
PROBLEMS AND SOLUTIONS

PROBLEMS

00+3+1+ Sampling Distribution of OLS under a Logit Model, proposed by Badi
H+ Baltagi+ In the spirit of Phillips and Wickens~1978! and Oksanen~1991!,
this problem considers a simple logit regression model

yt 5 L~bxt ! 1 ut (1)

for t 5 1,2, whereL~z! 5 ez0~11 ez! for 2` , z , `+ Let b 5 1, x1 5 1, x2 5
2 and assume that theut’s are independent+

~a! Derive the sampling distribution of the least squares estimator ofb, i+e+, assum-
ing a linear probit model when the true model is a logit model+

~b! Derive the sampling distribution of the least squares residuals and verify that the
estimated variance ofZbols is biased+

REFERENCES

Oksanen, E+H+ ~1991! A simple approach to teaching generalized least squares theory+ American
Statistician45, 229–233+

Phillips, P+C+B+ & M +R+ Wickens ~1978! Exercises in Econometrics, vol+ 1+ Oxford: Phillip
Allan0Ballinger+

00+3+2+ A Second-Degree Matrix Equation, proposed by Heinz Neudecker+
Let XAX' 5 A for all matricesA, the unknown matrixX being nonsingular+
Show then thatX 5 6I+

SOLUTIONS

99+4+1+ The KPSS Test for Cointegration in Case of Bivariate Regressions
with Linear Trends—Solution, proposed by Uwe Hassler+ In addition to the co-
integration model

yt 5 a 1 bxt 1 et , b Þ 0, et ; I ~0!, t 5 1, + + + ,T, (1)

and the scalarI ~1! regressor with drift

xt 2 xt21 5 m 1 ut , m [ R\$0%, ut ; I ~0!, (2)

I assume the FCLT

T20+5 (
j51

@rT #

ej n B~r ! 5 vW~r !, (3)
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whereW~r ! is a standard Brownian motion andv2 is proportional to the spec-
tral density ofet at frequency zero+ The KPSS statistic is defined as

KPSS5 ~ [vT !22 (
t51

T

St
2, St 5 (

j51

t

ej ,

where [v is a consistent estimator computed from the OLS residualset + I shall
show that

~ [v2T !20+5S@rT # n V2~r !, (4)

where

V2~r ! 5 ~2 2 3r !rW~1! 1 W~r ! 1 6r ~r 2 1!E
0

1

W~r ! dr

is the second-level Brownian bridge from Kwiatkowski et al+ ~1992, eq+ 16!+
By doing so, statements~i! and ~ii ! are proven at the same time because from
~4! it follows that

KPSSn E
0

1

V2
2~r ! dr+

To establish~4!, I make use of the result by West~1988!:

T 1+5~ Zb 2 b! n NS0,
12v2

m2 D[
12v

m SE
0

1

r dW~r ! 2
1

2
W~1!D+ (5)

Next, it is important to note that the linear trend dominatesxt from ~2!,

xt 5 x0 1 mt 1 (
i51

t

ui

5 O~1! 1 O~T ! 1 Op~T 0+5!,

so that

T22 (
j51

@rT #

xj n mE
0

r

s ds5
mr 2

2
+ (6)

It is straightforward that~3!, ~5!, and~6! sum up to

T20+5 (
j51

@rT #

ej 5 T20+5~b 2 Zb! (
j51

@rT #

~xj 2 Sx! 1 T20+5 (
j51

@rT #

~ej 2 Se!

n 2
12v

m SE
0

1

r dW~r ! 2
1

2
W~1!D mr

2
~r 2 1! 1 v~W~r ! 2 rW~1!!
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or

~ [v2T !20+5S@rT # n 26r ~r 2 1!SE
0

1

r dW~r ! 2
1

2
W~1!D1 W~r ! 2 rW~1!,

where this last expression equalsV2~r ! from ~4! because

E
0

1

r dW~r ! [ W~1! 2E
0

1

W~r ! dr+

This completes the proof+

REFERENCE

West, K+D+ ~1988! Asymptotic normality, when regressors have a unit root+ Econometrica56,
1397–1418+

99+4+2+ A Modified Estimator of the Error Variance in Linear Errors-
in-Variables Models—Solution, proposed by Hua Liang+ A simple calculation
deduces thatbn 2 b 5 ~WTW 2 nSuu!

