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SUMMARY
Because space manipulators must satisfy the law of conservation of momentum, any motion of a
manipulator within a space-manipulator system disturbs the position and attitude of its free-floating
base. In this study, the authors have designed a multi-swarm particle swarm optimization (PSO)
algorithm to address the motion planning problem and so minimize base disturbances for 6-DOF
space manipulators. First, the equation of kinematics for space manipulators in the form of a
generalized Jacobian matrix (GJM) is introduced. Second, sinusoidal and polynomial functions are
used to parameterize joint motion, and a quaternion representation is used to represent the attitude
of the base. Moreover, by transforming the planning problem into an optimization problem, the
objective function is analyzed and the proposed algorithm explained in detail. Finally, numerical
simulation results are used to verify the validity of the proposed algorithm.

KEYWORDS: Space manipulators; Free-floating base; Multi-swarm PSO; Minimizing base
disturbance; Nonholonomic motion planning.

1. Introduction
Recently, studies of space manipulators have been of particular interest to researchers because they
offer safety and efficiency advantages over human astronauts. However, control of space manipulators
presents additional difficulties beyond those encountered with fixed-base manipulators, such as the
property of conservation of momentum during operation. For this reason, the motion of a manipulator
can disturb the position and attitude of its base and cause the end-effector to miss its target.1

This property makes the control problem for space manipulators a nonholonomic motion-planning
problem.2–4 Generally, researchers use thrusters, orthogonal reaction wheels or control moment
gyroscopes to counteract such disturbances, but these methods consume fuel and may not exert
enough torque to offset the disturbance. For these reasons, base disturbances should be minimized
during the planning of the motion of space manipulators.

To address these problems, Dubowsky et al. proposed a method called the disturbance map (DM).5,6

This map is based on the concept of virtual manipulators. They then extended their theory to the
enhanced disturbance map (EDM).7,8 Using maps, the EDM clearly illustrates the maximum and
minimum base disturbances with regard to different orientations of motion of space manipulators.
Nenchev defined a fixed attitude-restricted (FAR) Jacobian matrix to ensure that manipulator motion
has no impact on base attitude.9 Yoshida presented the zero reaction maneuver (ZRM) concept,10

which makes it possible to plan the motion of space manipulators without base disturbance, even
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though it acts only on certain manipulators with dynamic redundancy. Yoshida and Huang presented
a dual-arm coordination project, and Yamada used a calculus of variations to plan the motion of joints
and so change the attitude of the base arbitrarily.1,11,12 Suzuki and Nakamura developed Yamada’s
method and then proposed an optimal spiral motion.13 However, this method is constrained by
dynamic singularity. Papadopoulos used a parameter optimization method but illustrated it only using
2-DOF space manipulators. Other methods have been proposed in previous works.2,14–24

In this paper, a planning method inspired by previous work is proposed to plan nonholonomic
motion to minimize base disturbance for 6-DOF space manipulators. The paper is organized as
follows: Section 2 derives the direct kinematic equations of the manipulator system. Section 3
parameterizes the joint motion and the system state. Section 4 transforms the planning problem to
an optimization problem. Section 5 introduces the detailed steps of the multi-swarm PSO algorithm.
Section 6 shows the results of computer simulation and Section 7 summarizes the paper.

2. Modeling of Space/Free-Floating Manipulators

Symbols and notation

r0 ∈ R3(m) position vector of the center of mass (CM) of the base with respect to
inertial coordinates;

r i ∈ R3 ({i = 1, ..., n}) (m) position vector of the CM of link ii with respect to inertial coordinates;
rg ∈ R3(m) position vector of the system CM with respect to inertial coordinates;
b0 ∈ R3(m) position vector from the CM of base to joint 1 with respect to inertial

