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Congruence of circular cylinders on three given points
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SUMMARY

A method to determine the two parameter set of circular
cylinders, whose surfaces contain three given points, is
presented in the context of an efficient algorithm, based
on the set of two parameter projections of the points
onto planar sections, to compute radius and a point
where the axes intersect the plane of the given points.
The geometry of the surface of points, whose position
vectors represent cylinder radius, », and axial orientation,
is revealed and described in terms of symmetry and
singularity inherent in the triangle with vertices on the
given points. This strongly suggests that, given one
constraint on the axial orientation of the cylinder, there
are up to six cylinders of identical radius on the three
given points. A bivariate function, in two of the three
line direction Pliicker coordinates, is derived to prove
this. By specifying r and an axis direction, say,
perpendicular to a given direction, one obtains a sixth
order univariate polynomial in one of the line
coordinates which yields six axis directions. These ideas
are needed in the design of parallel manipulators.
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INTRODUCTION

The relevance of this subject, as regards cylindrical parts
assembly and collision avoidance in the context of
parallel manipulators, was introduced by Zsombor-
Murray'. Furthermore the origin of the theoretical
problem was attributed therein to the works of Schaal*?
and Strobel*® who dealt extensively with cylinders of
revolution on four points. These of course constitute not
a congruence but a one parameter set or series. As
regards the relevance to parallel mechanisms, consider
the single closed loop—C—S—C—positioning man-
ipulator treated by Schaal® and illustrated in Figure 1.
Note that C stands for cylindrical joint and S for
spherical. One may sum up the design space of such a
device, intended to guide the end effector, EE on —S—,
through three specified points, as a selection of any pair
of cylindrical elements on these points. In this case, any
convenient way of mathematically representing the
congruence which is the subject of this article will
provide us with a potent yet simple design tool. Let us
now explore a formulation of the problem and examine
some of the interesting geometric properties which are
revealed.
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ANALYSIS

In Figure 2 one sees how the surface of a typical cylinder
of revolution contains three, typical given points. Let p;
be the position vector of point, P, where i=1,2,3
represents the given points.

To solve the problem P, are projected perpendicularly
as P, whose position vectors are p;, onto transaxial
plane, I1. Furthermore let P, be on the origin, O. Notice
that IT is any one of a two parameter set of planes with
outward normal unit vector, n, which makes angles «, B,
vy with respect to axes x, y, z, respectively. These axes
are fixed to the rigid body on P. Note that
=110, @, B,y) where cos®a +cos’B +cos>y=1.
Moreover choose p, ={1, 0, 0}", where P, P, is the longest
side of the triangle whose vertices are PF. Clearly
n ={cos a, cos B, cos y}’. We obtain the projected points
with equation p;, + k;n = p;, where k; is the length of the
projector joining P, to P, and with the perpendicularity
condition between m and all lines in II, expressed as
pi--n=0. This can be expanded as the matrix
multiplication below.

1 0 0 CoS « Xirn X;

0 1 0 cos B Vi Vi
= 1)

0 0 1 cos vy Zirr Z;

cosa cosfB cosy O k; 0

Using the first three equations, to eliminate X;;, Vi, Zin
from the fourth, yields k;.

k; = cos ax; + cos By; + cos yz; )

)
sin? ax; — cos a(cos By; + cos yz;)

Pir= | sin® By; — cos B(cos yz; + cos ax;) 3)
sin” yz; — cos y(cos ax; + cos By;)

Each plane IT will cut one cylinder perpendicular to its
axis, which is parallel to m, so that the centre, M, with
position vector m, of a circle with circumference on the
point projections, P, will define any desired cylinder’s
axis location.

