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PROBLEMS AND SOLUTIONS

PROBLEMS

00.3.1. Sampling Distribution of OLS under a Logit Mogdpltoposed by Badi
H. Baltagi In the spirit of Phillips and Wicken§1978 and Oksaneri1991),
this problem considers a simple logit regression model

Yo = A(BX) + Uy (1)

fort=1,2, whereA(z) = e¥(1+e?) for —co <z<oco.LetB=1x;=1 X, =
2 and assume that thg's are independent

(a) Derive the sampling distribution of the least squares estimat@®; ak., assum-
ing a linear probit model when the true model is a logit model

(b) Derive the sampling distribution of the least squares residuals and verify that the
estimated variance (ﬁms is biased

REFERENCES
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00.3.2. A Second-Degree Matrix Equatipproposed by Heinz Neudecker
Let XAX = A for all matricesA, the unknown matrixX being nonsingular
Show then thaX = +1.

SOLUTIONS

99.4.1. The KPSS Test for Cointegration in Case of Bivariate Regressions
with Linear Trends-Solution proposed by Uwe Hassldn addition to the co-
integration model

y;=a+bx +e, b+0,e~1(0), t=1,...,T, (1)
and the scalar(1) regressor with drift

X; = Xi—1 = &+ Uy, w € M\{0}, u, ~ 1(0), 2
| assume the FCLT

[rT]

T05 21 g = B(r) = wW(r), (3)
i<
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whereW(r) is a standard Brownian motion aef is proportional to the spec-
tral density ofe, at frequency zeroThe KPSS statistic is defined as

T t
KPSS= (@T)-thz‘,lsz, S = glej,

where® is a consistent estimator computed from the OLS residgallsshall
show that

(&2T) %G1y = Val(r), (4)

where
V,(r) = (2= 3r)rw(1) + W(r) + 6r(r — 1)f1W(r) dr
0

is the second-level Brownian bridge from Kwiatkowski et @992 eq 16).
By doing sq statementsi) and(ii) are proven at the same time because from
(4) it follows that

1
KPSS= f VA(r) dr.
0
To establish(4), | make use of the result by We&t988):
. 122 12w 1 1
T@b-b=N|0,—F |=— rdw(r) — -W(Q) ). (5)
I M 0 2

Next it is important to note that the linear trend dominatefrom (2),

t
X, = Xo + ut+ X, U
i=1
= 0(1) + O(T) + 0,(T%9),

so that

[rT] r r-2
T‘ZZXJ:uf sds= 2 (6)

=1 0 2
It is straightforward that3), (5), and(6) sum up to

[rT] [rT] [rT]

T Y g=T%®b-bX(x-X+T %> (g8
j=1 j=1 =1

12 fldw —1w1 B2 1) + o (W(r) — rw(L
= , 0r (r) 5 (1) 2(r ) + w(W(r) — rw(l))
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or

1
(@%T) %5Gry= —6r(r — 1)<f rdwi(r) — %W(l)) + W(r) — rw(d),
0

where this last expression equdsr) from (4) because

1 1

f rdwW(r) = W(1) —f W(r) dr.
0 0

This completes the proof

REFERENCE
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1397-1418

99.4.2. A Modified Estimator of the Error Variance in Linear Errors-
in-Variables Models-Solution proposed by Hua LiangA simple calculation
deduces thag, — B = (W'W — n3,) " HYWT(e — UB) + 3,8} and § =
WT(B — Bn) + (g — U;TB). Note that under the condition of the theorem
VA(B, — B) converges to a normal distribution with mean zero and covari-
ance matrix3 " 1C3 % wheres = E(XXT) andC is the covariance matrix of
W(e — UTB). This fact and the law of large numbers imply that

n

1 n
- > sk = - > ef+0p(n"Y2) fork=2,3,
i=1 i=1

so thaty, and &2 converge in probability ta? anda? respectively
In addition

1
=
wheres,, = 1/n(WTW — n3,,). The second term is asymptotically negligible

because/n(B — Bn) = Op(1) and YT, W' — EW =
It follows from the above arguments that

SO 13 _
Zs = m;l(si up) + ni:ElvviT{m(B B},

N = T = 5 3 (= UTB) + 0p(1). (2)

Substitutinge,? given by (1) in (2), we get the expression

\/ﬁ(é—nz_o' = FE{(SI TB)Z_(0'2+,3TEUU/3) 2 (8| iTﬂ)}

+ 0p(1).
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A central limit theorem and a direct simplification complete the proof of the
theorem

Remark In the above argumentsie assume that,,, is known Sometimes
it is unknown and must be estimatethe usual method of doing so is by par-
tial replication so that we observey; = X; + Uy, j =1,...,m;.

