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A source of light is placed d inches apart from the center of a detection bar of length
L ≥ d. The source spins very rapidly, while shooting beams of light according to,
say, a Poisson process with rate λ. The positions of the beams, relative to the center
of the bar, are recorded for those beams that actually hit the bar. Which law best
describes the time-average position of the beams that hit the bar given a fixed but
long time horizon t? The answer is given in this paper by means of a uniform weak
convergence result in L, d as t → ∞. Our approximating law includes as particular
cases the Cauchy and Gaussian distributions.

1. INTRODUCTION

The following physical mechanism is motivated by a construction of the Cauchy
distribution that is discussed in Ross [6, Section 5.6.3] (see also Feller [2]). A source
of light (think of a laser) is to be placed at d inches of distance from the center of a
screen (or a bar) of L inches of length. Whenever the source is well calibrated, it spins
very rapidly, and at exponential inter-arrival times the source of light shoots beams of
light. We think that the source of light is not far apart from the bar (or screen), thus
it is natural to ask that 0 < d ≤ L. The exponential times have mean 1/λ and occur
one after another in an i.i.d. (independently and identically distributed) fashion and
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independently of the light generation. The light travels in straight line and is detected
only when it hits the screen. At this point, the exact location of the hit—as measured
by the distance to the center of the screen—is recorded. So, for instance, if an observer
is behind the screen, facing the source of light, and a beam is detected 3 inches to the
right of the center, then the location is equal to 3 and if a beam is detected 3 inches to
the left of the center then the location is equal to −3.

Suppose, for the sake of an argument, that an experimenter is interested in testing
if the source is well calibrated. In order to do this he plans to run the experiment
up to a long time t so that a large number of measurements are recorded. Note that
without loss of generality, by taking the distance to the center as the length units, we
can work with the normalized length of the bar M := L/d ≥ 1, so that we can take
now d = 1. If the source is well calibrated, the distribution of the average position
will be centered around zero. The experimenter’s job is simply to test the hypothesis
that the source is well calibrated. One possibility for the experimenter is to choose a
confidence interval around the mean to test this hypothesis. In such case, how should
he choose a distribution to compute the confidence interval? Owing to the Central
Limit Theorem (CLT), one choice could be normal. Nevertheless, if the size of the
bar M is very large (which could easily occur if the experimenter places the source
of light very close to the center of the bar) the Gaussian approximation implied by
the CLT is not a good choice. To see this in an extreme case simply think of the case
M = ∞, in this situation the recorded positions are distributed Cauchy and therefore
the CLT is not applicable.

Our main contribution is to characterize a family of random variables that approx-
imates in distribution such average position regardless of the size of the bar M as long
as the time t is chosen large enough. The precise mathematical statement is given in
Theorem 1. We show that the correct family of approximating distributions depends
on the relative sizes of the time horizon, t, and the length of the bar M (or equiva-
lently the distance to the center of the bar). Suitable relationships between various
parameters in our family allow to recover the Gaussian or the Cauchy distribution.

The rest of the paper is organized as follows. In Section 2, we present the precise
mathematical description of our model and introduce our approximating family of
distributions. The main result and its proof are in Section 3.

2. THE MODEL AND MAIN RESULT

We first provide a mathematical description of the model under consideration. Then,
we will introduce our family of approximating distributions together with some of its
basic properties. Finally, we present the main result and its proof.

2.1. The Model

We now proceed to describe a mathematical model for the experiment assuming
that the source of light is well calibrated. According to the description given in the
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Introduction we see that the source shoots beams of light according to a Poisson
process with rate λ. Equivalently, one can think of the source of light shooting a generic
beam according to the following mechanism. First, pick a point, say �, uniformly at
random from the circumference of radius one, centered at the source of light and then
shoot the beam to the selected point. The beam will reach the bar if and only if � ∈
(−π/2, π/2) and if Tan(�) ∈ [−M, M]—the range of � has been taken assuming
that the observer looks the experiment from the top with the bar on the right-hand side
and the source to the left. A beam of light reaches the bar with probability

αM := P(� ∈ (−π/2, π/2), Tan(�) ∈ [−M, M])
= P(Tan(�) ∈ [−M, M]|� ∈ (−π/2, π/2)) × 1/2

= P(|Z| ≤ M) × 1/2,

where the random variable Z , corresponding to the value of Tan(�) given that � ∈
(−π/2, π/2), is distributed Cauchy. Throughout the rest of our discussion we shall
use Z to denote a generic Cauchy random variable.

