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On multiparameter CAR (canonical
anticommutation relation) flows
C. H. Namitha and S. Sundar
Abstract. Let P be a pointed, closed convex cone in R

d . We prove that for two pure isometric
representations V(1) and V(2) of P, the associated CAR flows βV(1) and βV(2) are cocycle conjugate
if and only if V(1) and V(2) are unitarily equivalent. We also give a complete description of pure
isometric representations of P with commuting range projections that give rise to type I CAR
flows. We show that such an isometric representation is completely reducible with each irreducible
component being a pullback of the shift semigroup {St}t≥0 on L2[0,∞). We also compute the index
and the gauge group of the associated CAR flows and show that the action of the gauge group on
the set of normalized units need not be transitive.

1 Introduction

Broadly speaking, the subject of irreversible non-commutative dynamics is concerned
with the study of dynamical systems where instead of a group action on a non-
commutative space (Hilbert spaces, C∗-algebras, von Neumann algebras), we have
a semigroup action. The operator algebraic aspects of such irreversible dynami-
cal systems have received the attention of many authors over the years. Some of
the topics that were investigated in detail and continue to be a source for much
research are semigroup C∗-algebras [11], semi-crossed products of non self-adjoint
algebras [13], dilation theory of semigroups of contractions and CP-semigroups [28],
E0-semigroups and product systems [8]. This paper comes under the topic of
E0-semigroups and product systems.

An E0-semigroup (CP-semigroup) over a semigroup P on B(H) is a semigroup
α ∶= {αx}x∈P of unital, normal ∗-endomorphisms (CP-maps) of B(H). If P has a
topology, we require the semigroup α to satisfy an appropriate continuity hypothesis.
The study of such semigroups, when P = [0,∞), has a long history which dates back
to Powers’ works [19, 20]. Arveson wrote several influential papers on the subject
[4–7] and also authored [8] which is the standard reference for the subject. More on
Arveson’s contribution and by others to the subject of E0-semigroups can be found in
a survey article [15] by Izumi.

In the last 15 years, several papers [1–3, 17, 25–27, 30, 32, 36] appeared where
semigroups of endomorphisms/CP-maps and product systems, over more general
monoids, were considered. Moreover, it was demonstrated that significant differences
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2 C. H. Namitha and S. Sundar

show up in the multiparameter case. A few features that are in stark contrast to the
1-parameter case are listed below.
(1) A CP-semigroup over N3 need not have a dilation to an E0-semigroup [29].
(2) CCR and CAR flows need not be cocycle conjugate in the multiparameter case

[33].
(3) In the multiparameter case, decomposable product systems need not be spatial

[18, 36].
These contrasting phenomena make the multiparameter theory interesting, and the
authors believe that multiparameter E0-semigroups are objects worthy of investiga-
tion. Here, we study a class of E0-semigroups called CAR flows and classify a subclass
of them.

In view of the bijective correspondence between the class of product systems and
the class of E0-semigroups [9, 17, 31], we explain the problem studied and the results
obtained in the language of product systems. A product system is a measurable field
of separable Hilbert spaces E ∶= {E(x)}x∈P endowed with a multiplication that is
compatible with the measurable structure.

The two simplest product systems, whose definitions we recall, are the ones
associated with CCR and CAR flows. LetH be a separable Hilbert space. (All Hilbert
spaces considered in this paper are tacitly assumed to be separable.) We denote the
symmetric Fock space of H by Γs(H) and the antisymmetric Fock space of H by
Γa(H). Throughout this paper, the letter P stands for a closed, convex cone in R

d

that is pointed, i.e., P ∩ −P = {0} and spanning, i.e., P − P = Rd . Let V ∶= {Vx}x∈P
be a strongly continuous semigroup of isometries on H. We call such a semigroup
of isometries an isometric representation of P on H. We assume V is pure, i.e.,
⋂
x∈P

VxH = {0}.
Consider the field of Hilbert spaces FV ∶= {FV(x)}x∈P , FV(x) ∶= Γs(Ker(V∗x ))

for x ∈ P. We impose a measurable structure on FV as follows. For every x ∈ P, we
can view FV(x) as a subspace of Γs(H), as the embedding Ker(V∗x ) ⊂H induces an
embedding of Γs(Ker(V∗x )) in Γs(H). Let Γ be the set of all maps t ∶ P → Γs(H) such
that
(a) the map t is weakly measurable, and
(b) for x ∈ P, t(x) ∈ FV(x).
Then, FV is a measurable field of Hilbert spaces with Γ being the space of measurable
sections. Define a product rule on FV by

e(ξ)e(η) = e(ξ + Vxη)(1.1)

for ξ ∈ Ker(V∗x ) and η ∈ Ker(V∗y ). Here, {e(ξ) ∶ ξ ∈ Ker(V∗x )}denotes the collection
of exponential vectors in the symmetric Fock space Γs(Ker(V∗x )). Then, the multipli-
cation is compatible with the measurable structure making FV a product system.The
product system FV is called the product systemof theCCRflow associatedwithV.The
corresponding E0-semigroup αV is called the CCR flow associated with V. Concrete
examples ofmultiparameter CCR flows and their intrinsic properties like index, gauge
group, type were analyzed in [2, 3] and in [23].

For x ∈ P, let Ωx be the vacuum vector of Γa(Ker(V∗x )). Consider the field
of Hilbert spaces EV ∶= {EV(x)}x∈P , where EV(x) ∶= Γa(Ker(V∗x )) for x ∈ P. The
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On multiparameter CAR (canonical anticommutation relation) flows 3

measurable structure on EV is defined as in the CCR case. Define a multiplication
on EV as follows:

ξ ⋅ η = Vxη1 ∧ Vxη2 . . . ∧ Vxηn ∧ ξ1 ∧ ξ2 ∧ . . . ∧ ξm(1.2)

for ξ = ξ1 ∧ ξ2 ⋅ ⋅ ⋅ ∧ ξm ∈ Γa(Ker(V∗x ), η = η1 ∧ η2 ∧ . . . ∧ ηn ∈ Γa(Ker(V∗y )) and
x , y ∈ P. For m = 0 or n = 0, (1.2) is interpreted as follows:

Ωx ⋅Ωy = Ωx+y ,
Ωx ⋅ η = Vxη1 ∧ Vxη2 ∧ . . . ∧ Vxηn ,
ξ ⋅Ωy = ξ1 ∧ ξ2 ∧ . . . ∧ ξm .

Then, EV is a product system and is called the product system of the CAR flow
associated with V. The corresponding E0-semigroup βV is called the CAR flow
associated with V.

It is known that in the 1-parameter case, i.e., when P = [0,∞), EV and FV are
isomorphic [21]. Then, it follows from the work of Arveson [4] that 1-parameter CAR
flows are classified by a single numerical invariant called index that takes values in{0, 1, 2, . . .} ∪ {∞}. In particular, the map

V → EV

is injective. Also, 1-parameter CAR flows are type I. Here, we take up the multipa-
rameter case, and we completely classify type I CAR flows associated with isometric
representations with commuting range projections.

Before we state our results, we mention here that, in the multiparameter case, the
study of CCR flows and CAR flows are not the same thing. For, it was demonstrated in
[33] that EV and FV need not be isomorphic. In [1], Arjunan studied the decompos-
ability of the product system EV when V is the shift semigroup associated with a free
and transitive action of P. He showed that for a large class of isometric representations
V, EV fails to be decomposable, and hence not isomorphic to the product system of a
CCR flow.

Our first result concerning CAR flows is given below.

Theorem 1.1 Let V(1) and V (2) be pure isometric representations of P onHilbert spaces
H1 andH2 respectively. The product systems EV(1) and EV(2) are isomorphic if and only
if V (1) and V(2) are unitarily equivalent, i.e., there exists a unitary U ∶H1 →H2 such
that for every a ∈ P,

UV(1)a U∗ = V (2)a .

The above theorem was statedin [33, Proposition 4.7]. However, the proof given
there is incorrect. The author argues that in view of [33, Proposition 4.1], it suffices to
prove that the gauge group of a CAR flow acts transitively on the set of normalized
units, and he gives an incorrect proof of this assertion. In fact, the last assertion is
false. We show by counterexamples that the gauge group of a CAR flow need not act
transitively on the set of normalized units.

Theorem 1.1 says that the task of parametrizing/listing CAR flows is equivalent to
the problem of parametrizing isometric representations of P. However, the process of
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4 C. H. Namitha and S. Sundar

inducing isometric representations [12, 23] of N2 to that of R2
+ allows us to conclude

that the classification problem of isometric representations of R2
+ is at least as hard

as describing the dual of C∗(Z2 ∗Z) which is known to be pathological, i.e., it is not
a standard Borel space. Thus, describing a good parameterization of all CAR flows is
beyond the scope of this paper and the authors. Neverthless, we show that a suitable
subclass, i.e., the class of type I CAR flows associated with isometric representations
with commuting range projections can be completely classified and described in
concrete terms.

Recall that an isometric representation V = {Va}a∈P is said to have commuting
range projections if {VaV∗a ∶ a ∈ P} is a commuting family of projections, and recall
that a product system E is said to be type I if the only subsystem of E that contains all
the units of E is E. A unit of E is a non-zero multiplicative section of E.

We fix notation to describe our results. Let N∞ ∶= {1, 2, . . .} ∪ {∞}. Let P∗ be the
dual cone of P, i.e.,

P∗ ∶= {λ ∈ Rd ∶ ⟨λ∣x⟩ ≥ 0 for x ∈ P}.
We denote by S(P∗) the unit sphere of P∗, i.e.,

S(P∗) ∶= {λ ∈ P∗ ∶ ⟨λ∣λ⟩ = 1}.
Let λ ∈ S(P∗), let k ∈ N∞, and let K be a Hilbert space of dimension k. Denote

the one parameter shift semigroup onH ∶= L2([0,∞),K) by S(k) ∶= {S(k)t }t≥0. Recall
that for t ≥ 0, S(k)t is the isometry onH defined by

S(k)t f (x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (x − t) if x − t ≥ 0,
0 otherwise.

For a ∈ P, let S(λ ,k)a ∶= S(k)
⟨λ∣a⟩.Then, S(λ ,k) ∶= {S(λ ,k)a }a∈P is an isometric representation

of P onH. If k = 1, we denote S(λ ,k) by Sλ .
For a non-empty countable subset I, an injective map λ ∶ I → S(P∗) and a map

k ∶ I → N∞, set

S(λ ,k) ∶= ⊕
i∈I

S(λ i ,k i) .

Let E(λ ,k) be the product system of the CAR flow associated with S(λ ,k).
With the above notation, we have the following classification result which is the

main result of this paper.

Theorem 1.2 For every non-empty countable set I, an injective map λ ∶ I → S(P∗) and
a map k ∶ I → N∞, the product system E(λ ,k) is type I. Conversely, suppose V is an
isometric representation of P with commuting range projections such that EV is type
I. Then, EV is isomorphic to E(λ ,k) (equivalently, V is unitarily equivalent to S(λ ,k)) for
a non-empty countable set I, an injective map λ ∶ I → S(P∗) and a map k ∶ I → N∞.
Moroever, the maps λ and k are unique up to conjugacy.

We explain briefly the ideas involved in the the proof of the converse part. A
certain “universal irreversible” dynamical system that encodes all pure semigroups of
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isometries with commuting range projections was constructed in [35] (see also [37]).
The irreversible system is given by the pair (Xu , P) where

Xu ∶= {A ⊂ Rd ∶ A ≠ ∅,A ≠ Rd ,−P + A ⊂ A, 0 ∈ A,A is closed}.
The topology that we impose on Xu is the Fell topology. The semigroup P acts on Xu
by translations.

The results of [34] allow us to conclude that if we focus on one unit u ∶= {ua}a∈P
at a time, then we can assume that V is the shift semigroup V μ on Xu associated with
a translation invariant Radon measure μ on Xu . Making use of the equality

uaub = ubua

and by few computations, we show that the support of μ can be identified with [0,∞).
Under this identification, the action of P on [0,∞) is then given by

[0,∞) × P ∋ (x , a) → x + ⟨λ∣a⟩ ∈ [0,∞)
for a unique λ ∈ S(P∗).Then, it is clear thatV μ is unitarily equivalent to Sλ .The proof
of the converse part of Theorem 1.2 is completed by a Zorn’s lemma argument.

We also compute the index and the gauge group, i.e., the group of automorphisms,
of the product system E(λ ,k). For � ∈ N∞, the unitary group of a Hilbert space of
dimension � will be denoted by U(�). We denote the gauge group of E(λ ,k) by G.

Theorem 1.3 Let I be a non-empty countable set, let λ ∶ I → S(P∗) be an injective map,
and let k ∶ I → N∞ be a map. Then,

Ind(E(λ ,k)) = ∑
i∈I

k i .

(1) If I = {i} is singleton, then E(λ ,k) is isomorphic to the product system of the CCR
flow associated with S(λ i ,k i). In this case, the gauge group G acts transitively on the
set of normalized units, and G is isomorphic to the gauge group of the CCR flow
associated with S(λ i ,k i).

(2) If the cardinality of I is at least two, then the gauge group G does not act transitively
on the set of normalized units. In this case, G is isomorphic to Rd ×∏

i∈I
U(k i).