We consider here only the usual case timat= 2 and assume that a fraction
8 of the data has such replicatéet W be the sample mean of the replicates
Then a consistentinbiased method of moments estimateXqy, is

M=

> (W — W)W —W)T
1j=1

iuu = n
;(mi -1

One estimator of3, say B;;, changes only slightly to accommodate the repli-
cates becoming

n -1 n
B = {EWV‘VF— n(1—5/2)iuu} X 2 WY,

i=1 i=1
By replacingB, ands,, by B and3,,, we similarly define a modified estima-
tor 62, which possess the same advantagé,asThe details are omitted

99.4.3. The Relative Efficiency of the Between-Estimator with Respect to the

Within-Estimator-Solution® proposed by Shiferaw Gurmui submit a solu-

tion that is generally applicable wheg is a vector of regressarset D =

Int ® er denote théNT X N) matrix of individual dummy variablesvhereeg

is a matrix of ones of dimensioR. Define My = Iyt — Pp as the matrix that
delivers deviations from the individual meams general P, = z(z'z)"'z’ shall
denote the projection matrix an Rewrite (4) of the problem in matrix nota-
tion as

Moy = Mp X8, + QXB;, + MU, 1)

wheree = ey7, Me = Iyt — P: Obtains deviations of observations from the over-
all meansandQ = (P, — P.) = (Mg — Mp).

(a) Observe thaMp and M, are symmetric idempotent matrices and that
PoP. = P.. The key in establishing the result is to note that the vector of re-
gressorsMpx and Qx are orthogonali.e., x’MpQx = 0. This follows from
MpQ = 0. Hence the least squares estimator@f from (4) in the problem is
the within-estimatar

ﬁw = (X/MDX)_lX/MDy = vay/Wxx’ (2)
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whereW,, = 3L S0 (% — %) (Ve — %), and that ofg,, is the between-
estimator

By = [X'QX]x'Qy = Bj,/Bj, ©)
whereBj, = SIL (%, — X )(%:. — ¥.) andBj, = S{Ly (%, — X )2

(b) The error term in1) can be decomposed as= Du + v with McD =0
andM.u = Mcr. Hence the covariance matrix of the disturbance ternmidnis
E(Mcrr'Mg) = 02M, with generalized inverse, 2M,. BecauseMp M, = Mp
andQM, = Q, the GLS on(1) gives

Bar = (X'Mp 0, *McMp X)X’ Mp 0, *McMp y
= (X'MpX) 'X'Mpy = B,
and
Bg = [X'Qo, M Qx] ' [X'Qo, *M,Qy]
= [X'Q]'X'Qy = B
Accordingly GLS on(1) is equivalent to OLS orl).

(c) Rewrite (1) of the problem in matrix form ag = ea + X8 + Du + v.
Premultiplying both sides bilp M = Mp, the within-regression equation is

MDszDXB‘l'MDV. (4)
Least squares on this equation yields the within-estimator with
var(By) = a2 (X' MpX) ™t = 0.2 /Wy (5)

Next, consider the between-regression mogeF a + X/ 8 + u; + 7; with
var(u; + 7) = T-Y(ToZ + o 2). Stacking over alN observationsthis can be
written asy = eya + X 8 + w + v, wherey = (y4,V,...,¥n.) and so on
Premultiplying both sides of the between-regression equatioNMby= Iy —

P, yields
Mg,V = Mg X B+ Mg, + Mg, 7, (6)
where M, obtains deviations of across time means from the overall means

en
Least squares of6) yields the between-estimator with

var(By,) = T HTo2 + 02) (X' Mg X )t = (To2 + 0.2)/B. (7)

Accordingly using(5) and(7) for the scalar caséhe relative efficiency of the
between-estimator with respect to the within-estimator is

var(By,)/var(By) = [Bu /W l[02/(To2 + a2)]
= [Byx /Wi, J[(1 — p)/(Tp + (1= p))].
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(d) Consider the test of linear restriction = R(Bw,Bp)’ = 0, whereR =
(1 —1). Because the covariance between the two estimators is thergsquare
of thet statistic is

a1 = (Bw — Bp)?[var(B,) + var(By,)] % (8)

where the variance terms are given(5) and (7). (Observe that least squares

on (4) in the problem oK1) yields incorrect variance of the between-estimator!

