
 Robotica (1997) volume 15 ,  pp 355 – 360 .  Printed in the United Kingdom  ÷   1997 Cambridge University Press

 Congruence of circular cylinders on three given points
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 SUMMARY
 A method to determine the two parameter set of circular
 cylinders ,  whose surfaces contain three given points ,  is
 presented in the context of an ef ficient algorithm ,  based
 on the set of two parameter projections of the points
 onto planar sections ,  to compute radius and a point
 where the axes intersect the plane of the given points .
 The geometry of the surface of points ,  whose position
 vectors represent cylinder radius ,   r ,  and axial orientation ,
 is revealed and described in terms of symmetry and
 singularity inherent in the triangle with vertices on the
 given points .  This strongly suggests that ,  given one
 constraint on the axial orientation of the cylinder ,  there
 are up to six cylinders of identical radius on the three
 given points .  A bivariate function ,  in two of the three
 line direction Plu ̈  cker coordinates ,  is derived to prove
 this .  By specifying  r  and an axis direction ,  say ,
 perpendicular to a given direction ,  one obtains a sixth
 order univariate polynomial in one of the line
 coordinates which yields six axis directions .  These ideas
 are needed in the design of parallel manipulators .

 KEYWORDS :  Cylinder ;  Radius ;  Axis ;  Orientation ;  Sym-
 metry ;  Singularity ;  Pose ;  Recognition .

 INTRODUCTION
 The relevance of this subject ,  as regards cylindrical parts
 assembly and collision avoidance in the context of
 parallel manipulators ,  was introduced by Zsombor-
 Murray 1 .  Furthermore the origin of the theoretical
 problem was attributed therein to the works of Schaal 2 , 3

 and Strobel 4 , 5  who dealt extensively with cylinders of
 revolution on four points .  These of course constitute not
 a congruence but a one parameter set or series .  As
 regards the relevance to parallel mechanisms ,  consider
 the single closed loop—C—S—C—positioning man-
 ipulator treated by Schaal 3  and illustrated in Figure 1 .
 Note that C stands for  cylindrical joint  and S for
 spherical .  One may sum up the design space of such a
 device ,  intended to guide the end ef fector ,  EE on —S— ,
 through three specified points ,  as a selection of any pair
 of cylindrical elements on these points .  In this case ,  any
 convenient way of mathematically representing the
 congruence which is the subject of this article will
 provide us with a potent yet simple design tool .  Let us
 now explore a formulation of the problem and examine
 some of the interesting geometric properties which are
 revealed .

 ANALYSIS
 In Figure 2 one sees how the surface of a typical cylinder
 of revolution contains three ,  typical given points .  Let  p i

 be the position vector of point ,   P i   where  i  5  1 ,  2 ,  3
 represents the given points .

 To solve the problem  P i   are projected perpendicularly
 as  P i π  ,  whose position vectors are  p i π  ,  onto transaxial
 plane ,   P .  Furthermore let  P 1  be on the origin ,   O .  Notice
 that  P   is any one of a two parameter set of planes with
 outward normal unit vector ,   n ,  which makes angles  a  ,  b  ,
 g   with respect to axes  x , y , z ,  respectively .  These axes
 are fixed to the rigid body on  P i .  Note that
 P  5  P ( O ,  a  ,  b  ,  g  )   where cos 2  a  1  cos 2  b  1  cos 2  g  5  1 .
 Moreover choose  p 2  5  h 1 ,  0 ,  0 j T ,  where  P 1 P 2  is the longest
 side of the triangle whose vertices are  P i .  Clearly
 n  5  h cos  a  ,  cos  b  ,  cos  g  j T .  We obtain the projected points
 with equation  p i π  1  k i n  5  p i  ,  where  k i   is the length of the
 projector joining  P i π   to  P i  ,  and with the perpendicularity
 condition between  n  and all lines in  P ,  expressed as
 p i π  ?  n  5  0 .  This can be expanded as the matrix
 multiplication below .

