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Abstract

We show that if A ⊂ {1, . . . , N} has no solutions to a− b = n2 with a, b ∈ A and n ≥ 1,
then

|A| � N

(logN)c log log log N

for some absolute constant c > 0. This improves upon a result of Pintz, Steiger, and
Szemerédi.

1. Introduction

Sárközy [Sár78] and Furstenberg [Fur77] independently showed that any set of integers whose
difference set contains no non-zero squares must have asymptotic density zero, answering a
question of Lovász. Sárközy’s proof is based on the circle method, and gives the quantitative
bound that if A ⊆ {1, . . . , N} has no non-zero square differences, then |A| ≤ N/(logN)1/3+o(1),
whereas Furstenberg’s result relies on ergodic theory. There have since been a variety of proofs
of the qualitative result |A| = o(N); we refer the reader to the introduction of [Ric19] for more
details.

Sárközy’s argument was refined by Pintz, Steiger, and Szemerédi [PSS88] who improved
the upper bound on the size of A ⊆ {1, . . . , N} with no non-zero square differences
to

|A| � N

(logN)c log log log log N
(1)

for some absolute constant c > 0. (Here we use Vinogradov’s notation X � Y to mean that
X ≤ CY for some absolute constant C > 0.) One interesting feature of (1) is that it is a
noticeably stronger bound than what is currently known for Roth’s theorem on three-term arith-
metic progressions [BS21], despite both proofs following a Fourier-analytic density increment
argument.

In this paper, we improve the upper bound (1) for the size of sets of integers with no square
differences.
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Theorem 1. Let N be sufficiently large. If A ⊂ {1, . . . , N} has no solutions to a− b = n2 with
a, b ∈ A and n ≥ 1, then

|A| � N

(logN)c log log log N

for some absolute constant c > 0.

Our proof of Theorem 1 follows a Fourier-analytic density increment argument as with previ-
ous approaches, but is actually more direct (and, we hope, simpler) than the approach of Pintz,
Steiger, and Szemerédi. The key new tool in our work is an upper bound for the additive energy
of sets of rationals with small denominator, which may be of independent interest. To state this,
we recall that the 2m-fold additive energy of a set B is given by

E2m(B) := |{(b1, . . . , b2m) ∈ B2m : b1 + · · · + bm = bm+1 + · · · + b2m}|.
We also introduce the notation

Q=q :=
{
a

q
∈ [0, 1] : 1 ≤ a ≤ q and gcd(a, q) = 1

}
,

Q≤Q :=
⋃

1≤q≤Q

Q=q,

to denote the set of reduced rationals in [0, 1] with denominator precisely q, and for the set of
all rationals with denominator at most Q. Our additive energy result is then the following.

Theorem 2. Let Q ≥ 4 and m ≥ 2. Suppose that B ⊂ Q≤Q is such that there is n ≥ 1 with
|B ∩ Q=q| ≤ n for any 1 ≤ q ≤ Q. Then we have

E2m(B) ≤ (logQ)Cm
(Qn)m

for some absolute constant C > 0.

We note that there is a trivial lower bound E2m(B) ≥ |B|m from diagonal solutions where
bi = bi+m for 1 ≤ i ≤ m. If B contains n rationals with denominator q for each q ∈ [Q/2, Q], then
|B| 	 nQ and we see that Theorem 2 gives an upper bound of the form |B|m(log |B|)Cm

, and so
the contribution from the diagonal terms is comparable to the whole contribution. Thus, sets of
rationals with small distinct denominators have similar additive energy estimates to dissociated
sets where the only solutions to b1 + · · · + bm = bm+1 + · · · + b2m are the diagonal ones.

Dissociated sets have been used in additive combinatorics since at least the work of
Chang [Cha02], and Theorem 2 allows one to extend Chang’s ideas to sets whose large
Fourier coefficients are close to rationals with small denominators, as is the situation in the
Furstenberg–Sárközy problem. The original argument of Pintz, Steiger, and Szemerédi can be
viewed as showing that there is a lack of additive structure in the rationals which make up
the large Fourier coefficients, but Theorem 2 allows for a more efficient and direct use of this
idea. Indeed, the original argument of [PSS88] proves (implicitly) a lower bound for the size of
the m-fold sumset, namely something of the strength of |mB| 	m,ε |B|m−ε, which follows from
Theorem 2 and the simple inequality |mB| ≥ |B|2m/E2m(B), which is an immediate consequence
of the Cauchy–Schwarz inequality. An important feature of Theorem 2 for our work is that it
remains non-trivial even with m as large as a small multiple of log logQ.

Clearly one can have sets B ⊂ Q≤Q with very large additive energy if many elements of
B have the same denominator; for example, if Q is prime and B = {a/Q : 1 ≤ a < Q}, then
E2m(B) = E2m({1, . . . , Q− 1}) 	m Q2m−1. Some hypothesis restricting the size of |B ∩ Q=q| ≤
n is therefore natural for this problem.
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Other results and generalizations. For comparison, the best known lower bound for the size
r(N) of the largest set A ⊂ {1, . . . , N} with no non-zero square differences is much smaller than
the upper bound in Theorem 1. Ruzsa [Ruz84] gives a construction that shows, in particular, that
r(N) 	 N0.73. The constant in the exponent here has been slightly improved by Lewko [Lew15],
but even whether r(N) 	 N3/4 is open. We do not know where the truth lies, and it remains a
fascinating open problem whether the true order of magnitude of r(N) is N1−o(1) or N1−c for
some absolute constant c > 0.

For the analogous problem in the function field case, where Z is replaced by the polynomial
ring Fq[t] over some finite field Fq, much stronger quantitative bounds are known. Using the
polynomial method, Green [Gre17] has recently shown that if A ⊂ Fq[t]deg<n contains no non-zero
square differences, then

|A| � q(1−c(q))n, (2)

where c(q) > 0 is some constant depending only on q. As Fq[t]deg<n has size qn, this bound is
analogous to a bound of the shape r(N) � N1−c in the integer case. The polynomial method
used by Green is very different to the analytic arguments used in this paper, and depends in a
fundamental way on the bounded characteristic of Fq[t].

The method of Pintz, Steiger, and Szemerédi [PSS88] has been generalised to yield a similar
bound for related problems. This was done for sets without differences of the form nk for any
fixed k ≥ 3 by Balog, Pelikan, Pintz, and Szemerédi [BPPS94], and then recently by Rice [Ric19]
to differences of the form f(n) where f ∈ Z[x] is any intersective polynomial1 of degree at least
two. These proofs directly extend the method of [PSS88], and as such it seems likely that one
could combine the ideas of [BPPS94] and [Ric19] with those in this paper to obtain a quantitative
bound of strength comparable to Theorem 1 for these generalisations; we do not address these
questions here.

Recent work of the second author [May20] showed that any system of polynomials simulta-
neously attain values with small fractional parts. There are various similarities with this work
(a density increment argument enhanced by there being few solutions to linear equations involv-
ing rationals with small denominator), but there the problem was more structured which allowed
for an almost optimal bound of the form N1−c, whereas in this situation we are forced to consider
much more arbitrary sets A.

An upper bound for the additive energy of sets of well-distributed rationals similar (qual-
itatively) to Theorem 2 has also been applied within theoretical computer science, where
it was used by Bourgain, Dilworth, Ford, Konyagin, and Kutzarova [BDFKK11] to con-
struct matrices satisfying the restricted isometry property. It follows from their Lemma 5,
for example, that if B ⊂ Q≤Q is such that for any 1 ≤ q ≤ Q we have |B ∩ Q=q| ≤ 1,
then, for any ε > 0, we have E2m(B) �m,ε Q

ε |B|m, where the dependence on m and ε is
unspecified. It is vital for our purposes that we explicitly control the dependence on m
and ε.

