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Abstract

Rather than assuming a fixed recovery rate in estimation, we estimate recovery rates from
credit default swap spreads, using 3 years of daily data on 152 corporations. We use a
quadratic pricing model, which ensures nonnegative default probabilities and recovery
rates. The estimated cross section of recovery rates is plausible, with an average recov-
ery rate of 54% and substantial cross-sectional variation. Estimated 5-year default proba-
bilities are on average 67% higher than default probabilities obtained using the standard
40% recovery assumption. This finding critically impacts the valuation of structured credit
products. Larger firms and firms with more tangible assets have higher recovery rates.

I. Introduction

The valuation of credit default swap (CDS) contracts and other defaultable
securities consists of two main components. The first is the default probability;
the second is the recovery rate in the event of default. Significant attention has
been devoted to understanding the likelihood of default and, more specifically, to
the modeling of default intensities. Much less is known about recovery rates, and
especially about risk-neutral recovery rates implied by default-risky securities,
which are critical for valuation exercises.

This paper reports on the cross section of recovery rates by inferring risk-
neutral recovery rates from CDS spreads. We allow for stochastic default inten-
sity and stochastic interest rates, and we assume a constant recovery of face value.
We model the default intensity using a quadratic specification, which ensures that
the default intensity is always positive, and we obtain a closed-form solution for
the CDS premia for different maturities. We estimate the model for each firm
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using the unscented Kalman filter, which is well equipped to deal with the sub-
stantial nonlinearities in the pricing formulas.

Part of the reason for the relative scarcity of existing results on risk-neutral
recovery rates is the existence of identification problems. For instance, under the
recovery of market value assumption, it is impossible to separate the recovery rate
from the intensity process, as argued, for instance, by Duffie and Singleton (1999).
The identification problem is less stringent when assuming recovery of face value,
which is appropriate for CDS valuation, although econometric problems may still
occur, depending on the data, the problem at hand, and the statistical loss function.
Pan and Singleton (2008) argue convincingly that using CDS spreads for multiple
maturities facilitates identification of the default intensity and the recovery rate.
We therefore exploit the term structure of corporate CDS premia and restrict our
analysis to 152 firms that were part of the CDX index between Oct. 7, 2004, and
June 29, 2007, and for which we have daily observations for 1-, 3-, and 5-year
maturity CDS spreads. Our sample spans 13 two-digit North American Industry
Classification System (NAICS) industries.

We estimate the model for each firm. The resulting fit is good, similar to
Chen, Cheng, Fabozzi, and Liu (2008), even though our estimation setup is more
demanding, because we fit our model to three different maturities simultaneously.
We also find that the root mean squared error (RMSE) of our model is substan-
tially lower than the RMSE of a model with a 40% recovery rate. The average
recovery rate across 152 firms is 53.79%. This is substantially higher than the
40% often assumed in existing studies and industry practice when estimating
default probabilities. The cross-sectional standard deviation of our recovery rate
estimates is similar to standard deviations computed using historical recovery
rates over long time periods.

We subsequently investigate the impact of conventional recovery rate as-
sumptions on the CDS-implied term structure of default probabilities. We find
that the 5-year default probabilities implied by our model are on average 67%
higher than the default probabilities implied by models with a 40% recovery rate.
Relying on long-run historical averages of recovery rates can therefore lead to
misspecified default probabilities. Credit risk pricing models use default proba-
bilities as inputs and typically use the 40% recovery assumption when calibrating
these probabilities. This is likely to lead to substantial valuation biases, especially
for complex credit products such as collateralized debt obligations (CDOs).

Finally, we examine the impact of industry and firm characteristics on the
cross-sectional differences in risk-neutral implied recovery rates, complementing
the results of Acharya, Bharath, and Srinivasan (2007), who examine the deter-
minants of historical recovery rates. We find that industry characteristics and in-
dustry distress are important determinants of recovery rates, as first suggested by
Shleifer and Vishny (1992). Furthermore, we find that firm characteristics such
as leverage, asset specificity, and tangibility of firm assets significantly affect
recovery rates.

This paper is part of a growing literature on the estimation of recovery rates.
Most papers provide estimates of historical recovery rates.1 Historical estimates

1See, for example, Altman, Brady, Resti, and Sironi (2005).
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serve as a good benchmark for recovery rates, but they require long time series of
realized defaults and are best thought of as unconditional, whereas our approach
can provide conditional estimates using short samples. Moreover, historical es-
timates are obtained under the physical measure and cannot directly be used for
pricing, while our estimate can be used directly for valuation applications jointly
with risk-neutral probabilities.

Other studies estimate risk-neutral recovery rates from credit-risky securi-
ties. Bakshi, Madan, and Zhang (2006b) use bond data to analyze alternative
recovery rate assumptions. Christensen (2007) estimates a stochastic recovery
model using CDS data but limits himself to one firm. To mitigate identification
problems, several studies estimate recovery rates by combining the valuation of
credit-risky instruments with other securities. See, for instance, Le (2008), Das
and Hanouna (2009), and Carr and Wu (2010), (2011). Other studies rely on
securities with different seniorities to overcome identification problems; see Unal,
Madan, and Guntay (2003) and Madan and Unal (1998).

Our results are most closely related to the estimates of the cross section of re-
covery rates in Jarrow, Li, and Ye (2009) and Schneider, Sogner, and Veza (2010).
Jarrow et al. use one factor to capture the dynamics of credit risk and then esti-
mate an affine credit risk model for each firm. They report an average recovery
rate that is similar to ours, but they find very limited cross-sectional variation in
this rate. Schneider et al. estimate an affine jump model with a constant recovery
rate for a large cross section of firms, and they find an average recovery rate of
79%, which seems very large given their sample period. It is difficult to ascertain
what drives these differences besides sample composition and sample period, but
it is possible that the quadratic nature of our model allows us to more reliably
estimate recoveries.

The paper proceeds as follows: Section II introduces the latent factor
quadratic model used for CDS valuation. Section III discusses the data and the
estimation technique. Section IV discusses the estimates and model fit. Section V
presents the empirical results on the cross section of recovery rates, and
Section VI concludes.

II. The Model

We first consider the pricing of credit default swaps.2 Subsequently, we dis-
cuss the specification of the state variables and the resulting closed-form solution
for survival probabilities and CDS spreads.

A. CDS Pricing

We use a discrete-time setup in which the uncertainty is captured by a set
of latent factors denoted by Xt =

(
Xr

t ,X
j
t

)
, where Xr

t governs the risk-free term

2For recent studies of CDS markets, see, for instance, Blanco, Brennan, and Marsh (2005),
Bongaerts, De Jong, and Driessen (2011), Chen et al. (2008), Ericsson, Jacobs, and Oviedo (2009),
Longstaff, Mithal, and Neis (2005), and Zhang, Zhou, and Zhu (2009).
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structure, whereas Xj
t is a firm-specific state variable affecting firm j. We proceed

under the risk-neutral measure. The price of a risk-free bond with maturity n is

B(t, n) = Et

[
n∏

i=1

Bt+i−1,t+i
(
Xr

t+i−1

)]
= Et [Bt,t+n (X

r)] ,(1)

where {Bt+i−1,t+i(Xr
t+i−1), i = 1, . . . , n} is the discrete-time discount factor be-

tween two consecutive trading dates. For the purpose of pricing a defaultable
security, we assume a constant recovery rate R, and we model the default event
in a discrete-time doubly stochastic framework; see, for instance, Gourieroux,
Monfort, and Polimenis (2006). Denoting the potential default time of firm j by
τj, and assuming no previous default, the survival probability is

Pr[τj > t + z] = Et

[
exp

(
−

z∑
i=1

Λt+i−1,t+i(X
r
t+i−1,X

j
t+i−1)

)]
.(2)

The discrete-time process
{
Λt+i−1,t+i(Xr

t+i−1,X
j
t+i−1), i=1, . . . , n

}
also defines the

default intensity, which is the probability of default for a certain period conditional
on no earlier default. The default probability of firm j depends on both systematic
and firm-specific factors, which induces a nonzero correlation between the risk-
free term structure and the default risk of the underlying firm j. The price of a
zero-coupon defaultable bond with maturity n is

DBj(t, n) = Et

[
Bt,t+n (X

r) exp

(
−

n∑
i=1

Λt+i−1,t+i(X
r
t+i−1,X

j
t+i−1)

)]
.(3)

For the purpose of CDS valuation, we assume that trading follows the discrete-
time sequence {t, t + 1, . . . , t + n} and that the coupon payments are made every
p periods. The coupon dates follow the sequence Tc = {t, t + p, . . . , t + (n/p)p},
where n denotes the maturity of the CDS contract. We assume default can only
occur right before a coupon date, and for notational convenience we suppress the
firm-specific j. Consider two consecutive coupon dates t + (k − 1)p and t + kp,
where 1 ≤ k ≤ n/p. Assuming no credit event prior to t + (k− 1)p + 1, the buyer
of the CDS will pay a premium S on each coupon date. The present value of this
premium payment at time t is Bt,t+kp1(τ>t+kp)S. If a credit event is documented
between two consecutive trading dates, the buyer receives compensation equal to
the loss given default, LGD= 1− R, and pays the accrued premium

kp∑
i=(k−1)p+1

Bt,t+kp1(t+(i−1)<τ<t+i)

(
LGD− i− (k − 1)p

p
S

)
.(4)

Applying the same reasoning for all coupon dates and using the double stochas-
ticity of the default time, the net present value of the CDS contract at time t is

CDS(t, n) =
n/p∑
k=1

−Et

[
Bt,t+kp exp

(
−

kp∑
i=1

Λt+i−1,t+i

)]
× S(5)

+
n/p∑
k=1

kp∑
i=(k−1)p+1

Et

[
ξi

(
LGD− (i− (k − 1)p)

p
S

)]
,
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where

ξi = Bt,t+i

(
exp

(
−

i−1∑
z=1

Λt+z−1,t+z

)
− exp

(
−

i∑
z=1

Λt+z−1,t+z

))
.(6)

Setting the value of the CDS contract in equation (5) equal to 0 yields the spread

S =

n/p∑
k=1

kp∑
i=(k−1)p+1

Et [ξiLGD]

n/p∑
k=1

[
Et

[
Bt,t+kp exp

(
−

kp∑
i=1
Λt+i−1,t+i

)]
+

kp∑
i=(k−1)p+1

Et

[
ξi
(i− (k − 1)p)

p

]] .(7)

The CDS spread depends on discounted LGD and the probability of credit events.
It can be computed analytically for any maturity.