 3
 1
 0
 0

 cos  a

 0
 1
 0

 cos  b

 0
 0
 1

 cos  g

 cos  a

 cos  b

 cos  g

 0
 4 3

 x i π

 y i π

 z i π

 k i

 4  5 3
 x i

 y i

 z i

 0
 4  (1)

 Using the first three equations ,  to eliminate  x i π  , y i π  , z i π
 from the fourth ,  yields  k i  .

 k i  5  cos  a x i  1  cos  b y i  1  cos  g z i  (2)

 so

 p i π  5 3  sin 2  a x i  2  cos  a  (cos  b y i  1  cos  g z i )
 sin 2  b y i  2  cos  b  (cos  g z i  1  cos  a x i )
 sin 2  g z i  2  cos  g  (cos  a x i  1  cos  b y i )

 4  (3)

 Each plane  P   will cut one cylinder perpendicular to its
 axis ,  which is parallel to  n ,  so that the centre ,   M ,  with
 position vector  m ,  of a circle with circumference on the
 point projections ,   P i π  ,  will define any desired cylinder’s
 axis location .

 } ( x ,  y ,  z )  5  } ( P i π  )  (4)

 One way to characterize this surface is by plotting three
 sets of curves on it ,   i .e . ,  characteristics of constant  a  ,  b  ,
 ( g  ) , r  where  r  is a cylinder radius .  Alternately ,  one might
 project this characteristic ‘‘contour map’’ back onto the
 fixed plane on  P i .  Another possible characterization is to
 represent the spheropolar surface with longitude angle ,
 θ  ,  latitude ,   f  ,  and local radius ,   r ,  the radius of the
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 Fig .  1 .  A —C—S—C— mechanism to position the EE at —S—

 particular cylinder whose axis orientation is specified by
 these two angles .  This characterization can be easily
 converted to planopolar form on a ( r ,  θ  ) plane showing
 contours of successive latitude ,   f .  This latter convention
 was used to generate Figure 3 .

 The position vector ,   m ,  of a point on  } ,  can be
 conveniently obtained by intersecting two right bisecting
 planes of the segments  P i π  P i 1 1 , π   with any plane  P .  An
 equivalent process is represented by intersecting right
 bisecting lines of two sides of the projected triangle .

 [ m  2  (2 p i π  1  p i ,i 1 1 , π ) / 2]  ?  p i ,i 1 1 , π  5  0  (5)

 where  i  5  1 ,  2 and  p i ,i 1 1 , π  ;  p i 1 1 , π  2  p i π  .  Recall that
 m  ?  n  5  0 .

 Since the triangle  P 1 P 2 P 3  is normalized to  i  p 2  2  p 1  i  5
 1 ,  which is the longest side ,  the other two may be
 nondimensionalized as  r  1  5  i  p 3  2  p 2  i    and  r  2  5  i  p 1  2  p 3  i  ,

 Fig .  2 .  Projection of given points on plane of cylinder right
 section

 Fig .  3 .  Cylinder radii for equilateral and 60 8 / 30 8  triangles ,  axes
 at  f  5  1 8 ,  2 8 ,  5 8 ,  10 8 ,  20 8

 r  2  #  r  1  #  1 which gives

 p 3  5  h ( r  2
 2  2  r  2

 1  1  1) / 2 ,  4 r  2
 2  2  x  2

 3 ,  0 j T  5  h x 3  ,  y 3  ,  z 3 j T  (6)

 In this way the multiplicative ef fects of point pattern size ,
 hand and circulation ,  i . e .  up / down normals ,   n ,  are
 eliminated from the mapping of  }   which can proceed
 with the solution below .  First ,  note that  p 1 π  5  h 0 ,  0 ,  0 j T

 and that from equation (3) expressions for  p 2 π   and  p 3 π
 simplify to

 p 2 π  5 3  x 2 π

 y 2 π

 z 2 π
 4  5 3  1  2  a  2

 2 ab

 2 ca
 4  (7)

 and

 p 3 π  5 3  x 3 π

 y 3 π

 z 3 π
 4  5 3  (1  2  a  2 ) x  2  aby

 (1  2  b 2 ) y  2  abx

 2  c ( ax  2  by )
 4  (8)

 The two equations ,  equation (5) ,   i  5  2 ,  3 ,  simplify to

 ( m  2  p i π  / 2)  ?  p i π  5  0  (9)

 Together with the condition  m  ?  n  5  0 these provide three
 simultaneous equations which can be solved for
 m  5  h x m  ,  y m  ,  z m j T .

 x 2 π  x m  1  y 2 π  y m  1  z 2 π  z m  5  ( x  2
 2 π  1  y  2

 2 π  1  z 2
 2 π ) / 2  (10)

 x 3 π  x m  1  y 3 π  y m  1  z 3 π  z m  5  ( x  2
 3 π  1  y  2

 3 π  1  z 2
 3 π ) / 2  (11)

 ax m  1  by m  1  cz m  5  0  (12)

 where  a  5  cos  a  , b  5  cos  b  , c  5  cos  g  , x  5  x 3  and  y  5  y 3 .
 Clearly ,  cylinder radius ,   r ,  can be obtained immediately
 as  r 2  5  x  2

 m  1  y  2
 m  1  z  2

 m .  It might be convenient to compute
 }   with the spherical coordinate pair ,  ( θ  ,  f  ) ,  where
 a  5  cos  θ  cos  f  , b  5  sin  θ  cos  f   and  c  5  sin  f .  Note that  θ
 and  f   correspond to angles of meridian and latitude ,
 respectively ,  which define the direction of cylinder axes .