2. Outline

In this section, we sketch how Theorem 2 can be used to give Theorem 1. As mentioned in the
introduction, our proof is similar to the original work of Sárközy [Sár78] (and its later refinements)
in that we base our argument on a density increment argument coming out of the circle method.
Our Theorem 2 allows us to show that no set A can have many large Fourier coefficients which

1 A polynomial f ∈ Z[x] is intersective if it is non-zero and for every q ∈ N there is n ∈ Z such that q | f(n).
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are rationals with small distinct denominators, and this is the key which allows us to have a
more efficient density increment argument than that of [PSS88].

First we recall the basic setup. If A ⊂ {1, . . . , N} has no non-zero square differences and
density α = |A|/N , then by the circle method

0 = |{(a1, a2, n) : a1 − a2 = n2, a1, a2 ∈ A, 1 ≤ n ≤ N1/2}|

=
∫ 1

0
|1̂A(γ)|21̂�(γ) dγ,

where 1̂A(γ) =
∑

a∈A e(aγ) is the Fourier transform of the set A, and similarly 1̂� is the Fourier
transform of squares in [1, N ]. Comparing this with the expected count of solutions in a random
set of density α, which is 
 α2N3/2, we find∫ 1

0
|ĝA(γ)|2|1̂�(γ)| dγ 	 α2N3/2, (3)

where gA = 1A − α1[N ] is the balanced function of A.
Following the standard major arc decomposition of the circle method, we then divide the unit

interval [0, 1] into short intervals around rationals with small denominators. For precise details
we refer to § 5. For the purpose of this heuristic discussion, the basic idea is that because we are
working on an additive problem at ‘scale N ’, after rescaling by a factor of N , we can replace
the integration over [0, 1] with a discrete sum over the Fourier coefficients at rationals a/q with
small denominator, say q � N . Thus, (3) becomes∑

1≤a≤q
(a,q)=1
q�N

|ĝA(a/q)|2|1̂�(a/q)| 	 α2N5/2.

The classical major arc asymptotic and Gauss sum estimates (see § 6 for more details) imply
that

|1̂�(a/q)| � N1/2/q1/2.

By Parseval’s identity,
∑ |ĝA(a/q)|2 � αN2 and, hence, the contribution to (3) from those a/q

with q 	 α−2 is negligible. By dividing the remaining range of integration according to the
size of q, and applying the dyadic pigeonhole principle, we deduce that there must exist some
1 ≤ Q� α−2 such that ∑

1≤a≤q
(a,q)=1

q∈[Q,2Q]

|ĝA(a/q)|2 � α2N2Q1/2, (4)

where the use of � hides factors of (log(1/α))O(1). In particular, there are ‘many’ rationals a/q
with q ∈ [Q, 2Q] for which ĝA(a/q) is large. The basic density increment strategy is then to
deduce that this implies that there is a large arithmetic progression, of size 	 N/q 	 α2N , on
which A has density α+ ρα (for some suitable ρ > 0), so this argument can then be iterated.

To explain how such an increment can be found, with a large value of ρ, it is convenient to
use another application of the pigeonhole principle, after dividing into dyadic ranges according
to the size of |ĝA(a/q)|, on (4). This produces some η such that there are � η−2Q1/2 many a/q
with q ∈ [Q, 2Q] such that |ĝA(a/q)| 	 η|A|.

We obtain a good density increment by showing that there must be many such rationals a/q
with the same denominator. More precisely, let ρ be some parameter to be chosen later, and
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suppose that there are at least η−2ρ2 different rationals γ with the same denominator q where
|ĝA(γ)| 	 η|A|. A simple application of orthogonality then yields∑

b (mod q)

(
|{a ∈ A : a ≡ b (mod q)}| − |A|

q

)2

=
1
q

∑
c (mod q)

∣∣∣∣ĝA( cq
)∣∣∣∣2 	 ρ2|A|2

q
,

and it is easily deduced that there must be some arithmetic progression with common difference
q on which A has relative density α+ cρα, for some constant c > 0, as required.

We now show that this must hold, by using the additive energy estimate of Theorem 2 to
obtain a contradiction if there are O(η−2ρ2) many such rationals with any fixed denominator.
This is where our approach diverges significantly from previous works. Let B be the set of
rationals a/q with |ĝA(a/q)| 	 η|A| (so that |B| � η−2Q1/2 by the above discussion). A variation
of the proof of Chang’s lemma shows roughly that, for any choice of m ≥ 1,

η|A||B| �
∑

a/q∈B
|ĝA(a/q)| ≤ |A|1−1/2mN1/2mE2m(B)1/2m. (5)

In particular, there cannot be a large set B with very small additive energy whilst also having
the Fourier transform ĝA of A large on all elements of B. We can now apply Theorem 2 to bound
E2m(B). Theorem 2 yields that, if there are O(η−2ρ2) many rationals of any fixed denominator
in B, then (for some constant C)

E2m(B) � (logQ)Cm
(Qη−2ρ2)m.

Inserting this bound into (5) and rearranging, we deduce that

|B| � ρη−2α−1/2m(logQ)Cm
Q1/2.

This contradicts the lower bound |B| � η−2Q1/2 if

ρ ≈ α1/2m

(logQ)Cm .

Choosing m = c log log(1/α) for some suitably small constant c > 0, and recalling Q� α−O(1),
this yields a contradiction with a choice of ρ satisfying

ρ ≈ exp
(
−O

(
log 1/α

log log 1/α

))
.

In particular, the above discussion implies that there is an arithmetic progression P ⊆ {1, . . . , N}
with |P| ≥ αO(1)N on which A has density α(1 + ρ). We may then iterate this statement, with
P playing the role of {1, . . . , N} (there is a slight technical obstruction that we have glossed
over here, namely that the common difference of P must be a square to preserve the property
of having no non-zero square differences, but this is easily arranged in practice).

After iterating this procedure ≈ ρ−1 log(1/α) many times, we must halt because the density
of a set can never exceed 1. The only reason that our iteration must halt is because the length
of the progression, say N ′, becomes too short, say N ′ � 1. As we have only lost a factor of αO(1)

in the length of the progression at each step, however, this means that

1 	 αO(ρ−1(log(1/α))N 	 exp
(
−(log(1/α))2 exp

(
O

(
log 1/α

log log 1/α

)))
N.

Simplifying this inequality yields log(1/α) 	 (log logN)(log log logN), and Theorem 1 follows.
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Theorem 2 is established using a different, purely elementary, argument. Although it can be
deduced from a direct combinatorial approach based on splitting according to suitable greatest
common divisors we use an iterative argument which we hope is cleaner.

3. Notation

We begin by establishing the basic notation that we use. For any N ≥ 1, we use [N ] to denote
the set {1, . . . , N}. We fix throughout our proof some large integer N (large enough in particular
such that log log logN ≥ 4, say). For functions f : Z → C we define the Fourier transform f̂ :
[0, 1] → C by

f̂(γ) =
∑
n∈Z

f(n)e(γn),

where e(x) = e2πix. We define the convolution of two functions f, g : Z → C by

(f ∗ g)(n) =
∑
m∈Z

f(m)g(n−m)

and use f (∗m)(x) = (f ∗ . . . ∗ f)(x) to denote the m-fold iterated convolution of f (and f (∗0) :=
f). Without subscript, the notation ‖γ‖ denotes the distance of γ ∈ R from the nearest inte-
ger, whereas ‖f‖2 = (

∑
x∈Z |f(x)|2)1/2 and ‖f‖∞ = supx∈Z |f(x)| denotes the usual L2 and L∞

norms.
We write τ3(n) to denote the ternary divisor function

∑
abc=n 1.

