Canad. J. Math. 2025, pp. 1-37

http://dx.doi.org/10.4153/S0008414X2500001X

© The Author(s), 2025. Published by Cambridge University Press on behalf of
Canadian Mathematical Society

On multiparameter CAR (canonical
anticommutation relation) flows

C. H. Namitha and S. Sundar

Abstract. Let P be a pointed, closed convex cone in R?. We prove that for two pure isometric
representations V(1) and V() of P, the associated CAR flows ﬁvm and ﬁvm are cocycle conjugate
if and only if V(Y and V() are unitarily equivalent. We also give a complete description of pure
isometric representations of P with commuting range projections that give rise to type I CAR
flows. We show that such an isometric representation is completely reducible with each irreducible
component being a pullback of the shift semigroup {S; } t>0 on L?[0, co). We also compute the index
and the gauge group of the associated CAR flows and show that the action of the gauge group on
the set of normalized units need not be transitive.

1 Introduction

Broadly speaking, the subject of irreversible non-commutative dynamics is concerned
with the study of dynamical systems where instead of a group action on a non-
commutative space (Hilbert spaces, C*-algebras, von Neumann algebras), we have
a semigroup action. The operator algebraic aspects of such irreversible dynami-
cal systems have received the attention of many authors over the years. Some of
the topics that were investigated in detail and continue to be a source for much
research are semigroup C*-algebras [11], semi-crossed products of non self-adjoint
algebras [13], dilation theory of semigroups of contractions and CP-semigroups [28],
Ey-semigroups and product systems [8]. This paper comes under the topic of
E(-semigroups and product systems.

An Ey-semigroup (CP-semigroup) over a semigroup P on B(H) is a semigroup
o := {ay }xep of unital, normal *-endomorphisms (CP-maps) of B(H). If P has a
topology, we require the semigroup « to satisfy an appropriate continuity hypothesis.
The study of such semigroups, when P = [0, o), has a long history which dates back
to Powers’” works [19, 20]. Arveson wrote several influential papers on the subject
[4-7] and also authored [8] which is the standard reference for the subject. More on
Arveson’s contribution and by others to the subject of Ej-semigroups can be found in
a survey article [15] by Izumi.

In the last 15 years, several papers [1-3, 17, 25-27, 30, 32, 36] appeared where
semigroups of endomorphisms/CP-maps and product systems, over more general
monoids, were considered. Moreover, it was demonstrated that significant differences
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show up in the multiparameter case. A few features that are in stark contrast to the

1-parameter case are listed below.

(1) A CP-semigroup over N* need not have a dilation to an Ey-semigroup [29].

(2) CCR and CAR flows need not be cocycle conjugate in the multiparameter case
[33].

(3) In the multiparameter case, decomposable product systems need not be spatial
[18, 36].

These contrasting phenomena make the multiparameter theory interesting, and the

authors believe that multiparameter E,-semigroups are objects worthy of investiga-

tion. Here, we study a class of Ej-semigroups called CAR flows and classify a subclass

of them.

In view of the bijective correspondence between the class of product systems and
the class of Ey-semigroups [9, 17, 31], we explain the problem studied and the results
obtained in the language of product systems. A product system is a measurable field
of separable Hilbert spaces E := {E(x)}xcp endowed with a multiplication that is
compatible with the measurable structure.

The two simplest product systems, whose definitions we recall, are the ones
associated with CCR and CAR flows. Let J{ be a separable Hilbert space. (All Hilbert
spaces considered in this paper are tacitly assumed to be separable.) We denote the
symmetric Fock space of H by I(HH) and the antisymmetric Fock space of H by
I,,(3). Throughout this paper, the letter P stands for a closed, convex cone in R?
that is pointed, i.e., Pn—P = {0} and spanning, i.e., P~ P =R%. Let V := {V, }cp
be a strongly continuous semigroup of isometries on H. We call such a semigroup
of isometries an isometric representation of P on J{. We assume V is pure, i.e.,

() VaH = {0}.

x€eP

Consider the field of Hilbert spaces FV := {FV (x)}xep, FY(x) := Ts(Ker(V}))
for x € P. We impose a measurable structure on F" as follows. For every x € P, we
can view F" (x) as a subspace of T;(3{), as the embedding Ker(V;*) c H induces an
embedding of [ (Ker (V")) in [ (). Let I be the set of all maps ¢ : P — I, (H) such
that
(a) the map t is weakly measurable, and
(b) forx € P, t(x) € FV(x).
Then, FV is a measurable field of Hilbert spaces with T being the space of measurable
sections. Define a product rule on F” by

(L1) e(§)e(n) = e(E+ Van)

for § € Ker(V;") and n € Ker(V;'). Here, {e(£) : { € Ker(V,")} denotes the collection
of exponential vectors in the symmetric Fock space I, (Ker(V,")). Then, the multipli-
cation is compatible with the measurable structure making F" a product system. The
product system F" is called the product system of the CCR flow associated with V. The
corresponding Eq-semigroup «" is called the CCR flow associated with V. Concrete
examples of multiparameter CCR flows and their intrinsic properties like index, gauge
group, type were analyzed in [2, 3] and in [23].

For x € P, let Q, be the vacuum vector of [,,(Ker(V,")). Consider the field
of Hilbert spaces EV := {EY (x)}ep, where EV (x) := T,(Ker(V;)) for x € P. The
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measurable structure on EV is defined as in the CCR case. Define a multiplication
on EV as follows:

(1.2) En=VamAVinm . . AV A A AL ANE,

for §=& A& ANEyeT(Ker(VY), n=mAmA... A1, € Fu(Ker(Vy*)) and
x,yeP.Form=0orn=0,(L2)is interpreted as follows:

Qx’Qy:Qx+y)
Qu - n=VimAVina ... A Vi,
E-Qy=EAGEA A,

Then, EV is a product system and is called the product system of the CAR flow
associated with V. The corresponding Ey-semigroup B" is called the CAR flow
associated with V.

It is known that in the 1-parameter case, i.e., when P = [0,00), EV and F" are
isomorphic [21]. Then, it follows from the work of Arveson [4] that 1-parameter CAR
flows are classified by a single numerical invariant called index that takes values in
{0,1,2,...} u{oo}. In particular, the map

Vv >EY

is injective. Also, 1-parameter CAR flows are type 1. Here, we take up the multipa-
rameter case, and we completely classify type I CAR flows associated with isometric
representations with commuting range projections.

Before we state our results, we mention here that, in the multiparameter case, the
study of CCR flows and CAR flows are not the same thing. For, it was demonstrated in
[33] that EV and F" need not be isomorphic. In [1], Arjunan studied the decompos-
ability of the product system EV when V is the shift semigroup associated with a free
and transitive action of P. He showed that for a large class of isometric representations
V, EV fails to be decomposable, and hence not isomorphic to the product system of a
CCR flow.

Our first result concerning CAR flows is given below.

Theorem 1.1 Let VY and V) be pure isometric representations of P on Hilbert spaces

J, and I, respectively. The product systems EV? and BV are isomorphic if and only
if V) and V? are unitarily equivalent, i.e., there exists a unitary U : H; — 3, such
that for every a € P,

vvur=v®.

The above theorem was statedin [33, Proposition 4.7]. However, the proof given
there is incorrect. The author argues that in view of [33, Proposition 4.1], it suffices to
prove that the gauge group of a CAR flow acts transitively on the set of normalized
units, and he gives an incorrect proof of this assertion. In fact, the last assertion is
false. We show by counterexamples that the gauge group of a CAR flow need not act
transitively on the set of normalized units.

Theorem 1.1 says that the task of parametrizing/listing CAR flows is equivalent to
the problem of parametrizing isometric representations of P. However, the process of
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inducing isometric representations [12, 23] of N? to that of R2 allows us to conclude
that the classification problem of isometric representations of R? is at least as hard
as describing the dual of C*(Z, * Z) which is known to be pathological, i.e., it is not
a standard Borel space. Thus, describing a good parameterization of all CAR flows is
beyond the scope of this paper and the authors. Neverthless, we show that a suitable
subclass, i.e., the class of type I CAR flows associated with isometric representations
with commuting range projections can be completely classified and described in
concrete terms.

Recall that an isometric representation V = {V,},cp is said to have commuting
range projections if {V, V" : a € P} is a commuting family of projections, and recall
that a product system E is said to be type I if the only subsystem of E that contains all
the units of E is E. A unit of E is a non-zero multiplicative section of E.

We fix notation to describe our results. Let Ny, := {1,2,...} U {co}. Let P* be the
dual cone of P, i.e.,

P*:= {1 eR?: (A|x) > 0 for x € P}.
We denote by S(P*) the unit sphere of P*, i.e.,
S(P*):={AeP*:(AA) =1}.
Let A € S(P*), let k € N, and let X be a Hilbert space of dimension k. Denote

the one parameter shift semigroup on H := L2([0, 00), K) by $¥) := {ka) } 0. Recall
that for ¢ > 0, Sgk) is the isometry on JH{ defined by

f(x—t) ifx-t20,

St f(x) =
0 otherwise.

Fora € P,let S{(f’k) = S((;|)u)' Then, SHK) .= {S,(f’k)}aep isanisometric representation
of P on J{. If k = 1, we denote S*-K) by $*,
For a non-empty countable subset I, an injective map A : I — S(P*) and a map
k:T— N, set
shk) .- @S(M,ki)_
i€l
Let E®) be the product system of the CAR flow associated with S(%).

With the above notation, we have the following classification result which is the
main result of this paper.

Theorem 1.2 For every non-empty countable set I, an injective map A : I - S(P*) and
a map k: I - N, the product system EM®) is type I. Conversely, suppose V is an
isometric representation of P with commuting range projections such that EV is type
L Then, EY is isomorphic to E®F) (equivalently, V is unitarily equivalent to S*¥)) for
a non-empty countable set I, an injective map A : I - S(P*) and a map k: I - N..
Moroever, the maps A and k are unique up to conjugacy.

We explain briefly the ideas involved in the the proof of the converse part. A
certain “universal irreversible” dynamical system that encodes all pure semigroups of
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isometries with commuting range projections was constructed in [35] (see also [37]).
The irreversible system is given by the pair (X,, P) where

X, = {AcRd :Aqt@,A¢Rd,—P+AcA,OeA,Aisclosed}.

The topology that we impose on X, is the Fell topology. The semigroup P acts on X,
by translations.

The results of [34] allow us to conclude that if we focus on one unit © := {1, } 4¢p
at a time, then we can assume that V is the shift semigroup V¥ on X, associated with
a translation invariant Radon measure y on X,,. Making use of the equality

UgUp = UplU,

and by few computations, we show that the support of y can be identified with [0, c0).
Under this identification, the action of P on [0, o0) is then given by

[0,00) x P> (x,a) - x + (Aa) € [0, )

for a unique A € S(P*). Then, it is clear that V* is unitarily equivalent to S*. The proof
of the converse part of Theorem 1.2 is completed by a Zorn’s lemma argument.

