowledge while a plurality of models

describes alternative beliefs stemming from partial knowledge. Depending on the

application, one may want to compute one or more answer sets.

Answer Set Programming (ASP) is a particular style of programming with answer

sets where solutions to a problem are represented by answer sets (sets of atoms), and

not by answer substitutions produced in response to a query, like in traditional logic

programming. Although this might seem to be a drawback if one wants to query the

program in the style of Prolog, i.e. ask about truth of a particular atom, since one or

all models (depending on the type of query) need to be completely computed, the use

of data base techniques such as magic sets can potentially overcome the drawbacks.

Current implementations of ASP tend to compute models in a bottom-up fashion.

As a result, true function symbols are disallowed, else models could be infinite and

impossible to compute. However, one could still write a program where function

symbols are allowed a limited number of nestings and then feed it to a grounder

that substitutes them for constants.

To conclude this presentation, we like to mention the very strong implementations

that are now available for Answer Set Programming. Thanks to them we can now

experiment and apply ASP to an increasing number of problems and allow ASP

technology to be used. Since complexity of finding answer sets is at least NP,

scalability is an important factor and, in the end, one of the keys to industrial

application. In the recent years ASP solvers have become more and more scalable,

and are now a viable alternative to SAT solvers. Without pretense of completeness,

we would like to mention the smodels solver and its companion parser lparse which

have been developed at Helsinki University of Technology (Niemelä and Simons,

1997), and DLV developed for Disjunctive Logic Programs (Eiter et al., 2000) at

the Vienna Technical University and University of Calabria; those are two key

systems that helped advance the field. New, promising solvers are being developed

by Truszczyński et al. at the University of Kentucky, by Linke et al. at the University

of Potsdam, by Lifschitz et al. at the University of Texas at Austin, by Gelfond et al.

at Texas Tech University, and by Lin et al. at the Hong Kong University of Science

and Technology.

Overview of the contributions

This special issue contains eight papers whose focus range from theoretical charac-

terizations based on answer set semantics to application of answer set programming

to various problems.

The paper by Arenas, Bertossi and Chomicki addresses the problem of retrieving

consistent information when general first order queries are posed to an inconsistent

relational database. Disjunctive logic programs with exceptions are used to specify

database repairs in inconsistent instances. Answer set programming is used to

compute the consistent answers.

https://doi.org/10.1017/S1471068403001820 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001820


390 C. Baral and others

The paper by Balduccini and Gelfond shows how answer set programming can

be applied in dynamic diagnosis. It describes an architecture for a software agent

that operates a device, can observe the environment, tests and repairs the device’s

components. It shows that several tasks of this agent can be reduced to computing

answer sets of logic programs.

The paper by Eiter, Faber, Leone and Pfeifer presents a meta-interpreter for

computing answer sets of logic programs with preferences. Different approaches to

dealing with preferences between rules are discussed and implemented. The paper

also highlights the elegance and ease of using answer set programming in the

development of prototypes for knowledge representation formalisms.

Erdem and Lifschitz generalize the notion of tightness, introduced by Fages to

characterize logic programs with stable models, to programs with nested expressions.

In particular, they show that the result proved by Fages can be extended to the new

class of Tight Logic Programs.

Heljanko and Niemelä present another interesting application of answer set

programming. They show how bounded model checking of asynchronous concurrent

systems, exemplified by 1-safe Petri net, can be done using answer set programming.

The main idea of this paper is to translate the network and a requirement on its

behavior into a logic program whose answer sets correspond to solutions of the

bounded model checking problem for the net. This approach allows for a compact

representation of the problem.

Marek and Remmel address a fundamental question of answer set programming

by showing that all search problems in the class NP can be solved using answer set

programming. This helps to distinguish between answer set programming (answer

set solvers) from traditional PROLOG technology.

Schaub and Wang develop a semantic framework for preference handling in an-

swer set programming. They introduce preference preserving consequence operators

and provide different characterizations of preferred answer sets for prioritized logic

programs. This allows for a better comparison between several approaches to dealing

with preferences in logic programming.

Turner provides a direct characterization of strong equivalence of logic programs

with nested expression and weight constraints. It defines a notion, called SE-model,

for nested programs, and shows that two nested programs are strong equivalent if

and only if they have the same SE-models. This result is then extended to cover

programs with weight constraints.

Acknowledgements

We would like to take this opportunity to sincerely thank the referees of the

articles that were submitted for this special issue. Without their dedication and

timely reviewing this volume would not have been possible. We would also like to

thank the NSF grants 0070463, and 0126294 for supporting Chitta Baral during

the period this volume was edited. Chitta Baral and Tran Cao Son were supported

by NASA grant NCC2-1232. Alessandro Provetti was supported by MIUR COFIN

project Aggregate- and number-reasoning for computing: from decision algorithms to

https://doi.org/10.1017/S1471068403001820 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001820


Introduction 391

constraint programming with multisets, sets, and maps. Tran Cao Son would also like

to acknowledge the support of NSF grants EIA-0130887 and EIA-0220590.

References

Baral, C. 2003. Knowledge representation, reasoning and declarative problem solving.

Cambridge University Press.

Eiter, T., Faber, W., Leone, N. and Pfeifer, G. 2000. Declarative problem solving in dlv.

In: J. Minker (Ed.), Logic Based Artificial Intelligence, pp. 79–103. Kluwer Academic.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In: R. Kowalski and K. Bowen (Eds.), Logic Programming: Proceedings Fifth International

Conference and Symposium, pp. 1070–1080. MIT Press.

Niemelä, I. and Simons, P. 1997. Smodels – an implementation of the stable model and

well-founded semantics for normal logic programs. In: J. Dix, U. Furbach and A. Nerode

(Eds.), Proceedings 4th International Conference on Logic Programming and Non-monotonic

Reasoning, pp. 420–429. Springer.

Van Gelder, A., Ross, K. and Schlipf, J. 1991. The well-founded semantics for general logic

programs. Journal of ACM 38, 3, 620–650.

https://doi.org/10.1017/S1471068403001820 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001820