4. Addition of rational numbers and the proof of Theorem 2

In this section we prove Theorem 2. This section is essentially self-contained and can be read
independently of the rest of the paper.

Theorem 2 follows quickly from the more technical Proposition 1. To state this we require
some more notation. For any function ω : N → R we define the maximal average function
of ω by

M(ω;X) := max
1≤x≤X

1
x

∑
n≤x

ω(n), (6)

and the logarithmic maximal average by

Mlog(ω;X) := max
2≤x≤X

1
log x

∑
n≤x

ω(n)
n

. (7)

We recall that τ3(n) is the ternary divisor function
∑

abc=n 1. Our technical bound on the additive
energy is as follows.

Proposition 1 (Rationals with small denominators have small additive energy). Let m ≥ 2.
Suppose that B ⊂ Q≤Q and n ≥ 1 is such that for any 1 ≤ q ≤ Q we have |B ∩ Q=q| ≤ n. Then
we have the upper bound

E2m(B) ≤ (m logQMlog(τ2m
3 ;Q))O(m)M(τ2m−2

3 ;Q)(Qn)m.

Proof of Theorem 2 assuming Proposition 1. We claim that, for any x ≥ 3 and k ≥ 0,∑
n≤x

τ3(n)k

n
≤
∏
p≤x

(
1 − 1

p

)−3k

. (8)
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The proof of this is elementary and standard, but textbook references do not track the explicit
dependence on k, which is important for our application, and so we include a proof here. As any
n ≤ x can be uniquely written as a product of prime powers at most x, and τ3 is multiplicative,∑

n≤x

τ3(n)k

n
≤
∏
p≤x

(
1 +

τ3(p)k

p
+
τ3(p2)k

p2
+ · · ·

)
.

We also have, for any 0 ≤ z < 1,

(1 − z)−3k
=
∑
r≥0

(
3k + r − 1

3k − 1

)
zr.

To prove (8) it therefore suffices to show that τ3(pr)k ≤ (3k+r−1
3k−1

)
for all primes p and integer

r ≥ 0. The divisor count τ3(pr) is the number of non-negative a, b, c ≥ 0 such that a+ b+ c = r,
which is

(
r+2
2

)
, and so it suffices to prove that, for any k ≥ 0 and r ≥ 0,(

r + 2
2

)k

≤
(

3k + r − 1
3k − 1

)
.

This is easily established via induction on r, because
(
3k+r−1
3k−1

) ≥ 3k
(
3k+r−2
3k−1

)
and 3

(
r+1
2

) ≥ (r+2
2

)
.

Applying the bound (8), we therefore have

M(τk
3 ;X) ≤ max

1≤x≤X

∑
n≤x

τ3(n)k

n
≤
∏
p≤X

(
1 − 1

p

)−3k

.

By Mertens’ product bound (see, for example, [MV07, Theorem 2.7]) we have
∏

p≤X(1 −
1/p)−1 ≤ (logX)O(1) for all X ≥ 3, whence M(τk

3 ;X) ≤ (logX)O(3k), and via an identical
argument we also have Mlog(τk

3 ;X) ≤ (logX)O(3k). Therefore, Proposition 1 gives

E2m(B) � mO(m)(logQ)O(m9m)(Qn)m.

Simplifying the exponents gives Theorem 2. �

Proposition 1 will be proved via an iterative application of the following lemma. Roughly
speaking, it says that if B ⊂ Q≤L is spread evenly between different denominators, then for any
sets A, C we have

∑
a∈A

∑
b∈B

∑
c∈C 1a−b=c � (|A| |B| |C|)1/2. This should be compared with the

trivial bound of (|A| |C|)1/2 |B|. To attain the quantitative strength of Theorem 1 we will take
care to prove an explicit weighted form of this inequality. To state this lemma precisely we make
the following definition.

Definition 1. An arithmetic function ω : N → R≥0 is sub-multiplicative if ω(ab) ≤ ω(a)ω(b)
for all a, b ∈ N and whenever d | n we have ω(d) ≤ ω(n).

We note, in particular, that τ3(n) is sub-multiplicative. To prove this, note that because τ3
is multiplicative it suffices to consider the case of prime powers, i.e. to show that τ3(pr+s) ≤
τ3(pr)τ3(ps) for any r, s ≥ 0. Using the explicit formula τ3(pm) =

(
m+2

2

)
, this inequality becomes(

r + s+ 2
2

)
≤
(
r + 2

2

)(
s+ 2

2

)
,

or, after rearranging,

2(r + s+ 2)(r + s+ 1) ≤ (r + 2)(r + 1)(s+ 2)(s+ 1).
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This inequality is immediate because (r + 2)(s+ 2) ≥ 2r + 2s+ 4 and (r + 1)(s+ 1) ≥ r + s+ 1.
The fact that τ3(d) ≤ τ3(n) whenever d | n can be proved similarly, using multiplicativity to
reduce to the case of prime powers, when it becomes the elementary inequality

(
r+2
2

) ≤ (s+2
2

)
whenever r ≥ s.

It follows immediately that τ3(n)k is also sub-multiplicative, for any k ≥ 0.

Lemma 1 (Few solutions to linear equations in rationals with small denominators). Let Z ≥ 1
be an integer. Let A ⊂ Q ∩ (0, Z] and C ⊂ Q. Suppose that B ⊂ Q≤Q is such that, for any
1 ≤ 	 ≤ Q, we have |B ∩ Q=�| ≤ n. Let ω : N → R≥0 be any sub-multiplicative function. Then∑′

a/k−b/�=c/q
a/k∈A, b/�∈B, c/q∈C

ω(k) �
(
QnZ(logQ)Mlog(ωτ3;Q)

∑′

c/q∈C
ω(q)τ3(q)2

∑′

a/k∈A
ω(k)

)1/2

.

Here we use
∑′ to indicate that the fractions a/k, b/	, c/q are all reduced (i.e. gcd(a, k) =

gcd(b, 	) = gcd(c, q) = 1).

We note that the summation on the left-hand side in Lemma 1 can also be written as∑
x∈C(ω̃1A ∗ 1−B)(x), where ω̃(a/q) = ω(q) for gcd(a, q) = 1. If ω ≈ 1 and |B| ≈ Qn, then because

τ3 is typically quite small the bound on the right-hand side is roughly of size (|A| |B| |C|)1/2.

Proof. Throughout the proof we use
∑′ to indicate that the fractions in the summation are

reduced.
We claim that for any choice of parameter T > 0, there is a decomposition of A× B into two

sets E1 and E2 such that, if we let

Fi(x) :=
∑′

(a/k,b/�)∈Ei

ω(k)1a/k−b/�=x,

then we have ∑′

c/q∈C
F1

(
c

q

)
≤ QnZ logQ

T
Mlog(ωτ3;Q)

∑′

c/q∈C
ω(q)τ3(q)2 (9)

and ∑′

c/q∈C
F2

(
c

q

)
≤ T

∑′

a/k∈A
ω(k). (10)

The lemma now follows from this claim by choosing

T =
(
QnZ(logQ)Mlog(ωτ3;Q)

∑′
c/q∈C ω(q)τ3(q)2∑′

a/k∈A ω(k)

)1/2

,

because ∑′

a/k−b/�=c/q
a/k∈A, b/�∈B, c/q∈C

ω(k) =
∑′

c/q∈C
(F1(c/q) + F2(c/q)) .