coordinates;
pi ∈ R3 ({i = 1, ..., n}) (m) position vector of joint ii with respect to inertial coordinates;
pe ∈ R3(m) position vector of the end-effector with respect to inertial coordinates;
v0 ∈ R3(m/s) linear velocity of the base at a given time;
ve ∈ R3(m/s) linear velocity of the end-effector at a given time;
ω0 ∈ R3(rad/s) angular velocity of the base at a given time;
ωe ∈ R3(rad/s) angular velocity of the end-effector at a given time;
ki ∈ R3 (i = 1, ..., n) unit direction vector of the z-axis of frame ii, �i (i = 1, ..., n);
θi(rad) joint angle ii;
Θ ∈ Rn(rad) joint angle vector;
I i ∈ R3×3(kg · m2) inertia matrix of link ii with respect to itself CM (all of links are

regarded as cylinder);
X status of the total system(include attitude and position);
Qb attitude of the base;
Pb(m) position of the base.

The path planning problem for free-floating space robots in Cartesian space cannot be solved using
position-level kinematic equations as for fixed-base manipulators because the position and orientation
of the end-effector depend not only on the geometrical configuration of the manipulators, but also
on the inertial properties of the system, which change according to its configuration. This means that
the history of postural changes must be considered to solve the motion-planning problem. To deal
with this problem, Umetani, and Yoshida have proposed the concept of a GJM,25 which expresses
velocity-level kinematic equations for space manipulators rather than position-level equations.

The characteristic equation of the manipulators is as follows:

pe = r0 + b0 +
n∑

j=1

(
pi+1 − pi

)
. (2.1)

The end-effector velocity can be obtained by differentiating Eq. (2.1) with respect to time:

ve = ṗe = v0 + ω0 × (
pe − r0

) +
n∑

i=1

[
ki × (

pe − pi

)] · θ̇ i . (2.2)
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The angular velocity of the end-effector can also be written in a similar form:

ωe = ω0 +
n∑

i=1

ki θ̇ i . (2.3)

The differential form of the kinematic equation for a free-floating manipulator system is as follows:

[
ve

ωe

]
= Jb

[
v0

ω0

]
+ JmΘ̇, (2.4)

where

Jm =
[

k1 × (
pe − p1

)
k1

...

...

kn × (
pe − pn

)
kn

]
(2.5)

Jb =
[

E − p̃0e

0 E

]
,

(
p0e = pe − r0

)
. (2.6)

In which Jb, Jm are the Jacobian matrices of the manipulators and the base respectively. In
addition to its initial zero, the momentum of the whole system will remain invariant in inertial space
during the operation because neither external forces nor torques act on the base and the manipulators.
Therefore, the equation of momentum conservation is

Ib

[
v0

ω0

]
+ ImΘ̇ = 0, (2.7)

where

Ib =
[

M · E M · r̃T
0g

M · r̃0g IM

]
,

(
r0g = rg − r0

)
(2.8)

Ibm =
[

JTM

IMφ

]
(2.9)

are the inertia matrix of base and the coupling inertia matrix between base and manipulator
respectively. The items of above equations are as follows:

IM =
n∑

i=1

(
I i + mi · r̃T

0i · r̃0i

) + I0 ∈ R3×3, (r0i = r i − r0) (2.10)

JTM =
n∑

i=1

(mi · JTi) ∈ R3×n (2.11)

IMφ =
n∑

i=1

(I i · JRi + mi · r̃0i · JTi) ∈ R3×n (2.12)

JTi = [
k1 × (

r i − p1

)
, k2 × (

r i − p2

)
, ..., ki × (

r i − pi

)
, 0, ..., 0

] ∈ R3×n (2.13)

JRi = [k1, k2, ..., ki , 0, ..., 0] ∈ R3×n. (2.14)

According to Eq. (2.7), v0, ω0 can be solved for as

[
v0

ω0

]
= −I−1

b IbmΘ̇ =
[

Jvb

Jωb

]
Θ̇ . (2.15)
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This equation can be divided into a linear velocity part and an angular velocity part as follows:

ω0 = JωbΘ̇ . (2.16)

Finally, substituting Eq. (2.15) into Eq. (2.4) yields the desired result

[
ve

ωe

]
= [

Jm − Jb I−1
b Ibm

]
Θ̇ = J∗ (�b, Θ, mi, I i) Θ̇ . (2.17)

J∗ (Ψ b, Θ, mi, I i) is the so-called GJM, which represents the kinematic features of the whole space-
manipulator system. It is determined not only by the geometric parameters of each link, but also by
the inertial properties of the overall system.