We also compute the index and the gauge group, i.e., the group of automorphisms,
of the product system E%). For £ € N, the unitary group of a Hilbert space of
dimension £ will be denoted by U(¢). We denote the gauge group of E*) by G.

Theorem 1.3  Let I be a non-empty countable set, let A : I — S(P*) be an injective map,
and let k : I - No, be a map. Then,

md(EM9) = Sk,
i€l
Q) IfI = {i} is singleton, then E™¥) is isomorphic to the product system of the CCR
flow associated with S%)_ In this case, the gauge group G acts transitively on the
set of normalized units, and G is isomorphic to the gauge group of the CCR flow
associated with Pk,
(2) Ifthe cardinality of I is at least two, then the gauge group G does not act transitively
on the set of normalized units. In this case, G is isomorphic to R x [TU(k:).
iel

The organization of this paper is as follows.

After this introductory section, in Section 2, we collect a few definitions concerning
product systems, additive decomposable vectors and units. To keep the paper self
contained, we give an overview of the results derived in [16] and in [I] concerning
the exponential map that plays a crucial role in our analysis. Theorem 1.1 is proved in
Section 3. In Section 4, we prove Theorem 1.2. In Section 5, we prove Theorem 1.3. We
also prove that the gauge group of a CAR flow need not act transitively on the set of
normalized units.

2 Additive decomposable vectors and the exponential map

We will make extensive use of the exponential map defined initially for “addits” in
[16] and later extended to “coherent sections of additive decomposable vectors” in [1].
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To keep the paper fairly self contained, we give a quick overview of the results of [16]
and [1]. We start by first recalling the definition of product systems, units, and what it
means for a product system to be type L.

Let P be a closed, convex cone in R?, where d > 1, which is spanning, i.e., P — P =
R? and pointed, i.e., PN —P = {0}. The letter P is reserved to denote such a cone for
the rest of this paper. Let P, := P U {oo}. For x, y € R?, we say x < y if y — x € P. For
x € P, set

[0,x]:={yeR9:0<y<x}.

For x = oo, welet [0,x] = P.
Let E := {E(x) }xep be a measurable field of non-zero separable Hilbert spaces

together with an associative multiplication defined on the disjoint union I_I E(x).
xeP

Then, E together with the multiplication is called a product system if the following
properties are satisfied.

(1) fueE(x)andv e E(y), thenuv € E(x + y).
(2) For x, y € P, the map

E(x)®E(y)2u®v—>uveE(x+y)

is a unitary operator.
(3) For measurable sections 7, s, t, the map

PxP5(x,y)— (r(x)s(y)|t(x+y)) e C
is measurable.

Let E := {E(x)} xcp be a product system. A measurable sectionu : P — [ [ E(x) is
xeP
called a unit if

(1) forx € P, u, #0,and
(2) forx, y € Pyuyuy = tiyy,.

We denote the set of units of E by Ug. We say that E is spatial if U is non-empty.
Let F := {F(x)}xep be afield of non-zero Hilbert spaces such that, for x € P, F(x) c
E(x). We say F is a subsystem of E if for every x, y € P,

F(x+y)=span{uv:ueF(x),veF(y)}.

Let u € Ug. We say a subsystem F contains u if u, € F(x) for every x € P. We say F
contains Ug if F contains u for every u € Ug. The product system E is said to be type
Lif E is spatial and the only subsystem of E that contains Ug is E.

We denote the gauge group of E, i.e., the group of automorphisms of E, by Gg. For
u € Ug and ¥ € Gg, let Y.u € Ug be given by

(Pou)y = W (uy)
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for x € P. A unit u = {1y }xep of E is said to be normalized if ||u,|| = 1 for each x € P.
The set of normalized units of E is denoted by Ug. We say that the gauge group acts
transitively on the set of normalized units if the action of Gg on U}, given by

GgxUg > (Yu) > Yuell

is transitive.

In [16], Margetts and Srinivasan introduced the notion of addits of a 1-parameter
product system and constructed an exponential map that, after suitable normalization,
sets up a bijective correspondence between addits and units. The notion of addits
was also considered independentely by Bhat, Lindsay, and Mukherjee in [22]. In [33],
Srinivasan introduced the concept of additive decomposable vectors. Imitating the
techniques of [16], Arjunan in [1] showed that there is a bijective correspondence
between the set of additive decomposable vectors and the set of decomposable vectors.
Since this bijection and the exponential map play a key role in what follows, we
summarize the main resuls of [33] and [1].

Let E = {E(x)} xep be a spatial product system over P with a reference unit e :=
{ex }xep that is normalized, i.e., ||e,|| =1 for x € P. Such a pair (E, e) was called a
pointed product system in [22]. The reference unit e is fixed until further mention.

Definition 2.1 [33] Let x € P, and let b € E(x). We say that b is an additive decom-
posable vector if b L e, and for y < x, there exists b, € E(y) and b(y,x) € E(y — x)
(that are necessarily unique) such that

(1) by Ley, b(y,x) Lexy, and
(2) b=byec, +e,b(y,x).

For x € P, let
Ae(x):={b e E(x) : b is additive decomposable}.

Let x € Po, and let {by } [o,x] be a family of additive decomposable vectors such
that b, € A.(y) for every y e [0,x]. We call such a family a coherent section of
additive decomposable vectors if for every y,z € [0,x] with y < z, there exists, a
necessarily unique, b(y,z) € E(z — y) such that

b, =bye,_,+e,b(y,2).

A coherent section of additive decomposable vectors {b,},cp is called an addit if
b(y,z) = b,_, whenever y < z.

Suppose {b, } ,e[0,x] is @ coherent section of additive decomposable vectors. It is
clear that the collection {b(y,z) : y,z € [0,x], y < z} satisfies the following propaga-
tor equation: for y; < y, < y3,

b(y1y3) = b(y1, y2)eys—y, + €y,-5,b(¥2, ¥3).

Letx € P. Given b € A.(x), it follows from [33, Lemma 3.2] that there exists a unique
coherent section of additive decomposable vectors {by } ,¢[o,x] such that b, = b.
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Next, we recall the definition of decomposable vectors. Let x € P, and let u € E(x)
be a non-zero vector. We say that u is decomposable if whenever y < x, there exists
v e E(y) and w € E(x — y) such that u = vw. For x € P, let

D.(x) :={u € E(x) : u is decomposable and(u|e, ) = 1}.

Let x € Poo, and let {1, },¢[0,] be a family of decomposable vectors such that u,, €
D.(y) for every ye[0,x]. We say that {u,}c[o,x] is a left coherent section of
decomposable vectors if for y,z € [0, x] with y < z, there exists a unique u(y,z) €
D.(z - y) such that u, = u,u(y,z).

Next, we recall the definition of the exponential map, in the 1-parameter setting,
that sets up a bijective correspondence between A, (-) and D, (). Let E := {E(#) } 0
be a l-parameter product system with a reference unit {e;}o that is normalized.
Suppose t > 0. Let b e A,(t) be given. Let {b,}[o,:] be the coherent section of
additive decomposable vectors such that b; = b.

For every n € {0,1,2,...}, defineasection x(") : [0,¢] > [] E(s) inductivelyas

se[0,t]

follows: for s € [0, t], set x{" = ¢; and xV := b, and for n > 2, let

O fsxf"‘l)db,.
0

Then, we set
Exp(b):=> xm
n=0
oo (n)

It was proved in [1, Proposition 3] that the series Y, x,"’ is norm convergent in E(¢).

The integral [, x" b, is called Itd integral whose definition is recalled below for
the reader’s benefit.

Let n >2,and let s € [0, ] be given. For every k > 1, partition [0, s] into k intervals
(k)

oflength £. For i =0,1,2,...,k —1,setr;’ := 2. Define
S L0000
n—
@1 Sk= ), X b mig )es-rﬁ"f
i=0 i i+

Note that Sy € E(s) for every k > 1. Moreover, the sequence (S ), converges in norm

whose limit we denote by fos xr("_l)db,. The norm convergence of (Sy ) was shown
in [16] when {b,}so is an addit (see [16, Proposition 5.4]). It was observed in [1]
that the same proof works if we replace an addit by a coherent section of additive
decomposable vectors (see [1, Proposition 2]).

Proposition 2.1[16], [1]  The exponential map satisfies the following key properties.
(1) Lett > 0. For b € A,(t), Exp(b) € D,(t). Moreover, the map

Ae(t)3b > Exp(b) € D (1)
is a bijection. For by, by € A, (t),
(Exp(b1)|Exp(b2)) = exp((b1|b2)).
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For b € A,(t), let {bs}e[o,r] be the unique coherent section of additive decom-
posable vectors such that b, = b. Then,

22) Exp(b,)Exp(b(r,s)) = Exp(by).
for0O<r<s<t.

() If {bi}ic[o,00) is an addit, then {Exp(b;)}ie[o,00) is @ unit. Conversely, if
{ts}te[0,00) is @ unit and u; € D (t) for every t, then there exists an addit
{b+} te[0,00) Such that u; = Exp(b;) for every t > 0.

For a proof of the above proposition, we refer the reader to [16] and [1].

Definition 2.2 Let E := {E(x) }xcp be a spatial product system over P with a nor-
malized reference unit { e, } ycp. For x € P, let E := {E(tx)} 50 be the spatial 1-product
system with reference unit {€;, } s>o. We denote the exponential map of E by Exp,. In
particular, if b € A, (x), then Exp, () is a well defined vector in E(x).If P = [0, o),
then for s > 0, we omit the subscript “s” from Exp; and simply denote it by Exp.

Suppose V is a pure isometric representation of P on a separable Hilbert space I,
and let EV := {EV(x)} xcp be the product system of the CAR flow 3. Recall that, for
x € P, EV(x) = T,(Ker(V;})) and the multiplication rule is given by (1.2). For x € P,
let Q) be the vacuum vector of I, (Ker(V,")). Then, Q := {Q, } xep is a unit which we
call the vacuum unit. We always consider the vacuum unit as the reference unit of EV
while considering the exponential map. The set of additive decomposable vectors was
determined by Srinivasan in [33], and we summarize the results in the next remark. A
couple of definitions are in order before we make the remark.

For x € P, we denote the range projection of V, by E,.

Definition 2.3 A map &: P - H is called an additive cocycle if for x € P, E, &, =0,
and for x, y € P,
£x+y fx + Vi fy

The set of additive cocycles is denoted by A(V).
Let u = {u, }xcp be a unit of EV. We say that u is an exponential unit if u, € Dq (x)
for every x € P, i.e., (uy|Qy) = 1for x € P.