The statistiq8) has an approximatg?(1) distribution The usual Hausman test

for panel data is based on the comparison of the GLS estinmiy)ﬁ’g, and the
within-estimatoy i.e. Ho:y, = By — Bw = 0. It is well known that the GLS
estimator can be expressed as the weighted average of the between- and within-
estimators(see Hsiap 1986 p. 36). By specializing to a single independent
variable casgwe have

ﬁg = ABAb + (1_ A):BAW or :ég - Bw = A(B\b - :éw)a

whereA = [(1 — p)B,/ (W + (1 — p)Byy)] is the weight It follows that Haus-
man’s test is equivalent to testing = A(B, — Bw) = 0. The corresponding
test statistic is

% = [A(Bu— Bo)]2[A2(var(B,,) + var(By))] * = gy 9)
This shows thag, and g,, the Hausman'’s test foy, = 0, are numerically
identical

Remarks These results are applicable to models viitlegressorsas appro-
priate The solutions in part¢a) and (b) hold by replacingx by an (NT X k)
matrix X and by suitably modifyingV’s and B's. For part(c), the variance—
covariance matrices of the estimators can be compaed

var(B,,) — var(fy) = c2(X'MpX)™t = (To2 + 02)(TX' Mg, X ) %

Finally, by analogous minor modification of the proof in pdd), Hausman'’s

test statistic can be shown to be numerically equivalent to the test statistics of
Ho: A(Bp — Bw) = 0 andHy: (By, — Bw) = 0, whereA now is a nonsingular
matrix.

NOTE

1. Excellent solutions have been proposed independently birtt and by B Baltagi the
poser of the problem
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99.4.4. An Upper Bound for the Eigenvalues of the Product of a Symmetric
Idempotent and a Non-Negative Definite MatriSetution! proposed by Heinz
NeudeckerAs (n X n) B is symmetric idempotenit is expressible aB =TT,
with T'T = I, k being the rank oB. It is well known thatATT’ andT’AT have
k eigenvalues in commorpart from these ATT' hasn — k additional zero
eigenvaluesLet us consider th& common eigenvalues; (AB).

According to the Poincare separation theory

A (AB) = A (T'AT) = wi (A (i=1,...,k).
The othem — k (zerg eigenvalues satisfy

0= A (AB) = u;(A (i=k+1...,n)

asA = 0. This establishes the solution

A (AB) = u;(A) (i=1,...,n).

NOTE

1. Excellent solutions have been proposed independently. ByuStanenG.PH. Styan and Hl
Werner and by.JGraffelman and Mvan de Veldenthe posers of the problem

99.4.5. Asymptotic Bias of the OLS Estimator for a Censored Pareto Regres-
sion Model-Solution proposed by X. Sapra

(a) Because OLS applied to observed daya x;),i = 1,2,...,n yields the

estimate

B = (550", (1)
we have

plim B = [var(x)] *[cov(x, y)]. 2

Given thaty” andx have a joint(m + 1) Pareto density function stated in the
problem we have from a generalization of .§§0.1) in Johnson and KotZ1972
p. 285 that

E(x|y*) = (1+a ly*)e e=(11...1), 3)

which is linear iny* with slopea™™. Therefore it follows from eq (2) and a
proposition in Chung and Goldbergélr984 Sect 3, p. 532) that

plim B = AB, ()
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where
A = cov(y,y*)/var(y*)
=a [k 3a—1)3%(a—-2)+ (ak! 2 —a?)(a—2)
+a(l—k>?)(a—-1)2?], a> 2, (5)

where the expression on the right-hand sidg®fis obtained by noting that
the marginal density of* is the univariate standard Pareto density

f(y*) =ay @, y*>1 (6)

andy = min(k, y*). Hence it follows from (4) that each element g8 has the
same proportional asymptotic bias with common proportionality conatgiven

in (5).

(b) As k — oo, A approaches 1 and therefqukm 8 = B. Furthermore
plim & = E(y) — (plim B)'E(x). 7
Substituting for expectations on the right-hand sidé®fyields
plima = Aa +{(a— 1) [(1-1Na—k' 2]}, a>2, (8)

which is equal tax ask — o. Hence 8 andé are asymptotically unbiased as
k — o0 andn — oo.
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