3. Description of the Motion-Planning Problem Based on Direct Kinematics

Parameterization of joint motion
To produce a smooth path, polynomial functions have been used to describe joint motion. The degree
of the function must be greater than or equal to the number of constraints posed on the position,
velocity and acceleration of the joint. Moreover, every joint should be limited within a certain
boundary; in practice, sinusoidal functions can be used to address this problem. Therefore, in this
work, each joint angle was parameterized using a sinusoidal seventh-order polynomial function:

θi (t) = �i1 sin
(
ai7t

7 + ai6t
6 + ai5t

5 + ai4t
4 + ai3t

3 + ai2t
2 + ai1t + ai0

) + �i2. (3.1)

Here, the following is true:

�i1 = θi max − θi min

2
, �i2 = θi max + θi min

2
, (3.2)

ai0 − ai7 are the coefficients of the function and �i1, �i2�f 1 and �i2 are used to limit every
joint within its own angle constraint θi ∈ [θi min,θi max,]. The corresponding angular velocities and
accelerations are θ̇i (t) , θ̈i (t).

Obviously, θi, θ̇i , θ̈i should satisfy the following requirements:

Θ (t0) = Θ0, Θ̇ (t0) = 0, Θ̈ (t0) = 0,

Θ
(
tf

) = Θd, Θ̇
(
tf

) = 0, Θ̈
(
tf

) = 0. (3.3)

Here, t0 and tf t0, tf are the initial and terminal times respectively and �d is calculated according to
the Theory of Screws.26,27

Substituting Eq. (3.3) into θi (t) , θ̇i (t) , θ̈i (t) yields ai0, ai1, ai2, ai3, ai4, ai5, and they are as
follows:

θ̇i (t) = �i1 cos
(
ai7t

7 + ai6t
6 + ai5t

5 + ai4t
4 + ai3t

3 + ai2t
2 + ai1t

1 + ai0
)

(
7ai7t

6 + 6ai6t
5 + 5ai5t

4 + 4ai4t
3 + 3ai3t

2 + 2ai2t + ai1
)

(3.4)

θ̈i (t) = −�i1 sin
(
ai7t

7 + ai6t
6 + ai5t

5 + ai4t
4 + ai3t

3 + ai2t
2 + ai1t

1 + ai0
)

(
7ai7t

6 + 6ai6t
5 + 5ai5t

4 + 4ai4t
3 + 3ai3t

2 + 2ai2t + ai1
)2

+�i1 cos
(
ai7t

7 + ai6t
6 + ai5t

5 + ai4t
4 + ai3t

3 + ai2t
2 + ai1t

1 + ai0
)

(
42ai7t

5 + 30ai6t
4 + 20ai5t

3 + 12ai4t
2 + 6ai3t + 2ai2

)
(3.5)
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ai0 = arcsin

(
θi0 − �i2

�i1

)
(3.6)

ai1 = ai2 = 0 (3.7)

ai3 = −
(

3ai7t
7
f + ai6t

6
f − 10

[
arcsin

(
θid − �i2

�i1

)
− arcsin

(
θi0 − �i2

�i1

)])/
t3
f (3.8)

ai4 = −
(

8ai7t
7
f + 3ai6t

6
f − 15

[
arcsin

(
θid − �i2

�i1

)
− arcsin

(
θi0 − �i2

�i1

)]) /
t4
f (3.9)

ai5 = −
(

6ai7t
7
f + 3ai6t

6
f − 6

[
arcsin

(
θid − �i2

�i1

)
− arcsin

(
θi0 − �i2

�i1

)])/
t5
f . (3.10)

Finally, only two parameters (ai6, ai7) remain in each joint motion function:

a = [a16, a17, a26, a27, ..., ai6, ai7] ∈ R2n. (3.11)

In the optimization algorithm, aa is also referred to as a Lagrange multiplier. When aa is solved
for, the manipulator motion paths are determined.