 COMPUTATION
 To show that the solution is computationally ef ficient ,  a
 BASIC  program containing twelve scant lines of code ,
 which generates points in the sequence necessary to form
 a family of characteristics in  θ  ,  is tabulated below .
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 Circular cylinders  357

 100  DTR 5 3 . 141592654 / 180 : INPUT R1 , R2 :
 X 5 (R2*R2 2 R1*R1 1 1) / 2 : Y 5 SQR(R2*R2 2 X*X)

 110  FOR T 5 0 TO 71
 120  TH 5 5*T*DR : CT 5 COS(TH) : ST 5 SIN(TH)
 130  FOR P 5 1 TO 17
 140  PH 5 5*P*DTR : CP 5 COS(PH) : W 5 SIN(PH) :

 U 5 CP*CT : V 5 CP*ST : REM U 5 a ,  V 5 b ,  W 5 c
 150  A 5 1 2 U*U : B 52 U*V : C 52 W*U : D 5 A*X 2 U*V*Y :

 E 5 (1 2 V*V)*Y 2 U*V*X : F 52 W*(U*X 1 V*Y)
 160  K 5 (A*A 1 B*B 1 C*C) / 2 : L 5 (D*D 1 E*E 1 F*F) / 2
 170  DM 5 A*E*W 1 B*F*U 1 C*D*V 2 U*E*C 2 V*F*A 2

 W*D*B :
 IF DM 5 0 THEN GOTO 200

 180  XN 5 K*E*W 1 C*L*V 2 V*F*K 2 W*L*B :
 YN 5 A*L*W 1 K*F*U 2 U*L*C 2 W*D*K : XM 5 XN / DM :
 YM 5 YN / DM

 190  ZN 5 B*L*U 1 K*D*V 2 U*E*K 2 V*L*A : ZM 5 ZN / DM :
 R 5 SQR(XM*XM 1 YM*YM 1 ZM*ZM)

 200  XMH 5 XM 2 ZM*U / V : YMH 5 YM 2 ZM*V / W : NEXT P
 210  NEXT T

 To form a characteristic family in  f   one merely
 interchanges the nested FOR / NEXT loops .  So one
 parameter families of cylinder radii and axes ,  charac-
 terized by directions on circles of latitude and meridian

 with respect to an equatorial plane on  h P i j ,  may be
 readily provided .  Similarly it is easy to compute the
 cylinders whose axes are parallel to the spokes of any
 great circle whose normal direction is ( θ w  ,  f w ) .  Here the
 angle parameter of the spokes ,   c  ,  will span an arc
 subtending  π   on the spoke diameter parallel to the
 equatorial plane .  The algorithm above is used with a
 single loop iterated in  c   where  θ   and  f   are computed as
 follows .

 sin  f  5  2 sin  c  cos  f w  ,  cos  f  5  4 1  2  sin 2  f

 cos  θ  5  (sin  c  cos  θ w  sin  f w  1  cos  c  sin  θ w ) / cos  f

 sin  θ  5  (sin  c  sin  θ w  sin  f w  2  cos  c  cos  θ w ) / cos  f

 SINGULARITY
 Figure 4 shows various views of  P i  ,  chosen arbitrarily .  A
 projection of the equatorial plane appears as  P H

 i    where
 one sees a section of the cylinder circumscribing these
 point projections .  This view represents a singularity
 because here ,  at  f  5  π  / 2 ,  the section and hence the
 cylinder radius remain constant for all values of  θ .  Below
 this is a front view where the points  P F

 i    appear in a line
 and the circumscribing circle’s axis lies parallel to the
 equatorial plane and the cylinder has infinite radius .  This