M(x, y, z) = M(P;r) “4)

One way to characterize this surface is by plotting three
sets of curves on it, i.e., characteristics of constant «, 3,
(), r where r is a cylinder radius. Alternately, one might
project this characteristic ‘““contour map’’ back onto the
fixed plane on P. Another possible characterization is to
represent the spheropolar surface with longitude angle,
0, latitude, ¢, and local radius, r, the radius of the
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Fig. 1. A —C—S—C— mechanism to position the EE at —S—

particular cylinder whose axis orientation is specified by
these two angles. This characterization can be easily
converted to planopolar form on a (r, 8) plane showing
contours of successive latitude, ¢. This latter convention
was used to generate Figure 3.

The position vector, m, of a point on J, can be
conveniently obtained by intersecting two right bisecting
planes of the segments PP, , with any plane II. An
equivalent process is represented by intersecting right
bisecting lines of two sides of the projected triangle.

[m—(2p; + pi,i+],rr)/2] “Piiv1,7=0 Q)
where i=1, 2 and P;;+1 =Pi+1.o— Pir Recall that
m-n=0.

Since the triangle P, P,P; is normalized to ||p, — p.|| =

1, which is the longest side, the other two may be
nondimensionalized as p; = ||ps — p-|| and p, = ||p: — psll,

Fig. 2. Projection of given points on plane of cylinder right
section

https://doi.org/10.1017/5026357479700043X Published online by Cambridge University Press

'/‘
-/
-

~—

Circular cylinders

o

Fig. 3. Cylinder radii for equilateral and 60°/30° triangles, axes
at ¢ =1°, 2°, 5° 10°, 20°

p>=p; =1 which gives
P = {(P% - P% + 1)/2, \ P% - x%, O}T ={x, V35 Z3}T (6)

In this way the multiplicative effects of point pattern size,
hand and circulation, i.e. up/down normals, n, are
eliminated from the mapping of /# which can proceed
with the solution below. First, note that p,,=1{0, 0, 0}"
and that from equation (3) expressions for p,, and ps,
simplify to

Xon 1-a?
P2rn=| Yo |=| —ab (7
22 —ca
and
X3 (1 —a*)x —aby
P3sn=| Van (1 - bz)y —abx (8)
L —c(ax — by)

The two equations, equation (5), i =2, 3, simplify to
(m = Pp;n/2) - Pinr=0 ©)

Together with the condition m - n = 0 these provide three
simultaneous equations which can be solved for

m={x,,, Yo, Zn} -
X2Xm + YarYim + ZonZm = (K3t Y3at 239/2  (10)
X3 + YarYm + ZanZm = (Bt Yint 239/2  (11)
ax,, + by,, +cz,, =0 (12)

where a =cosa, b =cos 3, c =cosy, x =x3 and y = ys.
Clearly, cylinder radius, r, can be obtained immediately
as r’ =x,,+ ys, + 2., It might be convenient to compute
M with the spherical coordinate pair, (6, ¢), where
a =cos 8 cos ¢, b =sin 6 cos ¢ and ¢ = sin ¢. Note that 8
and ¢ correspond to angles of meridian and latitude,
respectively, which define the direction of cylinder axes.

COMPUTATION

To show that the solution is computationally efficient, a
BASIC program containing twelve scant lines of code,
which generates points in the sequence necessary to form
a family of characteristics in 6, is tabulated below.
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100 DTR=3.141592654/180:INPUT R1,R2:
X=(R2*R2—R1*R1+1) /2:Y=SQR (R2*R2—X*X)