The organization of this paper is as follows.
After this introductory section, in Section 2, we collect a few definitions concerning

product systems, additive decomposable vectors and units. To keep the paper self
contained, we give an overview of the results derived in [16] and in [1] concerning
the exponential map that plays a crucial role in our analysis. Theorem 1.1 is proved in
Section 3. In Section 4, we proveTheorem 1.2. In Section 5, we proveTheorem 1.3. We
also prove that the gauge group of a CAR flow need not act transitively on the set of
normalized units.

2 Additive decomposable vectors and the exponential map

We will make extensive use of the exponential map defined initially for “addits” in
[16] and later extended to “coherent sections of additive decomposable vectors” in [1].
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6 C. H. Namitha and S. Sundar

To keep the paper fairly self contained, we give a quick overview of the results of [16]
and [1]. We start by first recalling the definition of product systems, units, and what it
means for a product system to be type I.

Let P be a closed, convex cone in R
d , where d ≥ 1, which is spanning, i.e., P − P =

R
d and pointed, i.e., P ∩ −P = {0}. The letter P is reserved to denote such a cone for

the rest of this paper. Let P∞ ∶= P ∪ {∞}. For x , y ∈ Rd , we say x ≤ y if y − x ∈ P. For
x ∈ P, set

[0, x] ∶= {y ∈ Rd ∶ 0 ≤ y ≤ x}.
For x = ∞, we let [0, x] = P.

Let E ∶= {E(x)}x∈P be a measurable field of non-zero separable Hilbert spaces
together with an associative multiplication defined on the disjoint union ∐

x∈P
E(x).

Then, E together with the multiplication is called a product system if the following
properties are satisfied.

(1) If u ∈ E(x) and v ∈ E(y), then uv ∈ E(x + y).
(2) For x , y ∈ P, the map

E(x) ⊗ E(y) ∋ u ⊗ v → uv ∈ E(x + y)
is a unitary operator.

(3) For measurable sections r, s, t, the map

P × P ∋ (x , y) → ⟨r(x)s(y)∣t(x + y)⟩ ∈ C
is measurable.

Let E ∶= {E(x)}x∈P be a product system. A measurable section u ∶ P →∐
x∈P

E(x) is
called a unit if

(1) for x ∈ P, ux ≠ 0, and
(2) for x , y ∈ P, uxuy = ux+y .

We denote the set of units of E by UE . We say that E is spatial if UE is non-empty.
Let F ∶= {F(x)}x∈P be a field of non-zeroHilbert spaces such that, for x ∈ P, F(x) ⊂

E(x). We say F is a subsystem of E if for every x , y ∈ P,
F(x + y) = span{uv ∶ u ∈ F(x), v ∈ F(y)}.

Let u ∈ UE . We say a subsystem F contains u if ux ∈ F(x) for every x ∈ P. We say F
contains UE if F contains u for every u ∈ UE . The product system E is said to be type
I if E is spatial and the only subsystem of E that contains UE is E.

We denote the gauge group of E, i.e., the group of automorphisms of E, by GE . For
u ∈ UE and Ψ ∈ GE , let Ψ.u ∈ UE be given by

(Ψ.u)x = Ψx(ux)
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On multiparameter CAR (canonical anticommutation relation) flows 7

for x ∈ P. A unit u = {ux}x∈P of E is said to be normalized if ∣∣ux ∣∣ = 1 for each x ∈ P.
The set of normalized units of E is denoted by Un

E . We say that the gauge group acts
transitively on the set of normalized units if the action of GE on Un

E given by

GE ×Un
E ∋ (Ψ, u) → Ψ.u ∈ Un

E

is transitive.
In [16], Margetts and Srinivasan introduced the notion of addits of a 1-parameter

product system and constructed an exponentialmap that, after suitable normalization,
sets up a bijective correspondence between addits and units. The notion of addits
was also considered independentely by Bhat, Lindsay, and Mukherjee in [22]. In [33],
Srinivasan introduced the concept of additive decomposable vectors. Imitating the
techniques of [16], Arjunan in [1] showed that there is a bijective correspondence
between the set of additive decomposable vectors and the set of decomposable vectors.
Since this bijection and the exponential map play a key role in what follows, we
summarize the main resuls of [33] and [1].

Let E = {E(x)}x∈P be a spatial product system over P with a reference unit e ∶={ex}x∈P that is normalized, i.e., ∣∣ex ∣∣ = 1 for x ∈ P. Such a pair (E , e) was called a
pointed product system in [22]. The reference unit e is fixed until further mention.

Definition 2.1 [33] Let x ∈ P, and let b ∈ E(x). We say that b is an additive decom-
posable vector if b ⊥ ex and for y ≤ x, there exists by ∈ E(y) and b(y, x) ∈ E(y − x)
(that are necessarily unique) such that

(1) by ⊥ ey , b(y, x) ⊥ ex−y , and
(2) b = byex−y + eyb(y, x).

For x ∈ P, let
Ae(x) ∶= {b ∈ E(x) ∶ b is additive decomposable}.

Let x ∈ P∞, and let {by}y∈[0,x] be a family of additive decomposable vectors such
that by ∈ Ae(y) for every y ∈ [0, x]. We call such a family a coherent section of
additive decomposable vectors if for every y, z ∈ [0, x] with y ≤ z, there exists, a
necessarily unique, b(y, z) ∈ E(z − y) such that

bz = byez−y + eyb(y, z).
A coherent section of additive decomposable vectors {by}y∈P is called an addit if
b(y, z) = bz−y whenever y ≤ z.

Suppose {by}y∈[0,x] is a coherent section of additive decomposable vectors. It is
clear that the collection {b(y, z) ∶ y, z ∈ [0, x], y ≤ z} satisfies the following propaga-
tor equation: for y1 ≤ y2 ≤ y3,

b(y1 , y3) = b(y1 , y2)ey3−y2 + ey2−y1b(y2 , y3).
Let x ∈ P. Given b ∈ Ae(x), it follows from [33, Lemma 3.2] that there exists a unique
coherent section of additive decomposable vectors {by}y∈[0,x] such that bx = b.
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Next, we recall the definition of decomposable vectors. Let x ∈ P, and let u ∈ E(x)
be a non-zero vector. We say that u is decomposable if whenever y ≤ x, there exists
v ∈ E(y) and w ∈ E(x − y) such that u = vw. For x ∈ P, let

De(x) ∶= {u ∈ E(x) ∶ u is decomposable and⟨u∣ex⟩ = 1}.
Let x ∈ P∞, and let {uy}y∈[0,x] be a family of decomposable vectors such that uy ∈
De(y) for every y ∈ [0, x]. We say that {uy}y∈[0,x] is a left coherent section of
decomposable vectors if for y, z ∈ [0, x] with y ≤ z, there exists a unique u(y, z) ∈
De(z − y) such that uz = uyu(y, z).

Next, we recall the definition of the exponential map, in the 1-parameter setting,
that sets up a bijective correspondence between Ae(⋅) and De(⋅). Let E ∶= {E(t)}t≥0
be a 1-parameter product system with a reference unit {et}t≥0 that is normalized.
Suppose t ≥ 0. Let b ∈ Ae(t) be given. Let {bs}s∈[0,t] be the coherent section of
additive decomposable vectors such that bt = b.

For every n ∈ {0, 1, 2, . . .}, define a section x(n) ∶ [0, t] → ∐
s∈[0,t]

E(s) inductively as
follows: for s ∈ [0, t], set x(0)s ∶= es and x(1)s ∶= bs , and for n ≥ 2, let

x(n)s ∶= ∫ s

0
x(n−1)r dbr .

Then, we set

Exp(b) ∶= ∞∑
n=0

x(n)t .

It was proved in [1, Proposition 3] that the series∑∞n=1 x(n)t is norm convergent in E(t).
The integral ∫ s

0 x(n−1)r dbr is called Itô integral whose definition is recalled below for
the reader’s benefit.

Let n ≥ 2, and let s ∈ [0, t] be given. For every k ≥ 1, partition [0, s] into k intervals
of length s

k . For i = 0, 1, 2, . . . , k − 1, set r(k)i ∶= i s
k . Define

Sk ∶= k−1∑
i=0

x(n−1)
r(k)i

b(r(k)i , r(k)i+1 )es−r(k)i+1
(2.1)

Note that Sk ∈ E(s) for every k ≥ 1. Moreover, the sequence (Sk)k converges in norm
whose limit we denote by ∫ s

0 x(n−1)r dbr . The norm convergence of (Sk)k was shown
in [16] when {bs}s≥0 is an addit (see [16, Proposition 5.4]). It was observed in [1]
that the same proof works if we replace an addit by a coherent section of additive
decomposable vectors (see [1, Proposition 2]).

Proposition 2.1 [16], [1] The exponential map satisfies the following key properties.
(1) Let t ≥ 0. For b ∈ Ae(t), Exp(b) ∈De(t). Moreover, the map

Ae(t) ∋ b → Exp(b) ∈ De(t)
is a bijection. For b1 , b2 ∈ Ae(t),

⟨Exp(b1)∣Exp(b2)⟩ = exp(⟨b1∣b2⟩).
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For b ∈ Ae(t), let {bs}s∈[0,t] be the unique coherent section of additive decom-
posable vectors such that bt = b. Then,

Exp(br)Exp(b(r, s)) = Exp(bs).(2.2)

for 0 ≤ r ≤ s ≤ t.
(2) If {bt}t∈[0,∞) is an addit, then {Exp(bt)}t∈[0,∞) is a unit. Conversely, if{ut}t∈[0,∞) is a unit and ut ∈ De(t) for every t, then there exists an addit{bt}t∈[0,∞) such that ut = Exp(bt) for every t ≥ 0.

For a proof of the above proposition, we refer the reader to [16] and [1].

Definition 2.2 Let E ∶= {E(x)}x∈P be a spatial product system over P with a nor-
malized reference unit {ex}x∈P . For x ∈ P, let Ẽ ∶= {Ẽ(tx)}t≥0 be the spatial 1-product
system with reference unit {ẽtx}t≥0. We denote the exponential map of Ẽ by Expx . In
particular, if b ∈ Ae(x), then Expx(b) is a well defined vector in E(x). If P = [0,∞),
then for s ≥ 0, we omit the subscript “s” from Exps and simply denote it by Exp.

Suppose V is a pure isometric representation of P on a separable Hilbert spaceH,
and let EV ∶= {EV(x)}x∈P be the product system of the CAR flow βV . Recall that, for
x ∈ P, EV(x) = Γa(Ker(V∗x )) and the multiplication rule is given by (1.2). For x ∈ P,
let Ωx be the vacuum vector of Γa(Ker(V∗x )). Then, Ω ∶= {Ωx}x∈P is a unit which we
call the vacuum unit. We always consider the vacuum unit as the reference unit of EV

while considering the exponential map.The set of additive decomposable vectors was
determined by Srinivasan in [33], and we summarize the results in the next remark. A
couple of definitions are in order before we make the remark.

For x ∈ P, we denote the range projection of Vx by Ex .

Definition 2.3 A map ξ ∶ P →H is called an additive cocycle if for x ∈ P, Ex ξx = 0,
and for x , y ∈ P,

ξx+y = ξx + Vx ξy .

The set of additive cocycles is denoted byA(V).
Let u ∶= {ux}x∈P be a unit of EV . We say that u is an exponential unit if ux ∈DΩ(x)

for every x ∈ P, i.e., ⟨ux ∣Ωx⟩ = 1 for x ∈ P.
Remark 2.2 With the foregoing notation, we have the following.
(1) Let x ∈ P. Then, it follows from [33, Proposition 4.1] thatAΩ(x) = Ker(V∗x ). It is

easy to see that Ker(V∗x ) ⊂ AΩ(x). To see this suppose x ∈ P and ξ ∈ Ker(V∗x ).
Let y ∈ P be such that y ≤ x. Set ξy ∶= E⊥y ξ and ξ(y, x) ∶= V∗y ξ. Then, it is clear
from the definition of the multiplication rule that

ξy ⋅Ωx−y +Ωy ⋅ ξ(y, x) = ξ.(2.3)

Suppose P = [0,∞), t ≥ 0 and ξ ∈ Ker(V∗t ). It follows from (2.2) that

Exp(E⊥s ξ)Exp(V∗s ξ) = Exp(ξ)
for s ≤ t. Equivalently, if P = [0,∞), then for s, t ≥ 0, ξ ∈ Ker(V∗s ) and η ∈
Ker(V∗t ),

Exp(ξ)Exp(η) = Exp(ξ + Vsη).(2.4)
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10 C. H. Namitha and S. Sundar

(2) Let ξ ∶ P →H be a map such that ξx ∈ Ker(V∗x ) for every x ∈ P. It is clear from
the definition of an addit, (2.3) and (1.2) that {ξx}x∈P is an addit if and only if ξ is
an additive cocycle for V.

(3) Let u be an exponential unit of EV . Let x ∈ P. Note that {utx}t≥0 is a unit for the
one parameter product system {E(tx)}t≥0. It follows from Proposition 2.1 that
there exists a unique ξx ∈ Ker(V∗x ) such that ux = Expx(ξx). It follows from the
definition of Expx that the 1-particle vector of ux is ξx . Comparing the 1-particle
vectors of the equation

Expx+y(ξx+y) = ux+y = ux ⋅ uy = Expx(ξx) ⋅ Expy(ξy)
we see that for x , y ∈ P, ξx+y = ξx + Vx ξy , i.e., ξ ∶= {ξx}x∈P is an additive cocycle
for V.