Remark 2.2 With the foregoing notation, we have the following.

(1) Letx € P. Then, it follows from [33, Proposition 4.1] that Aq (x) = Ker(V,"). Itis
easy to see that Ker(V;") c Aq(x). To see this suppose x € P and & € Ker(V,).
Let y € P be such that y <x. Set £, := E;E and &(y,x) = vy &. Then, it is clear
from the definition of the multiplication rule that

(23) fy'Qx—y"'Qy'g(y’x) = E
Suppose P = [0, 00), t > 0 and & € Ker(V,). It follows from (2.2) that
Exp(E;§)Exp(Vy'§) = Exp(§)

for s < t. Equivalently, if P =[0,00), then for s,£>0, &€ Ker(V}*) and n €
Ker(V}"),

(24) Exp(§)Exp(n) = Exp(E+ Vin).
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(2) Let £: P — 3 be a map such that £, € Ker(V;") for every x € P. It is clear from
the definition of an addit, (2.3) and (1.2) that {&, } ccp is an addit if and only if £ is
an additive cocycle for V.

(3) Let u be an exponential unit of EV. Let x € P. Note that {u;, } s is a unit for the
one parameter product system {E(tx)} . It follows from Proposition 2.1 that
there exists a unique &, € Ker(V;") such that u, = Exp,(&,). It follows from the
definition of Exp, that the 1-particle vector of u, is &,. Comparing the 1-particle
vectors of the equation

Expx+y(fx+y) = ux+y = Uy - uy = Expx(gx) 'E-xpy(fy)

we see that for x, y € P, &yy = & + V€, ie,, &= {&, }xep is an additive cocycle
for V.

Thus, if u is an exponential unit, then u is of the form {Exp,(&;)}xep for a
unique & € A(V'). However, it is not necessary that Exp (&) := {Exp, (&) }xep is
a unit if £ € A(V) (see Proposition 4.16).

3 Injectivity of the CAR functor

In this section, we prove Theorem 1.1. Suppose V is a pure isometric representation
of [0, 00). Let F := {F(t) } 150 be the product system of the associated CCR flow a".
Recall that for t > 0, F(t) := [ (Ker(V;")) and the multiplication rule is given by

31 e(§e(n) =e(&+ Vin)

for &€ Ker(V,") and n € Ker(V;*). Here, {e(&): £ € Ker(V}*)} denotes the set of
exponential vectors. The vacuum unit of F is denoted by Q := {Q;}»9. We use the
same letter () to denote the vacuum unit of both CCR and CAR flows. Let E denote
the product system of the CAR flow 8" with the reference unit Q. For ¢ > 0, let D (t)
and D (t) denote the decomposable vectors in E(t) and F(t), respectively.

For t > 0, let

D (1) = {u e D"(1) : (ulQs) =1}
and D] (t) is defined similarly. From Remark 2.2 and Proposition 2.1, we have
Dg(t) = {Exp(§) : § € Ker(V,')},
and from [36, Proposition 2.2], we have
Dq(t) = {e(§) : § e Ker(V}.

It is known that E and F are isomorpbhic, a fact first proved by Robinson and Powers
in [21]. For our purposes, we need the following coordinate free isomorphism.

Lemma 3.1 Foreach t > 0, the map ¥, : DE (t) - DE (t) defined by
Dg(1) 3 Exp(§) — e(§) € Do(1)
is a bijection. Moreover,

WsExp(§).WiExp(n) = Vet (Exp(§).Exp(n))
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fors,t >0, &e Ker(V*) and n € Ker(V;"). The map ¥ extends uniquely to a unitary
(again denoted by ;) ¥, : E(t) — F(t) for t 2 0. The field of maps ¥ := {¥, } >0 is an
isomorphism from E onto F.

Proof From [8, Corollary 6.8.3], DE (t) is total in E(t), and D, (¢) is total in F(t)
for t > 0. Also, by Proposition 2.1,

(Exp(n)|Exp(£)) = e = (e(n)[e(£))

for n, & e Ker(V;*) for t > 0. Hence, ¥; can be extended to a unitary operator, again
denoted ¥, ¥, : E(t) » F(t), for > 0. It follows from (2.4) and (3.1) that ¥ :=
{¥;}»0 : E = F is an isomorphism. Hence the proof. ]

Suppose V) and V® are pure isometric representations of [0, c0) on H and X,
respectively. Denote the product systems of the respective CAR flows by E; and E,.
Let

%(V(l), V(Z))
= {U:H > X : Uisaunitary, UV = VDU, uvY* = v®*Ufort > 0}.

The proof of the next lemma is essentially an application of Lemma 3.1 and the gauge
group computation of CCR flows due to Arveson.

Lemma 3.2 Suppose ¥ : E; - E; is an isomorphism of product systems. Then, there
exists U e % (VD, V), E= (£} 150 e A(VP), and A € R such that

AT
Hzt” —

¥, (Exp(n)) = e™'e Ui Exp(Un + &)

forne Ker(Vt(l)*), t>0.

Proof We denote by F; and F, the product systems of the CCR flows associated with
VW and V@ respectively. For i = 1,2, let @; = {®;(t)};s0 be the isomorphism from
E; onto F; given by

®;(t)Exp(n) = e(n)

forn e Ker(Vt(i)*) and t > 0. The isomorphism ®; for i = 1, 2 is guaranteed by Lemma
3.1. Then, A = ®; o ¥ 0 @ is an isomorphism from F, onto F,.

It follows from [8, Corollary 2.6.10] that V() and V() are unitarily equivalent.
Suppose W : H{ — K is a unitary such that WVt(l) = Vt(z) W for t > 0. For ¢t > 0, let
Ay : Fi(t) - F,(t) be the unitary operator such that

Arexp(§) = exp(W§E)

for £ € Ker(Vt(l)*). Clearly, A := {A;}s0 : Fi = F; is an isomorphism.

Now consider the map T := A™! o A. The map T is an automorphism of F,. By [8,
Theorem 3.8.4], there exists U € 2 (V, VD), an additive cocycle & = {&} 50 for
V™ and ) € R such that

11§

Tre(n) = eMe™ 5 UMl e(Uy + &)
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for y € Ker(Vt(l)*). For t >0, set & := W&, and U := WU. Then, U ¢ Z (V), V(@)
and & := {&,} >0 is an additive cocycle for v,
Since A := A o T, it follows that for for t > 0 and # € Ker(Vt(l)*),

Hfr“

Ase(n) = eMe 2 Vil e(Wuy + WE,)
i/\te—iuwg'H _<WU'1|W£’>6(WU17 + Et)
_ ei/\te Hfr\l U”I‘Et e(Url + E[)

Since ¥ = @, o A 0 @y, it is immediate that

wExp() =M ORI Exp(Ty + )
for 77 € Ker( Vt(l)*) and t > 0. Hence the proof. ]

Let P be a closed convex cone in R? which is spanning and pointed. Let v, y@)
be two pure isometric representations of P on Hilbert spaces JH; and {5, respectively.
We denote the product systems of the corresponding CAR flows by E® and E(?),
respectively.

Theorem 3.3 The product systems EQ) and E®) are isomorphic if and only if V) and
V) are unitarily equivalent.

Proof Suppose E?) and E®) are isomorphic. Let ¥ = {¥, } 4ep : E® - E®) be an
isomorphism. Let a € Int(P). Consider the one parameter product system EY =
{E(1 (1)} 20, where for t > 0, E(l)(t) E®M (ta). Similarly, consider the one param-
eter product system ED = {E(Z) (1)} 20, where E(z)(t) E® (ta) for t > 0. Then,
{Wa}is0: E(l) - E( ) is an isomorphism.

By Lemma 3.2, there exists a unitary U, f}{l - H, intertwining {Vt )}t>0 and
{ s }[20, an additive cocycle { &7 } 450 of{ s },20 and A, € R such that ¥,, is of the

form

) [
(3.2) Vi Exp,(§) = ehate™ "3

e VatlED Exp o (ULE + E9),

for & e Ker(Vt(al)*) and t > 0. We will denote & by &,. Hence,

(3.3) W, Exp,(§) = Mo 3 e (Ui Exp (U, 6+ E,)

fora € Int(P)and £ ¢ Ker(Vu(l)*).
Let a, b € Int(P). Since ¥ is an isomorphism, we have

\PaExPa(f)~\PbEbe(’7) = \Pu+h(Expa(£)‘Ebe(rI))’

forée Ker(Va(l)*) and 4 € Ker(Vb(l)*).
In particular,

Yoib(Expa(0).Expy(0)) = YaExp,a(0). Wy Exp,(0),
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ie.,

(lEalP+15,1%)

W, Expaip(0) = e'athe) g 2 Expa(&a).Expy(&y)

. (Ulgal P+ 15,113
= o/ ath) o= 5 By (E4).Expy ().

Comparing the 0-particle vectors in LHS and RHS of (3.4), we have

. l1Egpl
(3.4) eterbe” 3

) g p 2 . lgall>+11&,11%)
(3.5) e”‘wr%h - y(h*—h%%.

Now, comparing the 1-particle vectors of LHS and RHS in (3.4), we have

(3.6) Earp = Ea + VG
Let &« Ker(Va(l)*). Consider the equation
(3.7) \Pa_,.bf = “Puf.\ybEpr(O).

Considering the exponential map in the one parameter product system ES", we have
Expa(§) = 3. 5"
n=0

where for re (0,1], x* = Q. xP = (1= VO VP)E and ™ = [ <" ag,.
Here, for ¢ € (0,1], & = (1 - Vt(al)vtg)*)f-
Let s € R. Suppose

EXPa(Sf = io: >

where the summands are obtained via Itd integration. A moment’s reflection on the
definition of the It6 integral reveals that

(m) _ gn ()

N
forn=0,1,2, ---
Note that
(3.8) W, Exp,(t€) = Z Wyt = 3 ™
n=0

for t € R. Since the power series in (3.8) is norm convergent for every ¢ € R, it may be
differentiated term by term, and the derivative is given by

%‘I’aExpa(tf) =S e, (),
n=1

Hence,

d
(3.9) v, () = a|t:0\11aExpa(tf).
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From (3.3) we have,

d
E‘I’,;Expa(tf)
[léa

n 2
— %ehlae_ 2H e_t<UaE|£a>Expa(tUa£+ Ed)

2
[€all
2

= e 5 (Bpa(1UE 4 £) 0 06D 4 8D L i (1,84 8,)

= oo 4 U (_ (U, 818, Expa(tU,E + &) + Ua + 4 (1,))

where the projection of q,(t, ) onto 0-particle and 1-particle space is zero. By (3.9),

Wa(§) = %‘tzo‘{’aExpa(tf) = e (U, 88 Expa(Ea) + Uad + 4a (0, 0)).
Similarly,

104117

\Iju+b(f) = eilwb_ 2 (_<Ua+b£|£u+b>Expa+b(€a+b) + Uu+h£ + qu+b(0) E))

where the projection of q,,4(0, &) onto 0-particle and 1-particle space is zero.
Therefore, (3.7) implies,

ei(}taub)_(nzauzzusmﬁ) (_ (Uaf|fa)Expa(fa) LU+ qa(O, f))-Epr(5h)

) 5 qspll®
_ et/\a+b— 2 (‘ <Ua+b£|£a+b>Expa+h(Eu+b) + Ugp+ Qa+b(0) f))

Using (3.5), the above equation reduces to

(- (Uadl€a)Expa(Ea) + Uak + 4a(0,€) ). Expy (&)

(310) = _< Uu+b E|£a+b )Expa+b(£u+b) + Uu+h£ +4a+b (Oa f)
By equating the 0-particle vectors in the above equation, we see that
(3.11) (Ua€l€a) = (Uarb€lEars)-

Equating the 1-particle vectors in (3.10), we have
_<Ua£|fa)(fa + Va(z)fb) + Ua£ = _<Ua+b£‘£a+b>£a+b + Ua+b£-
Hence, by (3.6) and (3.11),
Usé = Usip§.