Equation of system state
In this research, the aim of motion planning has been to bring the initial position and attitude of the
base close to the desired values. Therefore, the equation of system state is defined as follows (with
the attitude of the base represented by a quaternion function28):

X =
(

Qb

Pb

)
∈ R7. (3.12)

The terms of the system state equation can be calculated by numerical integration:

Qb (t) =
∫ t

0

1

2

[ −qT
b

ηb I − q̃b

]
Jbm ωθ̇dt, (3.13)

pb =
∫ t

0
Jbm v θ̇dt. (3.14)

The orientations of the two coordinate frames are given as Q1 and Q2Q1,Q2 and the orientation
error is given as dh and dqdh,dq29:

{
δη = ηb0ηbf + qb0qbf

δq = ηb0qbf − ηbf qb0 − q̃b0qbf
. (3.15)

The goal of motion planning is to bring the distance between the final and the initial/desired state
close to zero:

Xb0 − Xbf → 0. (3.16)

Because this method does not calculate the inverse of JbmJbm (the GJM), it is also referred to as a
motion-planning approach based on direct kinematics.30

4. Solution of Motion-Planning Problem by the Optimization Algorithm
Considering the dynamic coupling relationship between the manipulators and the base, manipulator
motion could disturb the position and attitude of the free-floating base that supports the manipulators.
The problem of minimizing disturbance to the base can be divided two parts: (1) minimizing position
disturbance; (2) minimizing attitude disturbance.31,32 Moreover, to ensure that the joint motion cannot
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Fig. 1. Topological structure of the multi-swarm PSO algorithm.

exceed the maximal torque that the motor can provide, the joint rates and accelerations must be
constrained within boundaries as previously mentioned. The objective function is defined as follows:

F (a) =
∥∥dqb

∥∥
Kq

+
∥∥d pb

∥∥
Kp

+ Lθ̇

KΘ̇

+ Lθ̈

KΘ̈

. (4.1)

Here, dqb, d pb, Lθ̇ , Lθ̈ are the quaternion error of the base attitude Eq. (3.15), the position error of
the base

(
pi − pf

)
, and the constraints on joint rates and accelerations (described in a later section),

respectively. As discussed earlier, these four items are all functions of aa, the Lagrange multiplier of
the seventh-order polynomial function. Kq, Kp, K
̇, K
̈ are determined by the accuracy requirement,
where ‖x‖ =

√
xT · x.

According to the properties of the PSO algorithm, the position of each particle with regard to
a higher-dimensional space can be expressed by a group of Lagrange multipliers aa. Because the
objective function is determined by aa, it is possible to use the position of a particle, with which
the minimal objective function value can be calculated, to express a solution to the motion-planning
problem.

5. Motion Planning Based on Multi-Swarm PSO
PSO was originally developed by Kennedy and Eberhart.33 It is a stochastic optimization method
based on simulating the social behavior of bird flocks and fish schools. The goal of PSO is to find
optimal or near-optimal solutions efficiently in large search spaces. In PSO, each individual, called a
particle, and the population, called a swarm, adjusts its path toward its own and its neighborhood’s
previous best position. In the global variant of PSO, the whole swarm is considered the neighborhood.
This enables global sharing of information from the discoveries and previous experience of all other
companions during the search for promising regions of the space.

