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HOW STRONGARE SINGLE FIXED POINTS OF NORMAL FUNCTIONS?

ANTON FREUND

Abstract. In a recent paper byM. Rathjen and the present author it has been shown that the statement

“every normal function has a derivative” is equivalent to Π11-bar induction. The equivalence was proved

over ACA0, for a suitable representation of normal functions in terms of dilators. In the present paper, we

show that the statement “every normal function has at least one fixed point” is equivalent to Π11-induction

along the natural numbers.

§1. Introduction. Recall that a function from ordinals to ordinals is called normal
if it is strictly increasing and continuous at limit stages.More explicitly, f is a normal
function if

(i) α < â implies f (α)< f (â) and
(ii) we have f (ë) = supα<ë f (α) whenever ë is a limit ordinal.

Equivalently, the function f is the unique increasing enumeration of a closed and
unbounded (club) class of ordinals. To construct a fixed point of a normal function
f it suffices to consider iterates: Recursively define

f 0(α) = α, f n+1(α) = f ( f n(α)).

One readily checks that

f ′(0) = supn∈N
f n(0)

is the smallest ordinal with f (f ′(0)) = f ′(0) (use continuity at the limit f ′(0), except
if f (0) = 0 = f ′(0)). It is well-known that any normal function f does in fact have a
club class of fixed points. The normal function that enumerates this class is called
the derivative of f and will be denoted by f ′.
As shown by M. Rathjen and the present author [8], a suitable formalization of

the statement that “every normal function has a derivative” is equivalent to bar
induction (also known as transfinite induction) for Π11-formulas, withACA0 as base
theory. Let us stress that this result is formulated within the framework of second
order arithmetic (see [15] for a comprehensive introduction). It relies on a suitable
representation of normal functions, which uses J.-Y. Girard’s [9] notion of dilator
and related ideas by P. Aczel [1, 2]. Details of the representation have been worked
out in [8] and will be recalled in Section 2 below. We should point out that the
use of dilators does lead to some restrictions: In particular dilators with countable

Received June 3, 2019.
2020Mathematics Subject Classification. 03B30, 03F15, 03E10, 03D60.
Key words and phrases. normal function, fixed point, reverse mathematics, dilator, well-ordering

principle, Π11-induction.

© 2020, Association for Symbolic Logic

0022-4812/20/8502-0010

DOI:10.1017/jsl.2020.24

709

https://doi.org/10.1017/jsl.2020.24 Published online by Cambridge University Press

www.doi.org/10.1017/jsl.2020.24
https://doi.org/10.1017/jsl.2020.24


710 ANTON FREUND

parameters cannot raise infinite cardinalities (cf. [9, Remark 2.3.6]), which means
that a normal function such as α 7→ ℵα is beyond the scope of the present paper. On
the other hand, dilators can be used to represent many normal functions that arise in
proof theory and computability theory (cf. [13, 14]). They also support a rich theory
of general constructions on normal functions. For the rest of this introduction we
proceed in an informal manner, ignoring the difference between normal functions
and their representations in second order arithmetic. Official versions of our results
can be found in the following sections.
In view of the aforementioned result from [8] it is natural to ask: How much

induction is needed to ensure that every normal function has at least α fixed points?
The proof of Theorem 5.8 from [8] reveals that induction along ù ·α is sufficient.
Conversely, the proof of Corollary 3.13 from the same paper shows that α fixed
points of a suitable normal function secure induction along α. If α is infinite, then
these upper and lower bounds match, since any induction alongù ·α can be reduced
to an induction along α, with a side induction along ù ≤ α. Let us now argue that
the answer for any finite α > 0 coincides with the one for α = 1: Given a normal
function f, the idea is to construct the fixed points f ′(n) by recursion in the meta
theory. Assuming that f ′(n) is given, we can consider the normal function fn with

fn(ã) = f ( f
′(n)+1+ ã).