Thus, we are left to establish the claim by constructing the sets E1 and E2. We colour A× B by
assigning (a/k, b/	) the colour C(a/k, b/	) = (d, f) ∈ Z2, where

d = gcd(k, 	) and f = gcd
(
a	− bk

d
, d

)
.

1784

https://doi.org/10.1112/S0010437X22007679 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007679


A new upper bound for sets with no square differences

We then say that the colour (d, f) is ‘popular at a/k’ if

|{b/	 ∈ B : C(a/k, b/	) = (d, f)}| ≥ T

τ3(k)
.

We say that a pair (a/k, b/	) ∈ A× B is ‘popular’ if its colour is popular at a/k, then let E1 ⊂
A× B be the set of all popular pairs, and let E2 be the remaining set (A× B)\E1.

The bound in (10) now follows easily. Indeed, it follows by construction that if (a/k, b/	) is
coloured (d, f), then f |d|k, so for any fixed a/k ∈ A there are at most τ3(k) possible different
colours of pairs of the form (a/k, b/	). As E2 only consists of the pairs which are not popular,
for any colour (d, f) there are at most T/τ3(k) many b/	 ∈ B such that (a/k, b/	) receives the
colour (d, f). Thus, for any a/k ∈ A, there are at most T many b/	 ∈ B such that (a/k, b/	) ∈ E2,
and so ∑′

c/q∈C
F2(c/q) ≤

∑′

a/k∈A
ω(k)

∑′

b/�∈B
1(a/k,b/�)∈E2

≤ T
∑′

a/k∈A

ω(k).

This gives (10).
It remains to establish (9). Given a choice of d, f and k, let Rd,f,k count the number of

distinct possibilities for a (mod f) such that the colour (d, f) is popular at some a/k ∈ A. We
first show that, for any pair (d, f) and k, we have

Rd,f,k ≤ Qn

dT
τ3(k). (11)

Let Ad,f,k ⊂ A be some subset representing the Rd,f,k different possibilities. That is, Ad,f,k is a
set with the following properties.

(i) The colour (d, f) is popular at each a/k ∈ Ad,f,k.
(ii) If a/k, a′/k ∈ Ad,f,k, then a �≡ a′ (mod f).
(iii) For each a′/k ∈ A such that (d, f) is popular at a′/k, there is a/k ∈ Ad,f,k such that a ≡ a′

(mod f).
(iv) We have Rd,f,k = |Ad,f,k|.
By the definition of edges being popular at a/k, we have

Rd,f,k
T

τ3(k)
≤

∑′

a/k∈Ad,f,k

∑′

b/�∈B
C(a/k,b/�)=(d,f)

1.

The key observation is that each b/	 ∈ B appears at most once in total on the right-hand side,
because if C(a1/k, b/	) = C(a2/k, b/	) = (d, f), then we must have

gcd(k, 	) = d and gcd
(
a1	− bk

d
, d

)
= gcd

(
a2	− bk

d
, d

)
= f.

In particular, a1	/d ≡ a2	/d (mod f). Note that, because gcd(	/d, k/d) = 1 and gcd(b, 	) = 1,
we have

gcd(	/d, f) | gcd(	/d, a1(	/d) − b(k/d)) = gcd(	/d, b(k/d)) = gcd(	/d, k/d) = 1,

whence gcd(	/d, f) = 1. It follows that a1 ≡ a2 (mod f) and so, by construction of Ad,f,k, we
have a1 = a2. In particular,

Rd,f,k
T

τ3(k)
≤

∑′

a/k∈Ad,f,k

∑′

b/�∈B
C(a/k,b/�)=(d,f)

1 ≤
∑
�≤Q
d|l

|B ∩ Q=�| ≤ nQ

d
,

and the estimate (11) follows immediately.
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We now establish (9) by bounding F1(c/q) for each c/q separately. Given a choice of c/q
(with gcd(c, q) = 1) we see that if a, k, b, 	 are such that gcd(a, k) = gcd(b, 	) = 1 and

c

q
=
a

k
− b

	
,

then q = 	′k′e and c = (a	′ − bk′)/f , where

k′ =
k

gcd(k, 	)
, 	′ =

	

gcd(k, 	)
, gcd(k, 	) = ef, f = gcd(a	′ − bk′, gcd(k, 	)).

Thus, given a choice of c, k′, 	′, e, f with k′	′e = q and 1 ≤ f ≤ Q, there is a unique choice of
k = k′ef and 	 = 	′ef . Moreover, a	′ ≡ cf (mod k′), so a is fixed modulo k′. There are at most e
choices of a (mod e) and at most Ref,f,k′ef choices of a (mod f), so at most eRef,f,k′ef choices of
a (mod k). If we then further fix the value of �a/k�, for which there are at most Z choices, then we
have determined a. Given such a choice of a, b is uniquely determined because b = 	(c/q − a/k).
It follows that

F1(c/q) ≤ Z
∑

k′�′e=q

∑
1≤f≤Q

ω(k′ef)eRef,f,k′ef . (12)

Using (11) and the sub-multiplicativity of ω and τ3, this is bounded above by

QnZ

T

∑
k′�′e=q

ω(k′e)τ3(k′e)
∑

1≤f≤Q

ω(f)τ3(f)
f

≤ QnZ logQ
T

Mlog(ωτ3;Q)ω(q)τ3(q)2.

Summing this over c/q ∈ C then gives (9), and so completes the proof. �

We actually use a weighted version of Lemma 1, which follows immediately by a dyadic
decomposition of the support of the weights.

Lemma 2. Let Z ≥ 1 be an integer. Let f : Q>0 → Z≥0 and g : Q ∩ (0, Z] → Z≥0 be functions
with finite support such that ‖f‖∞ , ‖g‖∞ ≤ X. Suppose that B ⊂ Q≤Q is such that, for any
1 ≤ 	 ≤ Q, we have |B ∩ Q=�| ≤ n. Then, for any sub-multiplicative function ω : N → R≥0,∑′

a/k−b/�=c/q
b/�∈B

ω(k)g
(
a

k

)
f

(
c

q

)
� C

(∑′

c/q

ω(q)τ3(q)2f
(
c

q

)2)1/2(∑′

a/k

ω(k)g
(
a

k

)2)1/2

,

where

C := (logX)(QnZ(logQ)Mlog(ωτ3;Q))1/2.

Here we use
∑′ to indicate that the fractions a/k, b/	, c/q are all reduced (i.e. gcd(a, k) =

gcd(b, 	) = gcd(c, q) = 1).

Proof of Lemma 2. We decompose the support of f into Cj for j ≥ 0, where

Cj = {x : 2j ≤ f(x) < 2j+1},
and similarly decompose the support of g into Ai. Using this decomposition we have∑′

a/k−b/�=c/q
b/�∈B

ω(k)g
(
a

k

)
f

(
c

q

)
�

∑
0≤i,j≤log X

2i+j
∑′

a/k−b/�=c/q
a/k∈Ai, b/�∈B, c/q∈Cj

ω(k).
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Applying Lemma 1 to each summand gives the upper bound

�
∑

0≤i,j≤log X

2i+j

(
QnZ(logQ)Mlog(ωτ3;Q)

∑′

c/q∈Cj

ω(q)τ3(q)2
∑′

a/k∈Ai

ω(k)
)1/2

.

Lemma 2 now follows by the Cauchy–Schwarz inequality. �

The proof of Proposition 1 may now proceed via induction.

