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Abstract

The symmetric group on a set acts transitively on the set of its subsets of a fixed size.
We define homomorphisms between the corresponding permutation modules, defined over a
field of characteristic two, which generalize the boundary maps from simplicial homology.
The main results determine when these chain complexes are exact and when they are split
exact. As a corollary we obtain a new explicit construction of the basic spin modules for the
symmetric group.
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1. Introduction

Fix n ∈N and let Sn denote the symmetric group of degree n. For each k ∈Z, let�k denote
the set of all k-subsets of {1, . . . , n}, as permuted by the action of Sn . Let F be a field and let
F�k be the F-vector space of all formal F-linear combinations of the elements of �k . Thus
F�k is an FSn-module of dimension

(n
k

)
having �k as a permutation basis. For instance

if n ≥ 5 then {1, 2, 3} + {3, 4, 5} ∈ F�3 is sent to {1, 2, 3} + {1, 4, 5} by the transposition
swapping 1 and 3.

Given t ∈N0 and k ∈Z, let ϕ(t)k : F�k → F�k−t be the FSn-module homomorphism
defined on each Y ∈�k by

Yϕ(t)k =
∑
X⊆Y

|X |=|Y |−t

X. (1·1)

(Throughout we work with right-modules and write maps on the right.) Motivated by the
connection with simplicial homology discussed below, we call ϕ(t)k a multistep boundary
map. This paper concerns the remarkably intricate behaviour of the multistep boundary maps
when F has characteristic two.

Given Z ∈�k and t ∈N, we may compute Zϕ(t)k ϕ
(t)
k−t by summing over all chains Z ⊇

Y ⊇ X with Y ∈�k−t and X ∈�k−2t . For each X there are
(2t

t

)
choices for Y ; since

(2t
t

) ≡ 0
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232 MARK WILDON

mod 2, and F has characteristic two, Zϕ(t)k ϕ
(t)
k−t = 0. Hence if a < t and c ∈N0 is maximal

such that a + ct ≤ n then

0 → F�a+ct
ϕ
(t)
a+ct−−→ F�a+(c−1)t

ϕ
(t)
a+(c−1)t−−−−→ · · · ϕ

(t)
a+2t−−→ F�a+t

ϕ
(t)
a+t−−→ F�a → 0 (1·2)

is a chain complex of FSn-modules, each non-zero except at the beginning and end. Its
homology in degree k is, by definition, the FSn-module ker ϕ(t)k / im ϕ

(t)
k+t.

If t = 1 then the chain complex (1·2) is exact in every degree. Moreover (1·2) is split
exact, in the sense that, for each k, there is an FSn-submodule Ck of F�k such that
F�k = ker ϕ(1)k ⊕ Ck , if and only if n is odd. We give short proofs of these known results
in Section 2 below.

Our first main theorem gives a complete description of the homology modules when t = 2.
The following notation is required: for k such that 2k ≤ n, define Gk−1 = 〈

(1, 2)
〉× · · · ×〈(

2(k − 1)− 1, 2(k − 1)
)〉

and

vk = {2, 4, . . . , 2k}
∑
σ∈Gk−1

σ.

(These elements are illustrated in Example 1·4.) Let D(n−k,k) denote the simple FSn-module
defined, with its usual definition, in Section 3 below.

THEOREM 1·1. Let εk : F�k → F�k−2 denote the two-step boundary map ϕ(2)k , as defined
in (1·1), and let Hk = ker εk/ im εk+2. Then

Hk
∼=

⎧⎪⎨⎪⎩
E (m+1,m−1) if n = 2m is even and k = m

D(m+1,m) if n = 2m + 1 is odd and k = m or k = m + 1

0 otherwise,

where E (m+1,m−1) is an extension of D(m+1,m−1) by itself. Moreover, if n = 2m or n = 2m + 1
then Hm is the submodule of F�m/ im εm+2 generated by vm + im εm+2.

In fact it follows from [6] that E (m+1,m−1) is a non-split extension. In Corollary 4·9 we take
n = 2m and construct an FS2m-endomorphism ϑ of Hm such that ϑ is non-zero and ϑ2 = 0,
making its structure more explicit.

In particular, Theorem 1·1 implies that the chain complex of FS2m-modules

0 → F�2m
ε2m−→ F�2m−2

ε2m−2−−→ · · · ε4−→ F�2
ε2−→ F�0 → 0

is exact whenever m is odd; if m is even then it has non-zero homology of E (m+1,m−1)

uniquely in degree m. This categorifies the binomial identity

m∑
j=0

(−1) j

(
2m

2 j

)
=

{
(−1)m/22m if m is even

0 if m is odd.
(1·3)

Our second main theorem determines the degrees in which the chain complex (1·2) is
exact. In particular, case (ii) determines when one of the maps is surjective or injective.
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THEOREM 1·2. Let t ∈N, let n ∈N and let 0 ≤ k ≤ n. Let 2τ be the least two-power
appearing in the binary form of t . The sequence

F�k+t
ϕ
(t)
k+t−−→ F�k

ϕ
(t)
k−→ F�k−t (1·4)

is exact if and only if one of:
(i) t = 1;

(ii) k < 2τ and k + t ≤ n − k or n − k < 2τ and n − k + t ≤ k;
(iii) t is a two-power and n ≥ 2k + t or n ≤ 2k − t .

We also characterise when (1·2) is exact in every degree. It seems remarkable that this is
the case if and only if it is split exact in every degree.

THEOREM 1·3. Let 2τ be the least two-power appearing in the binary form of t . The
chain complex (1·2) is exact in every degree if and only if one of :

(a) n = 2a + t and a < 2τ ;
(b) t is a two-power and n ≡ 2a + t mod 2t .

Moreover, if either (a) or (b) holds then (1·2) is split exact in every degree.

We end this introduction with two examples showing some of the rich behaviour of the
kernels and images of the multistep boundary maps. For readability we write γk for ϕ(1)k .

Example 1·4. When n = 6 the Loewy layers of the modules in the exact chain complex
F�6

γ6−→ F�5
γ5−→ · · · γ2−→ F�1

γ1−→ F�0 are shown below.

F
γ6−→

F

D(5,1)

F

γ5−→ F
⊕ D(5,1)

F

D(4,2)

F

D(5,1)

γ4−→

F

D(5,1) ⊕ D(4,2)

F ⊕ F

D(4,2) ⊕ D(5,1)

F

γ3−→ F
⊕ D(5,1)

F

D(4,2)

F

D(5,1)

γ2−→
F

D(5,1)

F

γ1−→ F

As predicted by Theorem 1·1, ker ε4
∼= F is a direct summand of F�4 and ker ε2 is the

(unique) co-dimension 1 direct summand of F�2. Thus the chain complex 0 → F�6
ε6−→

F�4
ε4−→ F�2

ε2−→ F�0 → 0 is split exact. Moreover 0 → F�5
ε5−→ F�3

ε3−→ F�1 → 0 is exact
except in degree 3, where it has homology E (4,2). By Theorem 1·1 the homology is generated
by v3 + im ε5, where v3 = {2, 4, 6} + {1, 4, 6} + {2, 3, 6} + {1, 3, 6}.

The boxes show the kernels of the maps γk . For example, by Theorem 1·2(i), ker γ2

is generated by {1, 2, 3}γ3 = {1, 2} + {2, 3} + {3, 1}. Since ker ε2 = 〈X + Y : X, Y ∈�2〉,
the intersection ker γ2 ∩ ker ε2 is generated by {1, 2, 3}γ3 + {1, 2, 4}γ3 = {1, 3} + {2, 3} +
{1, 4} + {2, 4}; it is isomorphic to the Specht module S(4,2) and has composition factors
D(4,2), F, D(5,1). It follows that ker γ2 is not contained in either direct summand of F�2. The
line on the diagram above indicates a ‘diagonally embedded’ submodule; this submodule is
unique if and only if |F| = 2. The dual situation arises for ker γ4 and F�4.

It is an amusing exercise to show that the outer automorphism of S6 swaps the simple
modules D(4,2) and D(5,1) and leaves F�3 invariant. In particular, applying it to the homology
module ker ε3/ im ε5

∼= E (4,2) gives a non-split extension of D(5,1) by itself.
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Remark 1·5. In Section 2 we show that ker ϕ(1)k is isomorphic to the Specht module S(n−k,1k ),
by an explicit isomorphism defined on a generator for im ϕ

(t)
k+t. For small k, there are some

interesting isomorphisms between the kernels of the multistep boundary maps and Young
modules. For example, it follows from Proposition 5·8 that ker ε2

∼= Y (n−2,2) whenever n ≡ 2
mod 4; Example 1·4 shows the case n = 6. In general, however, ker ϕ(t)k appears to have no
more explicit description than that given in the main theorems.