Thus, if u is an exponential unit, then u is of the form {Expx(ξx)}x∈P for a
unique ξ ∈ A(V). However, it is not necessary that Exp(ξ) ∶= {Expx(ξx)}x∈P is
a unit if ξ ∈ A(V) (see Proposition 4.16).

3 Injectivity of the CAR functor

In this section, we prove Theorem 1.1. Suppose V is a pure isometric representation
of [0,∞). Let F ∶= {F(t)}t≥0 be the product system of the associated CCR flow αV .
Recall that for t ≥ 0, F(t) ∶= Γs(Ker(V∗t )) and the multiplication rule is given by

e(ξ)e(η) = e(ξ + Vsη)(3.1)

for ξ ∈ Ker(V∗s ) and η ∈ Ker(V∗t ). Here, {e(ξ) ∶ ξ ∈ Ker(V∗s )} denotes the set of
exponential vectors. The vacuum unit of F is denoted by Ω ∶= {Ωt}t≥0. We use the
same letter Ω to denote the vacuum unit of both CCR and CAR flows. Let E denote
the product system of the CAR flow βV with the reference unit Ω. For t ≥ 0, let DE(t)
and DF(t) denote the decomposable vectors in E(t) and F(t), respectively.

For t ≥ 0, let
DE

Ω(t) ∶= {u ∈ DE(t) ∶ ⟨u∣Ωt⟩ = 1}
and DF

Ω(t) is defined similarly. From Remark 2.2 and Proposition 2.1, we have

DE
Ω(t) = {Exp(ξ) ∶ ξ ∈ Ker(V∗t )},

and from [36, Proposition 2.2], we have

DF
Ω(t) = {e(ξ) ∶ ξ ∈ Ker(V∗t }.

It is known that E and F are isomorphic, a fact first proved by Robinson and Powers
in [21]. For our purposes, we need the following coordinate free isomorphism.

Lemma 3.1 For each t ≥ 0, the map Ψt ∶ DE
Ω(t) → DF

Ω(t) defined by
DE

Ω(t) ∋ Exp(ξ) → e(ξ) ∈ DF
Ω(t)

is a bijection. Moreover,

ΨsExp(ξ).ΨtExp(η) = Ψs+t(Exp(ξ).Exp(η))
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for s, t ≥ 0, ξ ∈ Ker(V∗s ) and η ∈ Ker(V∗t ). The map Ψt extends uniquely to a unitary
(again denoted by Ψt) Ψt ∶ E(t) → F(t) for t ≥ 0. The field of maps Ψ ∶= {Ψt}t≥0 is an
isomorphism from E onto F.

Proof From [8, Corollary 6.8.3], DE
Ω(t) is total in E(t), and DF

Ω(t) is total in F(t)
for t ≥ 0. Also, by Proposition 2.1,

⟨Exp(η)∣Exp(ξ)⟩ = e⟨η∣ξ⟩ = ⟨e(η)∣e(ξ)⟩
for η, ξ ∈ Ker(V∗t ) for t ≥ 0. Hence, Ψt can be extended to a unitary operator, again
denoted Ψt , Ψt ∶ E(t) → F(t), for t ≥ 0. It follows from (2.4) and (3.1) that Ψ ∶={Ψt}t≥0 ∶ E → F is an isomorphism. Hence the proof. ∎

Suppose V(1) and V(2) are pure isometric representations of [0,∞) onH andK,
respectively. Denote the product systems of the respective CAR flows by E1 and E2.
Let

U (V(1) ,V (2))
∶= {U ∶H →K ∶ U is a unitary,UV (1)t = V(2)t U ,UV (1)∗t = V(2)∗t Ufort ≥ 0}.

The proof of the next lemma is essentially an application of Lemma 3.1 and the gauge
group computation of CCR flows due to Arveson.

Lemma 3.2 Suppose Ψ ∶ E1 → E2 is an isomorphism of product systems. Then, there
exists U ∈ U (V(1) ,V (2)), ξ = {ξt}t≥0 ∈ A(V(2)), and λ ∈ R such that

Ψt(Exp(η)) = e i λte −∣∣ξt ∣∣22 −⟨Uη∣ξ t⟩Exp(Uη + ξt)
for η ∈ Ker(V(1)∗t ), t ≥ 0.
Proof We denote by F1 and F2 the product systems of the CCR flows associated with
V (1) and V (2) respectively. For i = 1, 2, let Θ i = {Θ i(t)}t≥0 be the isomorphism from
E i onto Fi given by

Θ i(t)Exp(η) = e(η)
for η ∈ Ker(V (i)∗t ) and t ≥ 0.The isomorphismΘ i for i = 1, 2 is guaranteed by Lemma
3.1. Then, Δ = Θ2 ○Ψ ○Θ−11 is an isomorphism from F1 onto F2.

It follows from [8, Corollary 2.6.10] that V (1) and V(2) are unitarily equivalent.
Suppose W ∶H →K is a unitary such that WV (1)t = V(2)t W for t ≥ 0. For t ≥ 0, let
Λt ∶ F1(t) → F2(t) be the unitary operator such that

Λtexp(ξ) = exp(Wξ)
for ξ ∈ Ker(V (1)∗t ). Clearly, Λ ∶= {Λt}t≥0 ∶ F1 → F2 is an isomorphism.

Now consider the map T ∶= Λ−1 ○ Δ. The map T is an automorphism of F1. By [8,
Theorem 3.8.4], there exists U ∈ U (V (1) ,V (1)), an additive cocycle ξ = {ξt}t≥0 for
V (1) and λ ∈ R such that

Tte(η) = e i λte− ∣∣ξt ∣∣22 −⟨Uη∣ξ t⟩e(Uη + ξt)
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for η ∈ Ker(V (1)∗t ). For t ≥ 0, set ξ̃t ∶=Wξt and Ũ ∶=WU . Then, Ũ ∈ U (V (1) ,V (2))
and ξ̃ ∶= {ξ̃t}t≥0 is an additive cocycle for V (2).

Since Δ ∶= Λ ○ T , it follows that for for t ≥ 0 and η ∈ Ker(V(1)∗t ),
Δte(η) = e i λte− ∣∣ξt ∣∣22 −⟨Uη∣ξ t⟩e(WUη +Wξt)

= e i λte− ∣∣Wξt ∣∣
2

2 −⟨WUη∣Wξ t⟩e(WUη + ξ̃t)
= e i λte− ∣∣ ξ̃ t ∣∣22 −⟨Ũη∣ ξ̃ t⟩e(Ũη + ξ̃t).

Since Ψ = Θ−12 ○ Δ ○Θ1, it is immediate that

ΨtExp(η) = e i λte −∣∣ ξ̃ t ∣∣22 −⟨Ũη∣ ξ̃ t⟩Exp(Ũη + ξ̃t)
for η ∈ Ker(V (1)∗t ) and t ≥ 0. Hence the proof. ∎

Let P be a closed convex cone inR
d which is spanning and pointed. Let V(1), V (2)

be two pure isometric representations of P on Hilbert spacesH1 andH2, respectively.
We denote the product systems of the corresponding CAR flows by E(1) and E(2),
respectively.

Theorem 3.3 The product systems E(1) and E(2) are isomorphic if and only if V(1) and
V (2) are unitarily equivalent.

Proof Suppose E(1) and E(2) are isomorphic. Let Ψ = {Ψa}a∈P ∶ E(1) → E(2) be an
isomorphism. Let a ∈ Int(P). Consider the one parameter product system E(1)a ∶=
{E(1)a (t)}t≥0, where for t ≥ 0, E(1)a (t) ∶= E(1)(ta). Similarly, consider the one param-
eter product system E(2)a ∶= {E(2)a (t)}t≥0, where E(2)a (t) ∶= E(2)(ta) for t ≥ 0. Then,
{Ψta}t≥0 ∶ E(1)a → E(2)a is an isomorphism.

By Lemma 3.2, there exists a unitary Ua ∶H1 →H2 intertwining {V (1)ta }t≥0 and
{V (2)ta }t≥0, an additive cocycle {ξat }t≥0 of {V (2)ta }t≥0 and λa ∈ R such that Ψta is of the
form

ΨtaExpa(ξ) = e i λa te−
∣∣ξat ∣∣

2

2 e−⟨Ua ξ∣ξat ⟩Expa(Ua ξ + ξat ),(3.2)

for ξ ∈ Ker(V (1)∗ta ) and t > 0. We will denote ξa1 by ξa . Hence,

ΨaExpa(ξ) = e i λa e−
∣∣ξs ∣∣2

2 e−⟨Ua ξ∣ξa⟩Expa(Ua ξ + ξa)(3.3)

for a ∈ Int(P) and ξ ∈ Ker(V(1)∗a ).
Let a, b ∈ Int(P). Since Ψ is an isomorphism, we have

ΨaExpa(ξ).ΨbExpb(η) = Ψa+b(Expa(ξ).Expb(η)),
for ξ ∈ Ker(V (1)∗a ) and η ∈ Ker(V (1)∗b ).

In particular,

Ψa+b(Expa(0).Expb(0)) = ΨaExpa(0).ΨbExpb(0),
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i.e.,

Ψa+bExpa+b(0) = e i(λa+λb)e−
(∣∣ξa ∣∣2+∣∣ξb ∣∣

2)
2 Expa(ξa).Expb(ξb)

e i λa+b e−
∣∣ξa+b ∣∣

2

2 Expa+b(ξa+b) = e i(λa+λb)e−
(∣∣ξa ∣∣2+∣∣ξb ∣∣

2)
2 Expa(ξa).Expb(ξb).(3.4)

Comparing the 0-particle vectors in LHS and RHS of (3.4), we have

e i λa+b−
∣∣ξa+b ∣∣

2

2 = e i(λa+λb)−
(∣∣ξa ∣∣2+∣∣ξb ∣∣

2)
2 .(3.5)

Now, comparing the 1-particle vectors of LHS and RHS in (3.4), we have

ξa+b = ξa + V (2)a ξb .(3.6)

Let ξ ∈ Ker(V (1)∗a ). Consider the equation
Ψa+b ξ = Ψa ξ.ΨbExpb(0).(3.7)

Considering the exponential map in the one parameter product system E(1)a , we have

Expa(ξ) = ∞∑
n=0

x(n)1

where for r ∈ (0, 1], x(0)r = Ωra , x(1)r = (1 − V (1)ra V(1)∗ra )ξ and x(n)r = ∫ r
0 x(n−1)t dξt .

Here, for t ∈ (0, 1], ξt = (1 − V (1)ta V(1)∗ta )ξ.
Let s ∈ R. Suppose

Expa(sξ) = ∞∑
n=0

y(n)1 ,

where the summands are obtained via Itô integration. A moment’s reflection on the
definition of the Itô integral reveals that

y(n)1 = snx(n)1

for n = 0, 1, 2, ⋅ ⋅ ⋅ .
Note that

ΨaExpa(tξ) = ∞∑
n=0

Ψa y(n)1 = ∞∑
n=0

tnΨax(n)1(3.8)

for t ∈ R. Since the power series in (3.8) is norm convergent for every t ∈ R, it may be
differentiated term by term, and the derivative is given by

d
dt

ΨaExpa(tξ) = ∞∑
n=1

ntn−1Ψa(x(n)1 ).
Hence,

Ψa(ξ) = d
dt
∣
t=0

ΨaExpa(tξ).(3.9)
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From (3.3) we have,

d
dt

ΨaExpa(tξ)
= d
dt

e i λa e−
∣∣ξa ∣∣2

2 e−t⟨Ua ξ∣ξa⟩Expa(tUa ξ + ξa)
= e i λa e−

∣∣ξa ∣∣2
2 (Expa(tUa ξ + ξa) ddt e−t⟨Ua ξ∣ξa⟩ + e−t⟨Ua ξ∣ξa⟩ d

dt
Expa(tUa ξ + ξa))

= e i λa−
∣∣ξa ∣∣2

2 e−t⟨Ua ξ∣ξa⟩( − ⟨Ua ξ∣ξa⟩Expa(tUa ξ + ξa) +Ua ξ + qa(t, ξ))
where the projection of qa(t, ξ) onto 0-particle and 1-particle space is zero. By (3.9),

Ψa(ξ) = d
dt
∣
t=0

ΨaExpa(tξ) = e i λa−
∣∣ξa ∣∣2

2 (−⟨Ua ξ∣ξa⟩Expa(ξa) +Ua ξ + qa(0, ξ)).
Similarly,

Ψa+b(ξ) = e i λa+b−
∣∣ξa+b ∣∣

2

2 (−⟨Ua+b ξ∣ξa+b⟩Expa+b(ξa+b) +Ua+b ξ + qa+b(0, ξ))
where the projection of qa+b(0, ξ) onto 0-particle and 1-particle space is zero.