Because of the particularities of space-manipulator modeling, i.e., there are many sub-optimal
solutions close to the optimal solution, general algorithms (including PSO34–36 and Simu-APSO)
cannot search effectively for the global minimum of the objective function, even with repeated
parameter adjustments. For this reason, the authors have designed a multi-swarm PSO algorithm,
inspired by the idea of swarm intelligence,37 to plan the motion of a set of manipulators. Its topological
structure is shown in Fig. 1.

Multi-swarm PSO consists of one elite swarm and several child swarms, where the members of the
elite swarm are initialized as the best-performing particles within child swarms. Each child swarm
evolves independently, but it will follow the motion of elite particles which are distributed by the
elite swarm, and at the end of evolution, the best-performing particle from every child swarm will be

https://doi.org/10.1017/S0263574715000855 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000855


Nonholonomic motion planning for space manipulators 867

submitted to the elite swarm to replace poorly performing particles in the elite swarm. The procedure
of multi-swarm PSO can be described as follows:
Step 1: Initialization of child swarms by repeatedly calculating the objective function;
Step 2: Sorting all particles based on their values of the objective function and then selecting the best
N particles to initialize the elite swarm;
Step 3: Initial evolution of the elite swarm and selection of elite particles;
Step 4: Distributing the elite particles, which are the best particles in the elite swarm, to every child
swarm. The velocity equation of child swarm i is as follows:

vk+1
i = ωvk

i + c1r1
(

pk
best i − ak

i

) + c2r2
(
gk

best i
′ − ak

i

) + c3r3
(
ek

best i − ak
i

)
. (5.1)

Step 5: Independent evolution of every child swarm, selection of the best-performing particles for
submission to the elite swarm and removal of poorly performing particles within the elite swarms;
Step 6: After absorbing the particles provided by the child swarms, the elite swarm evolves to the
next generation according to the new position equation:

ak+1
i = ak

i + vk+1
i + δ. (5.2)

Here, δδ is called the mutagenic factor and is determined as follows:

{
δ ∈ U (a, b) , �fi ≤ ε

δ ∈ N (0, σ ) , �fi ≤ ε
. (5.3)

Here, �fi = ∣∣f (ak
i ) − f (ak−1

i )
∣∣, and ε is the value of error bounds.

Step 7: Selection of elite particles and evaluation of whether they satisfy the convergence criterion;
if they do not, return to Step 4; if they do, go to Step 8.
Step 8: End of algorithm and output of results.

Although the numbers of swarms and particles are greater than in standard PSO, because the
structure of child swarms is simpler than in standard PSO (child swarms need only to update the
position and velocity of every particle) and the information produced by child swarms is governed
by the elite swarm, the new algorithm has greater computational efficiency than standard PSO.
Because, in this algorithm, all the child swarms evolve independently, it can be optimized for parallel
computation exclusively.

6. Simulation Results

6.1. Space-manipulator parameters
The object of this paper is a 6-DOF space manipulator which is mounted on a free-floating base, as
shown in Fig. 2. The parameters of the whole system are shown in Table I and the D–H parameters
are shown in Table II. The simulation environment is MATLAB 2010a with a “Spacedyn” toolbox
programmed by Shimizu et al.38

The joint velocity and acceleration boundaries (which are empirical values) are defined as follows:

{∣∣θ̇i

∣∣ ≤ θ̇i max = 60o
/
s = 1.0472rad

/
s∣∣θ̈i

∣∣ ≤ θ̈i max = 60o
/
s = 1.0472rad

/
s

. (6.1)

The coefficients of accuracy are as follows:

{
K q = sin

(
π

/
360

)
Kp = 2 · 10−3, K Θ̇ = K Θ̈ = 0.01

. (6.2)
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Table I. Mass properties of each body.

l0 l1 l2 l3 l4 l5 l6

m (kg) 500 4.239∗ 6.3585 21.195 21.195 6.3585 4.239
l (m) 4 0.2 0.3 1 1 0.3 0.2
r (m) 2 0.05∗∗ 0.05 0.05 0.05 0.05 0.05