The second example shows that (1·4) may be split exact in cases when the full chain
complex (1·2) containing it fails even to be exact.

Example 1·6. Take n = 13. When t = 4 and a = 0, the chain complex (1·2) is

0 → F�12
ϕ
(4)
12−−→ F�8

ϕ
(4)
8−−→ F�4

ϕ
(4)
4−−→ F�0 → 0.

Since
(13

4

)
is odd, the trivial module is a direct summand of F�4; since ker ϕ(4)4 = 〈X + Y :

X, Y ∈�4〉, we have F�4 = ker ϕ(4)4 ⊕ 〈∑X∈�4
X〉. By Theorem 1·2(iii), ker ϕ(4)4 = im ϕ

(4)
8 .

Therefore F�8 → F�4 � F�0 is split exact. But, by Theorem 1·2, F�12 ↪→ F�8 → F�4

is not exact; the proof of Lemma 5·1 shows that the homology module ker ϕ(4)8 / im ϕ
(4)
12 has

D(8,5) as a composition factor. Calculation shows that in fact it is isomorphic to D(8,5).

Outline
In Section 2 below we give some further motivation from simplicial homology. This

section also collects several results on hook-Specht modules and discusses earlier related
work. In Section 3 we give the logical preliminaries for the proofs of the main theorems.
In Section 4 we prove Theorem 1·1 and in Section 5 we prove Theorem 1·2. The zero homol-
ogy modules for the two-step boundary maps are instances of both theorems, but the proofs
are independent and involve somewhat different ideas. In Section 6 we extend the arguments
in Section 5 to prove Theorem 1·3. The final section Section 7 suggests four directions for
future work inspired by Theorems 1·1 and 1·2. In particular Conjectures 7·5 and 7·6 give
two attractive binomial identities that would be categorified by an extension of these results
to odd characteristic.

2. Background

Exterior powers of the natural permutation module

Suppose that F has prime characteristic p and let M = 〈e1, . . . , en〉F be the natural permu-
tation module for FSn . The FSn-module

∧k M has as an F-basis all (k − 1)-simplices ei1 ∧
· · · ∧ eik where 1 ≤ i1 < · · ·< ik ≤ n. For k ∈N, the boundary map δk : ∧k M → ∧k−1 M is
defined by

(ei1 ∧ · · · ∧ eik )δ =
k∑
�=1

(−1)�−1ei1 ∧ · · · ∧ êi� ∧ · · · ∧ eik ,

where êi� indicates that this factor is omitted. A short calculation shows that δk+1δk = 0, and
so im δk+1 ⊆ ker δk , for all k. Thus

n∧
M

δn−→
n−1∧

M
δn−1−−→ · · · δ3−→

2∧
M

δ2−→ M
δ1−→ F (2·1)
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Fig. 1. Suspension trick: the cycle ei ∧ e j + e j ∧ ek + ek ∧ ei is equal to the boundary
(e1 ∧ ei ∧ e j )δ3 + (e1 ∧ e j ∧ ek)δ3 + (e1 ∧ ek ∧ ei )δ3.

is a chain complex. Given v ∈ ker δk a variation on the product rule for derivatives
implies that

(e1 ∧ v)δk+1 = v − e1 ∧ (vδk)= v, (2·2)

and so (2·1) is exact. Correspondingly, as is very well known, the solid (n − 1)-simplex has

zero homology in all non-zero dimensions. (Note that the final map M
δ1−→ F, with domain

spanned by the 0-simplices e1, . . . , en , has no geometric interpretation as a boundary map,
and so is omitted when computing the geometric homology.) The identity (2·2) is the alge-
braic statement of the suspension trick showing that an arbitrary cycle v ∈ im δk+1 is a
boundary lying in ker δk : see Figure 1 overleaf. We adapt this trick in Lemma 3·6: this lemma
is critical to the proof of Theorem 1·1, and is also used in the proof of Theorem 1·2(ii).

Let U = 〈ei − e1 : 1< i ≤ n〉. Then U is a submodule of M isomorphic to the Specht
module S(n−1,1) and U = ker δ1. By (2·2), it easily follows that

∧k U ⊆ ker δk for each k. On
the other hand, since

(ei1 − e1)∧ · · · ∧ (eik − e1)= (e1 ∧ ei1 ∧ · · · eik )δk+1 ∈ im δk+1

we have
∧k U ⊇ im δk+1. By exactness we deduce that

∧k U = ker δk . If p does not divide
n then M = U ⊕ 〈e1 + · · · + en〉 and so

∧k M ∼= ∧k U ⊕ ∧k−1 U ∼= ker δk ⊕ im δk and (2·1)
is split exact.

To motivate a key step in the proofs of Theorems 1·2 and Theorem 1·3, we sketch an
alternative proof of this decomposition, related to the suspension trick. For k ∈N, define fk :∧k−1 M → ∧k M by (ei1 ∧ · · · ∧ eik−1) fk = e1 ∧ ei1 ∧ · · · ∧ eik−1 . Then δk fk + fk+1δk+1 = id
for each k. Hence the maps fk define a chain homotopy between (2·1) and the zero complex.
As it stands, fk is not an FSn-homomorphism, but replacing fk with the symmetrized map
Fk defined by (ei1 ∧ · · · ∧ eik−1)Fk = (e1 + · · · + en)∧ (ei1 ∧ · · · ∧ eik−1), we get

δk Fk + Fk+1δk+1 = n id. (2·3)

Since Fk Fk+1 = 0, a basic argument from homotopy theory, which we repeat in the proof of
Proposition 5·8, shows that if p does not divide n then

∧k M = im Fk ⊕ im δk+1 for every k,
and so (2·1) is split exact.

There is a canonical isomorphism

ker δk
∼= S(n−k,1k ) (2·4)
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first constructed by Hamernik [11] in the case n = p and Peel [20, proposition 2] in general.
(For the definition of Specht modules and polytabloids see [16, Chapter. 4].) The isomor-
phism is defined by sending (ei1 − e1)∧ · · · ∧ (eik − e1) to the polytabloid et where t is the
unique standard (n − k, 1k)-tableau having first column entries 1, i1, . . . , ir . By the Standard
Basis Theorem (see [16, corollary 8·5]), this defines a linear isomorphism. It follows easily
from the definition of polytabloids that it commutes with the permutations fixing 1; a short
calculation with Garnir relations (see [18, proposition 2·3] or [8, proposition 5·1(b)]) shows
that it commutes with (1, 2).

The following result completely determines the structure of
∧k M when p is odd. It was

proved in the author’s D. Phil thesis [22, Section 1·3] using the ideas in Hamernik [11], Peel
[20] and James [16, theorem 24·1].

PROPOSITION 2·1. Let p be odd. We have
∧0 M ∼= F and

∧n M ∼= sgn.
(i) If p does not divide n and k ∈ {1, . . . , n − 1} then S(n−k,1k ) is simple and

∧k M ∼=
S(n−k,1k ) ⊕ S(n−k−1,1k−1) is semisimple.

(ii) Suppose p divides n. Let D = U/〈e1 + · · · + en〉 and let Dk denote
∧k D. Then

Dk is simple and there is a non-split exact sequence Dk−1 ↪→ S(n−k,1k )� Dk for each k ∈
{1, . . . , n − 2}. For k ∈ {1, . . . , n − 1}, each

∧k M is indecomposable with Loewy layers

Dk−1

Dk−2 ⊕ Dk

Dk−1

,

where D−1 and Dn−1 should be ignored when k = 1 or k = n − 1.

A corollary of this proposition, which may easily be proved directly by considering pos-
sible images of the generator e1 ∧ · · · ∧ ek of

∧k M , is that if p is odd and |k − �| ≥ 2 then
HomFSn (

∧k M,
∧�M)= 0. This rules out a generalisation to odd characteristic of the main

theorems in which F�k is replaced with
∧k M . At the end of Section 7 we propose an

alternative generalisation.

Other related work

The maps ϕ(t)k are critical to James’ proof [15] of the decomposition numbers for Specht
modules labelled by two-row partitions. (In [15], our map ϕ(t)k is denoted ϑ k

k−t .) James’
lemma 2·7 gives an inductive construction of generators for the module

⋂k
t=k−r ker ϕ(t)k ; his

lemma 3·6 shows that the intersection is the same when taken only over those t of the
form 2τ . James’ lemma 3·5 states that ker ϕ(k)s+t contains ker ϕ(k)s if and only if

(s+t
s

)
is odd; we

adapt his proof to prove the related Proposition 5·3 below. The example following James’
lemma 2·7 describes some of the submodules in our Example 1·4. Later in [16, chapter 17,
24], James revisited these ideas. His theorem 17·13(i) implies that {2, 4, . . . , 2k} ∑

σ∈G�
σ

generates the kernel of ϕ(k−�+1)
k when this map is restricted to the submodule of F�k gen-

erated by {2, 4, . . . , 2k} ∑
σ∈G�−1

σ . (The full kernel is in general larger.) In particular,
taking �= k − 1 shows that vk ∈ ker εk . Part of our Theorem 1·1 gives the stronger result
that vk + im εk generates the homology module ker εk/ im εk+2; the proof uses somewhat
different ideas to James. Conjecture 7·2 proposes a generalisation of this result.