Proof of Proposition 1. Again, we use
∑′ to indicate that the summation is restricted to reduced

fractions. We show that, for any t ≥ 0 and 1 ≤ j ≤ m, we have∑′

c/q∈Q

τ3(q)2t1(∗j)
B (c/q)2 � (m logQ)3(QnM2t+1)

∑′

c/q∈Q

τ3(q)2t+21(∗j−1)
B (c/q)2, (13)

where we recall 1(∗m)
B (x) =

∑
x1+···+xm=x 1B(x1) · · · 1B(xm) is the m-fold convolution of 1B, and

where

Mt := Mlog(τ t
3;Q).

Repeatedly applying (13) m− 1 times gives

E2m(B) =
∑′

c/q∈Q

1(∗m)
B (c/q)2

� (m logQ)3(m−1)(Qn)m−1(M1 · · ·M2m−3)
∑′

c/q∈Q

τ3(q)2m−21B(c/q)2.

As |B ∩ Q=q| ≤ n, we have∑′

c/q∈Q

τ3(q)2m−21B(c/q)2 ≤ n
∑

1≤q≤Q

τ3(q)2m−2 ≤ nQM(τ2m−2
3 ;Q).

Noting that Mt ≤M2m = Mlog(τ2m
3 ;Q) for each t ≤ 2m, this completes the proof of

Proposition 1. Thus, we are left to establish (13).
We first observe that, because 1(∗j)

B (c/q) =
∑

b/�∈B 1(∗j−1)
B (c/q − b/	), we have∑′

c/q∈Q

τ3(q)2t1(∗j)
B (c/q)2 =

∑′

c/q=c′/q′+b/�
b/�∈B

τ3(q)2t1(∗j)
B (c/q)1(∗j−1)

B (c′/q′).

We let f(x) := 1(∗j−1)
B (x) and g(x) := 1(∗j)

B (x), so that, in particular, g is supported on jB. As
B ⊂ (0, 1] we know that g is supported on (0, j]. Furthermore, because B ⊂ Q≤Q we have |B| ≤ Q2

so ‖f‖∞, ‖g‖∞ ≤ Q2j . We now apply Lemma 2 with ω(q) = τ3(q)2t. This gives the upper bound∑′

c/q∈Q

τ3(q)2t1(∗j)
B (c/q)2 =

∑′

c/q=c′/q′+b/�
b/�∈B

ω(q)g(c/q)f(c′/q′)

� (m logQ)3/2(QnM2t+1)1/2

( ∑′

c′/q′∈Q

τ3(q′)2t+2f

(
c′

q′

)2)1/2(∑′

c/q∈Q

τ3(q)2tg

(
c

q

)2)1/2

.

The left-hand side is
∑

c/q∈Q τ3(q)
2tg(c/q)2, so this rearranges to give the claimed bound (13). �
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5. Basic density increment

In this section, we establish a simple L2 density increment lemma, which says that if there are
many large Fourier coefficients which are close to rationals with the same denominator, then
one can find a large arithmetic progression on which the set has increased density. Statements
of this type are standard, and our lemma differs only cosmetically from similar statements used
in [PSS88] or [RS08]. It may be helpful to bear in mind that this will be applied with some
q,K � α−O(1) and ν 	 αo(1) (where the o(1) → 0 as α→ 0).

We introduce the notation

M

(
a

q
;N,K

)
:= {γ ∈ (0, 1] : ‖γ − a/q‖ ≤ K/qN}

to denote the major arcs which appear in the circle method. Note that these major arcs are
disjoint for distinct a/q ∈ Q=q provided K < N/2.

Lemma 3 (Large Fourier coefficients with the same denominator give density increment). Let
ν, α ∈ (0, 1] and let N,K, q ≥ 1 be such that K < N/2 and ναN/(Kq2) is sufficiently large.
Let A ⊂ [N ] be a set with no non-zero square differences and density α = |A| /N , and∑

a/q∈Q=q

∫
M(a/q;N,K)

∣∣∣1̂A(γ) − α1̂[N ](γ)
∣∣∣2 dγ ≥ να |A| .

Then there exists N ′ 	 ναN/(Kq2) and a set A′ ⊂ [N ′] with no non-zero square differences such
that the density α′ = |A′|/N ′ satisfies

α′ ≥ (1 + ν/5)α.

Proof. Let P = (q2) · [N ′] be an arithmetic progression of difference q2 and length N ′, for some
N ′ to be chosen later. If γ ∈ M(a/q;N,K) for some a/q, then for any 1 ≤ n′ ≤ N ′ we have∣∣1 − e(γq2n′)

∣∣� ∥∥γq2n′∥∥ ≤ ∥∥γq2n′ − aqn′
∥∥ = q2n′ ‖γ − a/q‖ ≤ q2N ′K

qN
.

(We recall that ‖·‖ is the distance to the nearest integer.) In particular, we can ensure that∣∣1 − e(γq2k)
∣∣ ≤ 1/2 provided we have

N ′ ≤ cN

qK
(14)

for some sufficiently small absolute constant c > 0. Thus, if γ ∈ M(a/q;N,K) and (14) holds,∣∣∣1̂P(γ) −N ′
∣∣∣ ≤ ∑

1≤n′≤N ′

∣∣1 − e(γq2n′)
∣∣ ≤ N ′/2,

and so |1̂P(γ)| ≥ N ′/2. Let g = 1A − α1[N ] be the balanced function of A. It follows that (using
the assumption of the lemma)∑

x∈Z

(1P ∗ g)(x)2 =
∫ 1

0
|1̂P(γ)|2 |ĝ(γ)|2 dγ ≥ (N ′)2

4

∑
a/q∈Q=q

∫
M(a/q;N,K)

|ĝ(γ)|2 dγ

≥ να(N ′)2 |A|
4

. (15)

On the other hand, recalling that g = 1A − α1[N ], the left-hand side is equal to

‖1P ∗ 1A‖2
2 − 2α

∑
x∈Z

(1P ∗ 1A)(x) · (1P ∗ 1[N ])(x) + α2
∥∥1P ∗ 1[N ]

∥∥2

2
. (16)
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The third term of (16) trivially satisfies

α2
∥∥1P ∗ 1[N ]

∥∥2

2
≤ α2N |P|2 = α |A| (N ′)2. (17)

For the second term of (16), we note that∑
x∈Z

∣∣(1P ∗ 1−P ∗ 1[N ])(x) − (N ′)21[N ](x)
∣∣ ≤∑

y∈Z

(1P ∗ 1−P)(y)
∑
x∈Z

∣∣1[N ](x− y) − 1[N ](x)
∣∣

�
∑
y∈Z

(1P ∗ 1−P)(y)|y|

� q2(N ′)3.

In particular, ∑
x∈Z

(1P ∗ 1A)(x) · (1P ∗ 1[N ])(x) =
∑
y∈A

1P ∗ 1−P ∗ 1[N ](y)

= |A| (N ′)2 +O(q2(N ′)3). (18)

By substituting (17) and (18) into (16), we have

‖1P ∗ 1A‖2
2 ≥ 2α

(|A| (N ′)2 +O(q2(N ′)3)
)− α |A| (N ′)2 +

να(N ′)2 |A|
4

.

Provided we have

N ′ ≤ cναN

q2
(19)

for some sufficiently small constant c > 0, we see that the O(q2(N ′)3) term contributes at most
να |A| (N ′)2/100 in total, and so

‖1P ∗ 1−A‖2
2 = ‖1P ∗ 1A‖2

2 ≥
(

1 +
ν

5

)
α |A| (N ′)2.

As ‖1P ∗ 1−A‖1 = N ′ |A| there exists some x ∈ Z such that∣∣(q2 · [N ′]) ∩ (A + x)
∣∣ = 1P ∗ 1−A(x) ≥

(
1 +

ν

5

)
αN ′.