Ixx

(
kg/m2

)
1166.7 0.168 0.0517 1.7804 1.7804 0.0517 0.0168

Iyy

(
kg/m2

)
1166.7 0.168 0.0517 1.7804 1.7804 0.0517 0.0168

Izz

(
kg/m2

)
166.7 0.0009 0.0013 0.0044 0.0044 0.0013 0.0009

∗In addition to the base, the density of links is ρ = 2.7 × 103kg/m3 and the radius of links is
r = 0.05m.
∗∗All the links are regarded as cylinders with their centers of mass coinciding with their
geometric centers and neglecting gravity.

Table II. D–H parameters of the whole system.

i αi−1 ai−1 di θi

1 0 0 l0
/

2 + l1 90◦ + θ1

2 −90◦ 0 0 θ2

3 90◦ 0 l2 + l3 θ3

4 −90◦ 0 0 θ4

5 0 l4 0 θ5

6 −90◦ 0 0 θ6

e 0 0 l5 + l6 0

Fig. 2. Modeling of 6-DOF space manipulators.

The initial system state and end-effector position are as follows:

{[
Pb0 Qb0

] = [
0 −0.3333 −3.0966 1 0 0 0

]
Pe0 = [

0 0.6666 −0.0966
] . (6.3)
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Fig. 3. Variation in the best fitness of every swarm.

The desired system state and end-effector position are as follows:

{[
Pbd Qbd

] = [
0 −0.3333 −3.0966 1 0 0 0

]
Ped = [

0.6981 1.1462 0.1714
] . (6.4)

The goal of planning is that the position and attitude of the base remain almost unchanged when
the end-effector moves from Pe0 to Ped . For this reason, the final base attitude was set equal to the
initial value. In the discussion above, the units of distance are m, and the quaternion has no units.

6.2. Simulation results
The algorithm parameters are given below.

Ne = 40, Ns = 40 number of individuals in the elite swarm and each child swarm
respectively;

nS = 5 number of child swarms;
c1 = 2.05, c2, 2.05, c3 = 2 learning factors, of which the first two learning factors of the

elite swarms are shared with the child swarms;
ωn = [

0.2 0.4 0.6 0.8 1
]

set of inertial weights of the child swarms;
M = 40 number of generations;
D = 12 dimension of the algorithm;
δ = 0.05 mutagenic factor.

Figure 3 shows the relationship between the value of the objective function and the number of
generations.

The optimal aa and fitness values are as follows:

⎧⎪⎪⎨
⎪⎪⎩

a = [−0.1754 0.2040 0.0322 0.1530
0.2502 0.1389 −0.0579 0.0757
0.0480 0.2341 −0.1018 −0.0546] × 10−5

F (a) = 4.8309

. (6.5)

Figures 4 and 5 show the curves of base position and attitude, respectively.
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Fig. 4. Base position curves.
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Fig. 5. Base attitude curves.

Figure 6 shows the planned joint trajectories, illustrating that the base disturbance has been
minimized. Figures 7 and 8 show the rate curves and the joint acceleration curves, respectively.

After planning, the system state is as follows:

{[
Pbf Qbf

] = [
0.0013 −0.3380 −3.0989 0.9998 −0.0123 −0.0039 0.0140

]
Pef = [

0.1423 0.5711 0.1051
] .

(6.6)
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The errors in base position and attitude are as follows:

[
Pb error Qb error

] = [
0.0013 −0.0047 −0.0023 0.0002 −0.0123 −0.0039 0.0140

]
.

(6.7)

Figure 9 shows the end-effector path, where the green asterisk on the end-point of the path is
the starting point of the end-effector before planning. The other end-point of the path represents the
termination of planning. The red asterisk, the lower of the two nearly coincident asterisks, is the
desired destination point of the end-effector, and the remaining, pink, asterisks represent the planning
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termination point after error correction. Because tiny errors in the base can become magnified by
the length of the manipulators and affect the end-effector position, the error in Eq. (6.7) must be
corrected. The end-effector position after correction is as follows:

Pem = [
0.7325 1.1171 0.1915

]
. (6.8)

The total error of the system is as follows:

Pe error = [
0.0344 −0.0291 0.0201

]
. (6.9)

Here, Pe error is produced by the process of calculation.
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Fig. 10. Variation of the fitness.