B. Model Specification

We assume a 3-factor affine Gaussian model for the risk-free term structure,
as in Ang and Piazzesi (2003). This model is essentially the discrete-time counter-
part to the 3-factor Gaussian model of Duffee (2002). The 3 factors determining
risk-free rates follow a Gaussian VAR(1) (vector autoregression model of order 1)

Xr
t = μr + φrXr

t−1 +Σrεrt ,(8)

where Xr is a (3×1) vector, φr is lower triangular,Σr is diagonal, and εrt ∼ i.i.d.
N(0, I). The price of a 1-period zero-coupon risk-free bond is Bt,t+1 = exp(−rt),
where rt=δ0 +δ1Xr

t and δ1 is a (1×3) vector. See Ang and Piazzesi for the pricing
formula.

We further assume that for each firm j, there exists a specific factor that
affects the firm’s default risk. This factor is assumed to be independent of the
systematic factors Xr

t . Its dynamic is given by

Xj
t = μ j + φ jXj

t−1 +Σjε
j
t .(9)

Combining the above two equations, the dynamics of the state vector of firm j are[
Xr

t

Xj
t

]
=

[
μr

μj

]
+

[
φr 03×1

01×3 φ j

] [
Xr

t−1

Xj
t−1

]
(10)

+

[
Σr 03×1

01×3 Σj

] [
εrt
ε

j
t

]
,

which we write as

Xt = μ + φXt−1 +Σεt,(11)

where φ and Σ are (4× 4) matrices, Σ is diagonal, and εt ∼ i.i.d. N(0, I).
We now turn to the dynamics of the hazard rate process {Λt+i−1,t+i(Xt+i−1),

i = 1, . . . , n}. To ensure positivity, we parameterize it as a quadratic function of
the state variables

Λt+i−1,t+i (Xt+i−1) = (α + βXt+i−1)
T
(α + βXt+i−1) ,(12)
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where the superscript T denotes the transpose, α is a scalar, and β is a (1 × 4)
vector that captures the correlation between default risk and the risk-free term
structure, as well as the correlation between the default risk and the firm-specific
factor. Note that at any time t, Λt,t+1(Xt) = (α + βXt)

T(α + βXt) is known to
investors. We constrain the recovery rate R between 0 and 1 by modeling it as the
exponential of a negative square.

We can then use the results in Ang, Boivin, Dong, and Loo-Kung (2011) to
obtain closed-from expressions involving recursions for survival probabilities and
the price of the CDS contract. The 1-period survival probability for a firm at time
t is given by

Pr (τ > t + 1) = exp
(
− (α + βXt)

T
(α + βXt)

)
(13)

= exp
(−α2 − 2αβXt + XT

t

(−βTβ
)

Xt
)
,

and the survival probability after any z ≥ 2 days is

Pr[τj > t + z] = Et

[
exp

(
−

z∑
i=1

Λt+i−1,t+i(X)

)]
(14)

= exp
(
Az + BT

z Xt + XT
t CzXt

)
,

where

Az = −α2 + Az−1 + BT
z−1μ + μTCz−1μ− 1

2
ln det(I − 2ΣTCz−1Σ)(15)

+
1
2

(
ΣTBz−1 + 2ΣTCz−1μ

)T (
I − 2ΣTCz−1Σ

)−1

× (ΣTBz−1 + 2ΣTCz−1μ
)
,

Bz = −2αβ + BT
z−1φ + 2μTCz−1φ + 2

(
ΣTBz−1 + 2ΣTCz−1μ

)T
× (I − 2ΣTCz−1Σ)

−1ΣTCz−1φ,

Cz = −β′β + φTCz−1φ + 2
(
ΣTCz−1φ

)T (
I − 2ΣTCz−1Σ

)−1

× (ΣTCz−1φ
)
.

Letting G0
t,i = Et

[
Bt,t+i exp

(
−

i∑
z=1

Λt+z−1,t+z

)]
and

G1
t,i = Et

[
Bt,t+i exp

(
−

i−1∑
z=1

Λt+z−1,t+z

)]
,

the premium paid on each coupon date on a CDS contract with maturity n is

S =

(1− R)
n/p∑
k=1

kp∑
i=(k−1)p+1

(
G1

t,i − G0
t,i

)
n/p∑
k=1

[
G0

t,kp +
kp∑

i=(k−1)p+1

[
(i− (k − 1)p)

p

(
G1

t,i − G0
t,i

)]] ,(16)
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where Gm
t,n = exp

(
Am

n + (Bm
n )

T Xt + XT
t Cm

n Xt

)
and (Am

n ,B
m
n ,C

m
n ) are recursively

computed as

A0
1 = − (δ0 + α2

)
, B0

1 = − (δ1 + 2αβ) , and C0
1 = −βTβ,(17)

A1
1 = −δ0, B1

1 = −δ1, and C1
1 = 0,

Am
n = − (δ0 + α2

)
+ Am

n−1 +
(
Bm

n−1

)T
μ + μTCm

n−1μ(18)

− 1
2

ln det(I − 2ΣTCm
n−1Σ)

+
1
2

(
ΣTBm

n−1 + 2ΣTCm
n−1μ
)T (

I − 2ΣTCm
n−1Σ

)−1

× (ΣTBm
n−1 + 2ΣTCm

n−1μ
)
,

Bm
n = − (δ1 + 2αβ) +

(
Bm

n−1

)T
φ + 2μTCm

n−1φ

+ 2
(
ΣTBm

n−1 + 2ΣTCm
n−1μ
)T
(I − 2ΣTCm

n−1Σ)
−1ΣTCm

n−1φ,

Cm
n = −βTβ + φTCm

n−1φ + 2
(
ΣTCm

n−1φ
)T

× (I − 2ΣTCm
n−1Σ

)−1 (
ΣTCm

n−1φ
)
,

for n ≥ 2 and m= 0, 1.
In summary, we assume a 3-factor model for the risk-free term structure and

a 4-factor model for the risky term structure. We assume a quadratic process for
the hazard rate to ensure positivity. The resulting expression for CDS spreads can
be computed recursively.

III. Data and Estimation

We first discuss the CDS sample, as well as the source of the data used in the
analysis of the determinants of latent factors and recovery rates. Subsequently, we
discuss our econometric setup.

A. Data

Our sample period is from Oct. 7, 2004, to June 29, 2007. We collect data for
all single-name senior unsecured CDS contracts that were part of the CDX index
at any time between these two dates.3 The CDS data are obtained from Markit.
We obtain CDS spreads for 1-, 3-, and 5-year maturities for all firms. To have
sufficiently long time series, we only retain firms that have more than 275 daily
observations for each maturity. This yields a sample of 152 firms. By limiting our-
selves to firms that were part of the CDX index, we reduce the sample size, but the
CDS contracts on these companies are relatively more liquid. Moreover, our main

3CDS data are available starting in 2001, but market liquidity is low at the beginning of the sample,
and including these observations may bias results if liquidity is not accounted for. While 5-year CDS
contracts were traded more frequently starting from mid-2003, prices for 1- and 3-year contracts were
often stale until mid-2004.
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objective is to investigate the assumption of a 40% fixed recovery rate, and not to
characterize the general population of recovery rates. From this perspective, the
homogeneity of the sample biases our findings against cross-sectional variation in
recovery rates, and so our sample selection provides a conservative assessment of
the null hypothesis.

Figure 1 depicts the average spread across all 152 firms for each of the three
tenors. The average spread varies considerably over the sample period, but the
average term structure is always upward sloping. Table 1 provides descriptive
statistics on the CDS spreads by rating and industry.4 We have few observations
for some industries and rating categories. However, it seems a safe conclusion that
spreads are higher for firms with lower ratings, as expected. There is considerable
variation in credit spreads across industries. In our sample, spreads are rather low
for finance and insurance companies, as well as for utilities and transportation
firms. Spreads are highest for retail and manufacturing firms.

FIGURE 1

Average CDS Spreads across Firms

Figure 1 shows the time series of the average CDS spreads (in bps) across all 152 firms for the contracts with 1-year (light
grey), 3-year (dark gray), and 5-year (black) maturity. The sample period is Oct. 7, 2004–June 29, 2007.

To estimate the risk-free term structure model, we use the daily London In-
terbank Offered Rate (LIBOR) with 6-month maturity and interest swap rates
with maturities of 1, 2, 3, 4, and 5 years. The LIBOR and interest swap rates are
obtained from Bloomberg.

For the regression analysis on the determinants of recovery rates and latent
factors, we need a number of firm-specific and industry variables. Firm-specific
variables for the fiscal years 2004–2007 are obtained from the Center for Research
in Security Prices (CRSP)-Compustat merged database. We match the Compustat

4We report the firms’ average ratings over the sample period. At each point in time, we assign a
numerical code to the firm’s rating. Subsequently, we average over time and map the average back to
a rating category.
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TABLE 1

Descriptive Statistics of CDS Spreads

Panel A of Table 1 reports the average 1-, 3-, and 5-year CDS spreads for 152 firms across credit ratings. We use daily data
from Oct. 7, 2004, to June 29, 2007. Ratings are obtained from Compustat. Panel B reports the average 1-, 3-, and 5-year
CDS spreads across industries. Firms are matched using the North American Industry Classification System (NAICS), and
industry is identified by the first 2 digits of the NAICS number.