In [12], Henke determined the multiplicities of two-row Young modules in the two-row
Young permutation modules (isomorphic to the F�k) working in arbitrary characteristic. In
[7], Doty, Erdmann and Henke used the Schur algebra in characteristic 2 to give an explicit
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construction of the primitive idempotents in EndFSn (F�k). When (1·2) is split exact, each
ker ϕ(t)k is a direct sum of Young modules, and the projection F�k → ker ϕ(t)k is the sum
of the relevant idempotents. For instance, in Example 1·4, ker ε4

∼= Y (6) and ker ε2
∼= Y (4,2).

In general multiple idempotents are required. For example, take τ ∈N0, t = 2τ , k = 2τ+1

and n = (3 + 4r)2τ with r ∈N. By Theorem 1·3, ker ϕ(t)k is a direct summand of F�k ; an
argument similar to Example 1·6 shows that the trivial module is a proper direct summand
of ker ϕ(t)k .

Earlier, in [19], Murphy proved a number of results on the endomorphism ring of
ker ϕ(1)k

∼= S(n−k,1k ) when p = 2 and used them to determine when this hook-Specht mod-
ule is decomposable. When n is odd an alternative proof of her criterion can be given using
the results in [12], starting from the observation that S(n−r,1r ) is a direct summand of F�k

containing S(n−r,r), and so is a direct sum of Young modules including Y (n−r,r).
The generator for D(m+1,m) in Theorem 1·1 was first found by Benson (with a different

description of the quotient module) in [3, lemma 5·4].
Finally we note that there is an extensive theory of resolutions of (dual) Specht modules

by Young permutation modules, beginning with [4]; the authors’ conjectured resolution was
proved to be exact in [21] using the Schur algebra. Even in the two-row case, the terms in
these resolutions are sums of multiple Young permutation modules. Thus they do not appear
to be closely connected to this work.

3. Preliminary results

From now until the final part of Section 7, let F be a field of characteristic 2.

Duality
Each F�r is isomorphic to its dual module F��

r by a canonical isomorphism sending
X ∈�r to the corresponding element X � of the dual basis of F��

r . Under this identification,
ϕ(t)r : F�r → F�r−t becomes the map ϕ(t)r

� : F�r−t → F�r defined by

Yϕ(t)r
� =

∑
Z⊇Y

|Z |=|Y |+t

Z (3·1)

for Y ∈�r−t . (Note that the domain of ϕ(t)r
� is defined to be F�r−t , not F�r or F��

r−t .) This
duality explains the symmetry in the inequalities in Theorem 1·2.

PROPOSITION 3·1.
(i) For each r there is an isomorphism F�r

∼= F�n−r .
(ii) The homology of

F�k+t
ϕ
(t)
k+t−−→ F�k

ϕ
(t)
k−→ F�k−t

is dual to the homology of

F�n−k+t
ϕ
(t)
n−k+t−−−→ F�n−k

ϕ
(t)
n−k−−→ F�n−k−t .

Proof. Dualising the first sequence we obtain F�k−t
ϕ
(t)
k

�

−−→ F�k
ϕ
(t)�
k+t−−→ F�k+t . Each F�r is iso-

morphic to F�n−r by the map sending each Y ∈�r to its complement {1, . . . , n}\Y ∈�n−r .
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Applying this isomorphism we obtain the second sequence. In particular, the homology
modules are dual.

Specht modules, Young permutation modules, simple modules
The Specht module Sλ canonically labelled by the partition λ of n is defined in [16,

chapter 4] as a submodule of the Young permutation module Mλ. There is a well-known
canonical isomorphism M (n−k,k) ∼= F�k defined by sending a tabloid of shape (n − k, k) to
the set of entries in its bottom row. Let t be the (n − k, k)-tableau having 2, 4, . . . , 2k in its
bottom row. Then the corresponding polytabloid et generates S(n−k,k) and

et �→ {2, 4, . . . , 2k}
∑
σ∈Gk

σ. (3·2)

The simple modules for FSn are defined in [16, theorem 11·5] as the top composition factors
of certain Specht modules. For 2k < n, let D(n−k,k) denote the simple FSn-module canon-
ically labelled by the two-row partition (n − k, k). We allow partitions to have zero parts:
thus D(n,0) is the trivial FSn-module. By [16, Theorem 11·5] each simple FSn-module is
self-dual.

LEMMA 3·2.
(i) If 2k < n then F�k has a composition series with factors D(n−r,r) for r ≤ k in which

D(n−k,k) appears exactly once.
(ii) If n = 2m then F�m has a composition series with factors D(2m−r,r) for r <m.

(iii) If n = 2m then D(m+1,m−1) is a composition factor of F�k if and only if k = m − 1,
k = m or k = m + 1.

(iv) Let 2k < n and let 2r < n − 1. If D(n−1−r,r) is a composition factor of D(n−k,k)↓Sn−1

then k ≥ r .

Proof. Parts (i) and (ii) are special cases of [16, theorem 12·1]. Using Proposition 3·1(i) to
reduce to the case 2k ≤ n, part (iii) also follows from this theorem. The hypothesis for (iv)
implies that D(n−1−r,r) appears in

F�k

⏐�
Sn−1

∼= F�
[n−1]
k ⊕ F�

[n−1]
k−1 ,

where each bracketed n − 1 indicates that the summand is a module for FSn−1. By (i) and
(ii) we deduce that k ≥ r .

The following consequence of Lemma 3·2 is used in both Sections 4 and 5.

PROPOSITION 3·3. Let n ∈N.
(i) If n = 2m then F�m has exactly two composition factors isomorphic to D(m+1,m−1).

(ii) If n = 2m + 1 then F�m and F�m+1 are isomorphic and each has a unique
composition factor isomorphic to D(m+1,m).

Proof. Recall that γk denotes ϕ(1)k . We use the one-step sequence

0 → F�n
γn−→ F�n−1

γn−1−−→ · · · γ2−→ F�1
γ1−→ F�0 → 0.

As seen after (2·1), this sequence is exact. If n = 2m then, by Proposition 3·1(i) and
Lemma 3·2(i), the isomorphic modules F�m−1 and F�m+1 each have D(m+1,m−1) as a
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composition factor. By Lemma 3·2(iii), D(m+1,m−1) is not a composition factor of F�m−2
∼=

F�m+2. Therefore D(m+1,m−1) must appear twice in F�m . The proof is similar when n =
2m + 1.

Composing multistep maps
We need a generalisation of the result ϕ(t)k ϕ

(t)
k−t = 0 proved in the introduction. Given s,

t ∈N0, we say that the addition of s to t is carry free if
(s+t

s

)
is odd. Abusing notation

slightly, we may abbreviate this to ‘s + t is carry free’. As motivation, we recall that if
s = ∑c

i=0 si 2i and t = ∑c
i=0 ti 2i where si , ti ∈ {0, 1} for each i , then s + t is carry free if

and only if si + ti ≤ 1 for all i , and so s and t can be added in binary without carries. (This
follows immediately from Lucas’ Theorem: see for instance [16, lemma 22·4].)

LEMMA 3·4. If s, t ∈N then

ϕ
(s)
k ϕ

(t)
k−s =

{
ϕ
(s+t)
k if the addition of s to t is carry free

0 otherwise.

Proof. The argument in the introduction shows that ϕ(s)k ϕ
(t)
k−s = (s+t

s

)
ϕ
(s+t)
k . The lemma now

follows from the definition of carry free.

Products of sets
Define the support of v ∈ F�k to be the union of the k-subsets that appear in v with a

non-zero coefficient. The vector space
⊕n

k=0 F�k becomes a graded algebra with product
defined by bilinear extension of

X · Y =
{

X ∪ Y if X ∩ Y =∅

0 otherwise

for X ∈�k and Y ∈��. We denote this product by concatenation. Except in the warning
example following Lemma 3·5, we only take the product of v ∈ F�k and w ∈ F�� when v
and w have disjoint support.

The Splitting Rule and the Suspension Lemma
The product rule for derivatives has the following analogue for the multistep boundary

maps.

LEMMA 3·5 (Splitting Rule). Let v ∈ F�k and let w ∈ F��. If v and w have disjoint
support then

(vw)ϕ
(t)
k+�=

t∑
s=0

(vϕ
(s)
k )(wϕ

(t−s)
� ).