Using the Thinning Theorem (see, e.g., [5]), we can model the arrival process
of the beams that do hit the bar according to a Poisson process (N (t) : t ≥ 0) with
parameter λαM . Since the source spins very rapidly we can regard each of the beams
of light as i.i.d. and independent of the Poisson process. If we use XM

k to denote the
position of the kth beam detected on the screen, then for all x ∈ R, P(XM

k ≤ x) =
P(Z ≤ x|Z ∈ [−M, M]). In particular, the density of XM

k is given by

fXM
k

(x) = 1

π
(
1 + x2

) I (|x| ≤ M)

arctan (M) − arctan (−M)
. (1)

In [4] one can find properties of this truncated random variable, such as the moments.
Another study of scaled sums of truncated random variables can be found in [1].

Now, let Yt be the accumulated sum of locations observed, that is,

Yt :=
N(t)∑
k=1

XM
k , (2)

hence the time average position, which is our object of interest, takes the form Y t =
Yt/t.

2.2. The Approximating Law

From the CLT for compound Poisson process (see, e.g., Whitt [9]) we have that

Yt

t1/2λ1/2α
1/2
M σM

= t1/2Y t

λ1/2α
1/2
M σM

=⇒ N (0, 1) as t → ∞, (3)

where σ 2
M := Var

(
XM

1

)
(here =⇒ stands for weak convergence or convergence in

distribution). Hence, under the conditions mentioned above, the normal distribu-
tion would be appropriate to approximate the distribution of Y t for large values
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of t. In particular, the result stated in (3) provides rigorous support for the formal
approximation

Y t
D≈ λ1/2α

1/2
M σM

t1/2
N (0, 1) ,

where N (0, 1) denotes a standard Gaussian random variable.
On the other hand, if M = ∞, Yt is the compound Poisson sum of i.i.d. Cauchy

random variables and one can easily verify that Y t =⇒ λZ as t → ∞, which provides

rigorous support for the approximation Y t
D≈ λZ .

So, how can one characterize a family of distributions that can approximate the
distribution of Y t uniformly in M as long as t is large? Our main result provides
an answer to this question. The approximation is given in (7) below. However, we
first need to define our approximating family of distributions, which comes from the
limiting behavior of a suitable scaled version of (2).

Proposition 1: Consider the time average

Y t :=
∑N(t)

k XM(t)
k

t
, (4)

where, for each t ≥ 0, the set {XM(t)
1 , XM(t)

2 . . .} is a sequence of truncated Cauchy
random variables as in (1) such that M(t) = κt with 0 < κ < ∞, and {N(t), t ≥ 0}
is a Poisson process with parameter λ/2. We have that Y t =⇒ Z(κ) as t → ∞, where
Z(κ) is a symmetric random variable with characteristic function given by

E exp (iθZ(κ)) = exp

(
2λ

π

∫ κ

−κ

(
cos (θy) − 1

y2

)
dy

)
. (5)

Proof: We notice first that

E exp
(
iθY t

) = exp

(
2λt

(
φM(t)

(
iθ

t

)
− 1

))
,

where φM(t) (iθ) := E exp
(

iθXM(t)
k

)
. However,

2λt (φM (iθ/t) − 1) = 2λ

∫ κt

−κt

(
exp

(
iθx

t

)
− 1

)
tdx

π
(
1 + x2

)
pκt

= 2λ

∫ κ

−κ

(exp (iθy) − 1)

π
(
1 + y2t2

)
pκt

t2dy = 2λ

∫ κ

−κ

(exp (iθy) − 1)

π
(
t−2 + y2

)
pκt

dy

= 2λ

pκt

∫ κ

−κ

cos (θy) − 1

π
(
t−2 + y2

)dy.
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Notice that the integrand is bounded by (cos(θy) − 1)/y2 which is integrable. By the
Dominated Convergence theorem

2λt (φM (iθ/t) − 1) −→ 2λ

∫ κ

−κ

(
cos (θy) − 1

πy2

)
dy

and therefore

E exp
(
iθY t

) −→ exp

(
2λ

∫ κ

−κ

(
cos (θy) − 1

πy2

)
dy

)
.

By Lévy’s continuity theorem Y t =⇒ Z(κ), where Z(κ) is a random variable with
characteristic function given in (5).