Thus, if & € Ker(V)*) and & € Ker(V"*) for a,b € Int(P), Up& = Uy € = Up&.

Since Ugerme(py Ker( Va(l)*) is dense in 3, it follows that there exists a unitary
operator U : H; - I, such that

UE = Uaf

ifée Ker(Vu(l)*).

https://doi.org/10.4153/50008414X2500001X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2500001X

On multiparameter CAR (canonical anticommutation relation) flows 15

Similarly, considering the equation
Yarp (Expa(0).17) = ¥a(Expa(0)) Yo

for 7 € Ker( Vb(l)*) and comparing 0 and 1-particle vectors as before, it is not difficult
to see that for a, b € Int(P) and # € Ker( Vb(l)*)

uvy=v®uy.

Since [ J Ker( Vb(l)*) is dense in 3, it follows that UV" = VP U for every a €
belnt(P)

Int(P). As Int(P) is dense in P, U intertwines V() and V(?). This completes the

proof. ]

4 Type | CAR flows associated with isometric representations with
commuting range projections

In this section, we characterize pure isometric representations of P with commuting
range projections that give rise to type I CAR flows. Recall that a pure isometric
representation V of P is said to have commuting range projectionsif {V, V) : a € P} isa
commuting family of projections. First, we recall the dynamical system that encodes all
pure isometric representations with commuting range projections. Let C(R¢) denote
the set of closed subsets of RY which we equip with the Fell topology.

Let (A,) be a sequence in @(R?), and let A € C(R¥). Then, (4,) - A if and only
iflimsupA, =liminf A, = A, where

liminf A, := {x € R? : for everyn, there exists x,, € A, such that (x,) - x}
limsup A, := {x € R? : there exists a subsequence (1) and x,,, € A,,
such that (x,, )k = x}.
Let
Y,:={AcCRY):-P+AcAA+2,A+R},
X,:={AeY,:0ecA}.

The space Y, is locally compact, Hausdorff and second countable on which the group
R¥ acts. The action is given by the map

RY x Y, 3 (x,A) > A+x€Y,.

Note that X, + Pc X, and Y, = | J (X, — a).
aeP

Remark 4.1 In the 1-dimensional case, the space Y, has a very simple description.
Let P =[0,00). Suppose A € Y,. The fact that A—[0,00) c A implies that A is an
interval that is not bounded below. Since A # R, and since A is closed, it follows that
A = (—00, a] for a unique a € R. It is not difficult to show that the map

Rsa— (-o00,a] €Y,
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is an R-equivariant homeomorphism. Here, the action of R on R is by translations.
With this identification of Y, with R, we have X, = [0, 00).

It was proved in [37] that there is a bijective correspondence between the class
of pure isometric representations of P with commuting range projections and the
class of covariant representations of the dynamical system (Y, R?). For us, the most
important examples of isometric representations are the “shift semigroups on X,,” that
arise from invariant measures on Y,,.

Let 4 be a non-zero Radon measure on Y, which is also invariant under the above
mentioned action of R¢. Define an isometric representation V* of P on L2(X,,, u) by

" _Jf(A-a) ifA-aeX,
Va f(4) = {o ifA-at¢X,.

for a € P. Clearly, V¥ has commuting range projections.

It follows from [34, Lemmas 3.8 and 3.9] that the set X, \(X, + a) has com-
pact closure for a € P and has positive measure if a € Int(P). It is now clear that
{1x,\(X,+a) } acp is @ nON-zero additive cocycle for V¥.

Recall that P* stands for the dual cone of P, and S(P*):={A e P*:||A]| =1}.
Suppose A € S(P*). Define

H" := {x e R?: (A|x) < 0}.
Define
Y = {H +td:teR} = {H + z: z e R},
and
X ={H'+td:t>0} = Y} n X,.

Note that X}, Y} c Y, are closed. Also, observe that Y} is R%-invariant and X} +
PcP.
Let S := {S; } 0 be the one parameter shift semigroup on L*[0, o) defined by

Sef(x) = f(x = £)l0,00) (x — ).
For A € S(P*), define the isometric representation $* of P on L?[0, o0) by
Sa = Stila

fora e P.
Let 4 be a non-zero R%-invariant Radon measure on Y. Denote the product
system of the CAR flow associated with V¥ by E¥. For a € P, let 1, := 1x,\x,+a> let

1= {a}acp, and let Exp(n) := {Expa(#a)}acp-
Lemma 4.2 Suppose supp(u) = Y for some A € S(P*). Then,

(i) V*¥ is unitarily equivalent to S*, and
(ii) Exp(#) is a unit for E¥.
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Proof We first show that V* is unitarily equivalent to S*. The reader may verify that
the map F: Y} — R defined by

FH+1tA1) =t
is a homeomorphism, and F(X?) = [0, c0). Also,
F((Hy +tL) +a)=t+(Aa)

for t e Rand a € RY. Since y is an invariant measure, the push forward measure F, y is
the Lebesgue measure, denoted by m. Define a unitary operator U : L*([0, 00), m) —
L*(Xy, u) by

Uf=fod.

It is routine to verify that U intertwines $* and V¥. Note that U_l(lxu\x,,w) =
L(o,(Aja)) for a € P. By abusing notation, we may assume that V¥ = $* and 7, =
1(0><M”>) fora e P. _

Let Exp denote the exponential map of the one parameter product system E of
the CAR flow associated with {S;}o. Let u; = Exp(lq,)) for ¢ > 0. It follows from
Remark 2.2 and Propostion 2.1 that u = {1, },5¢ is a unit for E. Note that Exp,(77,) =
U()la) for a € P. Observe that

Expa(na)-Expy(np) = t(aa)-Uirlp) = U(rjasb) = EXPart(Marb)-
for a,b € P, ie., Exp(#) is a unit. ]

Remark 4.3 Inthel-dimensional case, it is clear from Remark 4.1 that, up to a scalar
multiple, there is a unique invariant Radon measure on Y,,. This is not true in the
higher dimensional case. Nor is it true that such a measure is supported on Y;* for
some A € S(P*).

Consider P = R? as an example. Let A€ Y,, and let G4 == {ze R?: A+z = A}.
Denote the map

R*/Gy3z>A-z€Y,

by T. As T is equivariant, the push-forward measure T, A is an invariant measure on Y,
and is supported on the orbit of A. Here, A is the Haar measure on R?/G,. However,
T, A need not be a Radon measure. For example, let A = ~R?. In this case, G4 = {0}
and

T (X \(Xu + (a,b)) = ~RI\(-R] + (a, b))

which has infinite measure if a > 0 and b > 0.

Let ¢ = Z —nl[,, n41)- Note that the graph of ¢ is an infinite staircase. Let
nez

A={(x,y): y<¢(x)}.

In this case, G4 = Z(1,-1). Let m : R* - R?/G,4 be the quotient map. By drawing a
“few pictures”, it is immediate to see that T~ (X, \(X, + (a,b))) = n(A\(A + (a,b)))
has compact closure. For example, mod G4, A\(A + (1,1)) is just a bounded square. In
this case, T, A is a Radon measure. In fact, given A € Y,,, if G4 # 0, then it can proved,
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by appealing to a few results from [24], that T, A is a Radon measure. Since this fact
is not needed and since we don’t make use of the fact that there are enough invariant
measures on Y, in this paper, we omit details and proofs.

Next, we next explain that a typical element of Y, can be described by a continuous
function. We exploit this description to make computations. This is akin to intro-
ducing coordinates to compute. Let us first consider the case of the quadrant, i.e., let
P=R2=[0,00) x [0,00).Let A € Y, be given. For each x € R, consider the x-section,
ie,

Ay ={yeR:(x,y) € A}.

It is possible that A, is empty. Since A - (0,¢) c A for ¢ > 0, it follows that A, is
an interval and is not bounded below if A, # &. Since A is closed, A, is closed.
Hence, there exists a unique ¢(x) € [—o0, 00| such that A, = [-o0, ¢(x)] N R. Since

A= J({x} x Ay), it follows that A is the closed region below the graph of ¢, i.e.,
xeR

A={(x,y) eR*: y < p(x)}.
The fact that A — (s,0) c A implies that ¢ is decreasing. If A = R, then ¢ is given by
0 ifx<o,
¢(x) = {

—-oo ifx>0.

In this case, ¢ is not continuous, and ¢ takes values in the extended real line. However,
we can ensure that ¢ is continuous and ¢ takes only finite values by changing the
coordinate system. This is the content of the next lemma which is [1, Lemma 4.3].

We return to the general case now, and let P c R4 be a closed convex cone which is
spanning and pointed. Let us first fix a few notation that we will use for the rest of this
section. Let {v,v,,...,v4} beabasis for R? such that v; € Int(P) fori € {1,2,...,d}.
Fixie{1,2,...,d}. Let

Qi :=span{vj:je{l1,2,...,d},j#i}.

Let f : Q; - R be a map. Define
d
AfI: ZXjVjZ.X,’Sf ijVj .
j=1 j#i
The following assertion is [1, Lemma 4.3]. For completeness, we include a proof.

Lemma4.4 Letie{1,2,...,d},andlet A € Y,. Then, there exists a unique continuous
function f : Q; > R such that A= Ay.

Proof Uniqueness is clear. Without loss of generality, we assume i = d and write
Q4 =Q.Forx e Q,let

Ay={teR:x+tvgeA}.