The case of α = 1 provides the fixed point f ′n(0), which is readily seen to be an
upper bound for f ′(n+1). Let us indicate in which way this bound secures the
value f ′(n+1) itself: In Section 4 of [8] (see also Section 4 of the present paper)
it has been shown that notation systems for the fixed points of a given normal
function can be constructed in RCA0. The inequality f

′(n+1)≤ f ′n(0) corresponds
to an embedding, which reduces the claim that the notation system for f ′(n+1) is
well-founded to the same claim about f ′n(0). The main result of the present paper
solves the remaining case, by showing that suitable formalizations of the following
statements are equivalent over ACA0 (see Theorem 4.10 for the precise result):

(1) Every normal function has a fixed point.
(2) The principle of Π11-induction along the natural numbers holds.

Since induction along ù · n is readily reduced to induction along ù, we can give
the following uniform answer to the question from the beginning of the paragraph:
The statement that every normal function has at least α fixed points is equivalent to
Π11-induction along ù ·α, for any ordinal α.
As pointed out by the anonymous referee, statements (1) and (2) are also

equivalent to a suitable formalization of the following (see Remark 4.11 for details):

(3) Every normal function has arbitrarily large fixed points.

More precisely, the formalization of (3) will assert that any well order can be
embedded into some fixed point of a given normal dilator. We emphasize that (3)
does not imply the existence of derivatives. This follows from the aforementioned
result of Rathjen and the present author [8], together with the fact that Π11-induction
alongN is strictly weaker than Π11-bar induction. In [6] it is shown that the existence
of derivatives implies arithmetical comprehension. Hence the equivalence from [8]
does already hold over RCA0. We do not know whether the base theory of the
present paper can be weakened as well.
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HOW STRONG ARE SINGLE FIXED POINTS OF NORMAL FUNCTIONS? 711

In the rest of this introduction we give an informal argument for the equivalence
between (1) and (2). The following sections will show that this argument can be
made precise in an appropriate way (similarly to the formalization in [8]). To show
that (1) implies (2) we must establish induction for a Π11-formula ϕ. The Kleene
normal form theorem (see [15, Lemma V.1.4]) provides a family of trees Tn with

ϕ(n)↔ “Tn is well-founded”.

The premises of the induction statement for ϕ can then be written as

“T0 is well-founded”,

∀n(“Tn is well-founded”→ “Tn+1 is well-founded”).

Assume that these statements are witnessed by an ordinal α0 and a function h, in
the sense that we have

otp(T0)≤ α0,

∀n,ã(otp(Tn)≤ ã → otp(Tn+1)≤ h(n,ã)),

where otp(T ) denotes the order type (or rank) of T . To avoid the dependency on n
we set h0(ã) = supn∈N

h(n,ã). Now consider the normal function f given by

f (ä) = α0+1+
∑

ã<ä

(h0(ã)+1).

Note that the infinite sum corresponds to a transfinite recursion, in which the
summand h0(ã)+1 is added at the successor stage ã+1. This immediately yields

ã+1≤ ä =⇒ h0(ã)+1≤ f (ä).

By construction we have otp(T0)+1 ≤ α0+1 ≤ f ( f
′(0)) = f ′(0). Using the above

we also see that otp(Tn)+1≤ f
′(0) implies

otp(Tn+1)+1≤ h(n,otp(Tn))+1≤ h0(otp(Tn))+1≤ f ( f
′(0)) = f ′(0).