Therefore, if we set

A′ :=
1
q2

· ((q2 · [N ′]) ∩ (A + x)),

then A′ ⊂ [N ′], A′ has density α′ ≥ (1 + ν/5)α and A′ has no non-zero square differences because
any non-zero square difference in A′ would create one in q2 · A′ and, hence, one in A + x, and,
hence, one in A, which is a contradiction. This therefore gives the result withN ′ = �cναN/(Kq2)�
for a suitably small absolute constant c > 0 (because this choice satisfies (14) and (19) and
N ′ 	 ναN/(Kq2)). �

6. Large Fourier coefficients at rationals with small denominators

In this section, we show how to find many rationals with small denominator in the large spectrum
of A (that is, the set of frequencies with large Fourier coefficient). This follows standard lines,
combining the circle method with classical bounds for Weyl sums.

1789

https://doi.org/10.1112/S0010437X22007679 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007679


T. F. Bloom and J. Maynard

Lemma 4 (Bounds for exponential sums over squares). Let 1 ≤ a ≤ q with gcd(a, q) = 1 and

M

(
a

q
;N,K

)
:= {γ ∈ (0, 1] : ‖γ − a/q‖ ≤ K/qN},

W (n) :=

⎧⎨⎩
2m
N1/2

, if n = m2 ≤ N,

0, otherwise.

Then we have the following bounds.

(i) For all β ∈ R we have

|Ŵ (a/q + β)| � N1/2

q1/2
+ (q log q)1/2(1 + |β|N).

(ii) If Kq log q � N and K3 log q � qN , then∫
M(a/q;N,K)

|Ŵ (γ)|2 dγ � 1
q
.

Proof. This is standard. By [PSS88, Equation (8)] (which is a consequence of partial summation
and the standard bound for incomplete Gauss sums

∑
n≤X e(an2/q) � (q log q)1/2 for X ≤ q)

we have

Ŵ (a/q + β) =
S(a; q)
q

Ŵ (β) +O
(
(q log q)1/2(1 + |β|N)

)
,

where S(a; q) :=
∑

1≤n≤q e(an
2/q) is the complete Gauss sum. The classical estimate S(a; q) �

q1/2 for gcd(a, q) = 1 now gives bound (i). Using this estimate again, we find∫
M(a/q;N,K)

|Ŵ (γ)|2 dγ � 1
q

∫ K/qN

0
|Ŵ (β)|2 dβ +

K log q
N

+ (q log q)N2

∫ K/qN

0
β2 dβ.

The second and third summands contribute

� K log q
N

+ (q log q)N2 K3

q3N3
� K log q

N
+
K3 log q
q2N

� 1
q

by our assumptions on q and K. By [PSS88, equation (10)] and the trivial bound, if β ≤ N−7/8,
then

|Ŵ (β)| � min
(
N1/2,

β−1

N1/2

)
.

(Note that this bound is slightly better than what one gets with the unweighted sum, but could
be improved further with more smoothing.) This gives

1
q

∫ K/qN

0
|Ŵ (β)|2 dβ � 1

q
+

1
qN

∫ K/qN

1/N
β−2 dβ � 1

q
,

as required. �
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Lemma 5. Suppose N is sufficiently large. Let A ⊂ [N ] be a set of density α = |A| /N ≥ N−1/8

with no non-zero square differences. Then there exist quantities B,Q,K with αO(1) � B �
α−O(1) and 1 ≤ Q,K ≤ α−7, and a set B ⊂ Q≤Q such that:

(i) for each a/q ∈ B there exists γa/q ∈ (0, 1] with
∥∥γa/q − a/q

∥∥� α−O(1)/N and∑
a/q∈B

|1̂A(γa/q)| 	 B
|A|Q1/2

log(1/α)2
;

(ii) for each a/q ∈ B we have, if g = 1A − α1[N ],∫
M(a/q;N,K)

|ĝ(γ)|2 dγ 	 α |A|
B2

.

Proof. We first note that, by the estimate of [Sár78], say, we may assume that α� 1/(logN)1/4

because A has no non-zero square differences. (This is not essential to the method, but allows
for cleaner bounds in the final statements.) Let

W (n) :=

⎧⎨⎩
2m
N1/2

if n = m2 ≤ N,

0 otherwise.

By orthogonality and the fact that A has no non-zero square differences, we have∫ 1

0
1̂A(γ)1̂A(γ)Ŵ (γ) dγ =

∑
a,b∈A

∑
1≤n≤N1/2

W (n2)
∫ 1

0
e(γ(a− b+ n2)) dγ

=
∑

a,b∈A

∑
1≤n≤N1/2

W (n2)1b−a=n2

= 0.

Suppose first that |A ∩ (N/2, N ]| ≥ |A| /2. In this case, if we let g = 1A − α1[N ], then∫ 1

0
ĝ(γ)1̂A(γ)Ŵ (γ) dγ = −α

∑
a∈A

∑
1≤y≤N

∑
1≤n≤N1/2

W (n2)
∫ 1

0
e(γ(y − a+ n2)) dγ

= −α
∑
a∈A

∑
1≤n≤N1/2

W (n2)11≤a−n2≤N

≤ −1
8α |A|N1/2,

say, because certainly all a ∈ A ∩ (N/2, N ] and n ≤ (N/2)1/2 will satisfy 1 ≤ a− n2 ≤ N . If
|A ∩ [1, N/2]| ≥ |A| /2, then arguing similarly, we have∫ 1

0
ĝ(γ)1̂A(γ)Ŵ (γ) dγ ≤ −1

8α |A|N1/2.

Thus, in either case, we have∫ 1

0
|ĝ(γ)1̂A(γ)Ŵ (γ)| dγ ≥ 1

8α |A|N1/2. (20)

By Dirichlet’s theorem on Diophantine approximation, given any choice of 1 ≤ K ≤ N , every
γ ∈ [0, 1] satisfies ‖γ − a/q‖ < K/(Nq) for some 1 ≤ q ≤ N/K and 1 ≤ a ≤ q with gcd(a, q) = 1.
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If this holds for some q > K and K ≤ N1/2, say, then by Lemma 4,

|Ŵ (γ)| �
(
N(logN)

K

)1/2

.

If we choose

K := �Cα−2 logN� (21)

for some suitably large absolute constant C > 0, then we see that |Ŵ (γ)| ≤ αN1/2/32 for such γ.
(Note that the assumption α� (logN)−1/4 implies thatK ≤ α−7, assuming thatN is sufficiently
large.) The contribution to (20) from these γ is thus at most

αN1/2

32

∫ 1

0
|ĝ(γ)1̂A(γ)| dγ ≤ αN1/2

32

(∫ 1

0
|1̂A(γ)|2 dγ +

∫ 1

0

∣∣∣α1̂[N ](γ)1̂A(γ)
∣∣∣ dγ)

≤ α |A|N1/2

16
. (22)

(Here we used the triangle inequality in the first line, and the Cauchy–Schwarz inequality and
Parseval’s identity in the second.) We recall that for gcd(a, q) = 1

M(a/q) = M(a/q;N,K) := {γ ∈ (0, 1] : ‖γ − a/q‖ ≤ K/qN},
and note that with our choice K = �Cα−2 logN� these sets are disjoint for q ≤ K and gcd(a, q) =
1 because α ≥ N−1/3 and N is sufficiently large. Therefore, combining (20) and (22), we find∑

a/q∈Q≤K

∫
M(a/q)

|ĝ(γ)1̂A(γ)Ŵ (γ)| dγ ≥ α |A|N1/2

16
. (23)

By the Cauchy–Schwarz inequality and Lemma 4, we have∫
M(a/q)

|ĝ(γ)1̂A(γ)Ŵ (γ)| dγ

�
(∫

M(a/q)
|ĝ(γ)|2 dγ

)1/2(∫
M(a/q)

∣∣∣Ŵ (γ)
∣∣∣2 dγ

)1/2

sup
γ∈M(a/q)

∣∣∣1̂A(γ)
∣∣∣

� 1
q1/2

(∫
M(a/q)

|ĝ(γ)|2 dγ

)1/2

sup
γ∈M(a/q)

∣∣∣1̂A(γ)
∣∣∣ .