Since R QxR, A= {x+tvg:xeQ,teA,}. Since A is closed, A, is closed for
each x € Q.

https://doi.org/10.4153/50008414X2500001X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2500001X

On multiparameter CAR (canonical anticommutation relation) flows 19

Claim: Foreachx € Q, A, + @and A, # R.

Note that since —P + A c A, —-Int(P) + A c Int(A) and —P + Int(A) c Int(A). Let
B =R%\Int(A). Then, B is a proper closed subset of R? such that P + B c B. Also,
Int(B) = R%\A. It is clear that R\ A c Int(B) as A is closed. If z € A, then every
neighbourhood of z intersects Int(A). This is because —Int(P) + A c Int(A) which
in turn implies that —tv, + z € Int(A) as t - 0+. Thus, Int(B) = RY\A.

Let x € Q be given. For y € R, there exists 1 € N such that y — ngvy € ~Int(P).
For, —Int(P) is an open cone, v4 € Int(P) and £ — v, € —Int(P) for large n € N. Fix
2o € A. Since —Int(P) + zy c Int(A), given y € RY, there exists a natural number r, €
N such that y — nov; € —Int(P) c Int(A) — zo. Setting y = x — zo, we see that there
exists ng € N such that x — ngv, € Int(A). Replacing A by B, P by —P and v, by —v,4
and arguing similarly, we see that there exists n; € N such that x + nyv, € Int(B) =
R4\ A. In particular, there exists m, n € Z such that m € A, and n € R\A,. This proves
the claim.

As —-P+ Ac A, note that if x + tv; € A for t € R, then x + sv,; € A for every s < t.
Thus, for each x € Q, A isa closed interval which is not bounded below. Since A, # R,
A, = (=00, f(x)], where

f(x)=supA, =sup{teR:x+tvg € A} < oo.

Hence, A= Ay.

Next, we prove that f is continuous. Let x € Q and let ¢ > 0 be given. Let 59,5, € R
besuchthat f(x) >so > f(x) —eand f(x) +e>s; > f(x).Sincex + f(x)vy € Aand
—Int(P) + A c Int(A), x + sovq € Int(A). Also, x + s;vg € R\ A. Let 8 > 0 be such
that the open ball B(x + sov4, 8) c Int(A) and B(x + s;v4,8) c R?\A, respectively.
Let y € Q be such that |x — y| < 8. Since |(x +sova) = (y +sova)| =|x - y| <3, y +
sovq € A. Hence,

f)zso> f(x) -
Similarly, since |(x +s1v4) = (y +s1v4)| = |x — y| < 8, y + sivq e R4\A, ie.,
F() <5< flx) +e
This implies |f(x) — f(¥)| < e. Hence, f is continuous. This completes the proof. m
Letie{1,2,...,d}. Let f : Q; - R be a function. Define
(¥i(a)f) (ijvj) = f(Z(xJ - aj)vj) +a;
ji i
fora=3Y% a;v; e R? Let
Fi:={f:Q; = R: fis continuous, and ¥;(a) f < f for a € —-P}.

Remark 4.5 Let P=[0,00) x [0,00). Let v; = (1,1) and v, = (2,1). In this case, we
identify Q; with R. Let e; = (1,0) = v, — v; and e, = (0,1) = 2v; — v, be the standard
basis. Note that for Ac R*, -P+ Ac Aifand only if A - se; c Aand A - se, c A for
s > 0. Thus, for a continuous function f : R = Q; — R, f € Fyifand only if A; € Y, if
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and only if ¥1(-se;) f < f and Wi (-se,) f < f for s > 0. Hence, JF is given by
F1={f:R - R: fiscontinuous,
flx+s)+s< f(x)< f(x+s)+2sforx eR,s >0}.
Similarly, J, is given by
F>={f:R—>R: fis continuous,
flx+2s)+s< f(x) < f(x+s)+sforxeR,s>0}.
Note that if f € F7, f is decreasing and is also Lipschitz.

Hereafter, the letter P stands for a closed, convex cone in R? that is pointed and
spanning. The notation introduced in this section will be used for the rest of this paper.
Fixie€{1,2,...,d}.Let f : Q; - Rbe continuous. Note that a + As = Ay, (4)s fora €
R?. Hence —P + Ay c Ay if and only if ¥;(a) f < f for every a € —P. In other words,
A eY,ifand onlyif f € F;.

Conversely, suppose A € Y,. By Lemma 4.4, there exists a unique continuous
function fiA : Q; = R such that

A= AfiA = {Zd:xjvj eR? : x; gfiA (Zxkvk)}.
j=1 ki
Since —P + A c A, f € F;. Hence, the map
Y, e A~ fiA eF;
is a bijection. Clearly,
X, ={AcY,: fA(0)>0}.

Proposition 4.6 Suppose (A,) nen is a sequence in Y, such that A, — Ain Y,. Then,
the sequence { "} ,en converges pointwise to 2 for each i € {1,2,...,d}.

Proof Fixie{1,2,...,d}. Suppose (A,) is a sequence in Y, converging to A € Y.
For simplicity, we denote f;*" and f by f, and f respectively. From the proof of [14,
Proposition I1.13], 14, (a) — 14(a) pointwise for every a € R*\0A, where 0A is the
boundary of A. Recall that

A= {i ®t i (T )]

k#i

Letx € Q;and ¢t > 0.Let y = x + (f(x) — t)v;.Since y € Int(A), y € A, eventually,
i.e,, for n € N sufficiently large, there exists s, > 0 and x, € Q; such that y = x, +
(fu(x) = s4)vi. Now,

f(x) -t= fn(x) = Sn-

for sufficiently large n € N. In particular,

fa(x) = f(x) 2 -t

for large n € N.
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Letz = x + (f(x) + t)v;. Then, z € R%\ A. Therefore, z € R\ A,, eventually, i.e., for
sufficiently large # € N, there exists ¢, > 0 and z, € Q; such that z =z, + (f,(x) +
tn)vi. Now,

f(x)+t=fu(x)+t,

for large n € N. Therefore, for large n,

(4.1) fa(x) - f(x) <t
Since t > 0 is arbitrary, we conclude that f,(x) — f(x). This completes the proof. =

Forie{1,2,...,d},let Y :={AeY,: fA(0) = 0}. Then, Y/ is a closed subset of
Y, by Proposition 4.6. Define ¥; : Y/ x R - Y,, by

\Pi(A, t) =A+ tv;.

The map ¥; is a homeomorphism with the inverse given by ¥;'(A)=(A-
f2(0)vi, £4(0)). Observe that

(42) \Pi(A,S + t) = \Pi(A,S) + tv;
forAeY, s, teR.

Remark 4.7 Letie{1,2,...,d}, and let X,("Jr) = {AeX,: fA(0) >0}. Then, X,({')r)
is open in Y, whose closure is X,. This is because ¥; is a homeomorphism, X, =
¥ (YS? x [0,00)) and X7 = ¥i(Y,” x (0, 00)).

Let p be an invariant, non-zero Radon measure on Y, which is fixed until further
mention. The measure that we consider on Y, x Y,, is the product measure y x .

Lemma 4.8 With the forgoing notation,

(i) foreachie{1,2,...,d}, Yi c Y, has measure zero, and
(ii) theset N = {(A,B): f(0) = f2(0)} c Y, x Y, has measure zero.

Proof Fix i€ {1,2,...,d}. Let v=(¥;'),u. Since y is invariant, it follows from
(4.2) that v is invariant under the action of R on Y/ x R given by s.(A, ) = (A,s + t).
Hence, v is a product measure of the form vy x m where m is the Lebesgue measure
on R. Now, u(Y]) =v(Y/ x {0}) = 0. This proves (7).

Fix B€ Y,,andlet t := f2(0). Then, 1x(A, B) = lifand only if f*(0) = f2(0) = t.
But {AeY,: fA(0) =1t} =Yl +tv; is a null set. Now (ii) follows from Fubini’s
theorem. u

For n e Nu {0}, we denote the projection from T,(L?(X,)) onto its n-particle
space by P,. For A, B € Yy, define

1 if fA(0) > f2(0),
ei(A,B):=4-1 if fA(0) < fE(0),
0 if f4(0) = f2(0).

Consider the additive cocycle # = {#,} sep for V¥, where 17, = 1x,\x,+a for a € P. Let
Exp; denote the exponential map of the one parameter product system {E#(#v;) } 0.
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Lemma 4.9 Forie{l,2,...,d}andt>0,
1
PoExpi() ) (A4, B) = =i (A B (4010, (B)

for almost every (A, B) € X, x X,,.

Proof The computation is similar to the computation done in [1, Proposition 5]. Fix
t>0andie€{1,2,...,d}. For simplicity, write #,, = 5 for s > 0. Let x = fs.
By definition,

@3 Pa(Expi(n)) = [ <My,

n-1

= lim Z’M-Wﬁ
j=0 "

n—oo0 =

n-1

lim Z Vi e A je
j=0 n n n

n—o0 =

n-1
Jim 501 1) 1y

n-1
lim Z fGeye At
n—o00o j:O n n

(4.4)

n-1
Lets, = > 7o A n i for n € N. The proof will be over if we show that
o C

1

lim s,(A,B) = —¢;
Jim 5,(4.8) = =
for almost every (A, B) € X,\(X,, + tv;) x X, \(X,, + tv;).

For n € N, suppose A, B € X, are such that f/(0) < %, J;t <fB(0) < % for
some j € {1,2,...,n—1}. Then,

(A, B)ty, (A) 11y, (B)

sn(A,B) = 1Xu\xu+((j+l,,)tvi) A 1X,,\x,,+(jt%)(A’B)'

Since A € X, \(X, + ) and B e (X, + 20)\(X, + UrD),

n

1
(45) SH(A, B) = lxu\xu+((j+1n)tvi) A 1Xu\xu+(Lf)(A’ B) = —z.

Let A, B € X,\X, + tv;. Suppose f(0) < f2(0). For sufficiently large n € N, there
exists a unique j, € {1,2,...,n — 1} such that f/(0) < ]Lnt, %t <fB(0)< @ By
(4.5), for sufficiently large n,

su(A,B) = -

Sl

Nis

(si(A, B) Ny, (A) 1y, (B))-
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Similarly, it may be proved that, when f/(0) > f2(0), for n sufficiently large,
1
sn(A,B) = ﬁei(A, B)tv, (A) 11y, (B).
The result follows from Lemma 4.8. The proof is complete. [ ]

Lemma 4.10 Suppose {Exp,(1x,\x,+a) }acp is a unit for E¥. Then, for every i, j €
{L,2,...,d}, £i(A, B) = ¢j(A, B) for almost every (A, B) € X, x X,,.

Proof Write V¥ =V, and let 5, = 1x,\(x,+a) for a € P. Let i,j ¢ {1,2,...,d} be
given. Since Exp(#) is a unit,

(4.6) Expi(nsv,)-Expj(ney;) = Expj(ntv;)-Expi(ns,)
fori,je{1,2,...,d} ands,t>0.