Therefore, (3.7) implies,

e i(λa+λb)−
(∣∣ξa ∣∣2+∣∣ξb ∣∣

2)
2 (− ⟨Ua ξ∣ξa⟩Expa(ξa) +Ua ξ + qa(0, ξ)).Expb(ξb)

= e i λa+b−
∣∣ξa+b ∣∣

2

2 (− ⟨Ua+b ξ∣ξa+b⟩Expa+b(ξa+b) +Ua+b ξ + qa+b(0, ξ)).
Using (3.5), the above equation reduces to

(− ⟨Ua ξ∣ξa⟩Expa(ξa) +Ua ξ + qa(0, ξ)).Expb(ξb)
= −⟨Ua+b ξ∣ξa+b⟩Expa+b(ξa+b) +Ua+b ξ + qa+b(0, ξ).(3.10)

By equating the 0-particle vectors in the above equation, we see that

⟨Ua ξ∣ξa⟩ = ⟨Ua+b ξ∣ξa+b⟩.(3.11)

Equating the 1-particle vectors in (3.10), we have

−⟨Ua ξ∣ξa⟩(ξa + V (2)a ξb) +Ua ξ = −⟨Ua+b ξ∣ξa+b⟩ξa+b +Ua+b ξ.

Hence, by (3.6) and (3.11),

Ua ξ = Ua+b ξ.

Thus, if ξ ∈ Ker(V (1)∗a ) and ξ ∈ Ker(V(1)∗b ) for a, b ∈ Int(P), Ua ξ = Ua+b ξ = Ub ξ.
Since ⋃a∈Int(P) Ker(V (1)∗a ) is dense in H1, it follows that there exists a unitary
operator U ∶H1 →H2 such that

Uξ = Ua ξ

if ξ ∈ Ker(V (1)∗a ).
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Similarly, considering the equation

Ψa+b(Expa(0).η) = Ψa(Expa(0)).Ψbη

for η ∈ Ker(V(1)∗b ) and comparing 0 and 1-particle vectors as before, it is not difficult
to see that for a, b ∈ Int(P) and η ∈ Ker(V (1)∗b )

UV(1)a η = V(2)a Uη.

Since ⋃
b∈Int(P)

Ker(V(1)∗b ) is dense inH1, it follows that UV(1)a = V (2)a U for every a ∈
Int(P). As Int(P) is dense in P, U intertwines V(1) and V(2). This completes the
proof. ∎

4 Type I CAR flows associated with isometric representations with
commuting range projections

In this section, we characterize pure isometric representations of P with commuting
range projections that give rise to type I CAR flows. Recall that a pure isometric
representationV of P is said to have commuting range projections if {VaV∗a ∶ a ∈ P} is a
commuting family of projections. First, we recall the dynamical system that encodes all
pure isometric representations with commuting range projections. Let C(Rd) denote
the set of closed subsets of Rd which we equip with the Fell topology.

Let (An) be a sequence in C(Rd), and let A ∈ C(Rd). Then, (An) → A if and only
if lim supAn = lim inf An = A, where

lim inf An ∶= {x ∈ Rd ∶ for everyn, there exists xn ∈ An such that (xn) → x}
lim supAn ∶= {x ∈ Rd ∶ there exists a subsequence (nk) and xnk ∈ Ank

such that (xnk)k → x}.
Let

Yu ∶ = {A ∈ C(Rd) ∶ −P + A ⊂ A,A ≠ ∅,A ≠ Rd},
Xu ∶ = {A ∈ Yu ∶ 0 ∈ A}.

The space Yu is locally compact, Hausdorff and second countable on which the group
R

d acts. The action is given by the map

R
d × Yu ∋ (x ,A) → A+ x ∈ Yu .

Note that Xu + P ⊂ Xu and Yu = ⋃
a∈P
(Xu − a).

Remark 4.1 In the 1-dimensional case, the space Yu has a very simple description.
Let P = [0,∞). Suppose A ∈ Yu . The fact that A− [0,∞) ⊂ A implies that A is an
interval that is not bounded below. Since A ≠ R, and since A is closed, it follows that
A = (−∞, a] for a unique a ∈ R. It is not difficult to show that the map

R ∋ a → (−∞, a] ∈ Yu
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is an R-equivariant homeomorphism. Here, the action of R on R is by translations.
With this identification of Yu with R, we have Xu = [0,∞).

It was proved in [37] that there is a bijective correspondence between the class
of pure isometric representations of P with commuting range projections and the
class of covariant representations of the dynamical system (Yu ,Rd). For us, the most
important examples of isometric representations are the “shift semigroups on Xu” that
arise from invariant measures on Yu .

Let μ be a non-zero Radon measure on Yu which is also invariant under the above
mentioned action ofRd . Define an isometric representation V μ of P on L2(Xu , μ) by

V μ
a f (A) ∶= ⎧⎪⎪⎨⎪⎪⎩

f (A− a) if A− a ∈ Xu ,
0 if A− a ∉ Xu .

for a ∈ P. Clearly, V μ has commuting range projections.
It follows from [34, Lemmas 3.8 and 3.9] that the set Xu/(Xu + a) has com-

pact closure for a ∈ P and has positive measure if a ∈ Int(P). It is now clear that{1Xu/(Xu+a)}a∈P is a non-zero additive cocycle for V μ .
Recall that P∗ stands for the dual cone of P, and S(P∗) ∶= {λ ∈ P∗ ∶ ∣∣λ∣∣ = 1}.

Suppose λ ∈ S(P∗). Define
Hλ ∶= {x ∈ Rd ∶ ⟨λ∣x⟩ ≤ 0}.

Define

Y λ
u ∶= {Hλ + tλ ∶ t ∈ R} = {Hλ + z ∶ z ∈ Rd},

and

Xλ
u ∶= {Hλ + tλ ∶ t ≥ 0} = Y λ

u ∩ Xu .

Note that Xλ
u , Y λ

u ⊂ Yu are closed. Also, observe that Y λ
u is Rd -invariant and Xλ

u +
P ⊂ P.

Let S ∶= {St}t≥0 be the one parameter shift semigroup on L2[0,∞) defined by

St f (x) = f (x − t)1[0,∞)(x − t).
For λ ∈ S(P∗), define the isometric representation Sλ of P on L2[0,∞) by

Sλa = S⟨λ∣a⟩
for a ∈ P.

Let μ be a non-zero R
d-invariant Radon measure on Yu . Denote the product

system of the CAR flow associated with V μ by Eμ . For a ∈ P, let ηa ∶= 1Xu/Xu+a , let
η ∶= {ηa}a∈P , and let Exp(η) ∶= {Expa(ηa)}a∈P .
Lemma 4.2 Suppose supp(μ) = Y λ

u for some λ ∈ S(P∗). Then,

(i) V μ is unitarily equivalent to Sλ , and
(ii) Exp(η) is a unit for Eμ .
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Proof We first show that V μ is unitarily equivalent to Sλ . The reader may verify that
the map F ∶ Y λ

u → R defined by

F(Hλ + tλ) = t
is a homeomorphism, and F(Xλ

u) = [0,∞). Also,
F((Hλ + tλ) + a) = t + ⟨λ∣a⟩

for t ∈ R and a ∈ Rd . Since μ is an invariantmeasure, the push forwardmeasureF∗μ is
the Lebesgue measure, denoted bym. Define a unitary operatorU ∶ L2([0,∞),m) →
L2(Xλ

u , μ) by
U f = f ○ F.

It is routine to verify that U intertwines Sλ and V μ . Note that U−1(1Xu/Xu+a) =
1(0,⟨λ∣a⟩) for a ∈ P. By abusing notation, we may assume that V μ = Sλ and ηa =
1(0,⟨λ∣a⟩) for a ∈ P.

Let Exp denote the exponential map of the one parameter product system Ẽ of
the CAR flow associated with {St}t≥0. Let ut = Exp(1(0,t)) for t ≥ 0. It follows from
Remark 2.2 and Propostion 2.1 that u = {ut}t≥0 is a unit for Ẽ. Note that Expa(ηa) =
u⟨λ∣a⟩ for a ∈ P. Observe that

Expa(ηa).Expb(ηb) = u⟨λ∣a⟩.u⟨λ∣b⟩ = u⟨λ∣a+b⟩ = Expa+b(ηa+b).
for a, b ∈ P, i.e., Exp(η) is a unit. ∎
Remark 4.3 In the 1-dimensional case, it is clear from Remark 4.1 that, up to a scalar
multiple, there is a unique invariant Radon measure on Yu . This is not true in the
higher dimensional case. Nor is it true that such a measure is supported on Y λ

u for
some λ ∈ S(P∗).

Consider P = R2
+ as an example. Let A ∈ Yu , and let GA ∶= {z ∈ R2 ∶ A+ z = A}.

Denote the map

R
2/GA ∋ z → A− z ∈ Yu

byT. AsT is equivariant, the push-forwardmeasure T∗λ is an invariantmeasure onYu
and is supported on the orbit of A. Here, λ is the Haar measure on R

2/GA. However,
T∗λ need not be a Radon measure. For example, let A = −R2

+. In this case, GA = {0}
and

T−1(Xu/(Xu + (a, b)) = −R2
+/(−R2

+ + (a, b))
which has infinite measure if a ≥ 0 and b ≥ 0.

Let ϕ = ∑
n∈Z
−n1[n ,n+1). Note that the graph of ϕ is an infinite staircase. Let

A ∶= {(x , y) ∶ y ≤ ϕ(x)}.
In this case, GA = Z(1,−1). Let π ∶ R2 → R

2/GA be the quotient map. By drawing a
“few pictures”, it is immediate to see that T−1(Xu/(Xu + (a, b))) = π(A/(A+ (a, b)))
has compact closure. For example, modGA,A/(A+ (1, 1)) is just a bounded square. In
this case, T∗λ is a Radon measure. In fact, given A ∈ Yu , if GA ≠ 0, then it can proved,
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by appealing to a few results from [24], that T∗λ is a Radon measure. Since this fact
is not needed and since we don’t make use of the fact that there are enough invariant
measures on Yu in this paper, we omit details and proofs.

Next, we next explain that a typical element of Yu can be described by a continuous
function. We exploit this description to make computations. This is akin to intro-
ducing coordinates to compute. Let us first consider the case of the quadrant, i.e., let
P = R2

+ = [0,∞) × [0,∞). Let A ∈ Yu be given. For each x ∈ R, consider the x-section,
i.e.,

Ax ∶= {y ∈ R ∶ (x , y) ∈ A}.
It is possible that Ax is empty. Since A− (0, t) ⊂ A for t > 0, it follows that Ax is
an interval and is not bounded below if Ax ≠ ∅. Since A is closed, Ax is closed.
Hence, there exists a unique ϕ(x) ∈ [−∞,∞] such that Ax = [−∞, ϕ(x)] ∩R. Since
A = ⋃

x∈R
({x} × Ax), it follows that A is the closed region below the graph of ϕ, i.e.,

A ∶= {(x , y) ∈ R2 ∶ y ≤ ϕ(x)}.
The fact that A− (s, 0) ⊂ A implies that ϕ is decreasing. If A = −R2

+, then ϕ is given by

ϕ(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
0 if x ≤ 0,
−∞ if x > 0.

In this case, ϕ is not continuous, and ϕ takes values in the extended real line. However,
we can ensure that ϕ is continuous and ϕ takes only finite values by changing the
coordinate system. This is the content of the next lemma which is [1, Lemma 4.3].

We return to the general case now, and let P ⊂ Rd be a closed convex cone which is
spanning and pointed. Let us first fix a few notation that we will use for the rest of this
section. Let {v1 , v2 , . . . , vd} be a basis forRd such that v i ∈ Int(P) for i ∈ {1, 2, . . . , d}.
Fix i ∈ {1, 2, . . . , d}. Let

Q i ∶= span{v j ∶ j ∈ {1, 2, . . . , d}, j ≠ i}.
Let f ∶ Q i → R be a map. Define

A f ∶=
⎧⎪⎪⎨⎪⎪⎩

d∑
j=1

x jv j ∶ x i ≤ f
⎛
⎝∑j≠i x jv j

⎞
⎠
⎫⎪⎪⎬⎪⎪⎭ .

The following assertion is [1, Lemma 4.3]. For completeness, we include a proof.

Lemma4.4 Let i ∈ {1, 2, . . . , d}, and let A ∈ Yu .Then, there exists a unique continuous
function f ∶ Q i → R such that A = A f .

Proof Uniqueness is clear. Without loss of generality, we assume i = d and write
Qd = Q. For x ∈ Q, let

Ax ∶= {t ∈ R ∶ x + tvd ∈ A}.
Since R

d ≅ Q ×R, A = {x + tvd ∶ x ∈ Q , t ∈ Ax}. Since A is closed, Ax is closed for
each x ∈ Q.
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Claim: For each x ∈ Q, Ax ≠ ∅ and Ax ≠ R.
Note that since −P + A ⊂ A, −Int(P) + A ⊂ Int(A) and −P + Int(A) ⊂ Int(A). Let

B = Rd/Int(A). Then, B is a proper closed subset of Rd such that P + B ⊂ B. Also,
Int(B) = Rd/A. It is clear that Rd/A ⊂ Int(B) as A is closed. If z ∈ ∂A, then every
neighbourhood of z intersects Int(A). This is because −Int(P) + A ⊂ Int(A) which
in turn implies that −tvd + z ∈ Int(A) as t → 0+. Thus, Int(B) = Rd/A.