Panel A. Average CDS Spreads across Ratings

Spreads (bps)

Category 1 Year 3 Year 5 Year No. of Firms

All firms 21.58 41.91 63.55 152
AAA 4.34 9.23 15.25 2
AA 4.21 8.70 14.23 3
A 6.82 15.80 27.27 50
BBB 12.62 30.39 52.43 75
BB 36.75 71.26 110.72 16
B 230.40 352.71 419.84 6

Panel B. Average CDS Spreads across Industries

Spreads (bps)

Industry 1 Year 3 Year 5 Year No. of Firms

Health care and social assistance Hlth 13.68 32.80 53.78 2
Utilities Utl 9.89 21.42 34.64 7
Finance and insurance Fin 8.79 18.87 30.56 22
Manufacturing Manu 35.30 58.13 78.67 54
Professional, scientific, and technical services Pro 14.96 35.53 63.78 5
Information Info 13.48 32.92 58.10 19
Construction Cons 16.82 42.44 73.20 4
Transportation and warehousing Tran 6.55 17.00 31.30 5
Wholesale trade Whol 12.27 28.08 48.81 3
Retail trade Retl 24.44 57.85 91.39 17
Mining Min 10.19 22.06 36.77 5
Real estate and rental and leasing Este 14.89 37.17 63.26 2
Accommodation and food services Acco 17.07 41.39 72.32 7

variables with the CDS data using the Compustat identifier GVKEY. To compute
industry variables, we define the firm’s industry according to the first 3 digits
of the NAICS code. We discuss the firm-specific and industry variables in more
detail in the online Appendix (www.jfqa.org).

B. Estimation

1. Loss Function

We conduct several estimation exercises. For maturity τ , denote the model
spread from equation (7) at time t as SτM,t. Our main measure of model fit is the
RMSE. Using the insight of Granger (1969) that the choice of loss function affects
model estimates and that identical loss functions in the estimation and evaluation
stage are preferred, we therefore first use a nonlinear least squares procedure,
minimizing the RMSE based on the differences between the model spreads and
the data. We conduct one optimization exercise per firm, using the data from the
three maturities jointly by summing the squared errors across maturities. We thus
minimize √√√√ 1

3T

T∑
t=1

[(
S1Y

M,t − S1Y
D,t

)2
+
(
S3Y

M,t − S3Y
D,t

)2
+
(
S5Y

M,t − S5Y
D,t

)2]
,(19)

https://doi.org/10.1017/S0022109014000088  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109014000088


202 Journal of Financial and Quantitative Analysis

where SτD,t is the observed spread for maturity τ at time t, and T is the sample size.
To construct this loss function, the latent state variables have to be filtered from
the data. We address the nonlinearity in the measurement equation by using the
square-root unscented Kalman filter proposed by Van der Merwe and Wan (2001),
which we found to be numerically stable and computationally feasible.

To investigate robustness, we also estimate model parameters by minimizing
the mean absolute error, and we conduct a likelihood-based time-series estimation
based on the prediction errors from the Kalman filter (see Bakshi, Madan, and
Zhang (2006a) and Li and Zhao (2006) for more details on this loss function).

2. A Two-Step Procedure

There are 4 factors: 3 risk-free factors that are common to all firms, and
1 firm-specific factor. To ensure that the risk-free factors are the same for all
firms, we estimate their dynamics in a first step. This exercise is therefore only
performed once, and the 3 filtered factors are subsequently taken as given in the
nonlinear least squares procedure performed on the firm’s CDS spreads.5 The
CDS data are subsequently used to filter the firm-specific latent factor and the
parameters of the default risk process. This two-step procedure closely follows
the approach used by Duffee (1999) to estimate latent factor models for risky
bonds.

For each firm, we estimate two recovery models. In the first model, we set
the recovery rate equal to 40% and let the model fit the CDS data. In the sec-
ond model, we let the recovery rate be a free parameter. For this case, there are
12 parameters in total to be estimated: three parameters of the firm-specific factor
in equation (9), five parameters of the hazard rate in equation (12), three measure-
ment error parameters, and the recovery rate.

3. Numerical Optimization

Due to the rich parameterization of these models and the extensive cross
section of firms, a feasible framework to conduct the numerical optimization is
needed.6 In the case of the RMSE-based optimization, we proceed as follows:7

We start with the model with 40% recovery rate and use a grid to identify a pa-
rameter combination that produces a good initial fit for a diverse sample of CDS
spreads. Then we generate 50 random arrays from the normal distribution, with
mean equal to this parameter set and standard deviation equal to the absolute value
of this parameter set. We calculate the RMSEs for these parameters and use the
three parameter combinations with the best fit as starting points for the numerical
optimization. We select the parameter vector with the lowest optimized RMSE.

For the second model, where the recovery rate is a free parameter, we start
from the firm’s optimal values for the first model and a 40% recovery rate. We
generate 100 random arrays from the normal distribution, with mean equal to this

5The estimation of the risk-free term structure is also conducted using nonlinear least squares in
conjunction with the unscented Kalman filter.

6See, for instance, Duffee (1999) for a good discussion of this issue in the context of Gaussian
term structure models.

7A similar approach is followed for the other loss functions.
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parameter vector and standard deviation equal to the absolute value of this pa-
rameter vector. We calculate the RMSE for the 100 sets of parameters and use the
10 parameter vectors with the best fit as starting values in numerical optimization.
We then select the parameter vector with the lowest optimized RMSE.

This procedure is satisfactory for the majority of firms. In some cases how-
ever, the resulting RMSE is fairly large, or the resulting default probabilities and
recovery rates are not plausible. This may indicate a local optimum. For these
firms, we repeat the numerical optimization procedure using the optima for five
different firms in similar industries as starting values. If this results in a lower
RMSE, we select this as the optimum.

Our approach could be problematic if it turns out that the numerical opti-
mization does not yield optima for the recovery rate that are substantially differ-
ent from 40%, or if the results for different firms are very similar. Our results
below indicate the opposite. There is a large amount of cross-sectional variation
in estimated recovery rates, parameter vectors, and model properties in general.

IV. Estimates and Model Fit

We first discuss the in-sample and out-of-sample fit of our model. Subse-
quently, we conduct a Monte Carlo analysis to assess how identification problems
impact the estimation exercise.

A. The Risk-Free Term Structure

Panel A of Table 2 presents the estimation results for the risk-free term struc-
ture. Two of the factors are very persistent. Consistent with existing evidence, the
first factor is highly correlated with the level of the term structure, the second
factor is highly correlated with the slope, and the third factor is highly correlated
with curvature. We do not report the RMSEs to save space. They are consistent
with existing studies, such as Jagannathan, Kaplin, and Sun (2003), Li and Zhao
(2006), Duffie and Singleton (1997), and Chen et al. (2008).

TABLE 2

Risk-Free and Risky Term Structure Estimates

Panel A of Table 2 reports parameter estimates for the risk-free term structure. X1, X2, and X3 are latent factors. The factor
dynamics and loadings for the risk-free term structure are estimated using the 6-month LIBOR and the 1-, 2-, 3-, 4-, and
5-year swap rates. Panel B reports the estimated parameter distribution across all firms. Here, α, β1, β2, β3, and β4
capture the dynamics of the hazard rate process; μj , φj , andΣj capture the dynamics of firm j’s firm-specific latent factor;
and u1, u2, and u3 are the standard deviations of measurement errors of 1-, 3-, and 5-year CDS contracts estimated using
the unscented Kalman filter.

Panel A. Factor Loadings and Dynamics of Risk-Free Term Structure

Parameters X1 X2 X3

δ0 9.16E–05
δ1 3.79E–06
δ2 1.14E–05
δ3 2.84E–06
μ 0.0232122 0.0009766 5.12E–05
φ1 0.9988641 0 0
φ2 0.0057737 0.9529954 0
φ3 0.0041623 –0.0022862 0.77535574

(continued on next page)
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TABLE 2 (continued)

Risk-Free and Risky Term Structure Estimates

Panel B. Parameter Distribution across All Firms

Hazard Rate Latent-Factor Std. Dev. of
Process Parameters Parameters Measurement Error

Percentile α β1 β2 β3 β4 μj φj Σj u1 u2 u3

Average 0.00057 –0.00006 0.00011 0.00017 –0.00239 –0.00236 0.99991 0.00773 0.00000 0.00083 0.00001

2.5th –0.00274 –0.00033 –0.00042 –0.00158 –0.00770 –0.00521 0.99936 0.00000 0.00000 0.00000 0.00000
25th –0.00114 –0.00016 –0.00012 –0.00044 –0.00333 –0.00322 0.99991 0.00009 0.00000 0.00000 0.00000
50th 0.00041 –0.00006 0.00012 0.00010 –0.00257 –0.00257 0.99999 0.00059 0.00000 0.00000 0.00000
75th 0.00138 0.00004 0.00034 0.00079 –0.00167 –0.00190 1.00000 0.00283 0.00000 0.00000 0.00000
97.5th 0.00583 0.00022 0.00072 0.00181 0.00396 0.00349 1.00000 0.08796 0.00001 0.00004 0.00000
Std. dev. 0.00239 0.00015 0.00033 0.00090 0.00271 0.00206 0.00019 0.02512 0.00001 0.01024 0.00006

B. The Risky Term Structure: In-Sample Model Fit

Panel B of Table 2 presents the cross-sectional distribution of the parameter
estimates for 152 CDS contracts, obtained using the RMSE-based loss function
(19). The distributions of the parameter estimates for the two other estimation
exercises are qualitatively similar. The most important conclusion from Table 2
is that the firm-specific latent factor is very persistent for all firms. The online
Appendix contains an analysis of the economic and financial determinants of the
firm-specific latent factor.

Table 3 contains results for all three estimation exercises as described in
Section III.B.1: RMSE-based, absolute error-based, and time-series based, for
each of the 152 firms. For each firm, we report results for the model with a fixed
40% recovery rate and for the model with estimated recovery rate. Column 5
reports the RMSE for the model with estimated recovery rate. On average across
firms and maturities, the RMSE of the model with estimated recovery rate is 4.16
basis points (bps), whereas for the model with 40% recovery rate, reported in
column 8, the RMSE is on average 7.24 bps. The improvement in fit is over 40%,
which is very substantial. We also statistically compare the two models using the
generalized method of moments (GMM) test in Bakshi et al. (2006a). The null
hypothesis that the average RMSE for the model with estimated recovery rate is
higher than for the model with 40% recovery rate is rejected at the 5% level for
69.74% of the firms.