Therefore, ∑
a/q∈Q≤K

1
q1/2

(∫
M(a/q)

|ĝ(γ)|2 dγ
)1/2(

sup
γ∈M(a/q)

∣∣∣1̂A(γ)
∣∣∣)	 α |A|N1/2. (24)

Let Γ1 be the set of a/q ∈ Q≤K for which∫
M(a/q)

|ĝ(γ)|2 dγ ≤ N

K5
. (25)

As |Γ1| ≤ |Q≤K | ≤ K2 and |1̂A(γ)| ≤ |A|, the contribution to (24) from γ ∈ Γ1 is

�
∑

a/q∈Q≤K

1
q1/2

· N
1/2

K5/2
· |A| � α |A|N1/2

(logN)1/2
.
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Thus, we may restrict our attention to the set Γ2 = Q≤K\Γ1 of a/q ∈ Q≤K for which (25) does
not hold. Indeed, we have∑

a/q∈Γ2

1
q1/2

(∫
M(a/q)

|ĝ(γ)|2 dγ
)1/2(

sup
γ∈M(a/q)

∣∣∣1̂A(γ)
∣∣∣)	 α |A|N1/2. (26)

As |ĝ(γ)| ≤ 2 |A| ≤ 2N and meas(M(a/q)) � K/N , we see that for any γ ∈ Q≤K(∫
M(a/q)

|ĝ(γ)|2 dγ
)1/2

� K1/2N1/2,

and so, comparing with (25), for γ ∈ Γ2 we have

K1/2N1/2 �
(∫

M(a/q)
|ĝ(γ)|2 dγ

)1/2

≤ K−5/2N1/2.

Therefore, by dyadic pigeonholing, there are some quantities B,Q with αK−1/2 � B � αK5/2

and 1 ≤ Q ≤ K, together with a set B ⊂ Γ2, such that:

(i) if a/q ∈ B with gcd(a, q) = 1, then q ∈ [Q, 2Q];
(ii) for all γ ∈ B we have

αN1/2

B
≤
(∫

M(a/q)
|ĝ(γ)|2 dγ

)1/2

≤ 2αN1/2

B
;

(iii) we have ∑
a/q∈B

1
q1/2

(∫
M(a/q)

|ĝ(γ)|2 dγ
)1/2(

sup
γ∈M(a/q)

∣∣∣1̂A(γ)
∣∣∣)	 α |A|N1/2

(logK)2
.

Recalling that K � α−O(1) (because we are assuming that α ≤ 1/(logN)1/4), and letting γa/q

be the point in M(a/q) where |1̂A(γ)| attains its maximum, we see that this gives the result. �
Combining Lemma 5 with Lemma 3 gives the following result.

Lemma 6. Let N be sufficiently large, and suppose that ν ≥ N−1/2. Let A ⊂ [N ] be a set of
density α = |A| /N with no non-zero square differences. Then at least one of the following holds.

(i) (A is sparse) We have log(1/α) 	 logN .
(ii) (There is a density increment) There is some N ′ 	 ναO(1)N and A′ ⊂ [N ′] with no non-zero

square differences, which has density

α′ ≥ (1 + ν/5)α.

(iii) (There are many large Fourier coefficients close to rationals of different denominators) There
are B,Q� α−O(1) and a set B ⊂ Q≤Q such that both of the following hold:
(a) for each a/q ∈ B there exists γa/q ∈ (0, 1] such that

∥∥γa/q − a/q
∥∥� α−O(1)/N and∑

a/q∈B
|1̂A(γa/q)| 	

B |A|Q1/2

log(1/α)O(1)
;

(b) for every 1 ≤ q ≤ Q we have

|B ∩ Q=q| � νB2.
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Proof. Assume that neither part (i) nor (ii) hold, so we wish to establish part (iii). Let C1, C2 > 0
be two absolute constants to be determined later. As part (ii) does not hold, by Lemma 3, we
have that, for any q ≤ 2α−7 and K ≤ α−7,∑

a/q∈Q=q

∫
M(a/q:N,K)

|ĝ(γ)|2 dγ ≤ να |A| .

(Note that we may assume that ναN/Kq2 ≥ N1/4, say, or otherwise α ≥ N−1/60 and we are in
case (i). In particular, for N sufficiently large, the conditions of Lemma 3 are satisfied.)

By Lemma 5 there are B,Q,K satisfying B � α−O(1) and Q,K ≤ α−7 and B ⊂ Q≤Q such
that for all a/q ∈ B there exists γa/q such that ‖γa/q − a/q‖ � α−O(1)/N and

∑
a/q∈B

|1̂A(γa/q)| 	 B
|A|Q1/2

log(1/α)O(1)
,

and for all a/q ∈ B ∫
M(a/q;N,K)

|ĝ(γ)|2 dγ 	 α |A|
B2

.

Summing this second inequality over a/q ∈ B ∩ Q=q we see that

α |A|
B2

|B ∩ Q=q| �
∑

a/q∈B∩Q=q

∫
M(a/q;N,K)

|ĝ(γ)|2 dγ ≤ να |A| .

Thus, |B ∩ Q=q| � νB2, as required. �

7. Refined density increment and proof of Theorem 1

We now show that there cannot be a large set of rationals with distinct denominators each of
which has a large Fourier coefficient. This relies on Theorem 2 which shows that there is a lack
of additive structure amongst such rationals, and a variant of Chang’s lemma [Cha02] (or its
predecessors such as the Montgomery–Halász method [Mon69]) which shows that any large set
of frequencies with large Fourier coefficients must have some additive structure, and is the key
way in which our argument differs from previous approaches. Ultimately this will show that for
a suitable choice of parameter ν, the third possibility in Lemma 6 cannot occur, and Lemma 6
can be refined to give a density increment. An iterative application of this density increment
then proves our main result, Theorem 1.

Lemma 7 (Variant of Chang’s lemma). Let A ⊂ [N ] be a set of density α = |A| /N and let
B ⊂ (0, 1]. Then, for each m ≥ 1,∑

b∈B
|1̂A(b)| � |A|α−1/2mE2m(B; 1/2N)1/2m,

where the approximate additive energy E2m(C; δ) is given by

E2m(C; δ) := |{b1, . . . , b2m ∈ C : ‖b1 + · · · + bm − bm+1 . . .− b2m‖ ≤ δ}|
(where we recall that ‖ · ‖ denotes the distance to the nearest integer).
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Proof. Let θb ∈ R be a phase such that e(θb)1̂A(b) = |1̂A(b)| ∈ R≥0. Then, by Hölder’s inequality,
we have ∑

b∈B
|1̂A(b)| =

∑
b∈B

e(θb)
∑
a∈A

e(ab)

≤
(∑

a∈A
1
)1−1/2m(∑

a∈A

∣∣∣∣∑
b∈B

e(θb + ba)
∣∣∣∣2m)1/2m

. (27)

Let ψ(t) := sin(πt)2/(πt)2 so that ψ̂(ξ) =
∫∞
−∞ ψ(t)e−2πiξt dt satisfies ψ̂(ξ) = 1 − |ξ| for |ξ| ≤ 1

and ψ̂(ξ) = 0 for |ξ| > 1. As ψ(t) ≥ 0 and ψ(t) ≥ 4/π2 ≥ 1/3 on [0, 1/2] we see that