Hence,
(47) Po(Expi(,)-Expi(niv,)) = Pa(Exp;(es,)-Expi(ss,))

fori,je{l,2,...,d}ands, t>0.
Thanks to Lemma 4.9,

Py(Expi (750,)-Exp;(fv,) ) (A, B) = € (A, B)fsv, (A)1sv, (B) + Vou, v, A v, (A, B)
+&j(A~svi, B=svi) Vey, 111y, (A) Vo, 1, (B)
for almost every (A, B) € X,, x X,,. Similarly,
Py(Exp;(10s,)-Expi(fev,) ) (A, B) = &5(A, B)1ev, (A1, (B) + Vi, fsv, A i, (A, B)
+ & (A~ tvj, B~ 1vj) Viy N5y, (A) Vv, 15, (B)
for almost every (A, B) € X, x X,,.
For s>0 and i€ {1,2,...,d}, let L; = (1x,\X, +sv;) x (1x,\X,, + sv;). Let
s,t> 0. For almostall (A,B) e L;snLj,,
Po(Expi(11s0,)-Exp;(fv,) ) (A, B) = €:(A, B)
and
Po(Exp;(1us,)-Expi(nev,) ) (A, B) = £;(A, B).
Therefore, (4.7) implies,
(A, B) = ¢j(A, B)
for almost every (A, B) € L; s n L;,. Now observe that X, x X, = UNL,-,,,, NLjy.

Hence the proof follows. ]

Notation: Let X := supp(u) N X,,. Recall that Y, \supp(u) is the largest open set that
has u measure zero. Since y is invariant, supp(u) is R%-invariant. It follows from
Remark 4.7 that p|x has full support.
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Proposition 4.11  Suppose {Exp,(1x,\x,+a)}acp is @ unit for E¥. Then, for A,B €
supp(u), Ac Bor Bc A

Proof Write 17, = 1x,\x,+a for a € P. Assume that Exp(#) is a unit for E¥. For A, B €
Y,and i€ {1,2,...,d}, note that A c Bifand only if f*(x) < f?(x) foreach x € Q;.

Let A,Be X, and i€ {1,2,...,d}. Suppose f(0) < fE(0). Then, we claim the
following.

(i) f(0) < f/(0) foreach je {1,2,...,d},and
(ii) if t; > 0 for j e {1,2,...,d — 1}, then

d-1 d-1
fi (— > ijj) <fi (— > tﬂ’f) :
j=1 j=1

Observe that X is a measurable subset of X, such that X + P c X. Consider the set

Nij={(4,B) e Xx X: fA (0) < 2 (0), £ (0) > f* (0)}

fori,je {1,2,...,d}. By Proposition 4.6, N; ; is an open set, and by Lemma 4.10, N; ;
is a null set. Therefore, N; ; is empty. Similarly, consider the set

M;j={(A,B)eXxX:f(0)=f(0). £ (0)>f} (0)}
fori,je{1,2,...,d}. Fix i,j€{1,2,.. d}w1thz¢] Suppose(A B)EM,JL
s, t > 0 be sufficiently small such that s < tande (0) >f] (—tv;). Then,

F = ) s < fF ) o=

Since fj I

fjA +sv1-(0) :fjA (_Svi) ij“‘ (0) >ij (—tv,-) :ij +tw(0).
This implies (A' + sv,-,B' +tv;) € Nj j, which is a contradiction. Hence, M; ; = @.
Therefore,for A, B € Xand i, j € {1,2,...d}, fA (0) < f2 (0) ifandonlyiffjA (0) <
f].B, (0), which proves (7).
Foreachje{1,2,...,d —1},lett; > 0.Let A, B € X be such that f/*(0) < f#(0) for
some i. Since f4(0) < f2(0),by (i), f£(0) < fE(0). Since £ (0) < £ (0), by
(1), F%07(0) < 7 (0), e,

fH(=tm) < 7 (=tn).
Since f1(0) + £, < £7717(0) + £,
f2A+ll1/1+[2V2(0) < fZB+[1V1+t2V2(O).
Once again by (i),

fi (=t = tavy) = fFHINFRR(0) < fTEY(0) = £ (—tvy - tava).

https://doi.org/10.4153/50008414X2500001X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2500001X

On multiparameter CAR (canonical anticommutation relation) flows 25

Inductively,
d-1 d-1
(4.8) fil=-2 v <fil-2 il

We have proved (ii).

It follows from (i) thatfori € {1,2,...,d} and A, B € X, f/(0) > f£(0) ifand only
iffjA(O) > ij(O) for every j e {1,2,...,d}. Suppose f(0) > f2(0) for A, B € X and
ie{l,2,...,d}. Arguing as before, we see that

d-1 d-1
(4.9) fi (— > fj"j) > fi (— > fﬂ’j)
=1 =1

whenever t; > 0 for je {1,2,...,d -1}.
Let A, B € X. Without loss of generality, we can assume that f2'(0) < f7(0). Then,

d-1 d-1
(4.10) 7 (— 3 tjvj) <fi (— > fj"j)
p=t =

whenever t; > 0 for je {1,2,...,d -1}.
Let x € Q4. Choose t >0 suchthat A—x +tvge Xand B—x + tvg € X, i.e.,

FEE(0) = f () 120

and
B (0) = fR(x)+ £ > 0.

Let A= A-x+tvgand B=B—x + tv,. Suppose fi(x) > f5(x). Then,

F30) = fi(x) + t> fE(x) + 1= f2(0).

By (4.9),
A = S 4
fi\=2Xmvi| > fa |- 2 rivi
j=1 =1
whenever r; > 0 for j=1,2,...,d - 1. This implies

d-1 d-1
f;‘(Z(xj—rj)vj) >f,f(2(xj—rj)vj)
j=1 j=1

whenever r; > 0 for j =1,2,...,d — 1. This contradicts (4.10). Hence, f;‘(x) < f,f (x)
for every x € Qg, i.e., Ac B.

Now suppose A, B € supp(p). Then, there exists ¢ > 0 such that A+ tv;, B+ tv; €
X. Without loss of generality, assume that A + tv; ¢ B + tv;. Then, A c B. Therefore, if
A,Besupp(u), A c Bor B c A. The proof is complete. ]
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Theorem 4.12  The following statements are equivalent.

() {Exp(lx,\x,+a)}acp is a unit for E¥.
(i) There exists A € S(P*) such that supp(u) = Y.

Proof By Lemma 4.2, if supp(u)=Y} for some AeS(P*), then
{Exp(1x,\x,+a) } acp is a unit for E¥.

To prove the converse, let A € supp(u). Since y is invariant, supp(u) is R?-
invariant. By Lemma 4.11, for x € R, either A + x c Aor A c A + x. Define Q, := {x €
RY: A+x c A}. Then, Q4 U—Qu = R?. Note that —P c Q4 and —P + Q4  Qa. Let
Q = Q4 N —Q4. We claim the following:

(i) dQ4 = Q, where 0Q 4 is the boundary of Q4, and

(ii) Qis a vector subspace of R4,

We identify span{vy,v,,...v4_1} with R4 Let f : R?"! R be a continuous func-
tion such that A = {(x, ) : t < f(x)}. Note that

Qa={(pt) eR¥"™ xR: f(x) < f(x+y) - tforall x e R},
and
“Qa={(yt) eRI xR: f(x) 2 f(x + y) -t forall x e R},
It is not difficult to deduce using the fact that Q4 U -Qy4 = R4 that
0Q4 c{(y.t) e R xR: f(x)=f(x+y)—tforallx eRd_l} =Q.

Suppose (y,t) € Q. Set t,:=t—~ and s,:=t++. Then, (y,f,) € Q and
(3 tn) = (3, t). Also, (y,s,) ¢ Qa and (y,s,) = (y,t). Therefore, (y,t) € 9Qa.
Hence, 0Q4 = Q.

Let g:R%! - R be a continuous function such that Q4 = {(x,t):t< g(x)}.
Clearly, Q = {x e R?: A+ x = A} is a closed subgroup of R¥. Since Q = dQy is the
graph of the continuous function g, it is connected. Therefore, Q is a vector space and
consequently, g is linear. Hence, there exists A € R?, ||A|| = 1 such that

Qa={yeR": (Ay) <0}.
Since =P c Qg, A € S(P*).

Since Q4 + A c A, there exists y € R? such that A = y + Qq, i.e, A€ Y} Since
supp(u) € Y, is invariant, x + A = x + y + Q € supp(u) for each x € R, ie, Y} c
supp(u). To stress the dependence of A on A, we write A = 1 ,. We have proved that

supp(u) = U v
Aesupp(p)

Suppose A, Besupp(u). Note that Que€ Y csupp(u) and Qpe Y} ®c

supp(p). Then, by Proposition 4.11, either Q4 ¢ Qg or Qp ¢ Q4. But this can happen

only if 14 = Ag. In that case, Y4 = Y25 Therefore, there exists A € S(P*) such that
supp(u) = Y. Now the proof is complete. ]

Notation and Convention: Let V be an isometric representation of P on a Hilbert space
H. Let & = {&,} aep € A(V). We define H* to be the smallest, closed, reducing subspace
of H containing {&, : a € P}. (Hereafter, all reducing subspaces will be assumed to be
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closed.) If W is a direct summand of V, we view the product system EW as a subsystem
of EV. Similarly, we view A(W) as a subspace of A(V).

Proposition 4.13  Let V be a pure isometric representation of P on a Hilbert space H{
with commuting range projections. Let & = {&,} zep € A(V) be non-zero. Then,

(1) there exists an R%-invariant, non-zero Radon measure y on Y, such that Vs is
unitarily equivalent to V¥, and

(2) if Exp(&) is a unit for EV, then there exists A € S(P*) such that V|4 is unitarily
equivalent to S*.

Proof For the proofof (1), we refer the reader to [34, Theorem 3.16 and Remark 3.17].
From (1), V¢ := V|4 is unitarily equivalent to V#. We can see from the proof of [34,
Theorem 3.16] that the unitary U intertwining V* and V*# can be chosen such that
Ué&, = 1x,\x,+a for a € P. Suppose Exp(£) is a unit for E”. Note that the subsystem

EY* contains Exp(&). Hence, {Exp(lx,\x,+a) }acp is a unit for EV". 1t follows from
Theorem 4.12 and Lemma 4.2 that V¥ is unitarily equivalent to S* for some A € S(P*).
This proves (2). |

Before proceeding further, let us recall the notation introduced in the introduction.
For A € S(P*) and k € N, let &%) denote the isometric representation {S(rja) ®
1} 4cp of P acting on the Hilbert space L*[0, 00) ® K where X is a Hilbert space of
dimension k. For k = 1, we denote S(*!) by $*. For a non-empty countable set I, an
injective map A : I - S(P*) and a function k : I - N, set

shk) . @S(Aiaki).

iel
Let E®F) be the product system of the CAR flow associated with S(F).