110 FOR T=0 TO 71

120 TH=5*T*DR:CT=COS(TH) : ST=SIN(TH)

130 FOR P=1 TO 17

140 PH=5*P*DTR:CP=COS (PH) :W=SIN(PH) :
U=CP*CT:V=CP*ST:REM U=a, V=Db, W=c

150 A=1—-U*U:B=—U*V:C=—W*U:D=A*X—U*V*Y:
E=(1—V*V)*Y—U*V*X:F=—W* (U*X+V*Y)

160 K= (A*A+B*B+C*C) /2:L= (D*D+E*E+F*F) /2

170 DM=A*E*W+B*F*U+C*D*V—U*E*C—V*F*A—
W*D*B:
IF DM=0 THEN GOTO 200

180 XN=K*E*WH+C*L*V—V*F*K—W*L*B:
YN=A*L*WH+K*F*U—U*L*C—W*D*K:XM=XN/DM:
YM=YN /DM

190 ZN=B*L*U+K*D*V—U*E*K—V*L*A:ZM=ZN/DM:
R=SQR (XM*XM+YM*YM+ZM*ZM)

200 XMH=XM—ZM*U/V:YMH=YM—ZM*V /W:NEXT P

210 NEXT T

To form a characteristic family in ¢ one merely
interchanges the nested FOR/NEXT loops. So one
parameter families of cylinder radii and axes, charac-
terized by directions on circles of latitude and meridian

Fig. 4. Two general and five singular cylinder sections
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with respect to an equatorial plane on {P,}, may be
readily provided. Similarly it is easy to compute the
cylinders whose axes are parallel to the spokes of any
great circle whose normal direction is (6,,, ¢,,). Here the
angle parameter of the spokes, ¢, will span an arc
subtending 7 on the spoke diameter parallel to the
equatorial plane. The algorithm above is used with a
single loop iterated in iy where 0 and ¢ are computed as
follows.

sin ¢ = —sin ¢ cos ¢,,, cos ¢ = V1 —sin® ¢
cos 6 = (sin ¢ cos 8,, sin ¢,, + cos ¢ sin 8,,)/cos ¢

sin 8 = (sin ¢ sin 6, sin ¢,, — cos ¢ cos 6,,)/cos ¢

SINGULARITY

Figure 4 shows various views of P, chosen arbitrarily. A
projection of the equatorial plane appears as P!’ where
one sees a section of the cylinder circumscribing these
point projections. This view represents a singularity
because here, at ¢ = 1/2, the section and hence the
cylinder radius remain constant for all values of 6. Below
this is a front view where the points P} appear in a line
and the circumscribing circle’s axis lies parallel to the
equatorial plane and the cylinder has infinite radius. This



https://doi.org/10.1017/S026357479700043X

358

occurs in all axial directions parallel to the equatorial
plane except those shown as P/, P/ and P} where the
circumscribing circles may appear as having diameters of
the three triangular heights. Of course a circle of infinite
radius is also a valid solution in these three cases as well.
The arrow direction represents an arbitrary axial
direction which produces the cylindrical section on P3.
The axis of this circle can be projected to locate M in the
reference frame of P, i.e., P, Pf. This construction is
equivalent to computing a point on one of the two sets of
five radius characteristics at constant ¢ shown in Figure
3. The section shown as P}, on the other hand,
corresponds to evaluating a point on one of the curves in
Figure 5, where the cylinder axes are perpendicular to a
given direction. Returning to the projections P;, P/ and
P¥, we see the three cylinders of minimum radius and
these views must be separated by maxima. Therefore it
seems that any trajectory of axis directions on the sphere
which monotonically spans —71/2=< 6= 7/2 should be
associated with a cylinder radius function of sixth order.

POLAR PLOTS OF CYLINDER RADIUS

Having dealt with directions at ¢ =0, plots of cylinder
radius, r = r(0), for an equilateral and a 60°/30° triangle
at ¢ =1°, 2°, 5° 10° 20° and for spoke directions, ¢ at
6,, =30° ¢, = 60° are shown in Figure 5.

SOLUTION WITH SPECIFIED RADIUS

The sixth order nature of the cylinder radius as a
function of axis orientation is shown clearly in Figure 3
and less clearly in Figure 5. Furthermore, it may be seen
that at latitudinal directions ¢ >1°, approximately, a
semicircle of constant radius will intersect a one
parameter axial directions characteristic less than six
times, maybe not at all. Hence it would be useful to be
able to compute axial direction as a function of some
given value of r.