∑
a∈A

∣∣∣∣∑
b∈B

e(θb + ba)
∣∣∣∣2m

≤ 3
∑
n∈Z

ψ

(
n

2N

)∣∣∣∣∑
b∈B

e(θb + bn)
∣∣∣∣2m

≤ 3
∑

b1,...,b2m∈B

∣∣∣∣∑
n∈Z

ψ

(
n

2N

)
e
(
n(b1 + · · · + bm − bm+1 · · · − b2m)

)∣∣∣∣.
Applying Poisson summation to the inner sum, and recalling that ψ̂ is supported on [−1, 1], we
see that this is equal to

6
∑

b1,...,b2m∈B
N

∣∣∣∣∑
h∈Z

ψ̂
(
2N(b1 + · · · + bm − bm+1 · · · − b2m − h)

)∣∣∣∣
� N |{b1, . . . , b2m ∈ B : ‖b1 + · · · + bm − bm+1 · · · − b2m‖ ≤ 1/2N}|.

Substituting this into (27) and rearranging then gives the result. �

Lemma 8. Let N be sufficiently large, and let A ⊂ [N ] be a set of density α = |A| /N with no
non-zero square differences. There exists an absolute constant c > 0 such that if

ν = exp
(
−c log(1/α)

log log(1/α)

)
,

then either:

(i) log(1/α) 	 logN/ log logN ; or
(ii) there are N ′ 	 αO(1)N and A′ ⊂ [N ′] with no non-zero square differences, which has density

α′ ≥ (1 + ν/5)α.

Proof. As before, we may assume that logN � α−O(1), by the result of [Sár78]. We assume that
cases (i) and (ii) do not hold, and hope to arrive at a contradiction, for a suitable choice of ν.

Note that we may assume that ν ≥ N−1/2, or otherwise we are in case (i). Therefore, we are
able to apply Lemma 6, of which we must be in the third case because otherwise case (i) or (ii)
would hold. Thus, there are B,Q� α−O(1) and a set B ⊂ Q≤Q such that for each a/q ∈ B there
exists γa/q = a/q +O(α−O(1)/N) satisfying

∑
a/q∈B

|1̂A(γa/q)| 	
B |A|Q1/2

log(1/α)O(1)
,
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and for every 1 ≤ q ≤ Q we have |B ∩ Q=q| ≤ νB2. By the pigeonhole principle, there must exist
some B′ ⊂ B which is contained in an interval of width at most 1/8m such that∑

a/q∈B′
|1̂A(γa/q)| 	

B |A|Q1/2

m log(1/α)O(1)
.

Letm ≥ 2 be some integer to be chosen later, and let Γ := {γb : b ∈ B′}. Note that the assumption
that ‖γb − b‖ � α−O(1)/N , together with the fact that B ⊂ Q≤α−O(1) , implies that these γb are
distinct for distinct b ∈ B′, or otherwise we are in case (i). We now apply Lemma 7, which shows
that

B |A|Q1/2

m log(1/α)O(1)
� |A|α−1/2mE2m(Γ; 1/2N)1/2m.

As B′ is contained in an interval of width at most 1/8m we know that b1 + · · · − b2m ∈
[−1/4, 1/4]. In particular, because |γb − b| � α−O(1)/N for b ∈ B, provided mα−O(1) < cN for
some sufficiently small c > 0, we have γb1 + · · · − γb2m ∈ (−1/2, 1/2), and so

E2m(Γ; 1/2N) = |{b1, . . . , b2m ∈ B′ : |γb1 + · · · − γb2m | ≤ 1/2N}|.
Furthermore, because B ⊂ Q≤Q, b1 + · · · − b2m is always a rational of denominator at most
Q2m for b1, . . . , b2m ∈ B. Therefore, if b1 + · · · − b2m is not zero, then it is at least Q−2m in
absolute value. As before, because |γb − b| � α−O(1)/N , provided mQO(m)α−O(1) < cN for some
small constant c > 0, it follows that for any γb1 , . . . , γb2m ∈ Γ either |γb1 + · · · − γb2m | ≥ Q−2m/2
or b1 + · · · − b2m = 0. Therefore, provided mQO(m)α−O(1) < cN for sufficiently small c > 0, the
approximate additive energy E2m(Γ; 1/N) actually only counts the times when the corresponding
sum of rationals is zero, so

E2m(Γ; 1/2N) = E2m(B′).

Recalling that Q� α−O(1), we have shown that either α−O(m) 	 N or

E2m(B′) 	 α

(
BQ1/2

m log(1/α)O(1)

)2m

. (28)

We impose the condition m� log log(1/α), so that α−O(m) = o(N) (or otherwise we are in case
(i)), so we have (28). We now apply Theorem 2 to bound E2m(B′) from above, which shows that
for some absolute constant C > 0 we have

mO(m)(logQ)Cm
(CνB2Q)m 	 α

(
BQ1/2

log(1/α)O(1)

)2m

. (29)

Here we used the assumption that |B′ ∩ Q=q| ≤ |B ∩ Q=q| � νB2 for all q, as ensured by the
conclusion of Lemma 6.

The key feature of this bound is that the powers of B and Q exactly cancel and, in partic-
ular, the lower bound on ν in terms of α is only of order α−O(1/m) log(1/α)O(1). We derive a
contradiction from this bound with a suitable choice of ν, thereby proving the lemma. First note
that we can rewrite (29) as

ν 	 α1/m

mO(1) log(1/α)O(1)
exp

(
−Cm log logQ

m

)
.
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As Q� α−O(1), if we choose m = �c′ log log(1/α)�, for some sufficiently small constant c′ > 0,
then this gives

ν 	 exp
(
−O

(
log(1/α)

log log(1/α)

))
,

which gives a contradiction for a suitable choice of the constant c in our definition of ν. This
completes the proof. �

We may now finish the proof of our main theorem with an iterative application of Lemma 8.

Proof of Theorem 1. Suppose that A ⊂ [N ] has density α = |A| /N and has no non-zero square
differences. We wish to show that

log(1/α) 	 (log logN)(log log logN).

Let

ν := exp
(
−c log(1/α)

log log(1/α)

)
be as in Lemma 8. If log(1/α) 	 logN/ log logN , then we are done. Otherwise, by Lemma 8,
there are N ′ ≥ αO(1)N and A′ ⊂ [N ′] which has no non-zero square differences, with density

α′ ≥ (1 + ν/5)α.

Repeatedly applying Lemma 8, we obtain some sequence N1, . . . , Nt of integers and associated
sets At ⊂ [Nt] such that:

(i) each set At has no non-zero square differences;
(ii) At ⊂ [Nt] has density αt = |At|/Nt ≥ (1 + ν/5)tα;
(iii) we have Nt ≥ αO(t)N .

This process can only terminate if Nt < N1/2, because otherwise all conditions of Lemma 8
remain satisfied. However, the density of any set can never exceed 1, so we must have α(1 +
ν/20)t ≤ αt ≤ 1, which implies that

t� ν−1 log(1/α).

Therefore,
N1/2 > Nt ≥ αO(t)N 	 N exp

(−O(ν−1 log(1/α)2
))
.

Thus,
logN � ν−1(log 1/α)2.

Recalling that log(1/ν) � log(1/α)/ log log(1/α), taking logarithms of both sides and rearrang-
ing yields

log(1/α)
log log(1/α)

	 log logN.

This implies log(1/α) 	 (log logN)(log log logN), which gives the result. �
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