Using induction on n we obtain

otp(Tn)< f
′(0)

for all n ∈ N, where the reference to f ′(0) is secured by statement (1) above. This
means that the fixed point f ′(0) witnesses the statement

∀n “Tn is well-founded”,

which corresponds to the conclusion ∀nϕ(n) of induction for ϕ. To show that (2)
implies (1) we will construct a notation system Fix( f ) for the first fixed point
of a given normal function f. As indicated above, this can be done in RCA0. In
order to establish (1) we must prove that Fix( f ) is well-founded. For this purpose
we show that Fix( f ) is the union of initial segments that correspond to the iterates
f n(0). The well-foundedness of these initial segments can be established by induction
on n, as justified by statement (2).
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712 ANTON FREUND

§2. Representing normal functions by dilators. As mentioned in the introduction,
Girard’s [9] notion of dilator and related ideas by Aczel [1, 2] make it possible to
represent normal functions in the setting of second order arithmetic. Details of this
representation have been worked out in [8, Section 2]. In the present section we recall
the relevant parts of that paper. Once normal functions have been represented, it
will be straightforward to define an appropriate notion of fixed point.
In order to define dilators we consider the category of linear orders, with strictly

increasing functions (i.e., embeddings) as morphisms. By the category of natural
numbers we mean the full subcategory with the finite orders n = {0, ... ,n – 1} as
objects. This is a small category that is equivalent to the category of finite orders.
To witness the equivalence of categories we associate each finite order a with its
increasing enumeration ena : |a| → a. Each embedding f : a→ b of finite orders is
associated with a unique function |f | : |a| → |b| that satisfies

f ◦ ena = enb ◦| f |.

This turns | · | and en into a functor and a natural equivalence. We will usually omit
the forgetful functor that maps a linear order to its underlying set. In particular the
finite subset functor [·]<ù with

[X ]<ù = “the set of finite subsets of X”,

[ f ]<ù(a) = {f (x) |x ∈ a}

will also be applied when X is a linear order. Conversely, an element a ∈ [X ]<ù

will then be viewed as a suborder (rather than just a subset) of X. It is well-known
that finite sets and functions can be coded by natural numbers. Hence the objects
in the following definition can be represented by subsets of N, which allows for a
formalization in second order arithmetic.

Definition 2.1 (RCA0). A coded prae-dilator consists of

(i) a functor T from the category of natural numbers to the category of linear
orders, where the field of each order T(n) is a subset of N, and

(ii) a natural transformation suppT : T =⇒ [·]<ù such that each ó ∈ T(n) lies in
the range of the function T(éó ◦ enó) : T(|supp

T
n (ó)|)→ T(n), where

|suppTn (ó)|
enó−−−→ suppTn (ó)

éó
−֒−−→ n= {0, ... ,n – 1}

compose to the unique embedding with range suppTn (ó)⊆ n.

In Example 2.5 below we describe a coded dilator that represents the normal
function α 7→ùα from ordinal arithmetic. First, however, we want to give a general
account of the following crucial observation byGirard: Due to their high uniformity
(which is ensured by functoriality and the existence of finite supports), coded
prae-dilators can be extended beyond the category of natural numbers. A concrete
construction of this extension in second order arithmetic has been given in [7]:

Definition 2.2 (RCA0). Given a coded prae-dilator T = (T , supp
T), we set

DT(X) = {〈a,ó〉 |a ∈ [X ]<ù and ó ∈ T(|a|) and suppT|a|(ó) = |a|}
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for each order X. To define a binary relation on DT(X) we stipulate

〈a,ó〉<DT (X) 〈b,ô〉 ⇐⇒ T(|éa∪ba |)(ó)<T(|a∪b|) T(|é
a∪b
b |)(ô),

where éa∪ba and éa∪bb denote the inclusion maps from a resp. b into a∪b.

In the proof of [7, Lemma 2.4], the following result is established in a stronger
base theory. It is straightforward to see that RCA0 supports the relevant argument.

Lemma 2.3 (RCA0). Consider a coded prae-dilator T. If X is a linear order, then
so is DT(X) = (DT(X),<DT (X)).

Having extended prae-dilators to arbitrary linear orders, we can now consider the
preservation ofwell-foundedness (note that the two obvious definitions of well-order
are equivalent over RCA0, see e.g., [3, Lemma 2.3.12]):

Definition 2.4 (RCA0). A coded prae-dilatorT is called a coded dilator ifD
T(X)

is well-founded for every well-order X on a subset of N.