Since the characteristic function is real valued, then Z is symmetric. �

Definition 1: We say that W is distributed according to an averaged conditioned
Cauchy with changing threshold distribution with parameter β0, β1 > 0, denoted via
W := W(β0, β1) ∼ ACT(β0, β1), if

E exp(iθW) = exp

(
β0

∫ β1

−β1

[cos(θy) − 1]/y2dy

)
.

Remark 1: The random variable W appears to be a particular case of a family intro-
duced in [7], which treats dimensions 2 and higher. The authors in [7] refer to
these types of random variables as truncated stable distributions. Our terminology
is motivated by the result in Proposition 1.

We now show some properties of the ACT r.v.

Proposition 2: Suppose that W(β0, β1) ∼ ACT(β0, β1). Then,
(i) W is a symmetric infinitely divisible random variable.
(ii) W(β0, β1) =⇒ β0Z as β1 → ∞.
(iii) If β0 = 1/(2β1) then W(β0, β1) =⇒ N (0, 1) as β1 → 0.
(iv) W has an infinitely differentiable density. Moreover, if f (k)

W (·) denotes the k-th
derivative of the density of W, then we have that

∣∣∣∣ 1√
2π

f (k)(x)

∣∣∣∣ ≤ 2
∫ ∞

1/β1

exp(−2β0θc1) |θ |k dθ + 2
∫ 1/β1

0
exp(−2β0β1θ

2c2) |θ |k dθ ,

where c1 = ∫ 1
0 [(1 − cos(y))/y2]dy ∈ (0, ∞)and c2 = inf0≤z≤1(1/z)

∫ z
0 [(1 − cos(u))/

u2]du ∈ (0, ∞).
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Proof: (i) From the proof of Proposition 1 we also obtain, when taking t → ∞, that

E exp(iθW) = exp

(
β0

∫ β1

−β1

[exp(iθy) − 1]/y2dy

)
. (6)

The measure ν(dy) := dy/y2 is such that
∫

R
min(y2, 1)ν(dy) < ∞, hence (6) corre-

sponds to the characteristic function of a infinitely divisible random variable, see, for
example, [8, Section 1.2.4]. Such infinitely divisible random variable is symmetric.

(ii) Since cos(θy) = cos(|θ |y) always, by the change of variable x = |θ |y,

exp

(
−β0

∫ β1

−β1

[1 − cos(θy)]/y2dy

)
= exp

(
−β0|θ |

∫ β1

−β1

[1 − cos(x)]/xdx

)
.

Hence, by letting β1 → ∞, the integral converges and we end up with the character-
istic function of the Cauchy random variable.

(iii) Using [cos(θy) − 1]/y2 = −θ2/2! + θ4y2/4! − . . . , if β0 = 1/(2β1) and
β1 → 0, we end up with the characteristic function of N(0, 1):

β0

∫ β1

−β1

[cos(θy) − 1]/y2dy = β0

(
−2β1

θ2

2! + 2
β3

1

3

θ4

4! − . . .

)
→ −θ2/2.

(iv) Due to properties of the Fourier transform (see for instance [8, Section 3.8.4,
p.188]) it suffices to show that

1√
2π

∫ ∞

−∞
|E exp(iθW)| |θ |k dθ

=
∫ ∞

−∞
exp

(
β0

∫ β1

−β1

[cos(|θ |y) − 1]/y2dy

)
|θ |kdθ < ∞

for all k ∈ {1, 2, ...}. This follows easily since∫ ∞

−∞
eβ0

∫ β1−β1
[(cos(|θ |y)−1)/y2]dy|θ |kdθ = 2

∫ ∞

0
e−2β0

∫ β1
0 [(1−cos(θy))/y2]dy|θ |kdθ

= 2
∫ ∞

0
e−2β0θ

∫ θβ1
0 [1−cos(u)]/u2du |θ |k dθ

= 2
∫ ∞

1/β1

e−2β0θ
∫ θβ1

0 [(1−cos(u))/u2]du |θ |k dθ

+ 2
∫ 1/β1

0
e−2β0θ

∫ θβ1
0 [(1−cos(u))/u2]du |θ |k dθ .

