
Pair production via crossed lasers

H.M. FRIED
Physics Department, Brown University, Providence, RI 02912, USA

~Received 13 November 2001;Accepted 22 December 2001!

Abstract

The intrinsically nonperturbative “vacuum persistence probability”P for e1 e2 production in the overlap region of a
pair of high-intensity lasers is estimated in the context of three models, each of which adapt and simplify the exact
Fradkin representation for the logarithm of the fermion determinant in the fields of the crossed lasers. In each case, one
finds forP an expression resembling Schwinger’s 1951 result for the probability of pair production in a constant electric
field, proportional to an exponential factor which contains an essential singularity and hence does not admit a pertur-
bative expansion about zero coupling. Qualitative estimates of these models suggest that realistic yields for this form of
e1 e2 production must await lasers of intensity 1029 W0m2. The possibility of producing a quark–antiquark pair in this
way is noted, in particular, with temporary, but large separations of theq Sq.
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1. INTRODUCTION

Consider Schwinger’s~1951! exact result for the vacuum
persistence probabilityP when a constant electric field can
act as the source of energy for the production of a lepton
pair,

P 5 (
n51

`

Cne2npm20eE,

each term of which has an essential singularity at zero cou-
pling. Here, any perturbative approximation of the exact
~operator or functional! representation ofP must always
give an exact result of zero; this quantity is intrinsically
nonperturbative.

This presentation deals with a new, intrinsically, nonper-
turbative process of some experimental interest: an estima-
tion of the order of magnitude for the production of lepton
pairs in the overlap region of two crossed or intersecting
high-intensity lasers~Friedet al., 2001!. One finds general-
izations of the Schwinger essential singularity, which is the
feature that controls the order of magnitude of the results;
only the latter are of interest here.

It is well known that a single laser of arbitrary intensity
cannot extract ane1 e2 pair from the vacuum, sincenkm Þ
pm 1 pm

' , if all three momenta are on their mass shells

~k2 5 0,p 5 p'2 5 2m2!. But this objection is removed in
the overlapping region of two intersecting lasers, where
n1km

~1! 1 n2km
~2! 5 pm 1 pm

' can be satisfied for a variety of
integersn1,2. The relevant experimental question here is the
probability, the rate of this process; and for this we consider
the simplest geometry, where the polarization or electric-
field vectors of both laser beams are the same, but the prop-
agation directions of the two beams are perpendicular. For
simplicity, we assume that both beams have the same fre-
quency, and that the cross-sectional area of each beam is
;D2, so that the overlap region of the beams is;D3. If
^06S60& 5 exp@2~G02!t 1 if# represents the vacuum-to-
vacuum amplitude, the vacuum persistence probability is
P 5 exp@2Gt # , where the lasers are turned on att 5 0. The
probability of producing one or more pairs is thenP1 512
e2Gt ;Gt, for Gt ,, 1. We assume an “ideal” laser, with pulse
durationt0 . 10213 s, a flux intensityF0 . 1022 W0m2, and
of frequency such that\v . 2 eV; and ask the question: Can
P1 be significantly different from zero for such lasers?

It is interesting to examine this process from a Feynman-
graph point of view. Here,n photons, each of~CM! energy
\v are absorbed to produce a pair of energy 2mc2; that is,
n\v $ 2mc2, or n $ 2mc20\v 5 106. Such a production
amplitude will then haven factors ofe, and the6amplitude62

will have n factors of@ . ~137!21 and generates a proba-
bility proportional ton factors of@, which is absurdly small.
What can possibly compensate this?

In theD3 overlap region of the two lasers, there can beN
“available” photons, whereN .. n. Then, the probability
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must include a “counting factor” similar toN!0n!~N 2 n!! ,
the number of ways of selectingn out of N available pho-
tons. But ifN0n5 f .. 1, then by Sterling’s approximation,
one can see that this counting factor is proportional tof n;
and if f . 137, the factors of@n are effectively neutralized.
By using a functional representation forG andL@A# , all such
counting factors are automatically included.

In QED, the exact functional expression for the vacuum-
to-vacuum amplitude, in the presence of an external field~of
vector potentialAext! is given by

^06S@Aext#60& 5 eDAeL@A1Aext# 6Ar0,

where

DA 5 2
i

2
E d

dAm

Dc,mn

d

dAn

,

andDc, mn is the~free! photon propagator. An alternate form
of the linkage operatoreDA is given by the functional
integral

^06S@Aext#60& 5 NEd @A#e
~i02!EAm~Dc

21!mn An
{eL@A1Aext#,

where the normalization integralN is defined by

N21 5Ed @A#e
~i02!EAm~Dc

21!mn An

.

~It should be noted thatL@A# is really L@F# , sinceL@A# is
rigorously gauge invariant.! For simplicity, we neglect all
radiative corrections, so that̂06S60& . eL@Aext# , where
Am~x! is the vector potential of the two laser beams, and
henceforth we suppress the designation “ext”:

Am
extr Am~x! 5 em

~1! sin~k~1!{x! 1 em
~2! sin~k~2!{x 1 d!.