 Fig .  4 .  Two general and five singular cylinder sections
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 358  Circular cylinders

 occurs in  all  axial directions parallel to the equatorial
 plane except those shown as  P 9 i  , P i 0   and  P * i    where the
 circumscribing circles may appear as having diameters of
 the three triangular heights .  Of course a circle of infinite
 radius is also a valid solution in these three cases as well .
 The arrow direction represents an arbitrary axial
 direction which produces the cylindrical section on  P 2

 i  .
 The axis of this circle can be projected to locate  M  in the
 reference frame of  P i  , i .e . , P H

 i  , P F
 i  .  This construction is

 equivalent to computing a point on one of the two sets of
 five radius characteristics at constant  f   shown in Figure
 3 .  The section shown as  P 1

 i  ,  on the other hand ,
 corresponds to evaluating a point on one of the curves in
 Figure 5 ,  where the cylinder axes are perpendicular to a
 given direction .  Returning to the projections  P 9 i  , P i 0   and
 P * i  ,  we see the three cylinders of minimum radius and
 these views must be separated by maxima .  Therefore it
 seems that any trajectory of axis directions on the sphere
 which monotonically spans  2 π  / 2  #  θ  #  π  / 2 should be
 associated with a cylinder radius function of sixth order .

 POLAR PLOTS OF CYLINDER RADIUS
 Having dealt with directions at  f  5  0 ,  plots of cylinder
 radius ,   r  5  r ( θ  ) ,  for an equilateral and a 60 8 / 30 8  triangle
 at  f  5  1 8 ,  2 8 ,  5 8 ,  10 8 ,  20 8  and for spoke directions ,   c   at
 θ w  5  30 8 ,  f w  5  60 8 ,  are shown in Figure 5 .

 SOLUTION WITH SPECIFIED RADIUS
 The sixth order nature of the cylinder radius as a
 function of axis orientation is shown clearly in Figure 3
 and less clearly in Figure 5 .  Furthermore ,  it may be seen
 that at latitudinal directions  f  .  1 8 ,  approximately ,  a
 semicircle of constant radius will intersect a one
 parameter axial directions characteristic less than six
 times ,  maybe not at all .  Hence it would be useful to be
 able to compute axial direction as a function of some
 given value of  r .

 Therefore before embarking upon the development of
 avoidance / insertion procedures for cylindrical objects
 there remains this crucial characterization task .  It is not
 hard to formulate the problem in a simple-minded way ,
 using ordinary point position and parametric line vector
 equations .  Say that  P i  , r  and a vector  w ,  in the direction

 Fig .  5 .  Cylinder radii for equilateral and 60 8 / 30 8  triangles ,  axes
 perpendicular to  w ,  θ w  5  30 8 ,  f w  5  60 8

 w  perpendicular to a desired axis ,  are specified .  Then the
 following ten equations can be written .

 u  5  s  1  u ( t  2  s ) ,  s 2  5  r 2 ,  ( p 2  2  t ) 2  5  r 2 ,

 ( p 3  2  u ) 2  5  r 2

 ( t  2  s )  ?  s  5  0 ,  ( t  2  s )  ?  ( p 2  2  t )  5  0 ,

 ( t  2  s )  ?  ( p 3  2  u )  5  0 ,  ( t  2  s )  ?  w  5  0

 Notice that the first equation expands to three ,  in  x , y , z ,
 which specifies the colinearity of three points on the axis ,
 given by position vectors  s ,   t ,   u ,  in terms of the scalar
 parameter  u .  This approach ,  unfortunately ,  yields a
 univariate polynomial of 64th degree ;  not very
 satisfactory .

 Let us now consider a homogeneous line coordinate
 formulation with a spherotangential line complex kernel .
 By using line geometry ,  a sixth degree multivariate
 polynomial ,  which describes the congruence of right
 circular cylinders whose surfaces are on three given
 points ,  is obtained .  The polynomial contains the point
 coordinates ,  the cylinder radius and two axis orientation
 parameters .  The geometric implication ,  that if one of
 these parameters is specified there may be in the
 congruence as many as six cylinders of some given
 radius ,  is confirmed .  For example ,  given the radius of the
 cylinder and the direction of any vector perpendicular to
 its axis ,  one can then obtain a sixth degree univariate
 since the constraint imposed by the direction perpen-
 dicular to a cylinder axis results in a linear equation in
 the remaining ,  unknown direction parameter .