The online Appendix presents the ratio of the RMSEs for both models across
firms for all three tenors. The most important observation is that for many firms,
the RMSE for the model with estimated recovery rate is only a fraction of the
RMSE for the model with 40% recovery rate. Note that even though the model
with estimated recovery rate nests the model with 40% recovery rate, for some
firms the ratio is larger than 1 for one of the maturities because we use all three
maturities jointly in estimation.

As a percentage of the spread, the RMSE is 5.63% for the 5-year tenor. Chen
et al. (2008) report an average RMSE of 5.78% using a sample of 30 financial
firms and 4.04% using a sample of 30 industrial firms, but they only use the
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TABLE 3

Firm-by-Firm Recovery Rate Estimates

For each firm, we report rating, industry, estimated recovery rate, model-implied average 5-year survival probability, RMSE,
and absolute errors (Abs. Err.). We list estimation results based on the following loss functions: RMSEa, absolute errorb,
and maximum-likelihood estimation (MLE)c. Errors are averaged across three maturities and are reported in basis points.

Estimated 40%
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Company Name 1 2 3 4 5 6 7 8 9 10 11

Sun Microsystems Inc BB Manu 0.826 0.771 3.492 2.384 2.365 3.881 2.730 0.824 0.867
Honeywell International Inc A Manu 0.887 0.926 0.636 0.457 0.449 3.294 1.830 0.899 0.905
Fortune Brands Inc BBB Manu 0.861 0.856 2.294 1.645 1.620 3.098 1.815 0.858 0.847
AT&T Corp BB Info 0.335 0.967 5.770 4.015 2.744 7.015 4.969 0.524 0.205
Du Pont (E I) De Nemours A Manu 0.915 0.904 0.647 0.486 0.481 5.779 5.006 0.918 0.873
Eastman Kodak Co B Manu 0.209 0.872 8.767 6.710 6.522 10.238 7.787 0.322 0.256
General Electric Co AAA Manu 0.734 0.964 0.583 0.447 0.443 0.761 0.604 0.755 0.775
General Motors Corp B Manu 0.368 0.737 58.912 44.019 41.364 60.428 47.380 0.492 0.360
Goodrich Corp BBB Manu 0.094 0.978 2.144 1.406 1.386 2.772 1.819 0.055 0.181
Ingersoll-Rand Co Ltd A Manu 0.119 0.986 1.135 0.776 0.760 2.563 1.509 0.147 0.075
Intl Business Machines Corp A Pro 0.540 0.982 0.761 0.506 0.492 1.399 0.922 0.606 0.590
Maytag Corp BB Manu 0.135 0.929 12.873 6.552 6.376 43.725 27.734 0.362 0.177
Olin Corp BBB Manu 0.486 0.927 2.969 2.204 2.090 4.843 3.361 0.552 0.522
Altria Group Inc BBB Manu 0.925 0.621 4.870 3.750 2.946 11.467 8.530 0.902 0.663
Conocophillips A Manu 0.662 0.970 0.881 0.652 0.606 0.950 0.692 0.684 0.656
Amgen Inc A Manu 0.148 0.990 0.689 0.526 0.507 0.994 0.720 0.218 0.132
Sears Roebuck & Co BB Retl 0.280 0.923 3.573 2.610 2.474 10.876 7.310 0.356 0.188
RadioShack Corp BB Retl 0.483 0.898 4.501 3.547 3.485 5.099 3.683 0.549 0.467
Wyeth A Manu 0.698 0.963 1.396 0.824 0.748 1.937 1.274 0.750 0.710
Kroger Co BBB Retl 0.410 0.958 1.957 1.423 1.393 5.592 3.957 0.424 0.339
CVS Caremark Corp BBB Retl 0.599 0.964 1.417 1.033 0.997 2.736 1.679 0.644 0.699
General Mills Inc BBB Manu 0.112 0.985 1.109 0.790 0.771 1.475 0.953 0.146 0.182
Penney (J C) Co BBB Retl 0.825 0.795 9.615 4.152 3.768 10.413 4.130 0.830 0.836
Caterpillar Inc A Manu 0.780 0.958 0.819 0.554 0.539 1.198 0.792 0.820 0.840
Deere & Co A Manu 0.790 0.950 0.959 0.659 0.634 1.240 0.891 0.769 0.679
Bristol-Myers Squibb Co A Manu 0.863 0.938 0.701 0.532 0.513 0.978 0.678 0.860 0.871
Boeing Co A Manu 0.825 0.949 0.727 0.519 0.503 2.122 1.377 0.830 0.905
Dow Chemical A Manu 0.414 0.977 1.561 0.963 0.905 1.852 0.954 0.459 0.320
Lockheed Martin Corp BBB Manu 0.649 0.965 1.145 0.711 0.700 9.576 5.174 0.642 0.586
MeadWestvaco Corp BBB Manu 0.789 0.872 2.005 1.413 1.402 12.490 9.370 0.779 0.564
Cardinal Health Inc BBB Whol 0.395 0.963 3.950 1.455 1.326 10.153 7.424 0.427 0.209
Intl Paper Co BBB Manu 0.763 0.887 2.341 1.659 1.608 6.699 4.454 0.749 0.750
Motorola Inc BBB Manu 0.700 0.945 1.394 0.997 0.982 2.423 1.851 0.706 0.765
Sara Lee Corp BBB Manu 0.471 0.954 2.902 1.841 1.776 3.343 1.995 0.486 0.475
FirstEnergy Corp BBB Utl 0.856 0.862 1.308 0.972 0.957 4.129 2.597 0.856 0.845
Progress Energy Inc BBB Utl 0.629 0.951 2.359 1.614 1.489 5.358 4.107 0.747 0.599
Hilton Hotels Corp BB Acco 0.285 0.938 4.009 2.701 2.678 6.135 3.377 0.240 0.242
Textron Inc A Manu 0.213 0.986 1.009 0.777 0.701 1.105 0.828 0.252 0.308
Halliburton Co BBB Min 0.388 0.976 0.985 0.669 0.647 1.650 1.238 0.377 0.679
Rohm and Haas Co A Manu 0.855 0.913 1.254 0.896 0.887 1.660 1.074 0.857 0.863
Clear Channel Communications BB Pro 0.236 0.913 9.925 7.351 6.980 33.202 27.610 0.072 0.151
American Electric Power BBB Utl 0.950 0.698 1.395 1.109 1.068 15.817 6.474 0.954 0.964
Constellation Energy Grp Inc BBB Utl 0.249 0.978 1.756 1.242 1.192 2.038 1.283 0.282 0.353
Alcan Inc BBB Manu 0.334 0.976 1.451 0.964 0.926 2.938 1.753 0.322 0.336
Alcoa Inc A Manu 0.448 0.977 1.946 1.243 0.983 3.135 1.853 0.352 0.355
Northrop Grumman Corp BBB Manu 0.729 0.955 1.168 0.712 0.696 9.238 4.079 0.698 0.711
Raytheon Co BBB Manu 0.281 0.980 1.668 1.131 1.107 4.454 3.434 0.278 0.270
Campbell Soup Co A Manu 0.742 0.958 1.301 0.937 0.880 3.591 2.550 0.805 0.574
Whirlpool Corp BBB Manu 0.431 0.955 2.140 1.513 1.491 2.676 1.656 0.480 0.424
Avis Budget Group Inc BB Este 0.505 0.933 3.787 2.384 2.276 5.997 4.094 0.531 0.467
Kerr-McGee Corp BBB Min 0.552 0.930 5.396 3.213 3.147 7.092 3.819 0.523 0.323
CA Inc BB Info 0.875 0.742 3.309 1.999 1.849 4.070 2.660 0.887 0.863
Disney (Walt) Co A Info 0.901 0.876 1.244 0.879 0.855 4.823 2.791 0.895 0.880
Loews Corp A Fin 0.819 0.933 1.021 0.713 0.698 1.111 0.791 0.817 0.859
Hewlett-Packard Co A Manu 0.494 0.978 1.368 0.928 0.880 2.268 1.583 0.501 0.599
Baxter International Inc A Manu 0.128 0.987 0.983 0.717 0.707 2.326 1.442 0.137 0.080
Duke Energy Corp BBB Utl 0.613 0.957 0.842 0.595 0.588 2.431 1.690 0.616 0.626
Hess Corp BB Manu 0.594 0.929 3.061 2.182 2.137 3.210 2.316 0.598 0.697

(continued on next page)
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TABLE 3 (continued)

Firm-by-Firm Recovery Rate Estimates

Estimated 40%
Recovery Recovery
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Company Name 1 2 3 4 5 6 7 8 9 10 11