Proof. By bilinearity of the product F�� × F�m → F�k+�, it suffices to prove the lemma
in the special case when v is an k-subset X and w is a disjoint �-subset Y . It then holds
since every (k + �− t)-subset Z of X ∪ Y splits uniquely as a union (Z ∩ X)∪ (Z ∩ Y ) of
a subset of X and a subset of Y .
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When t > 1 the assumption in Lemma 3·5 that v and w have disjoint support is essential.
For example ({1, 2}{2})ε2 = 0ε2 = 0, but ({1, 2}ε2){2} + ({1, 2}γ1)({2}γ1)+ {1, 2}({2}ε2)=
∅{2} + ({1} + {2})∅= {1}.

The following lemma is the analogue of (2·2) in Section 2.

LEMMA 3·6 (Suspension Lemma). Let t ∈N and let 0 ≤ � < t . Let v ∈ F�k . Suppose
that v ∈ ker ϕ(s)k whenever � < s ≤ t and that the support of v is disjoint from X ∈��+t . If the
addition of � to t is carry free and the addition of � to t − s is not carry free when 0< s ≤ �
then

v = (
v(Xϕ(�)�+t)

)
ϕ
(t)
k+t .

Proof. By the Splitting Rule the right-hand side is

t∑
s=0

(vϕ(s))(Xϕ(�)ϕ(t−s)). (3·3)

(Here, and in the remainder of the proof, we omit the degrees of the maps to increase read-
ability.) By hypothesis vϕ(s) = 0 if � < s ≤ t . When 0< s ≤ � the addition of � to t − s is
not carry free, again by hypothesis. Therefore, by Lemma 3·4, we have Xϕ(�)ϕ(t−s) = 0 for
all such s. The only remaining summand in (3·3) occurs when s = 0, in which case another
application of Lemma 3·4 shows that v(Xϕ(�)ϕ(t))= v∅= v.

For example, take t = 2τ where τ ∈N0 and take k < 2τ . Then k + 2τ is carry free, and if
0< s ≤ k then k + (2τ − s), is clearly not carry free, since it has 2τ in its binary form. The
sets v = {n − k + 1, . . . , n} and X = {1, . . . , k + 2τ } are disjoint whenever n − k ≥ k + 2τ .
Hence the hypotheses of the Suspension Lemma hold provided n ≥ 2k + 2τ and we get

{n − k + 1, . . . , n} = ({n − k + 1, . . . , n}({1, . . . , k + 2τ }ϕ(k)k+2τ )
)
ϕ
(2τ )
k+2τ .

Therefore ϕ(2
τ )

k+2τ : F�k+2τ → F�k is surjective. We use a small generalization this argument
in the proof of part of Theorem 1·2(ii).

4. Two-step homology: proof of Theorem 1·1
Recall that Hk = ker εk/ im εk+2. The outline of the proof is as follows: in Lemmas 4·1, 4·2

and 4·3 and Proposition 4·4 we show that vk + im εk+2 generates Hk . Using that vk is sup-
ported on a set of size 2k − 1, it follows from the Suspension Lemma that Hk = 0 when
n ≥ 2k + 2. By duality we get the same result when n ≤ 2k − 2. We then identify the com-
position factors responsible for the non-zero homology modules, and find their structure by
induction on n. Thus a large part of the proof is to show that ker εk has a generator of ‘small’
support: as motivation note that, conversely, if ker εk = im εk+2, then ker εk has a generator
supported on {1, . . . , k + 2}.

Throughout γk denotes ϕ(1)k and εk denotes ϕ(2)k .

LEMMA 4·1. Let 2 ≤ k ≤ n − 2. The homology module Hk is generated, as an FSn-
module, by all {n}v + {n − 1, n}(vγk−1)+ im εk+2 where v ∈ F�k−1 has support disjoint
from {n − 1, n} and satisfies vεk−1 = 0.
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Proof. Given any X ∈ F�k with support disjoint from {n − 1, n}, the Splitting Rule
implies that

X = ({n − 1, n}X
)
εk+2 + {n − 1}(Xγk)+ {n}(Xγk)+ {n − 1, n}(Xεk).

Since the first summand lies in im εk+2, and X generates F�k as an FSn-module, it fol-
lows that F�k/ im εk+2 is generated by all {n − 1}u + {n}v + {n − 1, n}w+ im εk+2 where
u ∈ F�k−1, v ∈ F�k−1 and w ∈ F�k−2 have support disjoint from {n − 1, n}. Now, omitting
indices on the maps for readability, we have

({n − 1}u + {n}v + {n − 1, n}w)ε
= (uγ + vγ +w)+ {n − 1}(uε+wγ )+ {n}(vε+wγ )+ {n − 1, n}(wε).

The right-hand side is zero if and only if uγ + vγ =w, uε= vε=wγ and wε= 0. The first
equation implies that w ∈ im γ , and so wγ = 0; hence the three equations are equivalent to
uγ + vγ =w and uε= vε= 0. Thus Hk is generated by all

{n − 1}u + {n}v + {n − 1, n}(uγ + vγ )+ im εk

such that uε= vε= 0. Applying the transposition (n − 1, n) to {n}v + {n − 1, n}vγ , we see
that Hk is generated by elements of the required form.

LEMMA 4·2. If 2k ≤ n then vkγk = {2, 4, . . . , 2(k − 1)} ∑
σ∈Gk−1

σ .

Proof. Let wk denote the right-hand side. We have

vkγk =
∑
σ∈Gk−1

{2, 4, . . . , 2(k − 1), 2k}σγk

=
∑
σ∈Gk−1

k−1∑
j=1

{2, 4, . . . , 2(k − 1), 2k}σ \ {(2 j)σ } +wk .

For each fixed j , the summands for σ and σ(2 j − 1, 2 j) are equal, and so cancel. Therefore
vkγ =wk , as required.

LEMMA 4·3. If v ∈ ker εk has support of size at most n − 3 then v ∈ im εk+2.

Proof. By hypothesis, there is a 3-subset Z of {1, . . . , n} disjoint from the support of v. By
the argument seen in the example following the Suspension Lemma (Lemma 3·6), we have(

v(Zγ3)
)
εk+2 = v.

Therefore v ∈ im εk+2 as required.

PROPOSITION 4·4. Let k ∈N0. If 2k ≤ n then Hk is generated by vk + im εk+2.

Proof. We work by induction on n dealing with all admissible k at once. The inductive
step below is effective when k ≥ 2 and k + 6 ≤ n. Since v0 =∅ and v1 = {2} generate F�0

and F�1, respectively, the result holds if k < 2. When k = 2, Lemma 4·1 implies that H2

is generated by all {n}{ j} + {n − 1, n} + im ε4, where j ∈ {1, . . . , n − 2}. Therefore H2 is
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generated by v2 = {2, 4} + {1, 4} + im ε4 as required. When k = 3 and n ∈ {6, 7, 8}, or k = 4
and n ∈ {8, 9}, or k = 5 and n = 10 the proposition has been checked using the computer
algebra package MAGMA.1

For the inductive step we may suppose, by the previous paragraph, that k ≥ 2 and
k + 6 ≤ n. By Lemma 4·1, Hk is generated by the elements {n}v + {n − 1, n}(vγk−1) for
v ∈ V , where V = ker ε[n−2]

k−1 : F�[n−2]
k−1 → F�

[n−2]
k−3 . (The bracketed n − 2 emphasises that

these are modules and module homomorphisms for FSn−2.) The map ε[n−2]
k−1 is part of the

sequence

F�
[n−2]
k+1

ε
[n−2]
k+1−−→ F�

[n−2]
k−1

ε
[n−2]
k−1−−→ F�

[n−2]
k−3 .

Observe that H [n−2]
k−1 = V/ im ε

[n−2]
k+1 . Since 2(k − 1)≤ n − 2, the inductive hypothesis for

n − 2 implies that V/ im ε
[n−2]
k+1 is generated by vk−1 + im ε

[n−2]
k+1 . Since im ε

[n−2]
k+1 is gen-

erated by Y εk+1, where Y = {1, . . . , k + 1}, it follows that Hk is generated by {n}vk−1+
{n − 1, n}(vk−1γk−1)+ im εk+2 together with u + im εk+2, where

u = {n}(Y εk+1)+ {n − 1, n}(Y εk+1γk−1).

The support of u is {1, . . . , k + 1} ∪ {n − 1, n}, of size k + 3. Since k + 6 ≤ n, Lemma 4·3
implies that u ∈ im εk+2.

The first summand in the other generator {n}vk−1 + {n − 1, n}(vk−1γk−1)+ im εk+2 is∑
σ∈Gk−2

({2, 4, . . . , 2(k − 2)}σ ∪ {2(k − 1), n}), and, by Lemma 4·2, the second sum-
mand is

∑
σ∈Gk−2

({2, 4, . . . , 2(k − 2)}σ ∪ {n − 1, n}). Relabelling so that n − 1 becomes
2(k − 1)− 1 and n becomes 2k, their sum becomes vk . Therefore vk + im εk+2 generates Hk .