Remark 4.14 A few properties concerning the representation S(*¥) are summarized
below.

(1) For Ay, A, € S(P*) and for kg, k; € N, sk 4o unitarily equivalent to §(A2:k2)
ifand only if A; = A, and k; = k». Also, $* is irreducible for every A € S(P*), ie.,
it has no non-zero non-trivial reducing subspace. Thus, if A; # A5, the represen-
tations S(*k1) and §(2-2) are disjoint. Recall that two isometric representations
V and W, acting on H and X, respectively, are said to be disjoint if

{TeB(H,X): TV, =W, T, TV =W;T foralla e P} =0.

(2) Consider a countable (non-empty) indexing set I. Let A : I - S(P*) be injec-
tive, and let k : I - N, be a map. Consider V = SF) = @, §(4-k1) acting on
the Hilbert space H = @LZ[O, ) ® K;, where X; is of dimension k;. Write

iel
v = §Auk) Then, V() acts on H; := L?*[0,00) ® K;. Since A; # A; whenever
i # j, the isometric representations V(") and V() are disjoint wh enever i # j.
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Thus, a bounded operator T € {V,, V* : a € P} if and only if there exists T; €
{Va(’), Va(’)* tae P}' such that T|s¢, = T; for each i € I. Moreover, {Va(’), Va(’)* :
aeP} ={1®R:ReB(X;)}. Hence,

{V,, V) :aeP} =@ B(K,).
iel
(3) It follows from (2) that the reducing subspaces of V are of the form € L*[0, o) ®
Jel

'W; for some non-empty subset ] of I, and where, for j, W; is a subspace of X;.
Suppose W is a non-zero reducing subspace for V such that V|]yy is irreducible.
Then, there exists i € I and a one dimensional subspace W; of X; such that
W cH; =L*[0,00) ® K; and W = L*[0, 00) ® W;. Moreover, V| is unitarily
equivalent to $*i,

The next proposition is the “only if part” of Theorem 1.2. The “uniqueness” part
of Theorem 1.2 follows from the fact that if an isometric representation admits a
direct sum decomposition of irreducible representations, then the decomposition is
“unique”.

Proposition 4.15 Let V be a pure isometric representation of P with commuting range
projections on a Hilbert space 3. Suppose the product system EV of the CAR flow
associated with V is type 1. Then, there exists a non-empty, countable set I, a map A :
I — S(P*) which is injective, and a map k : I - N, such that V is unitarily equivalent
to SMK) Equivalently, EV is isomorphic to EX),

Proof A family.” of closed subspaces of I is said to be “shift reducing” if

(1) each X € .7 is a non-zero reducing subspace for V,

(2) foreach K € .7, there exists A € S(P*) such that V| is unitarily equivalent to S*,
and

3) ifK,Le S andK + L,thenK L L.

Let W := {. : . is shift reducing }. Note that W is partially ordered where the partial
order on W is given by inclusion.

Since EV is type I, there exists a non-zero additive cocycle & = {&,}4cp such that
Exp(&) is a unit for EV. Hence, {3*} is in W by Proposition 4.13. Therefore, W is
non-empty. A routine application of Zorns lemma allows us to get a maximal shift
reducing family %" of closed subspaces.

Define

K:= P w.
Wext
Note that for each W € X, there exists Ay € S(P*) such that V| is unitarily equiv-

alent to $**. Hence, V]x = @ $*". Let £ := K*. Note that K and £ are reducing
WeX

subspaces for V. Denote the restriction of V to K and £ by V(" and V?), respectively.
Also, denote the projection of 3 onto £ by Q.

It suffices to prove that V = V(). Denote by E v the product system of the CAR
flow associated with V(. We consider EV” as a subsystem of EV. We claim that
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EVY - EV. Suppose u = {t, }4ep is a unit for EV. We claim that EV” contains wu.
Without loss of generality, we can assume u is exponential. Then, there exists & =
{E.Yaep € A(V) such that u, = Exp,(&,) for a € P. For ae P, let &V = (1- Q)&,
and £ = Q&,. Then, £ = (€7} ep € A(VD)) fori = 1,2.

Note that Q = {Q,}4ep : EV — EV given by

EV(a)>u~T(Q)ucE'(a)

is multiplicative, where T'(Q) is the second quantisation of Q. Also, T'(Q)u, =
Exp, (fff)). Therefore, {Expa(fgz))}aep is a unit for EV.

Assume that £?) is non-zero. Consider the reducing subspace 3¢ of V. Then,
by Proposition 4.13 there exists A € S(P*) such that V|, . is unitarily equivalent to

$*. Now, # U {9{5(2)} € W and contains #~ as a proper subset. This contradicts the
maximality of Z". Therefore, £ (@) = 0. Thus, E v contains u. Hence, every unit of E v
is contained in EV”. Since EV is type LEV = EVY.

Since

EY" () = Lu(Ker(V)") = T (Ker(V;)) = EV (a)

for a € P, Ker( Vu(l)*) = Ker(V}) for a € P. Since |_JKer(V,) is dense in H, I = K.
aeP
Therefore, V = V). The proof is complete. [ ]

Fix a countable (non-empty) indexing set I. Let A : I - S(P*) be injective, and let
k:I- N, beamap. Let V = S*K). Denote the space @L*[0, 00) ® K; (on which
iel
V acts) by H, where X; is a Hilbert space of dimension k; € No,. For each i € I, let
V() = g(ioki) and write J(; == L2[0, 00) ® K; (the Hilbert space on which V() acts).
Note that for i € I, we may view A(S(k)) as a subspace of A( V') under the natural
inclusion.

Proposition 4.16 Let £ € A(V). Then, {Exp,(&,) }aep is a unit of EV if and only if
there exists i € I such that & e A(S(k)),

Proof Suppose & ={&,}ep € A(V) is non-zero and is such that Exp(&) is a unit of
EV. Consider the reducing subspace H?* of V. By Proposition 4.13, V|4 is unitarily
equivalent to $* for some A € S(P*). Since S* is irreducible, by Remark 4.14, 5% is a
subspace of }; and A = ; for some i € I. In particular, & € A(S*51)).

Conversely, suppose & = {&,} 4ep € A(SAK)) for some i € I. Then, there exists
an additive cocycle # = {#,} € A(S*) and y € K; such that &, =, ® y for a € P.
In turn, there is an additive cocycle 7 = {7 } >0 of {St} >0 such that 17, = 73 |a) for
a € P.Denote the exponential map of the product system of the 1-parameter CAR flow
associated with {S; ® 1} ¢ acting on H; by Exp. By Remark 2.2,

Exp(7s ® y).Exp(77: ® y) = Exp(7s+: ® y)
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fors,t > 0. Then, for a, b € P,

Expa(&a)-Expp(&p) = Expa(1a ® y)-Expy(np, ® y)
= Exp(1(x,/a) ® ¥)-Exp(fa,p) ® 7)
= Exp(7(x,ja+b) ® V)
= Expasp(Eavp)

for a,b € P, ie., Exp(&) is a unit. This completes the proof. ]
The following is the “if part” of Theorem 1.2.

Proposition 4.17 Keeping the forgoing notation, the CAR flow associated with V is
type L

Proof Let F be a subsystem of E containing all the units of EV. For a € P, let ¥, be
the projection of EV (a) onto F(a). Then, ¥ = {\¥, } scp is multiplicative, i.e.,

Yo Wy = Yaup

for a,b € P. Let a € P. Consider the one parameter product system E, = {E(ta)} 0
and the multiplicative section of maps {¥,, };s¢. Let E, be the product system of the
1-parameter CCR flow associated with { Vi, }s0. Suppose ¥ = {Q,} ;50 : E, > Eg is
such that

(i) Q;1isa projection for ¢ > 0, and
(11) Q5~Qt = Qs+t for s, t>0.

Then, by [10, Theorem 7.6] (see also [36, Proposition 6.12]), there exists an addi-
tive cocycle {&f}is0 of {Via}es0, @ projection Q% € {Vi,, Vi it 2 0}, such that
(1-Q%)&7 =& for t > 0, and y, € R such that

Fre(n) = el e(Q M + &)

for n € Ker(V;) and £ > 0.

By Lemma 3.1, the map E, (t) 3 exp(&) - Exp,(&) € E,(t) extends to an isomor-
phism from E,onto E, Therefore there exists an additive cocycle { &£ } 150 of { Vza } 105
a projection Q% € {V;,, V[ 1 £ > O} with (1- Q?%)&f = &F for t > 0 and p, € R, such
that

WiaExpa(n) = et e ) Exp, (Q%n + £F)

for i € Ker(V}).
Fora e P,let &, := &. Proceeding as in the proof of Theorem 3.3, we can prove that
(i) {&€a}acp is an additive cocycle for V,
(ii) there exists a projection Q € {V,, V. 1 a € P}’ such that Q[ge,(vz) = Qa
(iii) the map P 3 a = y, is a continuous homomorphism. Hence, there exists y € R4
such that y, = (y|a) for a € P.
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Therefore, there exists an additive cocycle & = {£,}4cp, a projection Q € {V,, V. :
a € P} and a vector i € R? such that

(411) \PuExpa(ﬂ) - e<l4|a>e<’7|5a)Expu(er 4 fa)

fora e P,n e Ker(V)).

Suppose u = {u, } 4ep is an exponential unit for EV. Let 7 = {1, }4ep € A(V) be
such that u, = Exp,(#n,) for a € P. Since F contains all the units, it follows that
Y. Exp,(na) = Exp,(n,) for a € P. In particular,

Y,Exp,(0) = Exp,(0)
for a € P. By (4.11),
e Exp,(&,) = Exp,a(0)
for a € P. This implies, £, =0 fora € Pand p = 0.