Therefore before embarking upon the development of
avoidance/insertion procedures for cylindrical objects
there remains this crucial characterization task. It is not
hard to formulate the problem in a simple-minded way,
using ordinary point position and parametric line vector
equations. Say that P, r and a vector w, in the direction

Fig. 5. Cylinder radii for equilateral and 60°/30° triangles, axes
perpendicular to w, 8, =30° ¢, =60°
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w perpendicular to a desired axis, are specified. Then the
following ten equations can be written.

u=s+u(t—s),s*=r%(p,—t)>*=r3
(ps—uy’=r>
(t—=s)-s=0,(t—s) - (p.—t) =0,
(t—s)-(ps—u)=0,(t—s)-w=0

Notice that the first equation expands to three, in x, y, z,
which specifies the colinearity of three points on the axis,
given by position vectors s, t, u, in terms of the scalar
parameter u. This approach, unfortunately, yields a
univariate polynomial of 64th degree; not very
satisfactory.

Let us now consider a homogeneous line coordinate
formulation with a spherotangential line complex kernel.
By using line geometry, a sixth degree multivariate
polynomial, which describes the congruence of right
circular cylinders whose surfaces are on three given
points, is obtained. The polynomial contains the point
coordinates, the cylinder radius and two axis orientation
parameters. The geometric implication, that if one of
these parameters is specified there may be in the
congruence as many as six cylinders of some given
radius, is confirmed. For example, given the radius of the
cylinder and the direction of any vector perpendicular to
its axis, one can then obtain a sixth degree univariate
since the constraint imposed by the direction perpen-
dicular to a cylinder axis results in a linear equation in
the remaining, unknown direction parameter.

We begin by setting up a structure in the higher
dimensional space of Pliicker coordinates which contains
all real lines. The six homogeneous coordinates of a line
are expressed as follows.

Po1:Po2:Po3-P23:P31:P12

The first three coordinates are the respective x, y and z
components of the vector part while the next three are
respective components of the moment part. In order to
represent a real line, these coordinates are subject to the
following constraints.

Po1P23tPwpPst T PsP12=0 (13)
P%l +P%2+P(2)3750 (14)

Equation 13 specifies that the moment part is
perpendicular to the vector part and describes a four
dimensional surface in a five dimensional projective
space represented by the six homogeneous coordinates.
The non-zero condition, Equation 14, ensures that the
line’s vector part has a direction and is therefore not on
the plane at . To formulate the constraint equations
which specify the two parameter set of cylinders on three
given, fixed points, consider that there is no loss in
generality by defining the points with the following
simplified coordinates.

Pi]?=l(xi1 yi’ Zi) = P](OJ O; 0): PZ(lx 0’ 0)’ P3(X, y’ 0)

The constraint equations, in terms of homogeneous line
coordinates, which characterize the axis direction of the
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circular cylinders of radius, r, on these three given points
can be found by intersecting three line complexes, R;];_1,
each of which represents lines tangent to a sphere of this
radius and centred on one of the given points. The
equation of a complex, R;, is expressed as follows.

Ri:(p2s — YiPos T ZiP02)2 + (P31 — zpo + xipo3)2
+ (P12 —Xipor t )’iP01)2 - ’”2(19%1 +P%2 +P(2)3) =0

This simply states that every line with the same vector
part magnitude and tangent to a sphere exerts a moment
of the same magnitude about the sphere centre.

First we choose a p(,j]f:l #0, say, pos. This is always
possible since V poj]?:1 =0 implies a line at o which
cannot be tangent to any sphere of finite radius. A
parametric linear subspace (PLS) in k and [ is now
introduced. This leads to the following specification.