 We begin by setting up a structure in the higher
 dimensional space of Plu ̈  cker coordinates which contains
 all real lines .  The six homogeneous coordinates of a line
 are expressed as follows .

 p 0 1  :  p 0 2  :  p 0 3  :  p 2 3  :  p 3 1  :  p 1 2

 The first three coordinates are the respective  x , y  and  z
 components of the vector part while the next three are
 respective components of the moment part .  In order to
 represent a real line ,  these coordinates are subject to the
 following constraints .

 p 0 1  p 2 3  1  p 0 2  p 3 1  1  p 0 3  p 1 2  5  0  (13)

 p 2
 01  1  p 2

 02  1  p 2
 03  ?  0  (14)

 Equation 13 specifies that the moment part is
 perpendicular to the vector part and describes a four
 dimensional surface in a five dimensional projective
 space represented by the six homogeneous coordinates .
 The non-zero condition ,  Equation 14 ,  ensures that the
 line’s vector part has a direction and is therefore not on
 the plane at  ̀  .  To formulate the constraint equations
 which specify the two parameter set of cylinders on three
 given ,  fixed points ,  consider that there is no loss in
 generality by defining the points with the following
 simplified coordinates .

 P i ]
 3
 i 5 1 ( x i  ,  y i  ,  z i )  5  P 1 (0 ,  0 ,  0) ,  P 2 (1 ,  0 ,  0) ,  P 3 ( x ,  y ,  0)

 The constraint equations ,  in terms of homogeneous line
 coordinates ,  which characterize the axis direction of the
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 Circular cylinders  359

 circular cylinders of radius ,   r ,  on these three given points
 can be found by intersecting three line complexes ,   R i ]

 3
 1 5 1 ,

 each of which represents lines tangent to a sphere of this
 radius and centred on one of the given points .  The
 equation of a complex ,   R i  ,  is expressed as follows .

 R i : (  p 2 3  2  y i  p 0 3  1  z i  p 0 2 )
 2  1  (  p 3 1  2  z i  p 0 1  1  x i  p 0 3 )

 2

 1  (  p 1 2  2  x i  p 0 2  1  y i  p 0 1 )
 2  2  r 2 (  p 2

 01  1  p 2
 02  1  p 2

 03 )  5  0

 This simply states that every line with the same vector
 part magnitude and tangent to a sphere exerts a moment
 of the same magnitude about the sphere centre .

 First we choose a  p 0 j ]
 3
 j 5 1  ?  0 ,  say ,   p 0 3  .  This is always

 possible since  ;   p 0 j ]
 3
 j 5 1  5  0 implies a line at  ̀    which

 cannot be tangent to any sphere of finite radius .  A
 parametric linear subspace ( PLS ) in  k  and  l  is now
 introduced .  This leads to the following specification .

 p 0 1  5  kp 0 3  and  p 0 2  5  lp 0 3

 Replacing  p 0 1  and  p 0 2  and dividing by  p 0 3  ,  reduce the
 line complexes and equation (13) to

 R 1 / p 0 3 :
 (  p 2

 23  1  p 2
 31  1  p 2

 12 ) / p 0 3  2  r 2 p 0 3 ( k 2  1  l 2  1  1)  5  0
 R 2 / p 0 3 :
 (  p 2

 23  1  p 2
 31  1  p 2

 12 ) / p 0 3  1  p 0 3  2  2 p 1 2 l  1  2 p 3 1

 2  r 2 p 0 3 ( k 2  1  l 2  1  1)  5  0
 R 3 / p 0 3 :

 (  p 2
 23  1  p 2

 31  1  p 2
 12 ) / p 0 3  1  p 0 3 ( x  2 (1  1  l 2 )  1  y 2 (1  1  k 2 ))

 2  2 xp 1 2 l  1  2 xp 3 1  2  2 yp 2 3  1  2 yp 1 2 k

 2  2 yp 0 3 lk  2  r 2 p 0 3 ( k 2  1  l 2  1  1)  5  0
 R 4 / p 0 3 :

 p 2 3 k  1  p 3 1 l  1  p 1 2  5  0

 Note that Equation (13) has been included as  R 4  to
 provide a constraint that restricts solutions to the four
 parameter set of valid lines among all the possible
 combinations of six real Plu ̈  cker coordinates .  Inspection
 of these four equations reveals that  R 1  , R 2  ,  and  R 3

 contain a common factor ,   p 2
 23  1  p 2

 31  1  p 2
 12 .  Now the

 following system of homogeneous linear equations in  p 2 3  ,
 p 3 1  , p 1 2  , p 0 3  can be expressed .