Let x ∈ Q be given. For y ∈ Rd , there exists n0 ∈ N such that y − n0vd ∈ −Int(P).
For, −Int(P) is an open cone, vd ∈ Int(P) and y

n − vd ∈ −Int(P) for large n ∈ N. Fix
z0 ∈ A. Since −Int(P) + z0 ⊂ Int(A), given y ∈ Rd , there exists a natural number n0 ∈
N such that y − n0vd ∈ −Int(P) ⊂ Int(A) − z0. Setting y = x − z0, we see that there
exists n0 ∈ N such that x − n0vd ∈ Int(A). Replacing A by B, P by −P and vd by −vd
and arguing similarly, we see that there exists n1 ∈ N such that x + n1vd ∈ Int(B) =
R

d/A. In particular, there existsm, n ∈ Z such thatm ∈ Ax and n ∈ R/Ax .This proves
the claim.

As −P + A ⊂ A, note that if x + tvd ∈ A for t ∈ R, then x + svd ∈ A for every s < t.
Thus, for each x ∈ Q,Ax is a closed interval which is not bounded below. SinceAx ≠ R,
Ax = (−∞, f (x)], where

f (x) = supAx = sup{t ∈ R ∶ x + tvd ∈ A} < ∞.

Hence, A = A f .
Next, we prove that f is continuous. Let x ∈ Q and let ε > 0 be given. Let s0 , s1 ∈ R

be such that f (x) > s0 > f (x) − ε and f (x) + ε > s1 > f (x). Since x + f (x)vd ∈ A and−Int(P) + A ⊂ Int(A), x + s0vd ∈ Int(A). Also, x + s1vd ∈ Rd/A. Let δ > 0 be such
that the open ball B(x + s0vd , δ) ⊂ Int(A) and B(x + s1vd , δ) ⊂ Rd/A, respectively.
Let y ∈ Q be such that ∣x − y∣ < δ. Since ∣(x + s0vd) − (y + s0vd)∣ = ∣x − y∣ < δ, y +
s0vd ∈ A. Hence,

f (y) ≥ s0 > f (x) − ε
Similarly, since ∣(x + s1vd) − (y + s1vd)∣ = ∣x − y∣ < δ, y + s1vd ∈ Rd/A, i.e.,

f (y) < s1 < f (x) + ε.
This implies ∣ f (x) − f (y)∣ < ε. Hence, f is continuous. This completes the proof. ∎

Let i ∈ {1, 2, . . . , d}. Let f ∶ Q i → R be a function. Define

(Ψi(a) f )⎛⎝∑j≠i x jv j
⎞
⎠ = f

⎛
⎝∑j≠i(x j − a j)v j⎞⎠ + a i

for a = ∑d
i=1 a iv i ∈ Rd . Let

Fi ∶= { f ∶ Q i → R ∶ f is continuous, and Ψi(a) f ≤ f for a ∈ −P}.
Remark 4.5 Let P = [0,∞) × [0,∞). Let v1 = (1, 1) and v2 = (2, 1). In this case, we
identify Q1 with R. Let e1 = (1, 0) = v2 − v1 and e2 = (0, 1) = 2v1 − v2 be the standard
basis. Note that for A ⊂ R2, −P + A ⊂ A if and only if A− se1 ⊂ A and A− se2 ⊂ A for
s > 0. Thus, for a continuous function f ∶ R = Q1 → R, f ∈ F1 if and only if A f ∈ Yu if
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and only if Ψ1(−se1) f ≤ f and Ψ1(−se2) f ≤ f for s > 0. Hence, F1 is given by

F1 = { f ∶ R→ R ∶ f is continuous,
f (x + s) + s ≤ f (x) ≤ f (x + s) + 2s for x ∈ R, s ≥ 0}.

Similarly, F2 is given by

F2 = { f ∶ R→ R ∶ f is continuous,
f (x + 2s) + s ≤ f (x) ≤ f (x + s) + s for x ∈ R, s ≥ 0}.

Note that if f ∈ F1, f is decreasing and is also Lipschitz.

Hereafter, the letter P stands for a closed, convex cone in R
d that is pointed and

spanning.Thenotation introduced in this sectionwill be used for the rest of this paper.
Fix i ∈ {1, 2, . . . , d}. Let f ∶ Q i → R be continuous. Note that a + A f = AΨi(a) f for a ∈
R

d . Hence −P + A f ⊂ A f if and only if Ψi(a) f ≤ f for every a ∈ −P. In other words,
A f ∈ Yu if and only if f ∈ Fi .

Conversely, suppose A ∈ Yu . By Lemma 4.4, there exists a unique continuous
function f Ai ∶ Q i → R such that

A = A f Ai
= ⎧⎪⎪⎨⎪⎪⎩

d∑
j=1

x jv j ∈ Rd ∶ x i ≤ f Ai (∑
k≠i

xkvk)
⎫⎪⎪⎬⎪⎪⎭ .

Since −P + A ⊂ A, f Ai ∈ Fi . Hence, the map

Yu ∈ A→ f Ai ∈ Fi

is a bijection. Clearly,

Xu = {A ∈ Yu ∶ f Ai (0) ≥ 0}.
Proposition 4.6 Suppose (An)n∈N is a sequence in Yu such that An → A in Yu . Then,
the sequence { f An

i }n∈N converges pointwise to f Ai for each i ∈ {1, 2, . . . , d}.
Proof Fix i ∈ {1, 2, . . . , d}. Suppose (An) is a sequence in Yu converging to A ∈ Yu .
For simplicity, we denote f An

i and f Ai by fn and f respectively. From the proof of [14,
Proposition II.13], 1An(a) → 1A(a) pointwise for every a ∈ Rd/∂A, where ∂A is the
boundary of A. Recall that

A = { d∑
i=1

x jv j ∈ Rd ∶ x i ≤ f (∑
k≠i

xkvk)} .
Let x ∈ Q i and t > 0. Let y = x + ( f (x) − t)v i . Since y ∈ Int(A), y ∈ An eventually,

i.e., for n ∈ N sufficiently large, there exists sn ≥ 0 and xn ∈ Q i such that y = xn +( fn(x) − sn)v i . Now,
f (x) − t = fn(x) − sn .

for sufficiently large n ∈ N. In particular,

fn(x) − f (x) ≥ −t
for large n ∈ N.
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Let z = x + ( f (x) + t)v i . Then, z ∈ Rd/A. Therefore, z ∈ Rd/An eventually, i.e., for
sufficiently large n ∈ N, there exists tn > 0 and zn ∈ Q i such that z = zn + ( fn(x) +
tn)v i . Now,

f (x) + t = fn(x) + tn

for large n ∈ N. Therefore, for large n,

fn(x) − f (x) ≤ t.(4.1)

Since t > 0 is arbitrary, we conclude that fn(x) → f (x). This completes the proof. ∎
For i ∈ {1, 2, . . . , d}, let Y i

u ∶= {A ∈ Yu ∶ f Ai (0) = 0}. Then, Y i
u is a closed subset of

Yu by Proposition 4.6. Define Ψi ∶ Y i
u ×R→ Yu by

Ψi(A, t) = A+ tv i .

The map Ψi is a homeomorphism with the inverse given by Ψ−1i (A) = (A−
f Ai (0)v i , f Ai (0)). Observe that

Ψi(A, s + t) = Ψi(A, s) + tv i(4.2)

for A ∈ Yu , s, t ∈ R.
Remark 4.7 Let i ∈ {1, 2, . . . , d}, and let X(i)u+ ∶= {A ∈ Xu ∶ f Ai (0) > 0}. Then, X(i)u+
is open in Yu whose closure is Xu . This is because Ψi is a homeomorphism, Xu =
Ψi(Y(i)u × [0,∞)) and X(i)u+ = Ψi(Y(i)u × (0,∞)).

Let μ be an invariant, non-zero Radon measure on Yu which is fixed until further
mention. The measure that we consider on Yu × Yu is the product measure μ × μ.

Lemma 4.8 With the forgoing notation,
(i) for each i ∈ {1, 2, . . . , d}, Y i

u ⊂ Yu has measure zero, and
(ii) the setN = {(A, B) ∶ f Ai (0) = f Bi (0)} ⊂ Yu × Yu has measure zero.

Proof Fix i ∈ {1, 2, . . . , d}. Let ν = (Ψ−1i )∗μ. Since μ is invariant, it follows from
(4.2) that ν is invariant under the action ofR on Y i

u ×R given by s.(A, t) = (A, s + t).
Hence, ν is a product measure of the form ν0 ×m where m is the Lebesgue measure
on R. Now, μ(Y i

u) = ν(Y i
u × {0}) = 0. This proves (i).

Fix B ∈ Yu , and let t ∶= f Bi (0). Then, 1N(A, B) = 1 if and only if f Ai (0) = f Bi (0) = t.
But {A ∈ Yu ∶ f Ai (0) = t} = Y i

u + tv i is a null set. Now (ii) follows from Fubini’s
theorem. ∎

For n ∈ N ∪ {0}, we denote the projection from Γa(L2(Xu)) onto its n-particle
space by Pn . For A, B ∈ Yu , define

ε i(A, B) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if f Ai (0) > f Bi (0),−1 if f Ai (0) < f Bi (0),
0 if f Ai (0) = f Bi (0).

Consider the additive cocycle η = {ηa}a∈P for V μ , where ηa = 1Xu/Xu+a for a ∈ P. Let
Exp i denote the exponential map of the one parameter product system {Eμ(tv i)}t≥0.
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Lemma 4.9 For i ∈ {1, 2, . . . , d} and t > 0,
P2(Exp i(ηtv i ))(A, B) = 1√

2
ε i(A, B)ηtv i (A)ηtv i (B)

for almost every (A, B) ∈ Xu × Xu .

Proof The computation is similar to the computation done in [1, Proposition 5]. Fix
t > 0 and i ∈ {1, 2, . . . , d}. For simplicity, write ηsv i = ηs for s ≥ 0. Let x(1)s = ηs .

By definition,

P2(Exp i(ηtv i )) = ∫ t

0
x(1)s dηs(4.3)

= lim
n→∞

n−1∑
j=0

η jt
n
.η t

n

= lim
n→∞

n−1∑
j=0

V jtvi
n
η t

n
∧ η jt

n

= lim
n→∞

n−1∑
j=0
(η ( j+1)t

n
− η jt

n
) ∧ η jt

n

= lim
n→∞

n−1∑
j=0

η ( j+1)t
n
∧ η jt

n
.(4.4)

Let sn = n−1∑
j=0

η ( j+1)t
n
∧ η jt

n
for n ∈ N. The proof will be over if we show that

lim
n→∞

sn(A, B) = 1√
2
ε i(A, B)ηtv i (A)ηtv i (B)

for almost every (A, B) ∈ Xu/(Xu + tv i) × Xu/(Xu + tv i).
For n ∈ N, suppose A, B ∈ Xu are such that f Ai (0) < jt

n ,
jt
n ≤ f Bi (0) < ( j+1)tm for

some j ∈ {1, 2, . . . , n − 1}. Then,

sn(A, B) = 1Xu/xu+(
( j+1)tvi

n )
∧ 1Xu/xu+(

jtvi
n )
(A, B).

Since A ∈ Xu/(Xu + jtv i
n ) and B ∈ (Xu + jtv i

n )/(Xu + ( j+1)tv in ),
sn(A, B) = 1Xu/xu+(

( j+1)tvi
n )

∧ 1Xu/xu+(
jtvi
n )
(A, B) = − 1√

2
.(4.5)

Let A, B ∈ Xu/Xu + tv i . Suppose f Ai (0) < f Bi (0). For sufficiently large n ∈ N, there
exists a unique jn ∈ {1, 2, . . . , n − 1} such that f Ai (0) < jn t

n , jn t
n ≤ f Bi (0) < ( jn+1)tn . By

(4.5), for sufficiently large n,

sn(A, B) = − 1√
2

= 1√
2
(ε i(A, B)ηtv i (A)ηtv i (B)).
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Similarly, it may be proved that, when f Ai (0) > f Bi (0), for n sufficiently large,

sn(A, B) = 1√
2
ε i(A, B)ηtv i (A)ηtv i (B).

The result follows from Lemma 4.8. The proof is complete. ∎
Lemma 4.10 Suppose {Expa(1Xu/Xu+a)}a∈P is a unit for Eμ . Then, for every i , j ∈{1, 2, . . . , d}, ε i(A, B) = ε j(A, B) for almost every (A, B) ∈ Xu × Xu .