COROLLARY 4·5. If 2k + 2 ≤ n then Hk = 0.

Proof. By Proposition 4·4, Hk is generated by vk + im εk+2. The support of vk is
{1, . . . , 2k − 2, 2k}, of size 2k − 1. Since 2k + 2 ≤ n, it follows from Lemma 4·3 that
vk ∈ im εk+2. Hence Hk = 0.

By the duality in Proposition 3·1(i) we may assume that 2k ≤ n. Therefore the previous
corollary determines all the homology modules Hk except when k = m and either n = 2m
or n = 2m + 1. In these cases the non-zero homology reflects the obstruction to exactness
identified in Proposition 3·3.

Completion of the proof of Theorem 1·1. We must show that when n = 2m or n = 2m + 1,
the module Hm is as claimed. We need the binomial identities

m∑
j=0

(−1) j

(
2m

2 j

)
=

{
(−1)m/22m if m is even

0 if m is odd
(4·1)

∑
j

(−1) j

(
2m + 1

2 j

)
=

{
(−1)m/22m if m is even

(−1)(m+1)/22m if m is odd.
(4·2)

1MAGMA code for constructing the ϕ(t)k homomorphisms and verifying these claims may be downloaded
from the author’s webpage: www.rhul.ac.uk/~uvah099/.
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The first identity is most easily proved by taking real parts in

2m im = (1 + i)2m =
∑

j

(−1) j

(
2m

2 j

)
+ i

∑
j

(−1) j

(
2m

2 j + 1

)
.

and the second can be proved similarly.
Suppose that n = 2m. We must identify Hm . Consider the chain complex of FS2m-modules

0 → F�2m
ε2m−→ · · · εm+4−−→ F�m+2

εm+2−−→ F�m
εm−→ F�m−2

εm−2−−→ · · · ε2−→ F�0 → 0.

By Corollary 4·5 and Proposition 3·1, this chain complex is exact, except possibly in
degree m. The alternating sum of the dimensions of the modules in a chain complex agrees
with the alternating sum of the dimensions of the homology modules. Hence

m∑
j=0

(−1) j dim F�2 j =
m∑

j=0

(−1) j dim H2 j = (−1)m/2 dim Hm .

The left-hand side is (−1)m/22m , by (4·1). Therefore dim Hm ≥ 2m . By Proposition 3·3, F�m

has two composition factors D(m+1,m−1) not present in either F�m+2 or F�m−2. Therefore
D(m+1,m−1) is twice a composition factor of Hm . Since dim D(m+1,m−1) = 2m−1 by Theorem
5·1 in [3], we see that Hm is an extension of D(m+1,m−1) by itself.

The proof is similar when n = 2m + 1 using (4·2) and that dim D(m+1,m) = 2m , again by
Theorem 5·1 in [3].

By Proposition 3·3 in [6], the restriction D(m+1,m)↓S2m is non-split extension of D(m+1,m−1)

by itself. We end by using the one-step boundary maps γk : F�k → F�k−1 to make its
structure more explicit. The following calculation is required.

LEMMA 4·6. If 0 ≤ k ≤ n − 2 then (im εk+2)γkγ
�
k ⊆ ker εk .

Proof. Fix Z ∈�k+2. If Y ∈�k has a non-zero coefficient in Zεk+2γkγ
�
k then either Y =

Z\{i, i ′}, for distinct i, i ′ ∈ Z or Y = Z ∪ { j}\{i, i ′, i ′′} for distinct i, i ′, i ′′ ∈ Z and j �∈ Z .
In the former case the coefficient of Y is k and in the latter it is 1. Therefore εk+2γkγ

�
k =

kεk+2 +ψ where

Zψ =
∑

i,i ′ ,i ′′∈Z
j �∈Z

(
Z ∪ { j}\{i, i ′, i ′′}).

Since εk+2εk = 0, it suffices to prove that ψεk = 0. We may suppose that k ≥ 2. If X ∈�k−2

has a non-zero coefficient in Zψεk then either X = Z\D where D ⊆ Z and |D| = 4 or X =
Z ∪ { j}\E where E ⊆ Z , |E | = 5 and j �∈ Z . In both cases the coefficient is in fact zero: in
the first there are

(4
3

)
choices for {i, i ′, i ′′} ⊆ D and in the second there are

(5
3

)
choices for

{i, i ′, i ′′} ⊆ E .

Let n = 2m be even and let U be the submodule of F�m generated by vm +
vm(2m − 1, 2m).
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PROPOSITION 4·7. Under the canonical isomorphism F�m
∼= M (m,m), the image of U is

S(m,m). There is a chain

rad U + im εm+2 ⊆ U + im εm+2 ⊆ ker εm

in which the two quotients are isomorphic to D(m+1,m−1).

Proof. By Theorem 1·1, vm ∈ ker εm . Therefore U is a submodule of ker εm . By (3·2)
in Section 3, under the canonical isomorphism F�m

∼= M (m,m), the image of vm +
vm(2m − 1, 2m) is the polytabloid et , where t is the standard tableau of shape (m,m) hav-
ing {2, 4, . . . , 2m} in its bottom row; this polytabloid generates the Specht module S(m,m).
Therefore U ∼= S(m,m).

By the Branching Rule (see [16, theorem 9·3]) the restriction of S(m,m) to S2m−1 is S(m,m−1);
this module has D(m,m−1) as its unique top composition factor. By Lemma 3·2(iv), the only
two-row simple module for FS2m whose restriction to S2m−1 may have D(m,m−1) as a com-
position factor is D(m+1,m−1). Therefore, as noted by Benson in [2, lemma 5·2], S(m,m) has
D(m+1,m−1) as its unique top composition factor, and the multiplicity of D(m+1,m−1) in S(m,m)

is 1. Hence U/ rad U ∼= D(m+1,m−1). By Lemma 3·2(iii), D(m+1,m−1) is not a composition fac-
tor of im εm+2. Since ker εm/ im εm+2 has two composition factors of D(m+1,m−1), it follows
that the chain has the claimed quotients.

PROPOSITION 4·8. Let n = 2m be even. The endomorphism γmγ
�
m of F�k restricts to an

endomorphism of ker εm satisfying:
(i) vmγmγ

�
m = vm + vm(2m − 1, 2m);

(ii) Uγmγ
�
m = 0;

(iii) (im εm+2)γmγ
�
m ⊆ im εm+2.

Proof. By Lemma 4·2, vmγm = {2, 4, . . . , 2(m − 1)} ∑
σ∈Gm−1

σ . Hence

vmγmγ
�
m =

∑
σ∈Gm−1

∑
1≤i≤2m

i �∈{2,4,...,2(m−1)}σ

({2, 4, . . . , 2(m − 1)} ∪ {i}).
There are summands corresponding to the pairs (σ, 2 j) and (σ (2 j − 1, 2 j), 2 j − 1) if and
only if (2 j)σ = 2 j − 1; when present, these summands are equal are so cancel. The sum-
mands for i = 2m give vm and the summands for i = 2m − 1 give vm(2m − 1, 2m). Hence
vmγmγ

�
m = vm + vm(2m − 1, 2m), proving (i). Moreover, since

(
1 + (2m − 1, 2m)

)2 = 0, we
have

(
vm + vm(2m − 1, 2m)

)
γmγ

�
m = 0. Hence Uγmγ

�
m = 0, proving (ii).

By Lemma 4·6, (im εm+2)γmγ
�
m ⊆ ker εm+2. By Lemma 3·2(iii), im εm+2 does not have

D(m+1,m−1) as a composition factor. It therefore follows from Proposition 4·7 and the
Jordan–Hölder Theorem that (im εm+2)γmγ

�
m ⊆ im εm+2 as required for (iii).

COROLLARY 4·9. Let n = 2m. The map ϑ : Hm → Hm induced by restricting γmγ
�
m to

ker ϑm is a well-defined FSn-endomorphism of Hm such that ϑ �= 0 and ϑ2 = 0.

Proof. By Proposition 4·8, ϑ is well-defined. By Theorem 1·1, Hm is generated
by vm + im εm+2. Therefore Hmϑ is generated by vm + vm(2m − 1, 2m)+ im εm+2; by
Propositions 4·7 and 4·8(ii) this is a non-zero element of Hm lying in ker ϑ .
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5. Proof of Theorem 1·2
In this section we prove the characterisation in Theorem 1·2 of when

F�k+t
ϕ
(t)
k+t−−→ F�k

ϕ
(t)
k−→ F�k−t (1·4)

is exact. We showed in Section 2 that (1·4) is always exact when t = 1. Thus Theorem 1·2(i)
is a sufficient condition. Clearly (1·4) is not exact when both k + t > n and k − t < 0 and
so only the middle module is non-zero. In Section 5·1 we deal with the case when there
is exactly one zero module. This leaves the most interesting case of three non-zero mod-
ules, described by (i) and (iii). We show these conditions are necessary in Section 5·2 and
sufficient in Section 5·3.