As shown in Figs. 4 and 5, it is clear that base disturbances during manipulator operation cannot
be ignored. The aim of motion planning to minimize base disturbance is to limit disturbances of the
initial and final states to a minimum. To compensate for the tiny remaining error, it is possible to
install orthogonal reaction wheels, which consume only a small amount of fuel, on the base instead
of controlling the attitude by thrusters in real time.

6.3. Result of SimuAPS for comparison
The parameters of algorithm:

[
N c1 c2 λ M D

] = [
40 2.05 2.05 0.5 100 12

]
(6.10)

N number of individuals in group;
c1, c2 learning factors;
λ annealing constant;
M number of generation;
D dimension of algorithm.

Figure 10 shows the relationship between the value of objective function and the number of
generation.

The optimal aa and the value of fitness are as follows:

⎧⎪⎪⎨
⎪⎪⎩

a = [−0.0707 −0.0324 −0.0270 0.0961
−0.1664 0.1770 −0.0072 0.0147

0.0536 −0.1915 0.0754 0.0253] × 10−5

F (a) = 20.8224

. (6.11)

It can be noticed that the fitness is an invariable value after generation 70, while the value of the
presented method is around 30 shown in Fig. 3, and the output value F(a) is 20.8224 while the value
of the presented method is 4.8309, as shown in Formula (6.5). The results show that the presented
method is more efficient and accurate.
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7. Conclusions
In this paper, a 6-DOF space manipulator has been modeled, and a plan for minimizing base
disturbances due to manipulator motion has been presented. The objective function has a number
of extreme points due to the complexity of the motion equations of 6-DOF space manipulators. In
particular, several sub-optimal solutions are located close to the global optimum. General algorithms
have difficulty searching for the best result, even the Simu-APSO algorithm, which can search
globally and locally at the same time. To deal with this problem more effectively, a new multi-swarm
PSO algorithm has been designed. From the results described above, it is evident that the proposed
algorithm can converge rapidly on a better solution than those found using Simu-APS algorithms and
that the new algorithm only needs a few generations to find the optimum.

The main shortcoming of this algorithm is that its convergence time cannot satisfy the requirements
of real-time planning. However, thanks to the parallelism of the child swarms, it is possible to use a
multi-core CPU (or even a GPU) to solve the objective function more efficiently.
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18. I. Belousov, C. Estevs, J. Laumond and E. Ferré, “Motion Planning for the Large Space Manipulators
with Complicated Dynamics,” Proceeding IEEE/RSJ International Conference on Intelligent Robots and
Systems, Edmonton, (2005) pp. 3713–3719.

19. K. Yamada, S. Yoshikawa and Y. Fujita, “Arm path planning of a space robot with angular momentum,”
Adv. Robot. 9, 693–709 (1995).

20. D. N. Nenchev, “Controller for A Redundant Free-flying Space Robot with Spacecraft Atitude/Manipulator
Motion Coordination,” Proceedings International Conference on Intelligent Robots and Systems,
Yokohama, (1993) pp. 2108–2114.

21. A. Akbarimajd, “Optimal motion planning of juggling by 3-DOF manipulators using adaptive PSO
algorithm,” Robotica 32, 967–984 (2014).

22. A. Rana and A. Zalzala, “Near time-optimal collision-free motion planning of robotic manipulators using
an evolutionary algorithm,” Robotica 14, 621–632 (1996).

23. G. G. Rigatos, “Distributed gradient and particle swarm optimization for multi-robot motion planning,”
Robotica 26, 357–370 (2008).