21$WT~« 2 Ub! 1 Suub% and [«i 5
Wi

T~b 2 bn! 1 ~«i 2 Ui
T b!+ Note that, under the condition of the theorem,

!n~bn 2 b! converges to a normal distribution with mean zero and covari-
ance matrixS21CS21, whereS 5 E~XXT! andC is the covariance matrix of
W~« 2 U Tb!+ This fact and the law of large numbers imply that

1

n (
i51

n

[«i
k 5

1

n (
i51

n

«i
k 1 oP~n2102! for k 5 2,3,

so thatnn andjn
2 converge in probability ton2 anda2, respectively+

In addition,

1

!n (
i51

n

[«i 5
1

!n (
i51

n

~«i 2 Ui
T b! 1

1

n (
i51

n

Wi
T$!n~b 2 bn!%,

whereSn 5 10n~WTW 2 nSuu!+ The second term is asymptotically negligible
because!n~b 2 bn! 5 Op~1! and 10n(i51

n Wi
T r EW1

T 5 0+
It follows from the above arguments that

!n [sn
2 5 !nsn

2 2
n

!na2 (
i51

n

~«i 2 Ui
T b! 1 oP~1!+ (2)

Substitutingsn
2 given by~1! in ~2!, we get the expression

!n~ [sn
2 2 s2! 5

1

!n (
i51

n H~«i 2 Ui
T b!2 2 ~s2 1 bTSuub! 2

n

a2 ~«i 2 Ui
T b!J

1 oP~1!+
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A central limit theorem and a direct simplification complete the proof of the
theorem+

Remark+ In the above arguments, we assume thatSuu is known+ Sometimes
it is unknown and must be estimated+ The usual method of doing so is by par-
tial replication, so that we observeWij 5 Xi 1 Uij , j 5 1, + + + ,mi +

We consider here only the usual case thatmi # 2 and assume that a fraction
d of the data has such replicates+ Let RWi be the sample mean of the replicates+
Then a consistent, unbiased method of moments estimate forSuu is

ZSuu 5

(
i51

n

(
j51

mi

~Wij 2 RWi !~Wij 2 RWi !
T

(
i51

n

~mi 2 1!

+

One estimator ofb, say bn
*, changes only slightly to accommodate the repli-

cates, becoming

bn
* 5 H(

i51

n

RWi RWi
T 2 n~12 d02! ZSuuJ21

3 (
i51

n

RWi Yi +

By replacingbn andSuu by bn
* and ZSuu, we similarly define a modified estima-

tor [sn
*2, which possess the same advantage as[sn

2+ The details are omitted+

99+4+3+ The Relative Efficiency of the Between-Estimator with Respect to the
Within-Estimator—Solution,1 proposed by Shiferaw Gurmu+ I submit a solu-
tion that is generally applicable whenxit is a vector of regressors+ Let D 5
INT J eT denote the~NT3 N! matrix of individual dummy variables, whereeR

is a matrix of ones of dimensionR+ Define MD 5 INT 2 PD as the matrix that
delivers deviations from the individual means+ In general, Pz 5 z~z'z!21z' shall
denote the projection matrix onz+ Rewrite ~4! of the problem in matrix nota-
tion as

Mey 5 MD xbw 1 Qxbb 1 Meu, (1)

wheree5 eNT, Me 5 INT 2 Pe obtains deviations of observations from the over-
all means, andQ 5 ~PD 2 Pe! 5 ~Me 2 MD!+

~a! Observe thatMD and Me are symmetric idempotent matrices and that
PDPe 5 Pe+ The key in establishing the result is to note that the vector of re-
gressorsMD x and Qx are orthogonal, i+e+, x 'MDQx 5 0+ This follows from
MDQ 5 0+ Hence, the least squares estimator ofbw from ~4! in the problem is
the within-estimator:

Zbw 5 ~x 'MD x!21x 'MD y 5 Wxy0Wxx, (2)
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where Wxy 5 (i51
N (t51

T ~xit 2 Sxi+!~ yit 2 Syi+!, and that ofbb is the between-
estimator:

Zbb 5 @x 'Qx#21x 'Qy5 Bxy
* 0Bxx

* , (3)

whereBxy
* 5 (i51

N ~ Sxi+ 2 Sx+ + !~ Syi+ 2 Sy+ + ! andBxx
* 5 (i51

N ~ Sxi+ 2 Sx+ + !2+

~b! The error term in~1! can be decomposed asu 5 Dm 1 n with MeD 5 0
andMeu 5 Men+ Hence, the covariance matrix of the disturbance term in~1! is
E~Menn 'Me! 5 sn

2Me with generalized inversesn
22Me+ BecauseMDMe 5 MD

andQMe 5 Q, the GLS on~1! gives

Zbg1 5 ~x 'MD sn
22MeMD x!21x 'MD sn

22MeMD y

5 ~x 'MD x!21x 'MD y 5 Zbw

and

Zbg2 5 @x 'Qsn
22MeQx#21 @x 'Qsn

22MeQy#

5 @x 'Qx#21x 'Qy5 Zbb+

Accordingly, GLS on~1! is equivalent to OLS on~1!+

~c! Rewrite ~1! of the problem in matrix form asy 5 ea 1 xb 1 Dm 1 n+
Premultiplying both sides byMDMe 5 MD, the within-regression equation is

MD y 5 MD xb 1 MD n+ (4)

Least squares on this equation yields the within-estimator with

var~ Zbw! 5 sv
2~x 'MD x!21 5 sv

20Wxx+ (5)

Next, consider the between-regression modelSyi+ 5 a 1 Sxi+
' b 1 m i 1 Tni+ with

var~m i 1 Tni+! 5 T21~Tsm
2 1 sn

2!+ Stacking over allN observations, this can be
written as Sy+ 5 eNa 1 Sx+ b 1 m 1 Tn+ , where Sy+ 5 ~ Sy1+, Sy2+, + + + , SyN+!

' and so on+
Premultiplying both sides of the between-regression equation byMeN

5 IN 2
PeN

yields

MeN
Sy+ 5 MeN

Sx+ b 1 MeN
m 1 MeN

Tn+ , (6)

whereMeN
obtains deviations of across time means from the overall means+

Least squares on~6! yields the between-estimator with

var~ Zbb! 5 T21~Tsm
2 1 sn

2!~ Sx+'MeN
Sx+ !21 5 ~Tsm

2 1 sn
2!0Bxx+ (7)

Accordingly, using~5! and~7! for the scalar case, the relative efficiency of the
between-estimator with respect to the within-estimator is

var~ Zbw!0var~ Zbb! 5 @Bxx0Wxx# @sv
20~Tsm

2 1 sn
2!#

5 @Bxx0Wxx# @~12 r!0~Tr 1 ~12 r!!# +
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~d! Consider the test of linear restrictiong1 5 R~bw,bb!' 5 0, whereR 5
~12 1!+ Because the covariance between the two estimators is zero, the square
of the t statistic is

q1 5 ~ Zbw 2 Zbb!2 @var~ Zbw! 1 var~ Zbb!#21, (8)

where the variance terms are given in~5! and ~7!+ ~Observe that least squares
on ~4! in the problem or~1! yields incorrect variance of the between-estimator!!
The statistic~8! has an approximatex2~1! distribution+ The usual Hausman test
for panel data is based on the comparison of the GLS estimator, say Zbg, and the
within-estimator, i+e+ H0 : g2 5 bg 2 bw 5 0+ It is well known that the GLS
estimator can be expressed as the weighted average of the between- and within-
estimators~see Hsiao, 1986, p+ 36!+ By specializing to a single independent
variable case, we have

Zbg 5 D Zbb 1 ~12 D! Zbw or Zbg 2 Zbw 5 D~ Zbb 2 Zbw!,

whereD 5 @~12 r!Bxx0~Wxx 1 ~12 r!Bxx!# is the weight+ It follows that Haus-
man’s test is equivalent to testingg2 5 D~bb 2 bw! 5 0+ The corresponding
test statistic is

q2 5 @D~ Zbw 2 Zbb!# 2 @D2~var~ Zbw! 1 var~ Zbb!!#21 5 q1+ (9)