Now, we have that

2
∫ ∞

1/β1

exp

(
−2β0θ

∫ θβ1

0
[1 − cos(u)]/u2du

)
|θ |k dθ ≤ 2

∫ ∞

1/β1

exp(−2β0θc1) |θ |k dθ
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and

2
∫ 1/β1

0
exp

(
−2β0θ

∫ θβ1

0
[1 − cos(u)]/u2du

)
|θ |k dθ

= 2
∫ 1/β1

0
exp(−2β0β1θ

2 1

θβ1

∫ θβ1

0
[1 − cos(u)]/u2du) |θ |k dθ

≤ 2
∫ 1/β1

0
exp(−2β0β1θ

2c2) |θ |k dθ ,

which concludes the proof. �

3. THE APPROXIMATING RESULT

In order to describe our result we introduce g(x) = P(U ≤ x) = min(max(0, x), 1),
where U is uniformly distributed in the interval [0, 1]. Then we let

ρ2
M = 1

M

∫ M

0

x2

1 + x2
dx = 1 − 1

M

∫ M

0

1

1 + x2
dx,

and γ := γ (M, t) = g(M/t)1/2. Function g is really not special, but the properties
that are interesting to us are that g(x) ≥ 0, g(·) is monotone increasing continuous,
g(x) ↗ 1 as x ↗ ∞ and g(x) ∼ x as x → 0. Due to our scaling, the behavior of g(·)
will allow us to retrieve the CLT approximation.

Our result provides rigorous support for the approximation

Y t
D≈ γρMW(β0, β1), (7)

where β0 = λ/(2πγ ) and β1 = M/(γ t). We now provide the statement of our result
and its proof.

Theorem 1: Defineβ0 := β0(t, M) = λ/(2πγ )andβ1 := β1(M, t) = M/(γ t). Then,
we have that

lim
t→∞ sup

M≥1,x∈(−∞,∞)

∣∣P(Y t/γ ≤ x) − P(ρMW(β0(M, t), β1(M, t)) ≤ x)
∣∣ = 0.

Proof: We use characteristic functions and apply Esseen’s lemma (which we quote
in the Appendix for convenience). We let

H(x) = P(Y t/γ ≤ x) and F(x) = P(ρMW(β0(M, t), β1(M, t)) ≤ x).
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We now verify the assumptions of Esseen’s lemma. First, we have that

log χ(θ) := log E exp(iθYt/(γ t)) = λαMt (φM (iθ/(γ t)) − 1)

= λ

2

∫ M

−M

[
exp

(
iθx

γ t

)
− 1

]
tdx

π
(
1 + x2

)
= λ

2

∫ M

−M

[
cos

(
θx

γ t

)
− 1

]
tdx

π
(
1 + x2

) .

Clearly, for each M ∈ [1, ∞), we have that EY t = 0. Now we compute the character-
istic function of ρMW(β0(M, t), β1(M, t)). We have that

log ξ(θ) := log E exp(iθρMW(β0(M, t), β1(M, t)))

= β0

∫ β1

−β1

(cos(θρMy) − 1)

y2
dy = λ

2πγ

∫ M/(γ t)

−M/(γ t)

(cos(θρMy) − 1)

y2
dy.

Using the properties derived in Proposition 2 we have that the derivative f (·) of F(·)
satisfies

1√
2π

|f (x)| ≤ 2
∫ ∞

1/β1

exp(−2β0θc1)dθ + 2
∫ 1/β1

0
exp(−2β0β1θ

2c2)dθ .

Observe that

β1 = M/(γ t) ≥ γ 2/γ = γ and β0β1 = λ

2πγ
β1 ≥ λ

2π
.

Therefore,

|f (x)| ≤ m := 2
∫ ∞

0
exp(−λθc1/π)dθ + 2

∫ ∞

0
exp(−λθ2c2/π)dθ < ∞.

We can see that ξ(·) is continuously differentiable for each M ∈ [1, ∞) with ξ(0) = 1
and ξ ′(0) = 0. Indeed, note that

log ξ(θ) = −θ2

2
× λρ2

MM/(γ t)

πγ
+ λ

2πγ

∫ M/(γ t)

−M/(γ t)

(
cos(θρMy) − 1 + θ2ρMy2/2

)
y2

dy

= −θ2

2
× λρ2

MM/(γ t)

πγ
+ O(θ4)

as θ → 0. We now apply Esseen’s lemma to obtain that

|H(x) − F(x)| ≤ 1

π

∫ T

−T
|χ(θ) − ξ(θ)| θ−1dθ + 24m

πT
. (8)
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In order to estimate the integrand in the previous display, let us introduce the change
of variables y = x/(γ t) and obtain

log χ(θ) = λ

2
γ t

∫ M/γ t

−M/γ t
[cos(θy) − 1] tdy

π
(
1 + (γ ty)2

)
= λ(γ t)−1

∫ M/γ t

−M/γ t

(cos(θy) − 1)tdy

π
(
(γ t)−2 + y2

) = λ

2πγ

∫ M/γ t

−M/γ t

(cos(θy) − 1)dy(
(γ t)−2 + y2

) .