Arrow Electronics Inc BBB Whol 0.902 0.702 1.827 1.379 1.360 2.559 1.545 0.898 0.903
Omnicom Group A Pro 0.921 0.843 0.935 0.662 0.661 1.145 0.743 0.921 0.908
Sherwin-Williams Co A Manu 0.843 0.882 2.470 1.584 1.532 6.107 3.699 0.821 0.771
Donnelley (R R) & Sons Co BBB Manu 0.630 0.910 6.437 3.913 3.758 13.255 8.355 0.627 0.358
Wells Fargo & Co AA Fin 0.675 0.980 0.481 0.361 0.358 6.516 4.824 0.679 0.674
Weyerhaeuser Co BBB Manu 0.427 0.956 2.550 1.620 1.501 3.478 1.870 0.448 0.423
Computer Sciences Corp A Pro 0.521 0.940 5.963 3.548 3.252 13.312 9.003 0.523 0.505
Alltel Corp A Info 0.450 0.947 6.934 4.606 3.846 14.149 7.033 0.462 0.372
McDonalds Corp A Acco 0.755 0.959 1.187 0.926 0.895 4.345 3.085 0.785 0.769
SuperValu Inc BB Retl 0.367 0.914 6.719 4.914 4.710 17.797 14.059 0.402 0.634
Marsh & McLennan Cos BBB Fin 0.418 0.946 6.571 3.215 3.081 7.965 3.372 0.457 0.743
Gannett Co A Info 0.608 0.950 1.787 1.252 1.239 1.967 1.428 0.609 0.324
Union Pacific Corp BBB Tran 0.321 0.976 1.696 1.115 1.082 2.361 1.515 0.340 0.295
Knight-Ridder Inc BBB Info 0.257 0.937 8.552 6.622 6.285 11.662 6.836 0.237 0.173
Target Corp A Retl 0.202 0.992 0.835 0.545 0.465 3.155 2.003 0.482 0.390
Liz Claiborne Inc BBB Manu 0.251 0.966 3.127 1.961 1.895 4.569 3.112 0.238 0.181
Albertsons Inc BBB Retl 0.099 0.918 12.365 9.172 8.751 36.667 26.815 0.123 0.194
Fannie Mae AAA Fin 0.410 0.989 0.452 0.354 0.342 1.237 0.837 0.386 0.528
Lennar Corp BBB Cons 0.739 0.870 3.033 2.228 2.127 4.499 2.622 0.774 0.770
Centex Corp BBB Cons 0.231 0.959 3.412 2.288 2.066 14.916 11.500 0.315 0.437
Pulte Homes Inc BBB Cons 0.613 0.906 2.705 1.864 1.805 8.404 6.433 0.620 0.628
Wal-Mart Stores Inc AA Retl 0.447 0.990 0.480 0.362 0.358 1.014 0.721 0.460 0.342
Conagra Foods Inc BBB Manu 0.600 0.955 1.848 1.431 1.413 4.113 3.110 0.574 0.472
Nordstrom Inc A Retl 0.626 0.961 1.357 0.850 0.835 4.399 3.590 0.659 0.832
Southwest Airlines A Tran 0.354 0.971 1.223 0.951 0.891 2.561 1.825 0.355 0.345
Gap Inc BB Retl 0.333 0.931 4.297 3.103 2.970 8.100 5.276 0.357 0.298
American Express Co A Fin 0.788 0.954 0.766 0.594 0.588 0.821 0.634 0.795 0.754
Chubb Corp A Fin 0.920 0.880 0.925 0.617 0.610 3.115 2.303 0.922 0.950
Centurytel Inc BBB Info 0.291 0.953 2.655 1.966 1.928 5.956 4.139 0.265 0.227
Newell Rubbermaid Inc BBB Manu 0.391 0.967 1.861 1.319 1.292 2.574 1.705 0.430 0.489
Toys R Us Inc B Retl 0.466 0.580 24.661 18.731 18.348 34.245 24.950 0.499 0.313
CSX Corp BBB Tran 0.247 0.977 1.957 1.400 1.302 2.801 1.815 0.379 0.220
Wendys International Inc BB Acco 0.575 0.885 7.388 4.753 4.558 29.483 22.388 0.523 0.804
Cigna Corp BBB Fin 0.695 0.943 2.073 1.040 0.990 2.628 1.359 0.681 0.620
Limited Brands Inc BBB Retl 0.338 0.951 3.142 2.086 2.058 3.610 2.234 0.344 0.349
Norfolk Southern Corp BBB Tran 0.888 0.880 1.803 1.151 1.143 2.614 1.570 0.894 0.969
Countrywide Financial Corp A Fin 0.522 0.950 2.569 1.852 1.793 2.821 1.939 0.517 0.599
Dominion Resources Inc BBB Utl 0.432 0.969 1.343 1.014 0.977 3.150 2.072 0.441 0.520
Belo Corp –Ser A Com BBB Info 0.833 0.757 4.267 3.149 3.114 5.079 3.596 0.834 0.859
Tribune Co BB Info 0.110 0.930 15.887 11.268 9.753 31.537 16.270 0.093 0.196
Verizon Communications Inc A Info 0.456 0.968 3.437 2.414 1.997 5.713 3.197 0.504 0.244
BellSouth Corp A Info 0.618 0.969 0.871 0.649 0.631 1.328 1.015 0.639 0.415
AT&T Inc A Info 0.875 0.894 0.991 0.752 0.724 1.389 1.069 0.869 0.882
Temple-Inland Inc BBB Manu 0.419 0.941 2.966 2.074 2.024 3.376 2.328 0.441 0.233
Home Depot Inc A Retl 0.497 0.986 0.786 0.540 0.522 2.079 0.785 0.520 0.341
American International Group AA Fin 0.859 0.931 1.232 0.791 0.750 3.520 2.574 0.868 0.777
Toll Brothers Inc BBB Cons 0.319 0.935 7.173 4.792 4.401 12.832 8.982 0.249 0.275
Anadarko Petroleum Corp BBB Min 0.404 0.972 1.945 1.334 1.272 2.799 1.863 0.389 0.405
Carnival Corp A Tran 0.537 0.972 0.900 0.649 0.621 1.583 1.159 0.506 0.567
Istar Financial Inc BBB Este 0.517 0.939 3.260 2.247 2.160 4.187 2.637 0.498 0.469
Harrahs Entertainment Inc BB Acco 0.386 0.914 9.397 6.921 6.792 29.182 18.546 0.304 0.216
Safeway Inc BBB Retl 0.572 0.934 2.355 1.715 1.656 2.659 1.885 0.572 0.446
CBS Corp BBB Info 0.425 0.950 2.275 1.628 1.585 6.554 4.482 0.432 0.238
MBNA Corp BBB Fin 0.690 0.942 2.696 1.803 1.590 2.941 1.840 0.774 0.926
Autozone Inc BBB Retl 0.347 0.948 2.575 1.920 1.897 18.596 15.748 0.330 0.608
Jones Apparel Group Inc BBB Manu 0.283 0.934 5.660 3.841 3.598 6.269 3.889 0.314 0.132
Time Warner Inc BBB Info 0.536 0.952 1.616 1.228 1.153 3.006 2.192 0.523 0.457
Macys Inc BBB Retl 0.366 0.967 1.682 1.196 1.135 2.076 1.527 0.236 0.343
First Data Corp A Info 0.316 0.954 10.746 8.206 6.284 22.578 9.271 0.241 0.240
Boston Scientific Corp BBB Manu 0.444 0.959 2.335 1.757 1.603 11.238 8.261 0.511 0.558
Tyson Foods Inc –CL A BBB Manu 0.599 0.903 2.711 2.008 1.894 12.873 7.227 0.536 0.576

(continued on next page)
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TABLE 3 (continued)

Firm-by-Firm Recovery Rate Estimates

Estimated 40%
Recovery Recovery
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Company Name 1 2 3 4 5 6 7 8 9 10 11

Radian Group Inc A Fin 0.750 0.909 2.318 1.590 1.548 2.739 1.733 0.766 0.739
Ace Ltd A Fin 0.771 0.917 2.396 1.319 1.295 2.499 1.371 0.760 0.704
Transocean Offshore Inc A Min 0.815 0.924 1.244 0.845 0.821 1.549 1.083 0.820 0.918
Allstate Corp A Fin 0.590 0.976 0.938 0.662 0.649 1.165 0.783 0.589 0.596
Universal Health Svcs –CL B BBB Hlth 0.522 0.932 3.192 2.318 2.283 3.618 2.421 0.504 0.550
Eastman Chemical Co BBB Manu 0.913 0.744 2.473 1.771 1.525 3.330 2.223 0.878 0.884
Simon Property Group Inc A Fin 0.868 0.886 1.449 0.999 0.931 1.690 1.128 0.854 0.863
Lear Corp B Manu 0.736 0.464 37.184 26.579 24.736 44.140 35.028 0.841 0.834
Capital One Financial Corp BBB Fin 0.519 0.968 1.568 1.022 0.982 9.865 4.931 0.584 0.484
McKesson Corp BBB Whol 0.386 0.966 1.916 1.187 1.145 2.165 1.362 0.444 0.530
Cox Communications Inc BBB Info 0.370 0.954 2.121 1.590 1.564 2.510 1.875 0.416 0.362
Washington Mutual Inc A Fin 0.520 0.962 1.890 1.403 1.319 1.982 1.473 0.557 0.541
Darden Restaurants Inc BBB Acco 0.602 0.946 2.446 1.865 1.813 6.342 4.417 0.556 0.602
Hartford Financial Services A Fin 0.373 0.980 1.292 0.758 0.709 1.449 0.841 0.378 0.379
Electronic Data Systems Corp BBB Pro 0.476 0.917 3.862 2.419 2.290 4.219 2.638 0.482 0.585
Sabre Holdings Corp –CL A BBB Info 0.079 0.928 11.363 8.779 8.572 14.338 9.956 0.060 0.319
Quest Diagnostics Inc BBB Hlth 0.861 0.851 3.370 2.507 2.397 4.197 2.895 0.870 0.698
Equity Office Properties Tr BBB Fin 0.590 0.943 3.318 2.235 1.970 5.856 4.345 0.715 0.531
Valero Energy Corp BBB Manu 0.796 0.912 1.653 1.226 1.168 4.314 3.204 0.794 0.798
Marriott Intl Inc BBB Acco 0.689 0.943 1.071 0.792 0.782 2.074 1.581 0.697 0.546
Sempra Energy BBB Utl 0.605 0.958 1.662 1.188 1.140 2.023 1.476 0.608 0.681
XL Capital Ltd A Fin 0.255 0.974 1.692 1.219 1.140 2.810 1.882 0.256 0.416
American Axle & Mfg Holdings BB Manu 0.385 0.740 25.078 18.324 17.375 42.422 31.527 0.341 0.290
Devon Energy Corp BBB Min 0.390 0.973 1.857 1.236 1.181 2.658 1.663 0.397 0.393
MetLife Inc A Fin 0.256 0.985 0.876 0.613 0.592 1.145 0.784 0.264 0.088
Visteon Corp B Manu 0.348 0.625 48.731 30.058 29.712 61.921 42.712 0.364 0.269
Ford Motor Co B Manu 0.545 0.647 30.077 22.181 20.159 34.702 27.795 0.759 0.818
Aetna Inc A Fin 0.465 0.976 1.768 0.943 0.892 2.658 1.375 0.468 0.442
Kraft Foods Inc A Manu 0.565 0.972 0.980 0.712 0.691 5.287 4.249 0.607 0.519
Cit Group Inc A Fin 0.644 0.953 1.620 1.045 0.989 2.118 1.361 0.659 0.537
Comcast Corp BBB Info 0.443 0.966 1.377 1.028 1.009 1.531 1.066 0.463 0.210
News Corp BBB Info 0.950 0.627 1.503 1.088 1.067 2.371 1.270 0.944 0.941
Starwood Hotels & Resorts Wrld BBB Acco 0.523 0.887 6.306 4.772 4.704 6.600 4.771 0.532 0.654

5-year tenor in estimation. We explain three tenors using one set of parameters,
which is a considerably more challenging task. Our model therefore seems to
provide a good fit. This confirms the findings of many papers in the literature that
latent factor models generally provide a very good fit for credit risk modeling. In
light of this finding, the improvement in fit provided by the single extra recovery
parameter is particularly impressive.