24. S. Wang, J. Bao and Y. Fu, “Real-time motion planning for robot manipulators in unknown environments
using infrared sensors,” Robotica 25, 201–211 (2007).

25. Y. Umetani and K. Yoshida, “Resolved motion rate control of space manipulators with generalized jacobian
matrix,” IEEE Trans. Robot. Autom. 5, 303–314 (Jun. 1989).

26. Z. Shuzhen, H. Jianlong, K. Minxiu and S. Lining, “Inverse Kinematics and Application of a Type of Motion
Chain Based on Screw Theory and Analytic Geometry,” IEEE International Conference on Computer
Application and System Modeling (ICCASM 2010), Taiyuan, China, (2010), pp. 680–684.

27. J. Xie, W. Qiang, B. Liang and C. Li, “Inverse Kinematics Problem for 6-DOF Space Manipulator Based
On the Theory of Screws,” Proceedings of the 2007 IEEE International Conference on Robotics and
Biomimetics, Sanya, China, (Dec. 15–18, 2007) pp. 1659–1663.

28. J. C. K. Chou, “Quaternion kinematic and dynamic differential equations,” IEEE Trans. Robot. Autom. 8,
53–64 (Feb. 1992).

29. J. S. C. Yuan, “Closed-loop manipulator control using quaternion,” IEEE J. Robot. Autom. 4, 434–440
(Aug. 28, 1988).

30. W. Xu, B. Liang, C. Li, Y. Xu and W. Qiang, “Path planning of free floating robot in cartesian space using
direct kinematics,” Int. J. Adv. Robot. Syst. 4, 17–26 (2007).

31. F. Zhang, Y. Fu, L. Hua, H. Chen, S. Wang and B. Guo, “Point-to-point Planning for Free-floating Space
Manipulator with Zero-disturbance Spacecraft Attitude,” Proceeding of the IEEE International Conference
on Information and Automation, Shenyang, China, (Jun, 2012) pp. 142–147.

32. J. Wu, S. Shi, B. Wang, Z. Jiang and H. Liu, “Path Planning for Minimizing BaseReaction of Space
Robot and its GroundExperimental Study,” Proceedings of the 2009 IEEE International Conferenceon
Mechatronics and Automation, Changchun, China, (Aug. 9–12, 2009) pp. 4627–4632.

33. J. Kennedy, “Particle Swarm Optimization,” In: Encyclopedia of Machine Learning, Kazuya Yoshida (eds.)
(Springer, 2010) pp. 760–766.

34. X. Huo, Y. Cheng, Y. Wang and Q. Hu, “PSO based Trajectory Planning of Free Floating Space Robot for
Minimizing Spacecraft Attitude Disturbance,” IEEE Chinese Control and Decision Conference (CCDC),
Mianyang, (2011) pp. 819–822.

35. P. Huang and Y. Xu, “PSO-Based Time-Optimal Trajectory Planning for Space Robot with Dynamic
Constraints,” Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics,
Kunming, (Dec. 17–20, 2006) pp. 1402–1407.

36. W. Xu, C. Li, B. Liang, Y. Liu and Y. Xu, “The cartesian path planning of free-floating space robot using
particle swarm optimization,” Int. J. Adv. Robot. Syst. 5, 301–310 (2008).

37. Z. Qiang and G. Fang, “A Two-Phase Multi-population Particle Swarm Algorithm for Global Optimization,”
Proceedings of 2006 International Conference on artificial Intelligence - 50 Years’ Achievements, Future
Directions and Social Impacts, Beijing, (Aug. 2006) pp. 271–274.

38. M. Shimizu, T. Hiraoka, K. Fujishima, A. Kurosu, K. Hashizume and K. Yoshida, “The Spacedyn: A
MATLAB Toolbox for Space and Mobile Robots,” http://www.astro.mech.tohoku.ac.jp/spacedyn/, (1999).

https://doi.org/10.1017/S0263574715000855 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000855