Next, we write

log χ(θ) = λ

2πγ

∫ M/γ t

−M/γ t
[cos(θy) − 1]

(
1

y2
+ 1(

(γ t)−2 + y2
) − 1

y2

)
dy

= λ

2πγ

∫ M/γ t

−M/γ t

[cos(θy) − 1]
y2

dy

− λ

2πγ

∫ M/γ t

−M/γ t

(cos(θy) − 1 + θ2y2

2 ) (γ t)−2(
(γ t)−2 + y2

)
y2

dy

+ λ

2πγ
× θ2

2

∫ M/γ t

−M/γ t

(γ t)−2

(γ t)−2 + y2
dy

= λ

2πγ

∫ M/γ t

−M/γ t

[cos(θρMy) − 1]
y2

dy

− λ

2πγ

∫ M/γ t

−M/γ t

(
cos(θy) − 1 + θ2y2

2

)
(γ t)−2(

(γ t)−2 + y2
)

y2
dy

+ λ

2πγ

∫ M/γ t

−M/γ t

[cos(θy) − cos(θρMy)]
y2

dy

+ λ

2πγ
× θ2

2

∫ M/γ t

−M/γ t

(γ t)−2

(γ t)−2 + y2
dy

= log ξ(θ) − λ

2πγ

∫ M/γ t

−M/γ t
[cos(θy) − 1 + θ2y2/2] (γ t)−2(

(γ t)−2 + y2
)

y2
dy

+ λ

2πγ

∫ M/γ t

−M/γ t

[cos(θy) − cos(θρMy)]
y2

dy

+ λ

2πγ
× θ2

2

∫ M/γ t

−M/γ t

(γ t)−2

(γ t)−2 + y2
dy.

Using previous display we define

I1 := − λ

2πγ

∫ M/γ t

−M/γ t
[cos(θy) − 1 + θ2y2/2] (γ t)−2(

(γ t)−2 + y2
)

y2
dy,
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I2 := λ

2πγ

∫ M/γ t

−M/γ t

[cos(θy) − cos(θρMy)]
y2

dy + λ

2πγ
× θ2

2

∫ M/γ t

−M/γ t

(γ t)−2

(γ t)−2 + y2
dy

so that

|χ(θ) − ξ(θ)| = ξ(θ) |exp(I1 + I2) − 1| . (9)

We need to show that I1 + I2 → 0 as t → ∞ uniformly over M ≥ 1. In order to do
this we first observe that γ t −→ ∞ as t ↗ ∞ uniformly over M ≥ 1. Note that for
t ≥ 0

tγ = t min[(M/t)1/2, 1] = min[(Mt)1/2, t]. (10)

Now we provide a bound for the convergence to zero of I1. Using Eq. (10), for t ≥ 1,
see that

|I1| ≤ λ

2πγ (γ t)2

∫ M/γ t

−M/γ t

∣∣cos(θy) − 1 + θ2y2/2
∣∣

y4
dy

≤ λ

2π t1/2

∫ ∞

−∞

∣∣cos(θy) − 1 + θ2y2/2
∣∣

y4
dy (11)

= λ |θ |3
2π t1/2

∫ ∞

−∞

∣∣cos(x) − 1 + x2/2
∣∣

x4
dx

Next, for the last term of I2, note that if we let y = x/(γ t), then

λ

2πγ
× θ2

2

∫ M/γ t

−M/γ t

(γ t)−2

(γ t)−2 + y2
dy

= λ

2πγ
× θ2M

2γ t
× 1

M

∫ M

−M

1

1 + x2
dx

= λ

2πγ
× θ2M

2γ t
× 2

M

∫ M

0

1

1 + x2
dx = λ

2πγ
× θ2

2
× 2M

γ t
× (1 − ρ2

M).