The following lemma indicates the obstruction to exactness removed by the condition
k + t ≤ n − k.

LEMMA 5·1. Suppose that t > 1 and k ≤ n − k < k + t . Then F�k has a composition
factor not present in either F�k+t or F�k−t .

Proof. By Proposition 3·1(i) we have F�k+t
∼= F�n−(k+t). By hypothesis, n − (k + t) < k. If

2k < n then Lemma 3·2(i) implies that D(n−k,k) is a composition factor of F�k not present in
either F�n−(k+t) or F�k−t . In the remaining case 2k = n and F�k+t

∼= F�k−t . Since k − t <
k − 1, Lemma 3·2(iii) implies that D(k+1,k−1) is a composition factor of F�k not present in
F�k−t .

5·1. Surjective and injective maps: Theorem 1·2(ii)

There is exactly one zero module in (1·4) if and only if k < t ≤ n − k or n − k < t ≤ k.
By Proposition 3·1(i) we can reduce to the first case, when the sequence is

F�k+t
ϕ
(t)
k+t−−→ F�k −→ 0.

It then suffices to prove the following proposition.

PROPOSITION 5·2. Let k < t ≤ n − k and let 2τ be the least two-power appearing in the
binary form of t . Then ϕ(t)k+t : F�k+t → F�k is surjective if and only if k < 2τ and k + t ≤
n − k.

Proof. Suppose that k + t > n − k. Then, by Lemma 5·1, F�k has a composition factor
D(n−k,k) not present in F�k+t , and so ϕ(t)k+t is not surjective. Suppose that k ≥ 2τ . Since the
addition of 2τ to t − 2τ is carry free, Lemma 3·4 implies that ϕ(t)k+t factorises as ϕ(t−2τ )

k+t ϕ
(2τ )
k+2τ .

In the sequence

F�k+2τ
ϕ
(2τ )
k+2τ−−→ F�k

ϕ
(2τ )
k−−→ F�k−2τ

the map ϕ(2
τ )

k is non-zero. Since im ϕ
(2τ )
k+2τ ⊆ ker ϕ(2

τ )

k , it follows that ϕ(2
τ )

k+2τ is not surjective.
Therefore ϕ(t)k+t is not surjective.

Conversely, suppose that k + t ≤ n − k and k < 2τ . Generalizing the example following
the Suspension Lemma (Lemma 3·6), take �= k, v= {n − k + 1, . . . , n} ∈ ker ϕ(t)k and X =
{1, . . . , k + t}. By hypothesis these sets are disjoint. The least two-power appearing in the

https://doi.org/10.1017/S0305004119000124 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000124


246 MARK WILDON

binary form of t is 2τ , hence k + t is carry free. Moreover if 0< s ≤ k then k + (t − s) is
not carry free, since it has 2τ in its binary form while t − s does not. Hence

{n − k + 1, . . . , n} = ({n − k + 1, . . . , n}({1, . . . , k + t}ϕ(k)k+t)
)
ϕ
(t)
k+t

where the left-hand side generates F�k . Therefore ϕ(t)k+t is surjective.

5·2. Necessity: Theorem 1·2(iii)

We now suppose that the sequence (1·4) has three non-zero modules and that t > 1 and
show that the condition in (iii) is necessary for it to be exact.

By Proposition 3·1 we may assume that 2k ≤ n. Suppose that n < 2k + t . Then k ≤ n −
k < k + t , so by Lemma 5·1, F�k has a composition factor not present in F�k+t or F�k−t .
Therefore (1·4) is not exact.

It remains to show that if t is not a two-power then (1·4) is not exact. The proof of the
following proposition uses the same idea as [15, lemma 3·5].

PROPOSITION 5·3. Suppose that t > s and that the addition of s to t is carry free. If k ≥ s
then ker ϕ(t)k properly contains ker ϕ(s)k .

Proof. Since s + t is carry free, Lemma 3·4 implies that ϕ(t)k = ϕ
(s)
k ϕ

(t−s)
k−s . Therefore ker ϕ(t)k

contains ker ϕ(s)k . Since t > s, there exists β such that 2β appears in the binary form of t but
not in the binary form of s. Let v = {1, . . . , k + 2β}ϕ(2β )k+2β . Since t + 2β is not carry free,
while s + 2β is carry free, Lemma 3·4 implies that vϕ(t)k = 0 and vϕ(s)k �= 0.

COROLLARY 5·4. Suppose that t is not a two-power. Then (1·4) is not exact.

Proof. Choose 2β such that 2β appears in the binary form of t and set s = t − 2β . By
Lemma 3·4 we have ϕ(t)k = ϕ

(s)
k ϕ

(2β )
k−s and ϕ(t)k+t = ϕ

(2β )
k+tϕ

(s)
k+s. Hence

ker ϕ(t)k ⊇ ker ϕ(s)k ⊇ im ϕ
(s)
k+s ⊇ im ϕ

(t)
k+t,

where the first containment is strict by Proposition 5·3. Hence (1·4) is not exact.

5·3. Sufficiency: Theorem 1·2(iii)

By Proposition 3·1 we may assume that 2k ≤ n. Thus (iii) holds if and only if n ≥ 2k + t
and t = 2τ is a two-power. We shall show by induction on n that this condition implies
that (1·4) is exact. Perhaps surprisingly, most of the work comes in the base case when
n = 2k + t , where we prove in Proposition 5·8 the stronger result that (1·4) is split exact,
that is, F�k = ker ϕ(t)k ⊕ Ck for an FSn-module Ck . In this case (1·4) is part of the chain
complex

· · · ϕ
(t)
k+3t−−→ F�k+2t

ϕ
(t)
k+2t−−→ F�k+t

ϕ
(t)
k+t−−→ F�k

ϕ
(t)
k−→ F�k−t

ϕ
(t)
k−t−−→ · · · . (5·1)

Since n = 2k + t , this chain complex is invariant under the duality in Proposition 3·1; the
case n = 6, t = 2 and k = 2 can be seen in Example 1·4.

Splitting of (5·1)
Motivated by (2·3) in Section 2, we show that the dual maps ϕ(t)r

� defined in (3·1) at the
start of Section 3 define a chain homotopy between (5·1) and the zero chain complex. The
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first of the two lemmas below can also be deduced from [19, (2·9) and (2·10)]. In it X � Y
denotes the symmetric difference of sets X and Y .

LEMMA 5·5. If Y ∈�k then

Yϕ(t)k ϕ
(t)
k
� =

t∑
d=0

(
k − d

t − d

) ∑
X∈�k

|X �Y |=2d

X,

Yϕ
(t)�

k+tϕ
(t)
k+t =

t∑
d=0

(
n − k − d

t − d

) ∑
X∈�k

|X �Y |=2d

X.

Proof. If X ∈�k is a summand of Yϕ(t)k ϕ
(t)
k
�

then X = (Y\D)∪ A for unique sets D ⊆ Y and
A ⊆ {1, . . . , n}\Y . Clearly |D| = |A|. If their common size is d then |X � Y | = 2d. If R is a
t-subset of Y such that R ⊇ D, we may obtain X by removing R from Y and then inserting
the elements of A ∪ (R\D). Therefore the coefficient of X is the number of choices for R,
namely

(k−d
t−d

)
. The proof for Yϕ

(t)�

k+tϕ
(t)
k+t is similar.

LEMMA 5·6. Let τ ∈N0. The following are equivalent:
(i)

( k−d
2τ−d

) + (n−k−d
2τ−d

) ≡ 0 mod 2 for 1 ≤ d ≤ 2τ ;

(ii)
(k+e

e

) + (n−k+e
e

) ≡ 0 mod 2 for 0 ≤ e< 2τ ;

(iii)
(k+2ρ

2ρ

) + (n−k+2ρ

2ρ

) ≡ 0 mod 2 for 0 ≤ ρ < τ ;

(iv) n ≡ 2k mod 2τ .

Proof. Observe that if � < 2τ and k ≡ k ′ mod 2τ then

k + � is carry free ⇐⇒ k ′ + � is carry free. (†)

Replacing d with 2τ − e in (i) shows that (i) is equivalent to
(k−2τ+e

e

) + (n−k−2τ+e
e

) ≡ 0 mod
2 for 0 ≤ e< 2τ . From (†) we see that (k − 2τ )+ e is carry free if and only if k + e is carry
free. Therefore (i) is equivalent to (ii). Clearly (ii) implies (iii). We show that (iii) implies (iv)
by induction on τ . If τ = 0 then (iii) is vacuous and (iv) obviously holds. Suppose that (iii)
holds as stated, so by induction we have n ≡ 2k mod 2τ . Either n − k ≡ k mod 2τ+1, in which
case (†) implies that

(k+2τ

2τ

) ≡ (n−k+2τ

2τ

)
mod 2, or n − k ≡ k + 2τ mod 2τ+1 and similarly (†)

implies that
(k+2τ

2τ

) + (n−k+2τ

2τ

) ≡ 1 mod 2. This completes the inductive step. Finally if (iv)
holds then k − d ≡ n − k − d mod 2τ for all d ∈N. By (†) this implies (i).