The improvement in fit provided by the model with estimated recovery rate
is confirmed when using other loss functions. Column 7 of Table 3 reports the fit
based on the mean absolute error for the model with estimated recovery rate. Col-
umn 6 reports the mean absolute error using the parameter values estimated using
the RMSE-based loss function. Consistent with the insights of Granger (1969),
the errors in column 6 are larger than the ones in column 7, where the estimated
parameters are based on the mean absolute errors. Column 9 reports the mean ab-
solute error with 40% recovery rate; the deterioration in fit compared to the model
with estimated recovery in column 6 is again substantial.
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C. The Risky Term Structure: Out-of-Sample Model Fit

A model’s out-of-sample performance is as important as its in-sample fit. For
our model, it is important to assess out-of-sample performance using a recursive
exercise, but reliably reestimating the model very frequently for all firms in the
sample is prohibitively expensive from a computational perspective. We therefore
conduct a more limited recursive analysis. We aggregate sample spreads by rating
categories. We use the rating categories with the largest number of firms: A, BBB,
and a combination of BB and B-rated firms. Estimation is based on minimizing
expression (19). We always forecast the state variables and the CDS spreads up
to 1 month out of sample, using the prior 12 months to estimate the model pa-
rameters. For example, our first out-of-sample month is Dec. 2005. We compute
RMSEs for this month for all days for which data are available. The parameters
and latent state variables used for this forecasting exercise are estimated using
daily data for the period Dec. 1, 2004–Nov. 30, 2005. Subsequently, we forecast
daily data for Jan. 2006 using estimates obtained using the sample Jan. 1, 2005–
Dec. 31, 2005, and so on.

Figure 2 reports out-of-sample RMSEs for the 5-year maturity. We aggregate
the RMSEs by month to avoid reporting different forecasting horizons in the same
figure. Out-of-sample RMSEs in Graph A strongly depend on ratings, which con-
firms the in-sample results in Table 3. The relative RMSEs in Graph B indicate
that as a percentage of the spreads, the errors are roughly similar across rating

FIGURE 2

Out-of-Sample RMSE and Relative RMSE

Graph A of Figure 2 shows the time series of the out-of-sample RMSE for the 5-year CDS spread in basis points for firms
in three different ratings categories. Graph B shows the time series of the relative RMSE (i.e., RMSE divided by the CDS
spread). Estimation is based on minimizing the RMSE for all three maturities.

Graph A. RMSE

Graph B. Relative RMSE
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categories. RMSEs and relative RMSEs fluctuate considerably over the sample
period for the lower-rated companies. However, keeping in mind that we forecast
up to 1 month out of sample, the out-of-sample performance of the model is gen-
erally good: On average the relative RMSE is 7.49%, 6.81%, and 8.03% for the
firms rated A, BBB, and BB/B, respectively.

D. Econometric Identification

Econometric identification is an important consideration when estimating
recovery rates. See, for instance, Pan and Singleton (2008) and Schneider et al.
(2010) for discussions. Pan and Singleton (2008) argue that the use of multiple
tenors in estimation helps identification, and for this reason we simultaneously
use three tenors in estimation.

We perform a Monte Carlo analysis to assess the robustness of our estimation
methodology and to detect potential identification problems. We simulate time
series of 3 years worth of daily CDS spreads by Monte Carlo for a typical firm
in our sample, for all three tenors. We subsequently perturb the parameters of
the data generating process by adding a random noise, drawing from a normal
distribution with zero mean and standard deviation equal to 2 standard deviations
of the empirical distribution of parameters. We use the resulting parameter values
as starting values for the numerical search that fits the simulated CDS spreads.
We repeat this experiment 100 times.

The online Appendix presents the results of the Monte Carlo exercise and
discusses the results in more detail. The distribution of the parameter estimates is
tight around the parameters of the data generating process. The averages of the
estimated recovery rates are very close to the true recovery rate, and the same
applies to the parameters governing default probabilities. The t-statistics for the
differences between the estimated parameters and the true parameters suggest
that the differences are not statistically significant. This Monte Carlo experiment
confirms that our econometric methodology is able to reliably estimate model
parameters, and recovery rates in particular.

V. The Cross Section of Recovery Rates

We first discuss estimates of recovery rates in the existing literature. Subse-
quently, we discuss our recovery estimates, and how differences between these es-
timates and the standard 40% recovery rate assumption affect estimates of default
probabilities. Finally, we document the economic determinants of the estimated
recovery rates.

A. Existing Estimates of Recovery Rates

This paper is part of a growing literature on the estimation of recovery rates.
Most papers provide estimates of long-run (unconditional) historical average
recovery rates.8 Based on these estimates, a fixed 40% recovery rate is often

8Altman and Karlin (2008) report an average of 36.95% for senior unsecured bonds for the
1978–2007 period, Altman et al. (2005) report an average of 41.8% for all bonds for 1982–2001,
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assumed in industry practice and many existing studies when estimating credit
risk models.9 To illustrate the importance of estimating the recovery rate more
reliably, the online Appendix contains a figure indicating that an incorrect esti-
mate of the recovery rate affects the CDS premium even more than an incorrect
estimate of the survival probability, especially for large deviations. It also shows
that the resulting changes in CDS premiums are large compared to the RMSEs in
our empirical exercise.

Historical estimates require long time series of realized defaults and serve as
a good benchmark for recovery rates. However, these estimates are different from
ours in several ways. First, reliable estimation requires long sample periods, and
thus these estimates are best thought of as unconditional, whereas our approach
can provide conditional estimates using short samples. Second, realized recovery
rates in historical studies are computed up to 30 days after the trigger event. This
introduces substantial heterogeneity between firms in the sample, as argued, for
example, by Guo et al. (2008). Our estimates avoid this heterogeneity problem,
because we rely on market information at the same time for all firms in the sample.
Third, historical estimates are obtained under the physical measure and cannot be
used directly for pricing, while our estimate can be used directly and jointly with
risk-neutral probabilities for different valuation applications. Fourth, as noted by
many prior researchers, papers reporting historical estimates do not report their
estimation methodology and are therefore uninformative about the statistical sig-
nificance of the estimates. See, for instance, Emery, Ou, and Tennant (2008).

Other studies estimate risk-neutral recovery rates from credit-risky securi-
ties. Christensen (2007) estimates a stochastic recovery model using CDS data
but limits himself to one firm. Bakshi et al. (2006b) also estimate recovery rates,
but their study is different from ours along several dimensions. The most impor-
tant difference between both studies is the data: Bakshi et al. (2006b) estimate
BBB-rated bonds, while we use a large cross section of CDS contracts on firms
with different ratings. Bakshi et al. (2006b) assume that the dynamic of the default
intensity is governed solely by the factor that drives the risk-free rate, while we let
the default intensity depend on latent firm-specific factors as well as the risk-free
term structure. Moreover, our default intensity is a quadratic function of the state
variables, as opposed to an affine function in their approach. Bakshi et al. (2006b)
compare the fit of alternative recovery rate assumptions and model stochastic re-
covery as opposed to constant recovery, by inversely relating the recovery rate to
the default probability. They also relate risk premia to moments of the physical
distribution.10

and Altman and Kishore (1996) report an average of 47.65% for senior unsecured bonds for the 1978–
1995 period. Emery, Ou, Tennant, Matos, and Cantor (2009) report an average of 36.4% for senior
unsecured bonds for 1982–2008. These studies also report recovery rates on a year-by-year basis.

9See, for instance, the discussion in Pan and Singleton (2006) on industry practice. The 40%
assumption is based on long-term historical averages (see, e.g., the discussion in Duffie and Lando
(2001) and Guo, Jarrow, and Lin (2008)). Chen et al. (2008), Almeida and Philippon (2007),
and Thorburn (1997) use a 40% recovery assumption; Duffee (1999) assumes 44%; Ju, Parrino,
Poteshman, and Weisbach (2005) assume 45%; and Longstaff et al. (2005) use a 50% fixed recov-
ery rate.

10We do not attempt to analyze risk premia because the richer parameterization might compound
identification problems, but this is definitely an interesting avenue for further research.
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To remedy identification problems, several studies estimate recovery rates by
combining the valuation of credit-risky instruments with other securities. Jarrow
(2001) proposes a methodology using both debt and equity prices. Le (2008) uses
information from option prices to estimate the dynamics of the risk-neutral de-
fault intensity. The implied default intensity is then used along with 5-year CDS
spreads to compute the implied recovery rates. Das and Hanouna (2009) use the
term structure of CDS spreads together with stock prices and volatility to ex-
tract the term structure of default probabilities and recovery rates. Their model
requires calibration at each point in time, while we estimate our model using the
time-series information for the term structure of CDS spreads. Using an arbitrage
argument between out-of-the-money put options and credit markets, Carr and Wu
(2010) estimate a constant recovery rate model for eight firms for which the $1 in
default security is traded. Alternatively, one can rely on securities with different
seniorities to overcome the identifiability problem. Unal et al. (2003) and Madan
and Unal (1998) use data on junior and senior debt to identify risk-neutral recov-
ery rates.