Proof Write V μ = V , and let ηa = 1Xu/(Xu+a) for a ∈ P. Let i , j ∈ {1, 2, . . . , d} be
given. Since Exp(η) is a unit,

Exp i(ηsv i ).Exp j(ηtv j) = Exp j(ηtv j).Exp i(ηsv i )(4.6)

for i , j ∈ {1, 2, . . . , d} and s, t > 0.
Hence,

P2(Exp i(ηsv i ).Exp j(ηtv j)) = P2(Exp j(ηtv j).Exp i(ηsv i ))(4.7)

for i , j ∈ {1, 2, . . . , d} and s, t > 0.
Thanks to Lemma 4.9,

P2(Exp i(ηsv i ).Exp j(ηtv j))(A, B) = ε i(A, B)ηsv i (A)ηsv i (B) + Vsv i ηtv j ∧ ηsv i (A, B)
+ ε j(A− sv i , B − sv i)Vsv i ηtv j(A)Vsv i ηtv j(B)

for almost every (A, B) ∈ Xu × Xu . Similarly,

P2(Exp j(ηtv j).Exp i(ηsv i ))(A, B) = ε j(A, B)ηtv j(A)ηtv j(B) + Vtv jηsv i ∧ ηtv j(A, B)
+ ε i(A− tv j , B − tv j)Vtv jηsv i (A)Vtv jηsv i (B)

for almost every (A, B) ∈ Xu × Xu .
For s > 0 and i ∈ {1, 2, . . . , d}, let L i ,s ∶= (1Xu/Xu + sv i) × (1Xu/Xu + sv i). Let

s, t > 0. For almost all (A, B) ∈ L i ,s ∩ L j,t ,

P2(Exp i(ηsv i ).Exp j(ηtv j))(A, B) = ε i(A, B)
and

P2(Exp j(ηtv j).Exp i(ηsv i ))(A, B) = ε j(A, B).
Therefore, (4.7) implies,

ε i(A, B) = ε j(A, B)
for almost every (A, B) ∈ L i ,s ∩ L j,t . Now observe that Xu × Xu = ⋃

m ,n∈N
L i ,m ∩ L j,n .

Hence the proof follows. ∎
Notation: Let X ∶= supp(μ) ∩ Xu . Recall that Yu/supp(μ) is the largest open set that
has μ measure zero. Since μ is invariant, supp(μ) is Rd -invariant. It follows from
Remark 4.7 that μ∣X has full support.
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Proposition 4.11 Suppose {Expa(1Xu/Xu+a)}a∈P is a unit for Eμ . Then, for A, B ∈
supp(μ), A ⊂ B or B ⊂ A.
Proof Write ηa = 1Xu/Xu+a for a ∈ P. Assume that Exp(η) is a unit for Eμ . For A, B ∈
Yu and i ∈ {1, 2, . . . , d}, note that A ⊂ B if and only if f Ai (x) ≤ f Bi (x) for each x ∈ Q i .

Let A, B ∈ X, and i ∈ {1, 2, . . . , d}. Suppose f Ai (0) ≤ f Bi (0). Then, we claim the
following.
(i) f Aj (0) ≤ f Bj (0) for each j ∈ {1, 2, . . . , d}, and
(ii) if t j > 0 for j ∈ {1, 2, . . . , d − 1}, then

f Ad
⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠ ≤ f Bd

⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠ .

Observe that X is a measurable subset of Xu such that X + P ⊂ X. Consider the set

N i , j = {(A′ , B′) ∈ X × X ∶ f A′i (0) < f B
′

i (0), f A′j (0) > f B
′

j (0)}
for i , j ∈ {1, 2, . . . , d}. By Proposition 4.6, N i , j is an open set, and by Lemma 4.10, N i , j
is a null set. Therefore, N i , j is empty. Similarly, consider the set

M i , j = {(A′ , B′) ∈ X × X ∶ f A′i (0) = f B
′

i (0), f A′j (0) > f B
′

j (0)}
for i , j ∈ {1, 2, . . . , d}. Fix i , j ∈ {1, 2, . . . , d} with i ≠ j. Suppose (A′ , B′) ∈ M i , j . Let
s, t > 0 be sufficiently small such that s < t and f A

′

j (0) > f B
′

j (−tv i). Then,

f A
′
+sv i

i = f A
′

i (0) + s < f B
′

i (0) + t = f B
′
+sv i

i .

Since f A
′

j ∈ F j ,

f A
′
+sv i

j (0) = f A
′

j (−sv i) ≥ f A
′

j (0) > f B
′

j (−tv i) = f B
′
+tv i

j (0).
This implies (A′ + sv i , B′ + tv i) ∈ N i , j , which is a contradiction. Hence, M i , j = ∅.
Therefore, forA

′

, B
′ ∈ X and i , j ∈ {1, 2, . . . d}, f A′i (0) ≤ f B

′

i (0) if and only if f A′j (0) ≤
f B
′

j (0), which proves (i).
For each j ∈ {1, 2, . . . , d − 1}, let t j > 0. Let A, B ∈ X be such that f Ai (0) ≤ f Bi (0) for

some i. Since f Ai (0) ≤ f Bi (0), by (i), f A1 (0) ≤ f B1 (0). Since f A+t1v11 (0) ≤ f B+t1v11 (0), by
(i), f A+t1v12 (0) ≤ f B+t1v12 (0), i.e.,

f A2 (−t1v1) ≤ f B2 (−t1v1).
Since f A+t1v12 (0) + t2 ≤ f B+t1v12 (0) + t2,

f A+t1v1+t2v22 (0) ≤ f B+t1v1+t2v22 (0).
Once again by (i),

f A3 (−t1v1 − t2v2) = f A+t1v1+t2v23 (0) ≤ f B+t1v1+t2v23 (0) = f B3 (−t1v1 − t2v2).
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Inductively,

f Ad
⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠ ≤ f Bd

⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠ .(4.8)

We have proved (ii).
It follows from (i) that for i ∈ {1, 2, . . . , d} andA, B ∈ X, f Ai (0) > f Bi (0) if and only

if f Aj (0) > f Bj (0) for every j ∈ {1, 2, . . . , d}. Suppose f Ai (0) > f Bi (0) for A, B ∈ X and
i ∈ {1, 2, . . . , d}. Arguing as before, we see that

f Ad
⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠ > f Bd

⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠(4.9)

whenever t j > 0 for j ∈ {1, 2, . . . , d − 1}.
Let A, B ∈ X. Without loss of generality, we can assume that f Ad (0) ≤ f Bd (0). Then,

f Ad
⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠ ≤ f Bd

⎛
⎝−

d−1∑
j=1

t jv j
⎞
⎠(4.10)

whenever t j > 0 for j ∈ {1, 2, . . . , d − 1}.
Let x ∈ Qd . Choose t > 0 such that A− x + tvd ∈ X and B − x + tvd ∈ X, i.e.,

f A−x+tvdd (0) = f Ad (x) + t ≥ 0
and

f B−x+tvdd (0) = f Bd (x) + t ≥ 0.
Let Ã = A− x + tvd and B̃ = B − x + tvd . Suppose f Ad (x) > f Bd (x). Then,

f Ãd (0) = f Ad (x) + t > f Bd (x) + t = f B̃d (0).
By (4.9),

f Ãd
⎛
⎝−

d−1∑
j=1

r jv j
⎞
⎠ > f B̃d

⎛
⎝−

d−1∑
j=1

r jv j
⎞
⎠

whenever r j > 0 for j = 1, 2, . . . , d − 1. This implies

f Ad
⎛
⎝
d−1∑
j=1
(x j − r j)v j⎞⎠ > f Bd

⎛
⎝
d−1∑
j=1
(x j − r j)v j⎞⎠

whenever r j > 0 for j = 1, 2, . . . , d − 1. This contradicts (4.10). Hence, f Ad (x) ≤ f Bd (x)
for every x ∈ Qd , i.e., A ⊂ B.

Now suppose A, B ∈ supp(μ). Then, there exists t > 0 such that A+ tv1 , B + tv1 ∈
X. Without loss of generality, assume that A+ tv1 ⊂ B + tv1. Then, A ⊂ B. Therefore, if
A, B ∈ supp(μ), A ⊂ B or B ⊂ A. The proof is complete. ∎
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Theorem 4.12 The following statements are equivalent.
(i) {Exp(1Xu/Xu+a)}a∈P is a unit for Eμ .
(ii) There exists λ ∈ S(P∗) such that supp(μ) = Y λ

u .

Proof By Lemma 4.2, if supp(μ) = Y λ
u for some λ ∈ S(P∗), then{Exp(1Xu/Xu+a)}a∈P is a unit for Eμ .

To prove the converse, let A ∈ supp(μ). Since μ is invariant, supp(μ) is R
d -

invariant. By Lemma 4.11, for x ∈ Rd , either A+ x ⊂ Aor A ⊂ A+ x. DefineQA ∶= {x ∈
R

d ∶ A+ x ⊂ A}. Then, QA ∪ −QA = Rd . Note that −P ⊂ QA and −P + QA ⊂ QA. Let
Q ∶= QA ∩ −QA. We claim the following:
(i) ∂QA = Q, where ∂QA is the boundary of QA, and
(ii) Q is a vector subspace of Rd .
We identify span{v1 , v2 , . . . vd−1} with R

d−1. Let f ∶ Rd−1 → R be a continuous func-
tion such that A = {(x , t) ∶ t ≤ f (x)}. Note that

QA = {(y, t) ∈ Rd−1 ×R ∶ f (x) ≤ f (x + y) − t for all x ∈ Rd−1},
and

−QA = {(y, t) ∈ Rd−1 ×R ∶ f (x) ≥ f (x + y) − t for all x ∈ Rd−1}.
It is not difficult to deduce using the fact that QA ∪ −QA = Rd that

∂QA ⊂ {(y, t) ∈ Rd−1 ×R ∶ f (x) = f (x + y) − t for all x ∈ Rd−1} = Q .

Suppose (y, t) ∈ Q. Set tn ∶= t − 1
n and sn ∶= t + 1

n . Then, (y, tn) ∈ QA and(y, tn) → (y, t). Also, (y, sn) ∉ QA and (y, sn) → (y, t). Therefore, (y, t) ∈ ∂QA.
Hence, ∂QA = Q.

Let g ∶ Rd−1 → R be a continuous function such that QA = {(x , t) ∶ t ≤ g(x)}.
Clearly, Q = {x ∈ Rd ∶ A+ x = A} is a closed subgroup of Rd . Since Q = ∂QA is the
graph of the continuous function g, it is connected. Therefore, Q is a vector space and
consequently, g is linear. Hence, there exists λ ∈ Rd , ∣∣λ∣∣ = 1 such that

QA = {y ∈ Rd ∶ ⟨λ∣y⟩ ≤ 0}.
Since −P ⊂ QA, λ ∈ S(P∗).

Since QA + A ⊂ A, there exists y ∈ Rd such that A = y + QA, i.e., A ∈ Y λ
u . Since

supp(μ) ⊂ Yu is invariant, x + A = x + y + QA ∈ supp(μ) for each x ∈ Rd , i.e., Y λ
u ⊂

supp(μ). To stress the dependence of λ on A, we write λ = λA. We have proved that

supp(μ) = ⋃
A∈supp(μ)

Y λA
u .

Suppose A, B ∈ supp(μ). Note that QA ∈ Y λA
u ⊂ supp(μ) and QB ∈ Y λB

u ⊂
supp(μ). Then, by Proposition 4.11, either QA ⊂ QB or QB ⊂ QA. But this can happen
only if λA = λB . In that case, Y λA

u = Y λB
u . Therefore, there exists λ ∈ S(P∗) such that

supp(μ) = Y λ
u . Now the proof is complete. ∎

Notation andConvention: Let V be an isometric representation of P on aHilbert space
H. Let ξ = {ξa}a∈P ∈ A(V). We defineHξ to be the smallest, closed, reducing subspace
of H containing {ξa ∶ a ∈ P}. (Hereafter, all reducing subspaces will be assumed to be
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closed.) If W is a direct summand of V, we view the product system EW as a subsystem
of EV . Similarly, we viewA(W) as a subspace ofA(V).
Proposition 4.13 Let V be a pure isometric representation of P on a Hilbert space H
with commuting range projections. Let ξ = {ξa}a∈P ∈ A(V) be non-zero. Then,

(1) there exists an R
d -invariant, non-zero Radon measure μ on Yu such that V ∣Hξ is

unitarily equivalent to V μ , and
(2) if Exp(ξ) is a unit for EV , then there exists λ ∈ S(P∗) such that V ∣Hξ is unitarily

equivalent to Sλ .

Proof For the proof of (1), we refer the reader to [34,Theorem3.16 andRemark 3.17].
From (1), V ξ ∶= V ∣Hξ is unitarily equivalent to V μ . We can see from the proof of [34,
Theorem 3.16] that the unitary U intertwining V ξ and V μ can be chosen such that
Uξa = 1Xu/Xu+a for a ∈ P. Suppose Exp(ξ) is a unit for EV . Note that the subsystem
EV ξ

contains Exp(ξ). Hence, {Exp(1Xu/Xu+a)}a∈P is a unit for EV μ
. It follows from

Theorem 4.12 and Lemma 4.2 thatV μ is unitarily equivalent to Sλ for some λ ∈ S(P∗).
This proves (2). ∎

Before proceeding further, let us recall the notation introduced in the introduction.
For λ ∈ S(P∗) and k ∈ N∞, let S(λ ,k) denote the isometric representation {S⟨λ∣a⟩ ⊗
1}a∈P of P acting on the Hilbert space L2[0,∞)⊗K where K is a Hilbert space of
dimension k. For k = 1, we denote S(λ ,1) by Sλ . For a non-empty countable set I, an
injective map λ ∶ I → S(P∗) and a function k ∶ I → N∞, set

S(λ ,k) ∶= ⊕
i∈I

S(λ i ,k i) .

Let E(λ ,k) be the product system of the CAR flow associated with S(λ ,k).

Remark 4.14 A few properties concerning the representation S(λ ,k) are summarized
below.