LEMMA 5·7. Let τ ∈N0. We have(
k − d

2τ − d

)
+

(
n − k − d

2τ − d

)
≡ 0 mod 2 for 1 ≤ d ≤ 2τ

and
( k

2τ

) + (n−k
2τ

) ≡ 1 mod 2 if and only if n ≡ 2k + 2τ mod 2τ+1.

Proof. By Lemma 5·6, the first condition holds if and only if n ≡ 2k mod 2τ . As in the
proof of this lemma, the second condition then holds if and only if exactly one of k + 2τ and
(n − k)+ 2τ is carry free; equivalently n ≡ 2k + 2τ mod 2τ+1.
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PROPOSITION 5·8. If t = 2τ and n ≡ 2k + t mod 2τ+1 then ker ϕ(t)k = im ϕ
(t)
k+t and

F�k = ker ϕ(t)k ⊕ im ϕ
(t)
k
�
.

Proof. By Lemmas 5·5 and 5·7,

ϕ
(t)
k ϕ

(t)
k
� + ϕ

(t)�

k+tϕ
(t)
k+t = id. (5·2)

Hence, repeating part of a basic argument from homotopy theory, we have F�k =
im ϕ

(t)
k
� + im ϕ

(t)
k+t. If v ∈ im ϕ

(t)
k
� ∩ ker ϕ(t)k then vϕ(t)k = 0 and, since ϕ(t)k

�
ϕ
(t)�

k+t = 0, we also

have vϕ
(t)�

k+t = 0. Evaluating (5·2) at v implies that v = 0. Since im ϕ
(t)
k+t ⊆ ker ϕ(t)k it follows

that F�k = im ϕ
(t)
k
� ⊕ ker ϕ(t)k and im ϕ

(t)
k+t = ker ϕ(t)k , as required.

We are now ready to show that Theorem 1·2(iii) is a sufficient condition for (1·4) to be
exact.

PROPOSITION 5·9. Let t be a two-power. If n ≥ 2k + t then (1·4) is exact.

Proof. We work by induction on n dealing with all admissible k at once. If n = 2k + t then
Proposition 5·8 shows that (1·4) is split exact. Now suppose that n > 2k + t and, inductively,
that the sequence of FSn−1-modules

F�
[n−1]
k+t

ϕ
(t)[n−1]
k+t−−−−→ F�

[n−1]
k

ϕ
(t)[n−1]
k−−−−→ F�

[n−1]
k−t

is exact. (As usual the bracketed n − 1 indicates that these are modules, and impor-
tantly, module homomorphisms, for FSn−1.) Using the product operation on sets defined
in Section 3, each element of F�k has a unique expression in the form U + u{n} where
U ∈ F�

[n−1]
k and u ∈ F�

[n−1]
k−1 . Suppose that U + u{n} ∈ ker ϕ(t)k . By the Splitting Rule

(Lemma 3·5),

(U + u{n})ϕ(t)k = Uϕ(t)k + uϕ(t−1)
k−1 + uϕ(t)k−1{n}. (5·3)

Hence Uϕ(t)k + uϕ(t−1)
k−1 = 0 and uϕ(t)k−1 = 0. Since u ∈ F�

[n−1]
k−1 and n − 1 ≥ 2(k − 1)+ t ,

applying the inductive hypothesis to

ϕ
(t)[n−1]
k−1 :�[n−1]

k−1 −→�
[n−1]
k−1−t

gives

u = vϕ
(t)[n−1]
k−1+t (5·4)

for some v ∈ F�
[n−1]
k−1+t . Substituting (5·4) into Uϕ(t)k + uϕ(t−1)

k−1 = 0 we obtain

Uϕ(t)k + vϕ
(t)
k−1+tϕ

(t−1)
k−1 = 0.

Since t + (t − 1) is carry free, Lemma 3·4 implies that ϕ(t)k−1+tϕ
(t−1)
k−1 = ϕ

(t−1)
k−1+tϕ

(t)
k . Hence(

U + vϕ
(t−1)
k−1+t

)
ϕ
(t)
k = 0. Since U + vϕ

(t−1)
k−1+t ∈ F�

[n−1]
k and n − 1 ≥ 2k + t , applying the

inductive hypothesis to

ϕ
(t)[n−1]
k :�[n−1]

k −→�
[n−1]
k−t
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gives

U + vϕ
(t−1)
k−1+t = Wϕ

(t)[n−1]
k+t (5·5)

for some W ∈ F�
[n−1]
k+t . Substituting for U and u using (5·4) and (5·5) we find

U + u{n} = vϕ
(t−1)
k−1+t + Wϕ

(t)
k+t + vϕ

(t)
k−1+t{n}

= (
W + v{n})ϕ(t)k+t,

hence U + u{n} ∈ im ϕ
(t)
k+t : F�k+t −→ F�k , as required.

6. Split exactness

In this section we prove Theorem 1·3, characterising when the sequence

0 → F�a+ct
ϕ
(t)
a+ct−−→ F�a+(c−1)t

ϕ
(t)
a+(c−1)t−−−−→ · · · ϕ

(t)
a+2t−−→ F�a+t

ϕ
(t)
a+t−−→ F�a → 0 (2)

is split exact. Suppose that there are just two non-zero modules. Then (1·2) is

0 → F�a+t
ϕ
(t)
a+t−−→ F�a → 0.

Comparing dim F�a+t = ( n
a+t

)
and dim F�a = (n

a

)
shows that if ϕ(t)a+t is an isomorphism then

n − (a + t)= a, and so n = 2a + t , as required in condition (a). Since the chain complex
is then self-dual, Proposition 5·2 implies that ϕ(t)a+t is an isomorphism if and only if a < 2τ ,
where 2τ is the least two-power appearing in the binary form of a. Hence condition (a) is
necessary and sufficient for (1·2) to be split exact.

Now suppose (1·2) has at least three non-zero modules and is split exact. Therefore
condition (a) does not hold. If condition (b) holds then t = 2τ for some τ ∈N0 and
n = 2a + (2s + 1)2τ for some s ∈N0. By maximality of c, we have c = 2s + 1 and n =
2a + ct . By Proposition 5·2, ϕ(t)a+t is surjective and, dually, ϕ(t)a+ct is injective. If k =
a + j2τ where 1 ≤ j < c then, since n ≡ 2k + 2τ mod 2τ+1, Proposition 5·8 implies that
F�k = ker ϕ(t)k ⊕ im ϕ

(t)
k
�
. Hence (1·2) is split exact. Conversely, suppose that (1·2) has at

least three non-zero modules and is split exact. Since it is then exact. Theorem 1·2 implies
that t is a two-power. Take s maximal such that 2a + (2s + 1)t ≤ n and set k = a + (s + 1)t .
The exact sequence

F�k+t
ϕ
(t)
k+t−−→ F�k

ϕ
(t)
k−→ F�k−t

is then part of (1·2). By Theorem 1·2, either k + t ≤ n − k or n − k + t ≤ k. By choice of
s the first condition does not hold. Therefore n − (

a + (s + 1)t
) + t ≤ a + (s + 1)t and so

n ≤ 2a + (2s + 1)t . Hence n = 2a + (2s + 1)t and so n ≡ 2a + t mod 2t , as required in (b).
This completes the proof.

7. Further directions

Recall that γk denotes ϕ(1)k and εk denotes ϕ(2)k .
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Split exactness

The sequence F�k+t
ϕ
(t)
k+t−−→ F�k

ϕ
(t)
k−→ F�k−t in (1·4) was shown in Proposition 5·8 to be split

exact when t = 2τ is a two-power and n ≡ 2k + 2τ mod 2τ+1; call this condition (A). By
Propositions 3·1 and 5·2 it is also split exact when k < t or k > n − t ; call this condition (B).