Let us discuss how Definition 2.2 allows us to represent arbitrary prae-dilators:
Working in a suitable base theory, it is natural to define a class-sized prae-dilator as
a functor from linear orders to linear orders, together with a natural transformation
as in part (ii) of Definition 2.1 (cf. [7, Definition 1.1] for full details). If T is a
class-sized prae-dilator with countable fields Tn ⊆N, then its restriction T ↾N to the
category of natural numbers is a coded prae-dilator. Conversely, Proposition 2.5 of
[7] shows that we get isomorphisms DT↾N(X)∼= T(X) by stipulating

DT↾N(X) ∋ 〈a,ó〉 7→ T(éa ◦ ena)(ó) ∈ T(X),

where éa : a →֒X is the inclusion. The condition supp
T
|a|(ó) = |a| from the definition

of DT(X) is crucial for injectivity, as will become clear in Example 2.5. If we extend
Definition 2.2 by the clauses

DT( f )(〈a,ó〉) = 〈[ f ]<ù(a),ó〉,

suppD
T

X (〈a,ó〉) = a,

thenDT↾N becomes a class-sized prae-dilator that is isomorphic toT. Concerning the
preservation of well-foundedness, we point out that T(X) is well-founded for every
well-order X if the same holds for every countable well-order with field X ⊆ N (see
[9, Theorem 2.1.15]). Altogether this means that coded (prae-) dilators correspond
to class-sized (prae-) dilators that map finite orders to at most countable ones. Only
coded (prae-) dilators will play an official role in the present paper. For the sake of
readability we will often omit the specification “coded”.
Let us also point out that our definition of dilators is equivalent to the original one

by Girard: In [3, Remark 2.2.2] it has been verified that an endofunctor T of linear
orders preserves direct limits and pull-backs if, and only if, there is an (automatically
unique and hence natural) transformation suppT as in part (ii) of Definition 2.1.
On the other hand, there is a small difference between Girard’s predilators and
our prae-dilators (hence the particular spelling): The former fulfill a monotonicity
condition that is automatic for well-orders (i.e., in the case of dilators).
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714 ANTON FREUND

As promised above, we now show how the function α 7→ ùα from ordinal
arithmetic can be implemented as a dilator:

Example 2.5. For each order X = (X ,<X ) we consider the set

ùX = {ùx1 + ···+ùxn |x1 ≥X ··· ≥X xn}

with the lexicographic order (Cantor normal forms). Each embedding f : X → Y
induces an embedding ùf : ùX → ùY , which is given by the clause

ùf (ùx1 + ···+ùxn) = ùf (x1)+ ···+ùf (xn).

To define a family of functions suppùX : ù
X → [X ]<ù we set

suppùX (ù
x1 + ···+ùxn) = {x1, ... ,xn}.

It is straightforward to verify that the given functions (or their restrictions to
the category of natural numbers) form a prae-dilator, and indeed a dilator: If
X has order-type α, then ùX has order-type ùα , in the usual sense of ordinal
arithmetic. In the context of reverse mathematics, the statement that X 7→ ùX

preserves well-foundedness is equivalent to arithmetical comprehension (due to J.-Y.
Girard [10]; cf. also the computability-theoretic proof by J. Hirst [12]). Concerning
Definition 2.2, we point out that 〈{1,ù},ù1 + ù0〉 lies in Dù(ù + 1) while
〈{1,5,ù},ù2+ù0〉 does not (since suppù3 (ù

2+ù0) = {0,2} 6= 3). The map 〈a,ó〉 7→
T(éa ◦ ena)(ó) sends both pairs to the element ù

ù+ù1 ∈ ùù+1.