 R ̃  2  5  R 2 / p 0 3  2  R 1 / p 0 3

 5  0

 R ̃  3  5  R 3 / p 0 3  2  R 1 / p 0 3

 5  0

 R ̃  4  5  R 4 / p 0 3

 5  0

 This can be abbreviated as follows .

 M 3  p 2 3

 p 3 1

 p 1 2
 4  5  p 0 3 b  (15)

 The determinant  u M u  5  y (1  1  k 2  1  l 2 ) ,  states that no two

 points can be coincident nor can all three be collinear .
 Solving for  p 2 3  , p 3 1  , p 1 2  in terms of  p 0 3  , l , k ,  substituting
 these into  R 1  and then multiplying the result by  u M u   will
 give the following sixth order multivariate polynomial .

 y  2  2  4 r 2 y 2  2  8 r 2 y  2 l 2  2  8 r 2 y  2 k 2  2  4 r 2 y  2 l 4  1  y  2 l 4

 1  2 y 2 l 2  1  l 4 y 2 k 2  1  2 ly 3 k  1  l 2 y  4  1  2 k 2 y  4  1  k 4 y 4

 1  l 2 k 4 y 4  1  2 k 2 l 2 y 4  1  y  4  1  x  4  1  2 y  2 x 2  2  8 r 2 y  2 l 2 k 2

 2  4 r 2 y 2 k 4  1  y  2 k 2  2  8 x  3 l 3 yk  1  8 x  2 k 2 y  2 l 2

 1  6 x  2 l 4 k 2 y 2  2  4 y 3 xlk  1  3 x  4 l 2  1  3 x  4 l 4  1  x 4 l 6  2  2 x  3

 2  4 x 3 lyk  2  4 x 3 l 5 yk  2  4 xly 3 k 3  2  4 xl 3 y 3 k 3

 1  2 y  2 l 4 x  2  1  2 x  2 y 2 k 2  2  4 y  3 l 3 xk  1  4 y  2 x 2 l 2

 1  6 x 2 lyk  2  2 xy  2 k 2  2  2 xy 3  2  6 x 3 l 2

 2  6 x  3 l 4  2  4 xl 2 y  2  1  2 ly 3 k 3  1  2 l 3 y  3 k

 1  2 l 3 y 3 k 3  2  2 xlyk  2  4 xl 3 yk  2  2 xl 4 y  2

 1  3 x 2 l 2  1  3 x  2 l 4  2  6 xl 4 k 2 y 2  1  6 x  2 l 5 yk

 2  2 x  3 l 6  1  12 x 2 l 3 yk  1  2 l 2 y  2 k 2  2  2 xl 5 yk

 1  x  2  1  x 2 l 6  2  8 xk 2 y 2 l 2  5  0

 Now consider a case where  r  is given along with  w ,  a
 vector perpendicular to the cylinder axis .  Let  e  be the
 unit vector to be determined ,  parallel to the cylinder
 axis .  Then

 w  ?  e  5  0
 which gives

 p 0 3 h k  l  1 j T  ?  h w x  w y  w z j T  5  0
 and so

 l  5  2 ( w z  1  kw x ) / w y

 which can be substituted into the multivariate so as to
 produce a univariate in  k .  e  can now be determined with
 k  and  l  and the normalization condition  e 2  5  1 .  Once  e  is
 available it is only necessary to project the three given
 points onto a plane perpendicular to  e ,  find the
 circumscribing circle ,  a right section of the cylinder on
 these point projections ,  and to note that the circle centre
 is the point view of the cylinder axis .

 CONCLUSION
 In spite of their relative unfamiliarity to the engineering
 community and their apparent complexity ,  we have
 shown by the above example that the tools of line
 geometry can greatly simplify the results ,  if not the
 procedure ,  of kinematic analysis .  The intersection of
 three spherotangential line complices provides a good
 way to compute positions of the cylinders of given radius
 if one other constraint is specified ,   e .g . ,  a direction
 perpendicular to the desired axis or a plane parallel to it .
 Still left unsolved is the problem concerning the nature
 of the ruled surface of tangents on three congruent
 spheres ,   i .e .  a description of the set of valid axial
 directions for cylinders ,  of a given radius ,   r ,  on three
 points .  Our work must be extended to address this
 shortcoming before the results become generally useful

https://doi.org/10.1017/S026357479700043X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700043X


 360  Circular cylinders

 in the context of cylinder recognition ,  collision avoidance
 or even to design a —C—S—C— positioning mechanism
 to guide the EE through three ,  four or five points .
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