If t = 1 then the combined condition (A) or (B), namely that n is odd or k = 0 or k = n, is
necessary and sufficient for (1·4) to be split exact. We outline a proof using that the ordinary
character χ(n) + χ(n−1,1) + · · · + χ(n−k,k) of F�k is multiplicity-free, and so, by the results
of [2, Section 3.11], EndFSn (F�k) is abelian. It follows, by composing the projection maps,
that if V and W are distinct direct summands of F�k then HomFSn (V,W )= 0. Hence the
decomposition of F�k into direct summands is unique and each direct summand is self-dual.
If 0< k < n and (1·4) splits then F�k

∼= ker γk ⊕ Ck for some non-zero complement Ck . We
have im γ �k

∼= Ann(ker γk)∼= C�
k
∼= Ck . Therefore there is an endomorphism of F�k having

ker γk in its kernel, and restricting to an isomorphism Ck
∼= im γ �k . The uniqueness of the

decomposition now shows that F�k = ker γk ⊕ im γ �k . However, by Lemma 5·5, γkγ
�
k �= 0

and γkγ
�
k + γ �k+1γk+1 = n id, hence γkγ

�
k γk = nγk . Therefore ker γk ∩ im γ �k �= {0} whenever

n is even, showing that (1·4) is not split in this case.
This argument can be adapted to show that, when t = 2, (1·4) is split if and only if either

(A) or (B) holds. Considerable calculation is required: for example, using only the γ and ε
maps and their duals, the simplest obstruction to exactness when n ≡ 1 mod 4 and k is odd
known to the author is γ �k εkε

�
k �= 0 and γ �k εkε

�
kεk = 0. On the other hand, Example 1·6 shows

that, when t = 4, (1·4) may be split in cases when neither (A) nor (B) holds. The following
problem therefore appears to be quite deep.

PROBLEM 7·1. Find a necessary and sufficient condition for (1·4) to be split exact.

Generators for homology modules
Recall that G� = 〈(1, 2), . . . , (2�− 1, 2�)〉. Generalising the elements vk defined before

Theorem 1·1, we define v(t)k = {2, 4, . . . , 2k} ∑
σ∈Gk−t+1

σ . By [16, theorem 17.13(i)], or a
direct calculation similar to Lemma 4·2, v(t)k generates a submodule of ker ϕ(t)k .

CONJECTURE 7·2. Suppose that t is a two-power and that k ≤ 2n. Then the homology
module ker ϕ(t)k / im ϕ

(t)
k+t is generated by v(t)k + im ϕ

(t)
k+t.

When t = 1 the conjecture holds trivially because all the homology modules are zero.
When t = 2 it is implied by Theorem 1·1. It has been checked for all n ≤ 16 using MAGMA

and the code available from the author’s webpage.

Restricted homology
Fix s ∈N. If u ∈ ker ϕ(s)k then, by Lemma 3·4, uϕ(t)k ϕ

(s)
k−t = uϕ(s)k ϕ

(t)
k−s = 0. Therefore ϕ(t)k :

F�k → F�k−t restricts to a map ker ϕ(s)k → ker ϕ(s)k−t and we may ask for the homology of the
sequence

ker ϕ(s)k+t

ϕ
(t)
k+t−−→ ker ϕ(s)k

ϕ
(t)
k−→ ker ϕ(s)k−t . (7·1)

The following conjectures suggest that these restricted homology modules, denoted H̄k , are
surprisingly well behaved. They have been checked for all n ≤ 12 using MAGMA and the
code available from the author’s webpage.
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CONJECTURE 7·3. Let n = 2m.
(i) The sequence ker γk+2

εk+2−−→ ker γk
εk−→ ker γk−2 has non-zero homology if and only if

k ∈ {m − 1,m}. Moreover H̄m−1
∼= H̄m

∼= D(m+1,m−1).
(ii) The sequence ker εk+1

γk+1−−→ ker εk
γk−→ ker εk−1 has non-zero homology if and only if

k = m. Moreover H̄m
∼= D(m+1,m−1).

CONJECTURE 7·4. Let n = 2m + 1.
(i) The sequence ker γk+2

εk+2−−→ ker γk
εk−→ ker γk−2 has non-zero homology if and only if

k = m. Moreover H̄m
∼= D(m+1,m).

(ii) The sequence ker εk+1
γk+1−−→ ker εk

γk−→ ker εk−1 is exact.

For example, taking n = 6 as in Example 1·4, the chain complex with restricted maps
0 → ker γ6

ε6−→ ker γ4
ε4−→ ker γ2

ε2−→ ker γ0 → 0 is

0 → 0
ε6−→ F

D(5,1)
ε4−→

F

D(4,2)

F

D(5,1)

ε2−→ F→ 0

which has non-zero homology of D(4,2) uniquely in degree 2. This chain complex is dual
to the chain complex 0 → ker γ5

ε5−→ ker γ3
ε3−→ ker γ1

ε1−→ 0 which has non-zero homology of
D(4,2) uniquely in degree 3. The chain complex 0 → ker ε6

γ6−→ ker ε5
γ5−→ · · · γ2−→ ker ε1

γ1−→
ker ε0 → 0 is

0 → 0
γ6−→ 0

γ5−→ F
γ4−→

D(4,2)

F

D(5,1) ⊕ D(4,2)

F

γ3−→

D(5,1)

F

D(4,2)

F

D(5,1)

γ2−→
F

D(5,1)

F

γ1−→ F→ 0,

where the boxes show the kernels of the maps γk , now each restricted to ker εk . It has non-
zero homology of D(4,2) uniquely in degree 3.

Multistep maps in odd characteristic
Now suppose that F has odd prime characteristic p. Lemma 3·4 generalises to show

that ϕ(s)k+sϕ
(t)
k = 0 whenever p divides

(s+t
s

)
. (Equivalently, a carry arises when s and t

are added in base p.) Generalising the usual definition, we may ask for the homology
Hk = ker ϕ(t)k / im ϕ

(s)
k+s of the sequence

F�k+s
ϕ
(s)
k+s−−→ F�k

ϕ
(t)
k−→ F�k−t . (7·2)

The following two conjectures have been checked for all n ≤ 12 using MAGMA and the code
available from the author’s webpage.

CONJECTURE 7·5. If p = 3 then F�k+2
εk+2−−→ F�k

γk−→ F�k−1 has non-zero homology if and
only if k = �n/2�. Moreover in the exceptional case Hk is isomorphic to the sign module.

Taking n = 2m, James’ p-regularisation theorem (see [14]) implies that sgn ∼= D(m,m)

when F has characteristic 3. The analogue of Proposition 3·3 then implies that sgn is a
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composition factor of F�m , but not of either F�m+1 or F�m−2. Hence Hm has the sign mod-
ule as a composition factor. By the argument seen at the end of the proof of Theorem 1·1,
this will categorify the binomial identity

∑
j

(
n

3 j

)
−

∑
j

(
n

3 j + 1

)
=

⎧⎪⎨⎪⎩
(−1)n if n ≡ 0 mod 3

0 if n ≡ 1 mod 3

(−1)n−1 if n ≡ 2 mod 3.

(7·3)

(This identity follows at once from [9, (6·14) and (6·22)], or most easily, by induction on n.)
For example, when n = 10 the identity is categorified by the chain complex

0 → F�10
γ10−→ F�9

ε9−→ F�7
γ7−→ F�6

ε6−→ F�4
γ4−→ F�3

ε3−→ F�1
γ1−→ F�0 → 0,

which is exact in every degree.

CONJECTURE 7·6. If p = 5 then F�k+4
ϕ
(4)
k+4−−→ F�k

γk−→ F�k−1 has non-zero homology if and
only if k ∈ {�n/2�, �n/2� − 1}. Moreover, if n = 2m is even then Hm−1

∼= D(m+1,m−1) and
Hm

∼= D(m,m), and if n = 2m + 1 is odd then Hm−1
∼= D(m+2,m−1) and Hm

∼= D(m+1,m).

Again it is straightforward to show that the homology modules have the specified simple
modules as composition factors. Somewhat remarkably, the dimensions of these sim-
ple modules appear to be certain Fibonacci numbers, as defined by F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 2. A proof of Conjecture 7·6 will imply that dim D(m,m) = F2m−1

and dim D(m+1,m−1) = dim D(m+2,m−1) = F2m , and categorify a family of binomial identities
including ∑

j

(
5m

5 j

)
−

∑
j

(
5m

5 j + 1

)
= (−1)m F5m−1 (7·4)

and
∑

j

(5m+2
5 j

) − ∑
j

(5m+2
5 j+1

) = (−1)m−1 F5m+1. These identities are somewhat deeper
than (7·3). Taken together they are equivalent to the identity

Fn =
∑

k

(−1)k
(

n

� n−1−5k
2 �

)
(7·5)

proved by Andrews in [1] and later, with a simpler inductive proof, by Gupta in [10]. For
example, since �10r − 2 − 5k/2� ≡ (−1)k−1 mod 5, Andrews’ identity implies that F10r−1 =∑

j

(10r−1
5 j−1

) − ∑
j

(10r−1
5 j+1

)
. Since

(5m
5 j

) = (5m−1
5 j

) + (5m−1
5 j−1

)
and

( 5m
5 j+1

) = (5m−1
5 j+1

) + (5m−1
5 j

)
, this is

equivalent to (7·4) when m is even.
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