Each (coded) dilator T induces a function from ordinals to ordinals, given by

α 7→ otp(DT(α)),

where otp(X) is the order type of (i.e., the ordinal isomorphic to) the well-order X.
To see that this function does not need to be normal we consider the transformation

X 7→ T(X) = X ∪{⊤}

that extends an order X by a new maximal element ⊤. We get a dilator by setting

T( f )(ó) =

{

f (ó) if ó ∈ X ,

⊤ if ó =⊤,
suppTX (ó) =

{

{ó} if ó ∈ X ,

∅ if ó =⊤.

The induced function α 7→ α+1 fails to be continuous at limit ordinals and does
not have any fixed points. Before we restore the focus on normal functions, let us
mention that dilators that induce discontinuous functions are at least as interesting:
In [4, 5, 7] it has been shown that Π11-comprehension is equivalent to the statement
that every dilator T admits a certain type of collapsing function ϑ : T(X)→ X for
somewell-orderX (note that ϑ cannot be fully order preserving ifT(X) =X ∪{⊤}).
In order to analyse the example from the previous paragraph we observe that

T does not preserve initial segments: It can happen that the range of f : X → Y
is an initial segment of Y, while the range of T( f ) : T(X)→ T(Y) fails to be an
initial segment of T(Y) (since it contains the element ⊤). Indeed, Aczel [1, 2] and
Girard [9] have observed that preservation of initial segments ensures continuity
at limit ordinals (cf. the proof of Proposition 2.11 below). We will be particularly
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interested in initial segments of the form

X ↾x= {x′ ∈ X |x′ <X x},

where x is an element of the order X. The functions ìTn in the following definition
correspond to the restrictions f ↾α : α→ f (α) of a normal function f. In this sense
we can view ìT as an internal version of T (see also Example 2.10 below).

Definition 2.6 (RCA0). A normal (prae-) dilator consists of a coded (prae-)
dilator T and a natural family of embeddings ìTn : n→ T(n) such that

ó ∈ T(n)↾ìTn (m)⇐⇒ suppTn (ó)⊆m= {0, ... ,m – 1}

holds for any numbers m< n and an arbitrary element ó ∈ T(n).

Note that the single element ìT1 (0)∈ T(1) determines the entire family ì
T , due to

naturality: For é : 1→ n with é(0) =m we have ìTn (m) = T(é)(ì
T
1 (0)). The following

result from [8] will be needed to extend ìT beyond the natural numbers.

Lemma 2.7 (RCA0). Assume that T = (T ,ì
T) is a normal prae-dilator. Then

suppTn (ì
T
n (m)) = {m}

holds for arbitrary numbers m< n.

Proof. Writing ìTn (m) = T(é)◦ì
T
1 (0) as above, the naturality of supp

T yields

suppTn (ì
T
n (m)) = [é]

<ù(suppT1 (ì
T
1 (0)))⊆ rng(é) = {m}.

Now it suffices to observe that suppTn (ì
T
n (m)) = ∅ must fail: Otherwise we would

have suppTn (ì
T
n (m))⊆m and hence ì

T
n (m) ∈ T(n)↾ì

T
n (m). ⊣

In particular the lemma provides suppT1 (ì
T
1 (0)) = 1. Considering Definition 2.2,

this is needed to justify the following:

Definition 2.8 (RCA0). Given a normal prae-dilator T, we define a family of

functions Dì
T

X : X →DT(X) by setting

D
ìT

X (x) = 〈{x},ìT1 (0)〉

for any order X and any element x ∈ X .

The following result tells us that the defining property of ìT extends beyond the
category of natural numbers. We refer to [8, Proposition 2.11] for a proof.

Proposition 2.9 (RCA0). Consider a normal prae-dilator T. We have

〈a,ó〉 ∈DT(X)↾Dì
T

X (x)⇐⇒ a⊆ X ↾x

for any linear order X and any element 〈a,ó〉 ∈ DT(X). Furthermore, the functions

D
ìT

X : X →DT(X) form a natural family of embeddings.