Jointly modeling equity or options together with CDS contracts presumes,
of course, that these markets are fully integrated. This may bias results, as pointed
out by Carr and Wu (2011). For example, the portfolios of insurance compa-
nies, which are important investors in credit markets, are restricted to investment-
grade securities. Using different seniorities is limited to firms with traded
senior and junior securities, which amounts to less than 3% of available trades.
Such institutional constraints may imply different premia on restricted versus un-
restricted markets. We therefore pursue an alternative approach and attempt to
improve identification by using credit default swaps with different maturities in
estimation.

Our results are most closely related to Jarrow et al. (2009) and Schneider
et al. (2010). Jarrow et al. focus on potential statistical arbitrage opportunities
in the term structure of CDS spreads, but they also provide estimates of implied
recovery rates. They use one factor to capture the dynamics of credit risk and then
estimate an affine credit risk model for each firm. Schneider et al. estimate an
affine jump model with a constant recovery rate for a large cross section of firms.
We obtain very different results from these two studies. Jarrow et al. report an
average recovery rate of approximately 50% but find very limited cross-sectional
variation in this rate. Schneider et al. find a much higher average recovery rate of
79% and a median of 90%.

B. The Cross Section of Risk-Neutral Recovery Rates

Column 3 of Table 3 indicates that the average recovery rate across 152
firms is 53.79%, much higher than the 40% estimate used in most of the existing
literature.11 As discussed above, there are several possible explanations for this

11The last two columns of Table 3 report recovery rates estimated based on absolute errors and
the time-series estimation. Recovery rates are in most cases similar to the ones in column 3, and the
pairwise correlations between the three sets of recovery rates are all over 0.95. We therefore focus on
the recovery rate estimates in column 3.
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difference. Perhaps most importantly, our sample covers the years 2004–2007,
which is a relatively expansionary part of the business cycle. For senior unse-
cured bonds, Altman and Karlin (2008) report a recovery rate of 56.77% for 2004,
45.88% for 2005, 60.90% for 2006, and 47.70% for 2007, all substantially above
the long-run average. Emery et al. (2009) report the following recovery rates for
senior unsecured bonds: 52.09% for 2004, 54.88% for 2005, 55.02% for 2006,
and 53.25% for 2007. These numbers are very close to our estimates.

The CDS data embed expectations of ultimate recoveries. Emery et al. (2009)
report that ultimate recoveries may substantially exceed conventional historical
estimates based on data available up to 30 days after the trigger event. For 2007,
the ultimate recovery rate for their sample is estimated at 60.0%, as opposed to
53.3% using the conventional method. For 2008, the difference is much greater,
74.0% compared to 33.8%. Moreover, our estimated recovery rate is forward
looking, and the implied recovery rate therefore ought to be the market’s expec-
tation of recovery over the life of the contract. In our case, the effective maturity
is a weighted average of 1, 3, and 5 years, as all three maturities are used in es-
timation. Finally, we estimate risk-neutral recovery rates, which may differ from
historical ones due to a risk adjustment. Not much is known about the difference
between historical and risk-neutral recovery rates, and the implied price of re-
covery risk. Unal et al. (2003), using corporate bond data, find that, on average,
implied risk-neutral recovery rates lie systematically below the physical recovery
rates reported in Altman and Kishore (1996).

Graph A of Figure 3 depicts the histogram of estimated recovery rates. Our
results reveal substantial cross-sectional variation in estimated recovery rates.
Table 3 indicates that while the average recovery rate is 53.79%, the smallest re-
covery rate is 7.85%, for Sabre Holdings, a technology company, and the largest
recovery rate is 95.04%, for News Corporation. The cross-sectional standard devi-
ation of the estimated recovery rates is 22.96%. This is very close to the historical
standard deviation of 25% reported by Altman and Karlin (2008). However, our
findings contrast with Jarrow et al. (2009), who report very limited variation in
recovery rates across firms. Schneider et al. (2010) report a standard deviation
of 21.93%, similar to our finding. The minimum recovery rate in their sample is
3.36% and the maximum is 99.84%.

It is also interesting to compare the histogram in Figure 3 with reported dis-
tributions for historical recovery rates, which are typically obtained by taking
a grand time-series cross-sectional average. Schuermann (2004) reports that the
distribution of recovery rates is not unimodal, and this can also be seen from the
evidence in Altman and Karlin (2008). Our findings in Figure 3 seem to indi-
cate relatively more cases of high recovery rates than the distributions reported in
these papers, but once again we must keep in mind that the sample period is very
different.

In summary, we believe our estimated recovery rates are plausible. Com-
pared to historical estimates, they are relatively similar, in view of the sample
period, and the estimated cross-sectional standard deviation is very close to the
long-run historical average. Our average recovery estimate is almost identical to
Jarrow et al. (2009), but the cross-sectional variation in our estimates is higher.
Compared to Schneider et al. (2010), on average our estimates are much lower,
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FIGURE 3

Distribution of Estimated Recovery Rates and 5-Year Default Probabilities

Figure 3 shows the histogram of estimated recovery rates and estimated 5-year default probabilities using all 152 firms. In
Graph A, the y-axis indicates the number of firms with a particular recovery rate as indicated by the x-axis. In Graphs B
and C, the y-axis indicates the number of firms with a particular 5-year default probability as indicated by the x-axis. Graph
B contains the case of 40% recovery, and Graph C contains the case of estimated recovery.

Graph A. Distribution of Recovery Rates

Graph B. Distribution of Default Probabilities with 40% Recovery Rates

Graph C. Distribution of Default Probabilities with Estimated Recovery Rates

and in our opinion much more plausible, especially because historical recovery
rates are on average smaller in their sample period. It is difficult to ascertain what
drives these differences besides sample composition and sample period, but it is
possible that the quadratic nature of our model allows us to more reliably estimate
recoveries.

C. Recovery Rates and Default Probabilities

We now investigate the relation between estimated recovery rates and esti-
mated default probabilities. We first investigate how estimating the recovery rate,
as opposed to keeping it fixed at 40%, affects the estimates of default proba-
bilities. We then compute simple cross-sectional correlations between the CDS-
implied recovery rates and default probabilities. This relationship is of substantial
interest, especially because little is known about it from historical data. Indeed,
by definition the study of this relationship at the firm level is problematic using
historical data, and one has to resort to computing correlations between ex post
recovery and ex post default probabilities for groups of firms.
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Graphs B and C of Figure 3 present the histogram of estimated 5-year de-
fault probabilities obtained when estimating the recovery rate, and contrast it with
the histogram of estimated 5-year default probabilities obtained when fixing the
recovery rate at 40%. Figure 4 presents the time path of average default proba-
bilities under both assumptions, for all three tenors. Estimating the recovery rate
clearly has a substantial impact on estimated default probabilities, making them
larger on average. This is not surprising, because the average estimated recovery
rate is 53.79%, substantially higher than 40%. To obtain the same price for a given
credit-risky security with a higher recovery rate, the default probability needs to
be higher. What is more surprising is how much higher the estimated default prob-
ability paths are. For the 1-year tenor in Graph A of Figure 4, the average of the
path obtained with an estimated recovery rate is 34% higher than in the case of
the fixed recovery rate. For the 3-year tenor, it is 53% higher. For the 5-year tenor,
it is 67% higher.

FIGURE 4

Default Probabilities with 40% Recovery and Estimated Recovery

Graph A of Figure 4 shows the time series of 1-year default probabilities averaged across all firms. Graph B shows the time
series of 3-year default probabilities averaged across all firms. Graph C shows the time series of 5-year default probabilities
averaged across all firms. In each case we show probabilities obtained when recovery rates are set equal to 40% (in grey),
as well as probabilities obtained when recovery rates are estimated (in black).

Graph A. 1-Year Default Probabilities

Graph B. 3-Year Default Probabilities

Graph C. 5-Year Default Probabilities

The average estimated recovery rate of 53.79% is 34% higher than the stan-
dard 40% assumption. The difference between the 1-year default probabilities is
of approximately the same order of magnitude, but the difference is substantially
greater for 5-year default probabilities. It is necessary to understand why this is
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the case, because 5-year default probabilities are very important for credit mar-
kets. When pricing credit-sensitive securities such as CDOs and CDO tranches,
default probabilities estimated from CDS contracts are one of the most criti-
cal inputs into the model, and 5-year default probabilities are most often used.
Our results therefore indicate that one of the most important inputs in these mod-
els is subject to a 67% misspecification if a 40% recovery rate is used, which is
a standard assumption in industry. This would cause dramatic mispricing of these
securities. Our findings are consistent with recent Securities and Exchange Com-
mission (2010), (2011) proposals on the regulation of structured products, which
emphasize the importance of heterogeneity in the pool of CDO assets and the
importance of a thorough assessment of the model inputs.

Why are estimated 5-year default probabilities so much higher when esti-
mating the recovery rate? The reasons for this are multiple, and can be traced
back to several model parameters. However, we found that the main reason is
the estimated persistence of the firm-specific factor (9). In order to demonstrate
this, some back-of-the-envelope calculations are very instructive. Consider the
1-day survival probability (13). We can compute this for every day of our sam-
ple, which yields a 1-day default probability of 1.56e−5 when the recovery rate
is estimated, on average across time and across firms. When the recovery rate is
fixed at 40%, this average is equal to 1.32e−5. Therefore, for our sample the 1-day
default probability is 17% higher when the recovery rate is estimated. Now con-
sider the multiperiod default probability implied by expression (14). If the hazard
rate process is characterized by an AR(1) (autoregressive specification of order
1) process with unit root without drift, future expected hazard rates are equal to
the current hazard rate. We can therefore compute 1-, 3-, and 5-year default prob-
abilities with estimated or 40% recovery rates, and also the ratio between these
default probabilities. Under the unit root assumption, the default probabilities are
approximately 17% higher when recovery is estimated, regardless of the maturity.