We do this here because the producede1 e2 appear in the
midst of intense laser beams, and their subsequent motion
would be essentially classical. However, neglecting the ra-
diative corrections of gluons in QCD is not tenable; we
return to this point below.

To begin the calculation, we first write down an exact,
Fradkin-functional representation forL@A# ~see, e.g., Fried,
1992!

L@A# 5 2
1

2
Ed4xE d4p

~2p!4 E
0

` ds

s
e2is~m21p2!

{e
iE

0

s

ds'(
m

@d20dvm
2~s' !#

{He
2ieE

0

s

ds' @vm~s' ! 2 2pm#AmSx 1 2s'p 2E
0

s'

vD

{trSe
eE

0

s

ds'smn FmnSx 1 2s'p 2E
0

s'

vDD
1 2 ~er 0!J 6vmr0,

and then perform the following, simplifying approximations.

1. Treat the absorbed photons as “soft,” since~using “nat-
ural” variables, withc5 \ 51! v0m51026. We then
introduce a “no-recoil” approximation, of which many
are available; but the simplest in this problem is to

drop the*0
s' v dependence in the arguments ofA andF:

Am r Am~x 1 2s'p!, Fmn r Fmn~x 1 2s'p!.
2. Keep only the dependence that produces the essential

singularities. In the Schwinger constant electric-field
calculation, the essential singularities come from the
A-dependence, while theF-dependence just contrib-
utes a multiplicative, normalization factor, so that
ReL, 0, orG . 0. Here, the same division applies . . .
and since we are only interested in the order of mag-
nitude ofG—which depends primarily on the largest
essential singularity—we here neglect thes{F depen-
dence. Thus the trace factor becomes:14, and we
assume the physically obvious result:G . 0.

With these approximations,

L@A# r 22E
0

` ds

s
e2ism2Ed4xE d4p

~2p!4 e2isp2
{e

iE
0

s

ds'~d20dv2!

{He
2ieE

0

s

ds' @vm~s' ! 2 2Pm#Am~s1 2s'p!

21
J6
vmr0,

and, holding*0
` ds for the last operation, we must next

decide in which sequence to perform*d4x,*d4p, and
exp@i *0

sd20dv2# . Unfortunately, these operations cannot be
calculated analytically, and further approximations are
needed. In the order of increasing complexity, we can dis-
play three models, as follows.

1.1. Model A: First cumulant approximation

Here, we first calculate the Fradkin linkages:

e
iE

0

s

ds'~d20dv2!
{e

iE
0

s

vm~s' !Qm~s' ! 6
vr0 5 e

2iE
0

s

ds'Q2~s' !
,

and then perform

Edp
4e2isp2F~e{p, p{k~1!, p{k~2! ! r 2i

p2

s2 S 2s

v2D
{

1

2p
EE

2`

1`

du1 du2e2isu1u20v
2
{eR~x6u1,u2!,

with

R~x6u1,u2! 5 2ie2e2sE
0

'

dl@S2 2 ^S&2# ,

S5 sin~k~1!{x 1 2slu1! 1 sin~k~2!{x 1 2slu2 1 d!,
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and^S& 5 *0
' dlS. This leaves the third operation:*d4x r

~D 3ct!{~10D 3! *d3x, but ~10D 3! *d3x exp@R~x!# is too
complicated to evaluate explicitly.

We therefore consider the simplest “first cumulant” ap-
proximation, replacing the integral over an exponential by
the exponential of the integral,

expF 1

D3 Ed3xR~x!G.

In statistical mechanics, this is perhaps the simplest way of
approximating a full, cluster expansion.

This integration can be done explicitly, and generates for
our ModelLA a function of two independent variables, of
form

LA 5EE
2l max

1l max

dl1 dl2JSeev

m2 6l1, l2D, lmax;
m

v
5 106

We make the “natural approximation” of replacing this by

LA . EE
2`

1`

dl1 dl2J,

and then find the function of a single variable, expressed in
terms of a single~proper-time! integral,

LA r
i

2

~D3ct!

~2p!2 {m4E
0

` dt

t 3 e2it F 1

M12 ~gt !4
2 1G

with

t [ m2s, g [ S eev

M6{m2D.

It is important to note that the~improper! perturbative
expansion of the square root, in powers ofg4, gives a se-
quence of purely imaginary terms; that is,ReLA has no
perturbative expansion. In fact,

ReLA . 2
~D3ct!

2~2p!2 {m4E
t0

` dt

t3

e2t

M~t0t0!4 2 1
, t0 5 g21 .. 1;

and

GA 5 2
2

t
ReLA .

~D3c!m4

2~2p!2 {g3e210g.

Our exponential factore210g is reminiscent of Schwing-
er’s ~for n51!, and one may ask: Why? To understand this,
consider that special case of “crossed” lasers which corre-
sponds to beams moving in exactly opposite directions. One
can carry through the same analysis as above, and then note
that this newGA will be the same as ourGA if one introduces
an extra averaging over the time dependence~which was

trivially extracted above!. Surely this averaging is physi-
cally reasonable, which means that theG of the two situa-
tions are physically equivalent.