We continue analyzing I2. In the next calculations, by letting u = |θ | y for the second
equality and x = uρM for the fourth equality, we obtain

I2 = λ

2πγ

∫ M/γ t

−M/γ t

[cos(|θ | y) − cos(|θ | ρMy) + θ2y2(1 − ρ2
M)/2]

y2
dy

= λ |θ |
πγ

∫ M|θ |/γ t

0

[cos(u) − cos(uρM) + u2(1 − ρ2
M)/2]

u2
du

= λ |θ |
πγ

∫ M|θ |/γ t

0

[cos(u) − 1 + u2/2]
u2

du

− λ |θ |
πγ

∫ M|θ |/γ t

0

[cos(uρM) − 1 + ρ2
Mu2/2]

u2
du
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= λ |θ |
πγ

∫ M|θ |/γ t

0

[cos(u) − 1 + u2/2]
u2

du

− λ |θ | ρM

πγ

∫ ρM M|θ |/γ t

0

[cos(x) − 1 + x2/2]
x2

dx

= λ |θ |
πγ

∫ M|θ |/γ t

0

[cos(u) − 1 + u2/2]
u2

du

− λ |θ | ρM

πγ

∫ M|θ |/γ t

0

[cos(x) − 1 + x2/2]
x2

dx

+ λ |θ | ρM

πγ

∫ M|θ |/γ t

ρM M|θ |/γ t

[cos(x) − 1 + x2/2]
x2

dx

= −λ |θ | (ρM − 1)

πγ

∫ M|θ |/γ t

0

[cos(x) − 1 + x2/2]
x2

dx

+ λ |θ | ρM

πγ

∫ M|θ |/γ t

ρM M|θ |/γ t

[cos(x) − 1 + x2/2]
x2

dx.

We conclude that

|I2| ≤ λ |θ | (1 − ρM)M|θ |/γ t

πγ
r

(
M |θ |
γ t

)
+ λ |θ | ρM(1 − ρM)M|θ |/γ t

πγ
r

(
M |θ |
γ t

)
,

where

r(z) = max
x∈[0,z]

∣∣cos(x) − 1 + x2/2
∣∣

x2
.

We see that

ρ2
M = 1 − 1

M

∫ M

0

1

1 + x2
dx.

Therefore, C1 = supM≥1 M(1 − ρM) < ∞. Consequently |I2| ≤ (2λθ2C1/πγ 2t)
r(M|θ |/(γ t)) and evidently we have that there exists C2 ∈ (0, ∞) such that for all
z ≥ 0, r(z) ≤ min{z2, C2}. Therefore, recalling that γ = √

g(M/t), we obtain

|I2| ≤ λθ2C1

πγ 2t
min

{
M2 |θ |2
(γ t)2

, C2

}
= λθ2C1

πγ 2t
min

{
|θ |2

min{ t
M , t2

M2 }
, C2

}

= λθ2C1

π
× min{max{M/t, (M/t)2} |θ |2 , C2}

min{M, t} .

It follows easily that for each T > 0 fixed

lim
t→∞ sup

M≥1,|θ |≤T

λθ2C1

π

min{max{M/t, (M/t)2} |θ |2 , C2}
min{M, t} = 0
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and also, regarding the bound (11) of |I1|

lim
t→∞ sup

M≥1,|θ |≤T

λ |θ |3
2π t1/2

∫ ∞

−∞

∣∣cos(x) − 1 + x2/2
∣∣

x4
dx = 0.

Therefore, from Eq. (8) and (9) we conclude that

lim
t→∞ sup

M≥1,x∈(−∞,∞)

|H(x) − F(x)|

≤ lim
t→∞ sup

M≥1

1

π

∫ T

−T
|χ(θ) − ξ(θ)| θ−1dθ + 24m

πT
≤ 24m

πT
.

Since T > 0 is arbitrary we have then proved the result. �
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APPENDIX

See Feller [3, p. 538] for the next result.

Lemma A.1 (Esseen): Let H be a distribution function with zero expectation and with characteristic func-
tion χ (·) and F another distribution function. Suppose that the difference H − F vanishes at ∞ and −∞
and that F has a derivative f such that |f (x)| ≤ m for all x ∈ (−∞, ∞). Finally, suppose that f (·) has a
Fourier transform ξ(·) such that ξ(0) = 1 and ξ ′(0) = 0. Then, for each x ∈ (−∞, ∞) and T > 0,

|H(x) − F(x)| ≤ 1

π

∫ T

−T
|χ(θ) − ξ(θ)| θ−1dθ + 24m

πT
.
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