Let us extend Example 2.5 to accommodate the new notions:

Example 2.10. To turn X 7→ùX into a normal dilator we consider the functions

ìùX : X → ùX , ìùX (x) = ù
x.

https://doi.org/10.1017/jsl.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.24


716 ANTON FREUND

Observe thatùx1+ ···+ùxn ∈ùX ↾ùx is equivalent to {x1, ... ,xn}⊆X ↾x, as required
by Definition 2.6. Let us also point out that the aforementioned function 〈a,ó〉 7→

T(éa ◦ ena)(ó) maps D
ìù

X (x) = 〈{x},ù0〉 ∈Dù(X) to ùx ∈ ùX .

In a suitable meta theory one can establish the following result, which is due to
Aczel [1, Theorem 2.11]. The given proof is very similar to the one in [8].

Theorem 2.11. Any normal dilator induces a normal function.

Proof. Let T be a normal dilator. Considering Definition 2.2, we see that

DT(X ↾x) = {〈a,ó〉 ∈DT(X) |a⊆ X ↾x}

is a suborder of DT(X) (see [8, Lemma 2.6] for a more general result). Since T is
normal, the previous proposition allows us to conclude

DT(X ↾x) =DT(X)↾Dì
T

X (x).

To show that the function α 7→ otp(DT(α)) induced by T is strictly increasing we
consider α< â . The usual set-theoretic definition of ordinals yields â ↾α = α. Using
the above we obtain

otp(DT(α)) = otp(DT(â ↾α)) = otp(DT(â)↾Dì
T

â
(α))< otp(DT(â)),

as required. To show that α 7→ otp(DT(α)) is continuous it remains to prove

otp(DT(ë))≤ supα<ëotp(D
T(α))

for an arbitrary limit ordinal ë. Given any element 〈a,ó〉 ∈DT(ë), we pick an α< ë

with a⊆ α = ë↾α. By the above we get 〈a,ó〉 ∈DT(ë)↾Dì
T

ë
(α) and hence

otp(DT(ë)↾〈a,ó〉)< otp(DT(ë)↾Dì
T

ë
(α)) = otp(DT(α))≤ supα<ëotp(D

T(α)).

Since 〈a,ó〉 ∈DT(ë) was arbitrary this yields the desired inequality. ⊣

Oncenormal prae-dilators havebeendefined, it is straightforward tofinda suitable
notion of fixed point (the reader may wish to compare this with the categorical
definition of derivatives in [8], which is considerably more involved):

Definition 2.12 (RCA0). A fixed point of a normal prae-dilator T consists of
an order X and an embedding î : DT(X)→ X . We say that the fixed point is well-
founded if the order X has this property.

The reader might wonder whether the function î from the previous definition
should be an isomorphism. One could also focus on the initial fixed point of T,
which should be embeddable into any other. In view of Theorems 4.6 and 4.10
our main result remains valid for fixed points with these additional properties. The
following observation, which requires a suitable base theory, provides an extensional
justification for the given definition:

Corollary 2.13. Consider a normal dilator T. If α and î : DT(α)→ α form a
fixed point of T, then we have α = otp(DT(α)).
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Proof. Proposition 2.9 tells us that Dì
T

α : α → DT(α) is an embedding. Hence
we have α ≤ otp(DT(α)). Conversely, the embedding î witnesses that we have
α ≥ otp(DT(α)). ⊣

§3. From fixed point to induction. In this section we deduce Π11-induction along
the natural numbers from the assumption that every normal dilator has a well-
founded fixed point. To achieve this goal we will give a precise version of the
informal argument from the introduction of the present paper.
As in the informal argument, the Kleene normal form theorem implies that a

given Π11-statement ϕ ≡ ϕ(n) corresponds to a family

T = {(n,ó) |ó ∈ Tn}

of trees Tn ⊆ N
<ù , such that Tn is well-founded if, and only if, the instance ϕ(n)

holds. Here X<ù denotes the tree of finite sequences with entries in X, ordered
by end extension. Any subtree T ⊆ X<ù will be called an X -tree. When we speak
of a family of trees we will assume that it is indexed by the natural numbers,
unless indicated otherwise. Hence the above expresses that Π11-statements with a
distinguished number variable correspond to families of N-trees.
If X = (X ,<X ) is a linear order, then any X -tree T is totally ordered by the