But in the new, head-on beam collision geometry, if the
electric fields are in the same direction, as assumed above,
then the magnetic fields cancel; and in the limitv r 0 we
are dealing with Schwinger’s problem, and we should ex-
pect~for n 5 1! the factor;e2pm20eE where the Schwinger
E corresponds in our problem toev. Thus we should here
expect a similar form,e2km20eev . In the Schwinger calcula-
tion, G 5F~m20eEv! but here,GA ] F~~m20eev!, ~v0m!! r
F~~m20eev!,0! as we letlmaxr `. It is therefore not sur-
prising that we produce an exponential factor similar to that
of Schwinger’s exact solution.

1.2. Model B: A “modified first cumulant”
approximation

For our second model, we adopt the sequence:

1. Perform the exact*d4x, and then the exact linkage
operation;

2. Convert the exact*d4p into a pair of integrals, as in
Model A;

3. Introduce an exact and useful representation for the
Bessel functionJ0 ~which appears as a result of the
spatial averaging!, and approximate the result in a
“first cumulant” manner.

The result is

GB~g! ;
D3c

2~4p!2 m4{g3e210g

which is equivalent to that ofGA.

1.3. Model C: Nonperturbative approximation
to the full cluster expansion

Here, one tries to extract and sum the “most important” part
of every perturbative order in the cluster expansion ofLB,
with the result

Gc~g! 5 ! 2

p
E

0

`

due2u202GB~ug!,

or, after an approximate evaluation,

Gc~g! ;
2

M3
{

~D3c!

~4p!2 m4{g2e2~302g203!

which displays a “weakened” essential singularity. Numer-
ically, if g ,, 1, then

g3e210g , g2e2~302g203!.
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This change in the form of the essential singularity may
be given a physical interpretation, as follows. One under-
stands that elementary QED processes occur over distances
;lc. But here, because so many low-energy photons must
be coherently absorbed, we can anticipate pair production
by absorption over larger distances;u0lc, whereu0 is that
value of the u-variable in theGc integral where the integrand
is peaked:u0 ; g2103 $ 102. Extracting contributions from
every term of the cluster expansion can be thought of as
allowing absorption to proceed without the spatial restric-
tions contained in the “first cumulant” approximations.

Moving, finally, to practical matters, one must now ask
how large are theseG, numerically. Can one expect reason-
able production withF0 5 1022 W0m2, D . 1025 m,
\v ; 2 eV, and pulse durationt0 . 10213 s? Let us suppose
thatP . t0G ; 0.1, so that roughly 10 pulses are needed to
produce one pair. With intensityF0,g 5 1026; so that for
an arbitraryF, one can writeg 5 1026~F0F0!102. Then, for
Model C, a little algebra shows that this rate requiresF0F0;
107. ~For Models A and B,F0F0 ; 108 2 109.! Since laser
intensities appear to increase by one or two orders of mag-
nitude each year, these estimates suggest that one must
wait at least a few years before this form of production is
measurable. However, a better evaluation of these over-
lapping integrals may show an even “more weakened” es-
sential singularity, and therefore a lowerF0F0 value. This
is an interesting, and eventually a practical problem, which
should attract the attention of capable people, both theoret-
ical and experimental.

2. APPLICATION TO QCD

Suppose it were possible to producee1e2 andm1 m2 pairs
with intersecting, high-intensity lasers. Then it should be
possible to produce quark–antiquark pairs in the same way,
although what happens after production would be com-
pletely different from the QED case, because of the strong,
gluonic interactions betweenq and Sq. Here, gluonic radia-
tive corrections cannot be neglected . . . but one can imagine
two extreme, and differing, situations:

1. q and Sq materialize with their connecting flux tube0
string “in place,” so that, in effect, one has produced a
p0, which the laser fields cannot tear apart.

2. q and Sq materialize, each surrounded by appropriate
gluonic structure, which immediately starts to form
itself into a tube0string, joiningq and Sq.

It is this second possibility which is most interesting, for
the formation of the tube0string is surely not an instanta-
neous affair; rather, it should be a process that can be char-
acterized by a “string-formation velocity,”vf . As a physical
process,vf # c. But it is possible for theq and Sq to be
accelerated away from each other by the intense, crossed
lasers so that their relative velocity of separation,vs, satis-
fies vs $ vf . Of course, after a quarter-wavelength of the
laser pulse passes over these charged particles, deceleration
occurs, and the tube0string wins. But this argument suggests
that theq and Sq might temporarily reach separations consid-
erably larger than a few fermis.

What would be the signal of such a process? Clearly,
there would be large energy deposition in a small spatial
region. Perhaps a pair of hadronic jets; perhapsq– Sq anni-
hilation à la positronium, with the production of a few
very-high-energy gammas, or even a small “fireball” of
X rays. Because one is dealing with the conversion of a
virtual quantum state into a real pair, one simply does not
know if the second possibility above can occur; but it
would seem to be an interesting question, which deserves
some critical attention.
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