However, Table 2 indicates that while the persistence of the state vector gov-
erning the hazard rate is very high, it is of course not always exactly 1. In fact,
on average, the persistence of the firm-specific factor (9) is 0.9999. When as-
suming a 40% recovery rate, the average persistence is slightly lower, at 0.9994.
This small difference in persistence can have substantial implications, because
the persistence is daily, and the maturity of the CDS contracts is up to 5 years. To
see this, consider deterministic hazard rate processes with persistence of 0.9999
and 0.9994 and no intercept, and compute default probabilities using initial 1-day
default probabilities of 1.56e−5 and 1.32e−5. For the 1-year maturity, resulting
default probabilities are 28% higher in the case of estimated recovery rates. For
3- and 5-year maturities, default probabilities are 51% and 75% higher. Small dif-
ferences in the daily persistence of the state vectors, and by implication of the
hazard rate, can therefore lead to large differences in default probabilities. While
this simple back-of-the envelope calculation does not take all model features into
account, the resulting differences in default probabilities are similar to those doc-
umented in Figure 4 and discussed previously.

Moreover, the higher persistence of the firm-specific factor (9) when recov-
ery rates are estimated is a robust stylized fact, and it obtains for 126 out of
152 companies in the sample. We therefore conclude that for a given sample,
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assuming a 40% recovery rate leads to important biases in estimated 5-year de-
fault probabilities for at least two reasons. First, the actual or expected recovery
rate in the sample period may be different from 40%. Second, the 40% assump-
tion leads to a bias in the estimated daily persistence of the hazard process, and
this substantially impacts the pricing of CDS contracts with long maturities.

Given prices on a credit-risky security, a higher estimated recovery rate
implies a higher default rate. However, this relationship is different from the cross-
sectional relation between the estimated recovery rate and average default proba-
bility for different firms. The online Appendix contains a scatterplot of estimated
recoveries and average 5-year default probabilities for all 152 firms. The correla-
tion between average default probabilities and recoveries is positive, at 38.79%.
Correlations for 1- and 3-year default probabilities are also positive, but somewhat
lower. Note that different results may obtain if one estimates both the recovery rate
and the default probability as time varying.

This estimated cross-sectional correlation is also very different in nature
from the existing evidence on the time-series correlation between aggregate
ex post default and recovery rates. The existing literature for the most part finds
a negative time-series correlation between default and recovery rates (see, e.g.,
Altman et al. (2005), Carey (1998), Schuermann (2004), and Emery et al. (2009)).
Carey and Gordy (2003) find that the sign of the correlation depends on the sam-
ple period. By construction, our estimates are uninformative about this, because
our estimated recovery rate is constant over time.

D. Determinants of Recovery Rates

We now analyze the determinants of recovery rates. We first analyze how
recovery rates differ between industries and rating categories. Subsequently, we
closely follow the regression approach in Acharya et al. (2007) to analyze the
determinants of cross-sectional variation in recovery rates. Whereas Acharya et al.
use historical recovery rates in their analysis, we use the risk-neutral recovery
rates from Table 3.

Table 1 contains descriptive statistics on spreads by industry and rating, and
it indicates that spreads are higher for lower-rated firms and that there is sub-
stantial variation in average spreads across industries. To what extent are these
differences due to differences in expected recovery? While, on average, higher
ratings are associated with higher recovery rates for our estimates, the relation-
ship is not monotonic. This is consistent with the literature on historical recovery
rates, which emphasizes that seniority and industry are more important determi-
nants of recovery than ratings. Indeed, we find substantial variation of estimated
recovery rates across industries.

We therefore attempt to explain recovery rates using firm characteristics and
industry conditions. We compute firm-specific and industry variables following
Acharya et al. (2007). The data are discussed in detail in the online Appendix.
We have 4 years of data, but only one recovery rate per firm.12 We run panel

12Using a long time series of CDS spreads facilitates the reliable estimation of model parameters,
including recovery rates. While it may prove difficult to reliably estimate recovery rates using very
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regressions where we keep the firm’s recovery rate constant over the 4 years, but
we allow the firm-specific variables to change from year to year. The panel regres-
sions therefore contain 4 × 152 = 608 observations. Table 4 presents the results
from the panel data regressions, using White (1980) standard errors. Results us-
ing two industry distress measures, as described in the online Appendix, are very
similar.

TABLE 4

Determinants of Recovery Rates

Table 4 reports ordinary least squares (OLS) estimates for regressions of recovery rates on firm and industry variables.
The t-statistics based on White (1980) standard errors are reported in parentheses. *, **, and *** indicate significance at
the 10%, 5%, and 1% levels, respectively.

1 2 3 4 5 6 7

Firm size 0.0361*** 0.0304*** 0.0356*** 0.0378*** 0.0369*** 0.0360*** 0.0363***
(3.98) (3.91) (3.91) (4.29) (4.09) (3.90) (3.98)

Leverage –0.1570** –0.1360* –0.1480* –0.1570* –0.1440* –0.1760** –0.1530*
(–2.02) (–1.86) (–1.86) (–1.94) (–1.77) (–2.19) (–1.93)

Tangibility 0.0811** 0.0077 0.0787** 0.0446 0.0622* 0.0524 0.0802**
(2.10) (0.26) (2.01) (1.18) (1.68) (1.40) (2.06)

Industry Q –0.0283 0.0095 –0.0312 –0.0331 –0.0378 –0.0276 –0.0294
(–0.98) (0.42) (–1.06) (–1.10) (–1.25) (–0.91) (–0.99)

Industry asset specificity –0.1230* –0.1210* –0.1230*
(–1.79) (–1.76) (–1.79)

Industry distress –0.0197 –0.0205 –0.0483 –0.0277 –0.0230
(–0.54) (–0.55) (–0.96) (–0.74) (–0.62)

Distress× Specificity 0.1110
(0.70)

Leverage× Specificity –0.2200
(–1.12)

Illiquidity× Specificity –0.0636
(–0.88)

Peer× Distress –0.0000261
(–0.31)

Intercept 0.2230** 0.2600*** 0.2310** 0.2100** 0.2180** 0.2320** 0.2210**
(2.08) (2.73) (2.13) (1.97) (2.01) (2.12) (2.06)

No. of obs. 399 546 399 399 394 386 399
R2 (%) 6.4 3.3 6.5 5.8 6.1 6.1 6.4

Most coefficients are estimated with the a priori expected sign and are con-
sistent with intuition, similar to the findings of Acharya et al. (2007). Large firms
have higher recovery rates. High tangibility of assets implies high recovery rates.
All of the estimated tangibility coefficients are positive, and many are statistically
significant. Acharya et al. also find a positive effect, but their estimates are largely
statistically insignificant. Similar to Acharya et al., we find that the direct effect
of an industry’s asset specificity on recovery rates is negative and significant. We
also find that the firm’s leverage negatively affects the recovery rate.

We investigate a number of interactions of these variables. The interaction
of industry-level leverage and industry asset specificity is negative but not statisti-
cally significant. An industry’s asset specificity causes lower recovery rates if the

short time series, a compromise where one reestimates the model every year should yield good results,
and for the purpose of the exercise in this section it would be preferable. However, the computational
cost of this exercise is very high, because we are working with a very large cross section of firms.

https://doi.org/10.1017/S0022109014000088  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109014000088


218 Journal of Financial and Quantitative Analysis

leverage of this industry is generally high. Also, similar to Acharya et al. (2007),
we find that the interaction of industry illiquidity and industry asset specificity is
negative.

Our estimates yield the expected sign for the direct effect of industry distress
on recovery rates: When a firm is in a distressed industry, it tends to recover less.
Note that for both distress measures used, only approximately 5% of the firms are
in distress. Coupled with the limited sample size, this may explain why estimates
are not statistically significant. We limit ourselves to firms that were part of the
CDX index during our sample period. For estimation, this is beneficial because the
population of firms is more homogeneous. For the analysis of the determinants of
recovery rates, it is a disadvantage because it reduces the sample size, and sample
heterogeneity may actually be an advantage when identifying these determinants.

In summary, Table 4 indicates that variables such as asset specificity, tangi-
bility, and leverage are important determinants of recovery rates. This conclusion
is consistent with the available evidence from historical recovery rates.

VI. Conclusion

We estimate recovery rates implied by CDS spreads, using more than 3 years
of daily CDS spreads for three maturities on 152 North American corporations.
We use a quadratic pricing model, which ensures nonnegative default probabili-
ties and recovery rates. The estimated cross section of recovery rates is plausible,
with an average recovery rate of 53.79% and substantial cross-sectional variation.
Estimated 5-year default probabilities are on average 67% higher than default
probabilities obtained using the standard 40% recovery assumption, suggesting
potentially large biases in the valuation of CDOs when relying on estimates ob-
tained with fixed 40% recovery rates. This is due to the fact that in our sample, the
estimated recovery rate is higher than 40% on average, but also due to biases in
the estimated persistence of the state vector, which critically impacts long-horizon
default probabilities. Consistent with the evidence on historical recovery rates,
larger firms and firms with more tangible assets have statistically significantly
higher recovery rates, and the opposite is true for firms with higher leverage and
more assets that are industry specific.

Our results suggest a number of extensions. First, the high persistence of the
firm-specific factor, and the importance of this persistence for default probabili-
ties at long horizons, suggest a detailed evaluation of alternative specifications of
the state vector. Second, it might be interesting to subdivide the sample to study
changes in the recovery rate over time. Alternatively, analyzing stochastic recov-
ery could yield new insights. Finally, a detailed exploration of the implications of
differences in estimated 5-year default probabilities for the valuation of different
CDO tranches could prove interesting.
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