(1) For λ1 , λ2 ∈ S(P∗) and for k1 , k2 ∈ N∞, S(λ1 ,k1) is unitarily equivalent to S(λ2 ,k2)
if and only if λ1 = λ2 and k1 = k2. Also, Sλ is irreducible for every λ ∈ S(P∗), i.e.,
it has no non-zero non-trivial reducing subspace. Thus, if λ1 ≠ λ2, the represen-
tations S(λ1 ,k1) and S(λ2 ,k2) are disjoint. Recall that two isometric representations
V andW, acting onH andK, respectively, are said to be disjoint if

{T ∈ B(H,K) ∶ TVa =WaT , TV∗a =W∗
a T for all a ∈ P} = 0.

(2) Consider a countable (non-empty) indexing set I. Let λ ∶ I → S(P∗) be injec-
tive, and let k ∶ I → N∞ be a map. Consider V = S(λ ,k) = ⊕i∈I S(λ i ,k i) acting on
the Hilbert space H =⊕

i∈I
L2[0,∞)⊗Ki , where Ki is of dimension k i . Write

V (i) = S(λ i ,k i). Then, V (i) acts onHi ∶= L2[0,∞)⊗Ki . Since λ i ≠ λ j whenever
i ≠ j, the isometric representations V (i) and V ( j) are disjoint wh enever i ≠ j.
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Thus, a bounded operator T ∈ {Va ,V∗a ∶ a ∈ P}′ if and only if there exists Ti ∈{V (i)a ,V (i)∗a ∶ a ∈ P}′ such that T ∣Hi = Ti for each i ∈ I. Moreover, {V (i)a ,V (i)∗a ∶
a ∈ P}′ = {1⊗ R ∶ R ∈ B(Ki)}. Hence,

{Va ,V∗a ∶ a ∈ P}′ =⊕
i∈I

B(Ki).
(3) It follows from (2) that the reducing subspaces ofV are of the form⊕

j∈J
L2[0,∞)⊗

W j for some non-empty subset J of I, and where, for j, W j is a subspace of K j .
Suppose W is a non-zero reducing subspace for V such that V ∣W is irreducible.
Then, there exists i ∈ I and a one dimensional subspace Wi of Ki such that
W ⊂Hi = L2[0,∞)⊗Ki and W = L2[0,∞)⊗Wi . Moreover, V ∣W is unitarily
equivalent to Sλ i .

The next proposition is the “only if part” of Theorem 1.2. The “uniqueness” part
of Theorem 1.2 follows from the fact that if an isometric representation admits a
direct sum decomposition of irreducible representations, then the decomposition is
“unique”.

Proposition 4.15 Let V be a pure isometric representation of P with commuting range
projections on a Hilbert space H. Suppose the product system EV of the CAR flow
associated with V is type I. Then, there exists a non-empty, countable set I, a map λ ∶
I → S(P∗) which is injective, and a map k ∶ I → N∞ such that V is unitarily equivalent
to S(λ ,k). Equivalently, EV is isomorphic to E(λ ,k).

Proof A family S of closed subspaces ofH is said to be “shift reducing” if
(1) eachK ∈S is a non-zero reducing subspace for V,
(2) for eachK ∈S , there exists λ ∈ S(P∗) such thatV ∣K is unitarily equivalent to Sλ ,

and
(3) ifK,L ∈S andK ≠ L, thenK ⊥ L.
LetW ∶= {S ∶S is shift reducing}. Note thatW is partially orderedwhere the partial
order onW is given by inclusion.

Since EV is type I, there exists a non-zero additive cocycle ξ = {ξa}a∈P such that
Exp(ξ) is a unit for EV . Hence, {Hξ} is in W by Proposition 4.13. Therefore, W is
non-empty. A routine application of Zorn’s lemma allows us to get a maximal shift
reducing family K of closed subspaces.

Define

K ∶= ⊕
W∈K

W .

Note that for each W ∈K, there exists λW ∈ S(P∗) such that V ∣W is unitarily equiv-
alent to SλW . Hence, V ∣K = ⊕

W∈K
SλW . Let L ∶=K⊥. Note that K and L are reducing

subspaces forV. Denote the restriction ofV toK andL byV (1) andV (2), respectively.
Also, denote the projection ofH onto L by Q.

It suffices to prove that V = V(1). Denote by EV(1) the product system of the CAR
flow associated with V(1). We consider EV(1) as a subsystem of EV . We claim that
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EV(1) = EV . Suppose u = {ua}a∈P is a unit for EV . We claim that EV(1) contains u.
Without loss of generality, we can assume u is exponential. Then, there exists ξ =
{ξa}a∈P ∈ A(V) such that ua = Expa(ξa) for a ∈ P. For a ∈ P, let ξ(1)a = (1 − Q)ξa
and ξ(2)a = Qξa . Then, ξ(i) = {ξ(i)a }a∈P ∈ A(V(i)) for i = 1, 2.

Note that Q = {Qa}a∈P ∶ EV → EV given by

EV(a) ∋ u ↦ Γ(Q)u ∈ EV(a)
is multiplicative, where Γ(Q) is the second quantisation of Q. Also, Γ(Q)ua =
Expa(ξ(2)a ). Therefore, {Expa(ξ(2)a )}a∈P is a unit for EV .

Assume that ξ(2) is non-zero. Consider the reducing subspace Hξ(2) of V. Then,
by Proposition 4.13 there exists λ ∈ S(P∗) such that V ∣

Hξ(2) is unitarily equivalent to
Sλ . Now, K ∪ {Hξ(2)} ∈W and contains K as a proper subset. This contradicts the
maximality ofK . Therefore, ξ(2) = 0.Thus, EV(1) contains u. Hence, every unit of EV

is contained in EV(1) . Since EV is type I, EV = EV(1) .
Since

EV(1)(a) = Γa(Ker(V (1)∗a )) = Γa(Ker(V∗a )) = EV(a)
for a ∈ P, Ker(V (1)∗a ) = Ker(V∗a ) for a ∈ P. Since ⋃

a∈P
Ker(V∗a ) is dense inH,H =K.

Therefore, V = V (1). The proof is complete. ∎
Fix a countable (non-empty) indexing set I. Let λ ∶ I → S(P∗) be injective, and let

k ∶ I → N∞ be a map. Let V = S(λ ,k). Denote the space⊕
i∈I

L2[0,∞)⊗Ki (on which

V acts) by H, where Ki is a Hilbert space of dimension k i ∈ N∞. For each i ∈ I, let
V (i) = S(λ i ,k i), andwriteHi ∶= L2[0,∞)⊗Ki (theHilbert space onwhichV(i) acts).
Note that for i ∈ I, we may viewA(S(λ i ,k i)) as a subspace ofA(V) under the natural
inclusion.

Proposition 4.16 Let ξ ∈ A(V). Then, {Expa(ξa)}a∈P is a unit of EV if and only if
there exists i ∈ I such that ξ ∈ A(S(λ i ,k i)).
Proof Suppose ξ = {ξa}a∈P ∈ A(V) is non-zero and is such that Exp(ξ) is a unit of
EV . Consider the reducing subspace Hξ of V. By Proposition 4.13, V ∣Hξ is unitarily
equivalent to Sλ for some λ ∈ S(P∗). Since Sλ is irreducible, by Remark 4.14,Hξ is a
subspace ofHi and λ = λ i for some i ∈ I. In particular, ξ ∈ A(Sλ i ,k i)).

Conversely, suppose ξ = {ξa}a∈P ∈ A(S(λ i ,k i)) for some i ∈ I. Then, there exists
an additive cocycle η = {ηa} ∈ A(Sλ i ) and γ ∈Ki such that ξa = ηa ⊗ γ for a ∈ P.
In turn, there is an additive cocycle η̃ = {η̃t}t≥0 of {St}t≥0 such that ηa = η̃⟨λ i ∣a⟩ for
a ∈ P. Denote the exponential map of the product system of the 1-parameter CAR flow
associated with {St ⊗ 1}t≥0 acting onHi by Exp. By Remark 2.2,

Exp(η̃s ⊗ γ).Exp(η̃t ⊗ γ) = Exp(η̃s+t ⊗ γ)
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for s, t ≥ 0. Then, for a, b ∈ P,
Expa(ξa).Expb(ξb) = Expa(ηa ⊗ γ).Expb(ηb ⊗ γ)

= Exp(η̃⟨λ i ∣a⟩ ⊗ γ).Exp(η̃⟨λ i ∣b⟩ ⊗ γ)
= Exp(η̃⟨λ i ∣a+b⟩ ⊗ γ)
= Expa+b(ξa+b)

for a, b ∈ P, i.e., Exp(ξ) is a unit. This completes the proof. ∎
The following is the “if part” of Theorem 1.2.

Proposition 4.17 Keeping the forgoing notation, the CAR flow associated with V is
type I.

Proof Let F be a subsystem of EV containing all the units of EV . For a ∈ P, let Ψa be
the projection of EV(a) onto F(a). Then, Ψ = {Ψa}a∈P is multiplicative, i.e.,

Ψa .Ψb = Ψa+b

for a, b ∈ P. Let a ∈ P. Consider the one parameter product system Ea = {E(ta)}t≥0
and the multiplicative section of maps {Ψta}t≥0. Let Ẽa be the product system of the
1-parameter CCR flow associated with {Vta}t≥0. Suppose Ψ̃ = {Qt}t≥0 ∶ Ẽa → Ẽa is
such that

(i) Qt is a projection for t ≥ 0, and
(ii) Qs .Qt = Qs+t for s, t ≥ 0.
Then, by [10, Theorem 7.6] (see also [36, Proposition 6.12]), there exists an addi-
tive cocycle {ξat }t≥0 of {Vta}t≥0, a projection Qa ∈ {Vta ,V∗ta ∶ t ≥ 0}′ such that(1 − Qa)ξat = ξat for t ≥ 0, and μa ∈ R such that

Ψ̃te(η) = eμa te⟨η∣ξ
a
t ⟩e(Qaη + ξat )

for η ∈ Ker(V∗ta) and t ≥ 0.
By Lemma 3.1, the map Ẽa(t) ∋ exp(ξ) → Expa(ξ) ∈ Ea(t) extends to an isomor-

phism from Ẽa onto Ea .Therefore, there exists an additive cocycle{ξat }t≥0 of {Vta}t≥0,
a projection Qa ∈ {Vta ,V∗ta ∶ t ≥ 0}′ with (1 − Qa)ξat = ξat for t ≥ 0 and μa ∈ R, such
that

ΨtaExpa(η) = eμa te⟨η∣ξ
a
t ⟩Expa(Qaη + ξat )

for η ∈ Ker(V∗ta).
For a ∈ P, let ξa ∶= ξa1 . Proceeding as in the proof ofTheorem 3.3, we can prove that

(i) {ξa}a∈P is an additive cocycle for V,
(ii) there exists a projection Q ∈ {Va ,V∗a ∶ a ∈ P}′ such that Q∣Ker(V∗a ) = Qa
(iii) the map P ∋ a ↦ μa is a continuous homomorphism. Hence, there exists μ ∈ Rd

such that μa = ⟨μ∣a⟩ for a ∈ P.
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Therefore, there exists an additive cocycle ξ = {ξa}a∈P , a projection Q ∈ {Va ,V∗a ∶
a ∈ P}′ and a vector μ ∈ Rd such that

ΨaExpa(η) = e⟨μ∣a⟩e⟨η∣ξa⟩Expa(Qη + ξa)(4.11)

for a ∈ P, η ∈ Ker(V∗a ).
Suppose u = {ua}a∈P is an exponential unit for EV . Let η = {ηa}a∈P ∈ A(V) be

such that ua = Expa(ηa) for a ∈ P. Since F contains all the units, it follows that
ΨaExpa(ηa) = Expa(ηa) for a ∈ P. In particular,

ΨaExpa(0) = Expa(0)
for a ∈ P. By (4.11),

e⟨μ∣a⟩Expa(ξa) = Expa(0)
for a ∈ P. This implies, ξa = 0 for a ∈ P and μ = 0.

Note that sinceQ ∈ {Va ,V∗a ∶ a ∈ P}′ , by Remark 4.14,Q is a diagonal operator, i.e.,
for i ∈ I, there exists a projection Q(i) ∈ {V (i)a ,V (i)∗a ∶ a ∈ P}′ such that Q∣Hi = Q(i).
Fix i ∈ I. By Proposition 4.16, for any η = {ηa}a∈P ∈ A(V(i)), Exp(η) is a unit for EV .
Hence

ΨaExpa(ηa) = Expa(ηa)
for η = {ηa}a∈P ∈ A(V(i)). This implies that

Qηa = Q(i)ηa = ηa(4.12)

for a ∈ P and η = {ηa}a∈P ∈ A(V(i)). Note that for γ ∈Ki , {1(0,⟨λ i ∣a⟩) ⊗ γ}a∈P is an
additive cocycle for V(i). Therefore, the set {ηa ∶ {ηa}a∈P ∈ A(V(i)), a ∈ P} is total
inHi . Now, (4.12) implies that

Q(i)η = η
for η ∈Hi for i ∈ I, i.e., Q is the identity operator. Hence,

ΨaExpa(ξ) = Expa(ξ)
for ξ ∈ Ker(V∗a ) and a ∈ P. Since {Expa(ξ) ∶ ξ ∈ Ker(V∗a )} is total in EV(a), it
follows that Ψa is the identity operator for each a ∈ P. Therefore, F = EV . Hence the
proof. ∎

5 Computation of index and gauge Group

In this section, we compute the index and the gauge group of the product system
E(λ ,k). Arveson’s definition of index for a 1-parameter product system was extended
to the multiparameter case in [24] which we first recall. Let E be a product system
over P. Denote the set of units of E by UE . Assume that UE ≠ ∅. Fix a ∈ Int(P). For
u, v ∈ UE , let ca(u, v) ∈ C be such that

⟨uta ∣vta⟩ = e tca(u ,v)
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for t ≥ 0. The function UE ×UE ∋ (u, v) → ca(u, v) ∈ C is conditionally positive def-
inite and is called the covariance function of E with respect to a.