Kleene–Brouwer order (also known as Lusin–Sierpiński order) with respect to X.
The latter compares ó i = 〈ó i0, ... ,ó

i
ki–1

〉 ∈ T according to the clause

ó1 <KB(X) ó
2⇐⇒

{

either ó1 is a proper end extension of ó2,

or we have ó1j <X ó
2
j and ∀i<j ó

1
i = ó

2
i for some j.

We will omit the reference to X when X = N carries the usual order. Recall that a
function f : N→ X is called a branch of an X -tree T if we have

f [n] = 〈f (0), ... , f (n – 1)〉 ∈ T

for every number n. Given an X -tree T for a well-order X, it is equivalent to assert
that T is well-foundedwith respect to end extensions, that T has no branch, and that
the Kleene–Brouwer order with respect to X is well-founded on T . It is well-known
that the equivalence can be proved in ACA0 (cf. [15, Lemma V.1.3]).
Using the terminology that we have introduced, the premise of Π11-induction

along the natural numbers can be expressed in the following form:

Definition 3.1 (ACA0). Consider a family T of N-trees. If we have

“Tn is well-founded”→ “Tn+1 is well-founded”,

then we say that T is progressive at n. The family T is called progressive if it is
progressive at every n ∈ N and T0 is well-founded.

Recall the function h from the informal argument given in the introduction. In
order to represent this function we will construct a family of prae-dilators H[n]
such that X 7→ DH[n](X) preserves well-foundedness if, and only if, a given family
T of N-trees is progressive at n. Unfortunately the orders DH[n](X) that arise from
Definition 2.2 are somewhat hard to understand. For this reason we will first give

https://doi.org/10.1017/jsl.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.24


718 ANTON FREUND

an ad hoc definition of orders H[n](X). In a second step we will define (coded)
prae-dilatorsH[n] withDH[n](X)∼=H[n](X). The following approach is inspired by
D. Normann’s proof that the notion of dilator is Π12-complete (see [11, Annex 8.E];
cf. also the similar argument in [8, Section 3]): Assuming thatH[n](X) is ill-founded
for some well-order X, we must ensure that Tn is well-founded while Tn+1 is not.
The idea is to construct H[n](X) as a tree. Along each branch one searches for an
embedding of Tn into X and, simultaneously, for a branch in Tn+1. In order to make
this precise we need one additional construction: Let us define

X⊤ = X ∪{⊤}

as the extension of a given order X by a new maximal element ⊤. If we map each
embedding f : X → Y to the embedding

f⊤ : X⊤ → Y⊤, f⊤(ó) =

{

f (ó) if ó ∈ X ,

⊤ if ó =⊤,

then we obtain an endofunctor of linear orders (and indeed a dilator). The fact
that ⊤ is maximal will be relevant in some constructions further below, but in the
following definition it is not: We simply need a default value for functions into X⊤

(cf. the choice of elements xi in the proof of Proposition 3.3).

Definition 3.2 (ACA0). Consider a family T of N-trees and a natural number n.
For each order X we define H[n](X) =H[T ,n](X) as the tree of all sequences

〈〈x0,s0〉, ... ,〈xk–1,sk–1〉〉 ∈ (X
⊤×N)<ù

that satisfy the following conditions:

(i) For any i, j < k that code elements i <KB j of Tn, we have xi <X⊤ xj.
(ii) We have 〈s0, ... ,sk–1〉 ∈ Tn+1.

The treeH[n](X) carries the Kleene–Brouwer order with respect to X⊤×N (where
〈x,s〉 preceeds 〈x′,s′〉 if we have either x<X⊤ x′ or x= x′ and s< s′ in N).