This shows thatq1 and q2, the Hausman’s test forg2 5 0, are numerically
identical+

Remarks+ These results are applicable to models withk regressors, as appro-
priate+ The solutions in parts~a! and ~b! hold by replacingx by an ~NT 3 k!
matrix X and by suitably modifyingW’s and B’s+ For part~c!, the variance–
covariance matrices of the estimators can be compared, i+e+,

var~ Zbw! 2 var~ Zbb! 5 sv
2~X 'MD X !21 2 ~Tsm

2 1 sn
2!~T PX+'MeN

PX+ !21+

Finally, by analogous minor modification of the proof in part~d!, Hausman’s
test statistic can be shown to be numerically equivalent to the test statistics of
H0 : D~bb 2 bw! 5 0 andH0 : ~bb 2 bw! 5 0, whereD now is a nonsingular
matrix+

NOTE

1+ Excellent solutions have been proposed independently by H+ Erlat and by B+ Baltagi, the
poser of the problem+

REFERENCE
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99+4+4+ An Upper Bound for the Eigenvalues of the Product of a Symmetric
Idempotent and a Non-Negative Definite Matrix—Solution,1 proposed by Heinz
Neudecker+ As ~n 3 n! B is symmetric idempotent, it is expressible asB 5 TT ',
with T 'T 5 Ik, k being the rank ofB+ It is well known thatATT' andT 'AT have
k eigenvalues in common+ Apart from these, ATT' hasn 2 k additional zero
eigenvalues+ Let us consider thek common eigenvaluesl i ~AB!+

According to the Poincare separation theory,

l i ~AB! 5 l i ~T
'AT! # m i ~A! ~i 5 1, + + + , k!+

The othern 2 k ~zero! eigenvalues satisfy

0 5 l i ~AB! # m i ~A! ~i 5 k 1 1, + + + , n!

asA $ 0+ This establishes the solution

l i ~AB! # m i ~A! ~i 5 1, + + + , n!+

NOTE

1+ Excellent solutions have been proposed independently by S+ Puntanen, G+P+H+ Styan and H+J+
Werner and by J+ Graffelman and M+ van de Velden, the posers of the problem+

99+4+5+ Asymptotic Bias of the OLS Estimator for a Censored Pareto Regres-
sion Model—Solution, proposed by S+K+ Sapra+

~a! Because OLS applied to observed data~ yi
' , xi !

', i 5 1,2, + + + , n yields the
estimate

Zb 5 ~SSxx!
21SSxy, (1)

we have

plim Zb 5 @var~x!#21 @cov~x, y!# + (2)

Given thaty* andx have a joint~m 1 1! Pareto density function stated in the
problem, we have from a generalization of eq+ ~20+1! in Johnson and Kotz~1972,
p+ 285! that

E~x6y* ! 5 ~11 a21y* !e, e5 ~1,1, + + +1!', (3)

which is linear iny* with slopea21+ Therefore, it follows from eq+ ~2! and a
proposition in Chung and Goldberger~1984, Sect+ 3, p+ 532! that

plim Zb 5 lb, (4)
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where

l 5 cov~ y, y* !0var~ y* !

5 a21 @k22a~a 2 1!2~a 2 2! 1 ~ak12a 2 a2!~a 2 2!

1 a~12 k22a!~a 2 1!2# , a . 2, (5)

where the expression on the right-hand side of~5! is obtained by noting that
the marginal density ofy* is the univariate standard Pareto density

f ~ y* ! 5 ay*2~a11!, y* . 1, (6)

andy 5 min~k, y*!+ Hence, it follows from ~4! that each element ofZb has the
same proportional asymptotic bias with common proportionality constantl given
in ~5!+

~b! As k r `, l approaches 1 and thereforeplim Zb 5 b+ Furthermore,

plim [a 5 E~y! 2 ~ plim Zb!'E~x!+ (7)

Substituting for expectations on the right-hand side of~7! yields

plim [a 5 la 1 $~a 2 1!21 @~12 l!a 2 k12a#%, a . 2, (8)

which is equal toa ask r `+ Hence, Zb and [a are asymptotically unbiased as
k r ` andn r `+
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