Note thatsince Q € {V,, V) :a e P}’, by Remark 4.14, Q is a diagonal operator, i.e.,
for i € I, there exists a projection Q(*) ¢ {Va(’), vi*.ge P}’ such that Qls¢, = Q().
Fix i € I. By Proposition 4.16, for any 7 = {4} aep € A(V)), Exp(n) is a unit for EV.
Hence

YoExpa(na) = Expa(na)
for 7 = {4} aep € A(VD). This implies that
(4.12) Qo =Q W14 =1,

for a € P and 1 = {74} aep € A(V(D). Note that for y € X, {10,(1:]a)) ® ¥} acp is an
additive cocycle for V(7). Therefore, the set {1, : {74 }acp € A(V(D),a € P} is total
in ;. Now, (4.12) implies that

QWn =1
for 7 € H; for i € I, i.e., Q is the identity operator. Hence,
W,Exp, (&) = Expa(&)

for £ e Ker(V)) and a € P. Since {Exp,(£):&e Ker(V})} is total in EV(a), it
follows that ¥, is the identity operator for each a € P. Therefore, F = E¥. Hence the
proof. ]

5 Computation of index and gauge Group

In this section, we compute the index and the gauge group of the product system
EMK) | Arveson's definition of index for a 1-parameter product system was extended
to the multiparameter case in [24] which we first recall. Let E be a product system
over P. Denote the set of units of E by Ug. Assume that Ug # @. Fix a € Int(P). For
u,v € Ug, let ¢, (u,v) € C be such that

(Utalvea) = efea”)
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for t > 0. The function Ug x Ug 3 (4,v) = ¢, (u,v) € C is conditionally positive def-
inite and is called the covariance function of E with respect to a.

Let H(Ug) be the Hilbert space obtained from the covariance function using the
GNS construction. For the sake of completeness and also to fix notation, we brief the
construction of H(Ug). Let C.(Ug) denote the vector space of finitely supported
complex valued functions on Ug. Set

Co(Ug) = {f eCe(Up): ), fu)=0}.

uelg

Define a semi-definite inner product on Co(Ug) by

(flg) = Zuca(uw)f(u)g(V)-
Let H(Ug) be the Hilbert space obtained by completing the semi-definite inner
product space Co(Ug).

For u € Ug, let §, : Ug — C be the indicator function 1y,;. Clearly, {6,-0,:
u,v € Ug} is total in FH(Ug). The dimension of the space H(Ug) is independent of
the choice of a € Int(P) and is called the index of E denoted Ind(E). The reader is
referred to [24, Proposition 2.4] for a proof of this statement.

Consider the isometric representation V = S*) for a non-empty countable
indexing set I, an injective map A : I - S(P*) and a map k : I > N,. The isometric
representation V shall remain fixed for the rest of this section. Let = @DL*[0, 00) ®

iel
X, be the Hilbert space on which V acts, where X; is a Hilbert space of dimension
ki €No for ieL For iel, let V() = S0k which acts on H; = L*[0,00) ® K;.
Denote the set of units of EV by U. Similarly, denote the set of units of EV" by U;
for each i € I. Then, U; c U for i € I. Let c(.,.) be the covariance function of EV with
respect to a fixed a € Int(P). Let U?, U respectively denote the set of exponential

units of EV and EV*”. By Proposition 4.16, U = | J U

iel

Remark 5.1 Letu e U. Letu € U be given by i1}, = m for b € P, where Q) is the

vacuum vector in EV (b). Fix a € Int(P). Now, for v € U,
(Utalvia) = (uta|Q¢a)etc(ﬁta>Vta).

Since the map [0,00) 3 t > (14| Q4,) € C* is multiplicative, there exists z, € C such
that (u,|Qyq) = e for t > 0. Hence,

c(u,v) =z, +c(ut,v).
It is now routine to verify that if w, z € U, then
(0u = 8y]0, — 82) = (67 — 650w — 02)
for every u, v € U. Thus, for u,v € U,
0y — 8, =06u— 6

in H(U). Hence, the set {8, — 8, : u,v € U?} is total in F(U). Similarly, {5, - &, :
u,v € U} is total in H(U;) for i € I.
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Lemma5.2 IfueUPandve U?for i+ j, then c(u,v) =0.

Proof Let &={&}pep € A(V()) and 1 ={"Np}pep e A(VW) be such that uy =
Expy (&) and v, = Expy (1) for b € P. Then, for t > 0,

(t11a|veq) =e'¥ala) (by Proposition 2.1)
=1 (since(&sq|7ta) = 0).

Therefore, c(u,v) = 0. Hence the proof. ]

Let a € Int(P) and i € I. Denote the covariance function of EV, VY (with respect
to a) by ¢, ¢;, respectively. Note that if u,v € U;, ¢;(u,v) = c(u,v). For each i € I, the
map H(U;) 3 d, -8, > &, — 8, € H(U) extends to an isometry from H(U;) into
H(U). Hence, we may consider H(U;) as a subspace of F(U).

Proposition 5.3 With the foregoing notation, we have the following.

(i) H(U) = PH(U;), and
iel
(iii) Ind(EV) = Y Ind(EV").
iel
Proof Clearly, it suffices to prove (i) and (ii). For i eI, let W;:={8,-9,:
u,v € U}, As observed in Remark 5.1, W; is total in H(U;) for ieI. Using
Lemma 5.2, it is routine to verify that

(6141 - 8V1|6uz - 81/2) =0

whenever uy,v; € U and uy, v, € uj.’ and i # j. Now (i) follows.

Consider W = [ J W; ¢ @ H(U;). Note that if u € U, then &, — §q € W, where

iel iel
Q is the vacuum unit. Let u,v € U®. Then, there exist 7, j € I such that u € U and
Ve U?. Then, 8, - 8, = (8, — 8a) + (8q — 8,). Consequently, §, — 8, € span(W).
Therefore, W is total in 3(U), and hence H(U) = @ H(U;). This proves (ii). m
i€l

Let G denote the group of automorphisms of EV, also called the gauge group of

EV. Denote the set of normalized units of EV by U". It follows from Proposition 4.16

—l€all?
2 Exp, (Ea)}ueP for some

E={&} e A(VD)and A € R¥. For each i € I, we denote the unitary group of K; by
U(k;).

Proof of Theorem 1.3:

(1) Suppose that I = {i} is singleton. Denote X; by X, A; by A and k; by k. Let EHF)
be the product system of the CAR flow associated with V = Sk, Since V is
a pull back of the one parameter shift semigroup {S; ® 1} on L?[0,00) ® X by
the homomorphism P 5 a — (Aa) € C, and since the product systems of CAR
and CCR flows associated with the one-parameter shift semigroup {S; ® 1}4»¢

that the normalized units of EV are of the form {e’“'“) e
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are isomorphic, E*K) is isomorphic to the product system F(*¥) of the CCR
flow associated with V. In fact, the map T = { T, } gep : EMF) - F(AF) defined by

Ta(Expa(§)) = e($),

for £ € Ker(V)) and a € P is an isomorphism. Hence, G is isomorphic to the
automorphism group of F*¥)_ Since the automorphism group of a CCR flow
acts transitively on the set of normalized units, the conclusion follows. The fact
that the gauge group of a CCR flow acts transitively on the set of normalized units
can been seen from the explicit description of units and the gauge group obtained
in [2, Theorems 5.1 and 7.3].

Since E®K) and F(A0) are isomorphic, they have the same index. But, by [24,
Proposition 2.7],

Ind(F*9)) = dim A(SHR).

Note that for every 1 € K, {1(g,(rja)) ® %/} acp is an additive cocycle for Sk)
and it is not difficult to see that every additive cocycle is of this form. Thus,

Ind(E®P)Y) = nd(F*9)) = dim X = k.

(2) Next assume that I has at least two elements. It is clear from Proposition 5.3 and
(1) that

Ind(EV) = k.
iel
Let ¥ = {\¥, } scp € G be given. For a € P, consider the one-parameter product
system E, = {E(ta)};so. By Lemma 3.2, there exists a unitary U, € {V;,, V5, :
t >0}, an additive cocycle &* = {£7},5 and p, € R? such that
A lgf 1 a
\I’taEXPa(T’I) _ emate*T*(Un’ﬂEt)Expa(Uarl + E?)
for 1 € Ker(V};). Proceeding as in the proof of Theorem 3.3, we see that there
exists £ = {&,} ep € A(V), aunitary U € {V,, V" : a € P} and p € R such that

lI€all?

(5.) WoExpa(n) = e 5 U Exp, (Un + &)

forne Ker(V)and a € P.

Assume that the additive cocycle {&,},cp is non-zero. Note that
{¥,Expa(0)}4ep is a unit of EV. Hence, {Exp,(€,)}acp is a unit for EV (the
map P> a — (&,|n,) € C is additive if &, € A(V)). By Proposition 4.16, there
exists i € I such that {&,}aep € A(VD). Let je I, j#i. Let {n,}aep € A(V)
be non-zero. By Proposition 4.16, {Exp,(#4)}aep is a unit for EV. Therefore,
{Y.Expa(1a)}acp is a unit for EV. (5.1) implies that {Exp, (U, + &) baep is a
unit for EV. Note that since U € {V,,V:aeP},Uisa diagonal operator, i.e.,
there exists a unitary operator U; € {V,(ai), V,(ai)* :£> 0} such that Uls, = U; for
i € I. Therefore, Uy, € Ker(Va(j)*) for a € P. Hence, {U#, + &4 Yacp $ A(VO)
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for any £ € I, contradicting Proposition4.16. As a consequence, &, =0 for a € P.
Therefore,

W,Exp,a(§) = e “VExp, (U¥)

for £ € Ker(V,)and a € P.
Suppose u € R4 and U € {V,, V) :a e P} . Then, there exists ¥ (*U) ¢ G such
that

YV Exp () = e WO Exp, (UE)

for £ € Ker(V}*) and a € P. Note that ¥ € G because ¥, = e!*l9)T(U) for a € P,
where I'(U) is the second quantisation map.
Let M := {V,, V*: a € P} and denote the unitary group of M by U(M). By
Remark 4.14, we have U(M) = [ [ U(k;). We have shown that the map
iel

RY xU(M) 3 (4, U) » ¥V e G

is an isomorphism of groups. Hence, if ¥ is an automorphism of EV, then for
acP,

(52) \PaQa = \PaEXpa(O) = ei<."‘|“>Expa(0) — ei(‘u\a)Qa

forsome p € R?. Let 7 = {1, } sep be anon-zero additive cocycle such that Exp(#)

linall®
is a unit. Then, u = {1, }acp given by u, = e~ 2 Exp(#,) is a normalized unit,

but, by (5.2), Y.Q # u for every ¥ € G. Hence, the action of G on U" is not
transitive.

Remark 5.4 Suppose d > 2. Then, S(P*) is uncountable. This is because, as P is
pointed, P* spans R¥. It follows from Theorems 1.3 and 1.2 that there are uncountably
many CAR flows that are type I and for which the action of the gauge group on the set
of normalized units is not transitive.

Remark 5.5 It is immediate from Theorems 1.2 and 1.3 that if V is an isometric
representation with commuting range projections such that EV is type I and has index
one, then V is unitarily equivalent to $* for some A € S(P*), i.e., EV is “a pullback”
of a one parameter CAR flow. The analogous statement for F", the product system of
the CCR flow associated with V, is not true (see [24]).

Question s it possible to construct an isometric representation V of P such that EV is
type I, has index one, but V is not unitarily equivalent to S* for any A € S(P*)?
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