P =kpos and pg =Ipgs

Replacing po; and py, and dividing by pys;, reduce the
line complexes and equation (13) to

Ry /pos:
(P%3 +pii +P%2)/P03 - ”ZP(B(kz +P2+1)=0
Ry/pos:
(P%3 +p5 +P%2)/P03 +Pos —2pial +2p3
—rpu(K*+FP+1)=0
R3/pos:
(P2 + P31+ P1)/Pos + pos(*(1 + P) + y*(1 + k7))
= 2xp1ol + 2xp3; — 2ypas + 2yprak

- 2yp03lk - rzp(B(kz + lz + 1) - 0

R4/pos:
Pask +psil +pi=0

Note that Equation (13) has been included as R, to
provide a constraint that restricts solutions to the four
parameter set of valid lines among all the possible
combinations of six real Pliicker coordinates. Inspection
of these four equations reveals that R;, R,, and R,
contain a common factor, p3;+p3 +pi.. Now the

following system of homogeneous linear equations in ps,
P31, P12, Pos can be expressed.

Rz =R>/pos — Ri/pos

=0

R3=R3/pos — Ri/pos
=0

Ry=Rylpes
-0

This can be abbreviated as follows.
P23

M| ps

P12

The determinant M| = y(1 + k*+ [?), states that no two

=Pposb (15)
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points can be coincident nor can all three be collinear.
Solving for p,3, ps1, P12 in terms of pgs, I, k, substituting
these into R; and then multiplying the result by M| will
give the following sixth order multivariate polynomial.

yz _ 4r2y2 _ 8r2y212 _ 8r2y2k2 _ 4r2y214 + y214
+ 2921 + I*y?k* + 2ly3k + Py* + 2k*y* + k*y*
+ Pky* 4+ 2k 1Py* + y* 4+ x* + 2y — 82y Pk?
— 4r%y?k* + y2k? — 8xPyk + 8x*k*y*I?
+ 6x21*k?y? — dy>xlk + 3x*1* + 3x*1* + x*1° — 2x°
—4x3lyk — 4x*Pyk — dxly*k® — 4xIPy’k?
+ 2y71%x% + 2x7y?k? — 4y Pxk + 4y*x°*1?
+ 6x*lyk — 2xy*k* — 2xy® — 6x°I
—6x’1* — 4xIPy? + 2Iy°k> + 2PPyk
+2Py3k? — 2xlyk — 4xPyk — 2xI*y?
+ 3x%1 + 3x%1* — 6xI*k?y? + 6x*Pyk
—2x°1° + 12x°Pyk + 2I7y*k* — 2xIPyk
+ x% + x%1° — 8xk*y*I* =0
Now consider a case where r is given along with w, a
vector perpendicular to the cylinder axis. Let e be the
unit vector to be determined, parallel to the cylinder
axis. Then
w-e=0
which gives
P03{kl 1}T : {Wx Wy WZ}T = 0
and so
[=—(w, +kw)/w,

which can be substituted into the multivariate so as to
produce a univariate in k. e can now be determined with
k and [ and the normalization condition e* = 1. Once e is
available it is only necessary to project the three given
points onto a plane perpendicular to e, find the
circumscribing circle, a right section of the cylinder on
these point projections, and to note that the circle centre
is the point view of the cylinder axis.

CONCLUSION

In spite of their relative unfamiliarity to the engineering
community and their apparent complexity, we have
shown by the above example that the tools of line
geometry can greatly simplify the results, if not the
procedure, of kinematic analysis. The intersection of
three spherotangential line complices provides a good
way to compute positions of the cylinders of given radius
if one other constraint is specified, e.g., a direction
perpendicular to the desired axis or a plane parallel to it.
Still left unsolved is the problem concerning the nature
of the ruled surface of tangents on three congruent
spheres, i.e. a description of the set of valid axial
directions for cylinders, of a given radius, r, on three
points. Our work must be extended to address this
shortcoming before the results become generally useful
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in the context of cylinder recognition, collision avoidance 2. H. Schaal, 1986, “Konstruktion der Drehzylinder durch vier
or even to design a —C—S—C— positioning mechanism Punkte einer Ebene”, Sber. d. Osterr. Akad. d. Wiss. 195,

. . 405-418 (1986).
to guide the EE through three, four or five points. 3. H. Schaal, “Ein geometrisches Problem der metrischen

Getriebesynthese’ Sber. d. osterr. Akad. d. Wiss. 194, 39-53
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