Let H(UE) be the Hilbert space obtained from the covariance function using the
GNS construction. For the sake of completeness and also to fix notation, we brief the
construction of H(UE). Let Cc(UE) denote the vector space of finitely supported
complex valued functions on UE . Set

C0(UE) ∶= { f ∈ Cc(UE) ∶ ∑
u∈UE

f (u) = 0}.
Define a semi-definite inner product on C0(UE) by

⟨ f ∣g⟩ = ∑
u ,v∈U

ca(u, v) f (u)g(v).
Let H(UE) be the Hilbert space obtained by completing the semi-definite inner
product space C0(UE).

For u ∈ UE , let δu ∶ UE → C be the indicator function 1{u}. Clearly, {δu − δv ∶
u, v ∈ UE} is total in H(UE). The dimension of the space H(UE) is independent of
the choice of a ∈ Int(P) and is called the index of E denoted Ind(E). The reader is
referred to [24, Proposition 2.4] for a proof of this statement.

Consider the isometric representation V = S(λ ,k) for a non-empty countable
indexing set I, an injective map λ ∶ I → S(P∗) and a map k ∶ I → N∞. The isometric
representationV shall remain fixed for the rest of this section. LetH ∶= ⊕

i∈I
L2[0,∞)⊗

Ki be the Hilbert space on which V acts, where Ki is a Hilbert space of dimension
k i ∈ N∞ for i ∈ I. For i ∈ I, let V (i) = S(λ i ,k i), which acts on Hi = L2[0,∞)⊗Ki .
Denote the set of units of EV by U. Similarly, denote the set of units of EV(i) by Ui
for each i ∈ I. Then, Ui ⊂ U for i ∈ I. Let c(., .) be the covariance function of EV with
respect to a fixed a ∈ Int(P). Let UΩ , UΩ

i respectively denote the set of exponential
units of EV and EV(i) . By Proposition 4.16, UΩ = ⋃

i∈I
UΩ

i .

Remark 5.1 Let u ∈ U. Let ũ ∈ UΩ be given by ũb = ub
⟨ub ∣Ωb⟩

for b ∈ P, where Ωb is the
vacuum vector in EV(b). Fix a ∈ Int(P). Now, for v ∈ U,

⟨uta ∣vta⟩ = ⟨uta ∣Ωta⟩e tc(ũ ta ,v ta) .

Since the map [0,∞) ∋ t → ⟨uta ∣Ωta⟩ ∈ C∗ is multiplicative, there exists zu ∈ C such
that ⟨uta ∣Ωta⟩ = e tzu for t ≥ 0. Hence,

c(u, v) = zu + c(ũ, v).
It is now routine to verify that if w , z ∈ U, then

⟨δu − δv ∣δw − δz⟩ = ⟨δũ − δṽ ∣δw − δz⟩
for every u, v ∈ U. Thus, for u, v ∈ U,

δu − δv = δũ − δṽ
in H(U). Hence, the set {δu − δv ∶ u, v ∈ UΩ} is total in H(U). Similarly, {δu − δv ∶
u, v ∈ UΩ

i } is total inH(Ui) for i ∈ I.
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Lemma 5.2 If u ∈ UΩ
i and v ∈ UΩ

j for i ≠ j, then c(u, v) = 0.
Proof Let ξ = {ξb}b∈P ∈ A(V (i)) and η = {ηb}b∈P ∈ A(V( j)) be such that ub =
Expb(ξb) and vb = Expb(ηb) for b ∈ P. Then, for t ≥ 0,

⟨uta ∣vta⟩ =e⟨ξ ta ∣η ta⟩ (by Proposition 2.1)
=1 (since⟨ξta ∣ηta⟩ = 0).

Therefore, c(u, v) = 0. Hence the proof. ∎
Let a ∈ Int(P) and i ∈ I. Denote the covariance function of EV , EV(i) (with respect

to a) by c, c i , respectively. Note that if u, v ∈ Ui , c i(u, v) = c(u, v). For each i ∈ I, the
map H(Ui) ∋ δu − δv → δu − δv ∈H(U) extends to an isometry from H(Ui) into
H(U). Hence, we may considerH(Ui) as a subspace ofH(U).
Proposition 5.3 With the foregoing notation, we have the following.
(i) H(Ui) ⊥H(U j) if i ≠ j,
(ii) H(U) =⊕

i∈I
H(Ui), and

(iii) Ind(EV) = ∑
i∈I
Ind(EV(i)).

Proof Clearly, it suffices to prove (i) and (ii). For i ∈ I, let Wi ∶= {δu − δv ∶
u, v ∈ UΩ

i }. As observed in Remark 5.1, Wi is total in H(Ui) for i ∈ I. Using
Lemma 5.2, it is routine to verify that

⟨δu1 − δv1 ∣δu2 − δv2⟩ = 0
whenever u1 , v1 ∈ UΩ

i and u2 , v2 ∈ UΩ
j and i ≠ j. Now (i) follows.

Consider W = ⋃
i∈I

Wi ⊂⊕
i∈I

H(Ui). Note that if u ∈ UΩ
i , then δu − δΩ ∈W, where

Ω is the vacuum unit. Let u, v ∈ UΩ . Then, there exist i , j ∈ I such that u ∈ UΩ
i and

v ∈ UΩ
j . Then, δu − δv = (δu − δΩ) + (δΩ − δv). Consequently, δu − δv ∈ span(W).

Therefore,W is total inH(U), and henceH(U) =⊕
i∈I

H(Ui). This proves (ii). ∎
Let G denote the group of automorphisms of EV , also called the gauge group of

EV . Denote the set of normalized units of EV by Un . It follows from Proposition 4.16
that the normalized units of EV are of the form {e i⟨λ∣a⟩e −∣∣ξa ∣∣22 Expa(ξa)}

a∈P
for some

ξ = {ξa} ∈ A(V(i)) and λ ∈ Rd . For each i ∈ I, we denote the unitary group ofKi by
U(k i).
Proof of Theorem 1.3:
(1) Suppose that I = {i} is singleton. DenoteKi byK, λ i by λ and k i by k. Let E(λ ,k)

be the product system of the CAR flow associated with V = S(λ ,k). Since V is
a pull back of the one parameter shift semigroup {St ⊗ 1} on L2[0,∞)⊗K by
the homomorphism P ∋ a → ⟨λ∣a⟩ ∈ C, and since the product systems of CAR
and CCR flows associated with the one-parameter shift semigroup {St ⊗ 1}t≥0
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are isomorphic, E(λ ,k) is isomorphic to the product system F(λ ,k) of the CCR
flow associated with V. In fact, the map T = {Ta}a∈P ∶ E(λ ,k) → F(λ ,k) defined by

Ta(Expa(ξ)) = e(ξ),
for ξ ∈ Ker(V∗a ) and a ∈ P is an isomorphism. Hence, G is isomorphic to the
automorphism group of F(λ ,k). Since the automorphism group of a CCR flow
acts transitively on the set of normalized units, the conclusion follows. The fact
that the gauge group of a CCR flow acts transitively on the set of normalized units
can been seen from the explicit description of units and the gauge group obtained
in [2, Theorems 5.1 and 7.3].

Since E(λ ,k) and F(λ ,k) are isomorphic, they have the same index. But, by [24,
Proposition 2.7],

Ind(F(λ ,k)) = dimA(S(λ ,k)).
Note that for every η ∈K, {1(0,⟨λ∣a⟩) ⊗ η}a∈P is an additive cocycle for S(λ ,k),

and it is not difficult to see that every additive cocycle is of this form. Thus,

Ind(E(λ ,k)) = Ind(F(λ ,k)) = dimK = k.
(2) Next assume that I has at least two elements. It is clear from Proposition 5.3 and(1) that

Ind(EV) = ∑
i∈I

k i .

Let Ψ = {Ψa}a∈P ∈ G be given. For a ∈ P, consider the one-parameter product
system Ea = {E(ta)}t≥0. By Lemma 3.2, there exists a unitary Ua ∈ {Vta ,V∗ta ∶
t ≥ 0}′ , an additive cocycle ξa = {ξat }t≥0 and μa ∈ Rd such that

ΨtaExpa(η) = e i μa te−
∣∣ξat ∣∣

2

2 −⟨Uaη∣ξat ⟩Expa(Uaη + ξat )
for η ∈ Ker(V∗ta). Proceeding as in the proof of Theorem 3.3, we see that there
exists ξ = {ξa}a∈P ∈ A(V), a unitaryU ∈ {Va ,V∗a ∶ a ∈ P}′ and μ ∈ Rd such that

ΨaExpa(η) = e i⟨μ∣a⟩e− ∣∣ξa ∣∣22 −⟨Uη∣ξa⟩Expa(Uη + ξa)(5.1)

for η ∈ Ker(V∗a ) and a ∈ P.
Assume that the additive cocycle {ξa}a∈P is non-zero. Note that{ΨaExpa(0)}a∈P is a unit of EV . Hence, {Expa(ξa)}a∈P is a unit for EV (the

map P ∋ a → ⟨ξa ∣ηa⟩ ∈ C is additive if ξ, η ∈ A(V)). By Proposition 4.16, there
exists i ∈ I such that {ξa}a∈P ∈ A(V(i)). Let j ∈ I, j ≠ i. Let {ηa}a∈P ∈ A(V( j))
be non-zero. By Proposition 4.16, {Expa(ηa)}a∈P is a unit for EV . Therefore,{ΨaExpa(ηa)}a∈P is a unit for EV . (5.1) implies that {Expa(Uηa + ξa)}a∈P is a
unit for EV . Note that since U ∈ {Va ,V∗a ∶ a ∈ P}′ , U is a diagonal operator, i.e.,
there exists a unitary operatorU i ∈ {V (i)ta ,V (i)∗ta ∶ t ≥ 0}′ such thatU ∣Hi = U i for
i ∈ I. Therefore, Uηa ∈ Ker(V ( j)∗a ) for a ∈ P. Hence, {Uηa + ξa}a∈P /∈ A(V (�))
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for any � ∈ I, contradicting Proposition4.16. As a consequence, ξa = 0 for a ∈ P.
Therefore,

ΨaExpa(ξ) = e i⟨μ∣a⟩Expa(Uξ)
for ξ ∈ Ker(V∗a ) and a ∈ P.

Suppose μ ∈ Rd andU ∈ {Va ,V∗a ∶ a ∈ P}′ . Then, there exists Ψ(μ ,U) ∈ G such
that

Ψ(μ ,U)a Expa(ξ) = e i⟨μ∣a⟩Expa(Uξ)
for ξ ∈ Ker(V∗a ) and a ∈ P. Note that Ψ ∈ G because Ψa = e i⟨μ∣a⟩Γ(U) for a ∈ P,
where Γ(U) is the second quantisation map.

Let M ∶= {Va ,V∗a ∶ a ∈ P}′ and denote the unitary group of M by U(M). By
Remark 4.14, we have U(M) =∏

i∈I
U(k i). We have shown that the map

R
d ×U(M) ∋ (μ,U) → Ψ(μ ,U) ∈ G

is an isomorphism of groups. Hence, if Ψ is an automorphism of EV , then for
a ∈ P,

ΨaΩa = ΨaExpa(0) = e i⟨μ∣a⟩Expa(0) = e i⟨μ∣a⟩Ωa(5.2)

for some μ ∈ Rd . Let η = {ηa}a∈P be a non-zero additive cocycle such that Exp(η)
is a unit. Then, u = {ua}a∈P given by ua = e− ∣∣ηa ∣∣22 Exp(ηa) is a normalized unit,
but, by (5.2), Ψ.Ω ≠ u for every Ψ ∈ G. Hence, the action of G on Un is not
transitive.

∎
Remark 5.4 Suppose d ≥ 2. Then, S(P∗) is uncountable. This is because, as P is
pointed, P∗ spansRd . It follows fromTheorems 1.3 and 1.2 that there are uncountably
many CAR flows that are type I and for which the action of the gauge group on the set
of normalized units is not transitive.

Remark 5.5 It is immediate from Theorems 1.2 and 1.3 that if V is an isometric
representation with commuting range projections such that EV is type I and has index
one, then V is unitarily equivalent to Sλ for some λ ∈ S(P∗), i.e., EV is “a pullback”
of a one parameter CAR flow.The analogous statement for FV , the product system of
the CCR flow associated with V, is not true (see [24]).

Question Is it possible to construct an isometric representation V of P such that EV is
type I, has index one, but V is not unitarily equivalent to Sλ for any λ ∈ S(P∗)?
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