Let us verify the crucial property:

Proposition 3.3 (ACA0). A family T ofN-trees is progressive at n∈N if, and only
if, the order H[T ,n](X) is well-founded for every well-order X.

Proof. To establish the contrapositive of the first direction we assume that
H[n](X) is ill-founded for some well-order X. Since X⊤ ×N is well-founded, the
characteristic property of theKleene–Brouwer order yields a branch f :N→X⊤×N

in the tree H[n](X). Writing f (i) = 〈xi,si〉, it is straightforward to observe that

Tn ∋ i 7→ xi ∈ X
⊤

is an embedding into the well-order X⊤, while

i 7→ 〈s0, ... ,si–1〉

is a branch in Tn+1. Hence Tn is well-founded while Tn+1 is not, which means that T
fails to be progressive at n. Aiming at the contrapositive of the other direction, we
assume that Tn is well-founded while Tn+1 has a branch i 7→ si. We set X = Tn (with
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the Kleene–Brouwer order) and define

xi =

{

i if i ∈ X ,

⊤ otherwise.

It is straightforward to see that i 7→ 〈xi,si〉 is a branch in the tree H[n](X), so that
the latter is ill-founded, even though X is a well-order. ⊣

As explained above, the next task is to define a coded prae-dilator H[n] such
that DH[n](X) ∼= H[n](X) holds for any order X. The values H[n](m), which this
prae-dilator assigns to the finite orders m= {0, ... ,m – 1}, coincide with those from
Definition 3.2. It remains to define the action on morphisms, as well as the support
functions. It will be useful to formulate the following definition for arbitrary orders,
rather than just for finite orders represented by natural numbers.

Definition 3.4 (ACA0). With each order embedding f : X → Y we associate a
function H[n]( f ) :H[n](X)→H[n](Y), defined by

H[n]( f )(〈〈x0,s0〉, ... ,〈xk–1,sk–1〉〉) = 〈〈f⊤(x0),s0〉, ... ,〈f
⊤(xk–1),sk–1〉〉.

To define a family of functions suppH[n]X :H[n](X)→ [X ]<ù we set

suppH[n]X (〈〈x0,s0〉, ... ,〈xk–1,sk–1〉〉) = {xi | i < k and xi 6=⊤}

for each order X.

It is straightforward to check that the conditions fromDefinition 2.1 are satisfied:

Lemma3.5 (ACA0). By restricting the previous definitions to the category of natural
numbers we obtain a coded prae-dilator H[n] =H[T ,n], for any family T of N-trees
and any number n.

The following justifies the ad hoc definition of the orders H[n](X).

Lemma 3.6 (ACA0). We have D
H[n](X)∼=H[n](X) for any order X.

Proof. The claim is a special case of a general result about the connection
between coded and class-sized prae-dilators, established in [7, Proposition 2.5]
(cf. also Section 2 of the present paper). The desired isomorphism is given by

DH[n](X) ∋ 〈a,ó〉 7→H[n](éa ◦ ena)(ó) ∈H[n](X),

where ena : |a| → a is the enumeration of a and éa : a →֒ X is the inclusion. To show
that the given map is order preserving (and hence injective) one argues exactly as in
the proof of the general case (see [7] for details). It is instructive to look at the proof
that the given map is surjective: Given an arbitrary element

ô = 〈〈x0,s0〉, ... ,〈xk–1,sk–1〉〉 ∈H[n](X),

we set a= suppH[n]X (ô). Since éa ◦ ena : |a| → X has range a we can define

mi =

{

“the unique m< |a| with éa ◦ ena(m) = xi” if xi 6=⊤,

⊤ otherwise.
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It follows that we have (éa ◦ ena)
⊤(mi) = xi for all i < k. Since (éa ◦ ena)

⊤ is order
preserving we can conclude that

ó = 〈〈m0,s0〉, ... ,〈mk–1,sk–1〉〉

is an element of H[n](|a|). In view of

[éa ◦ ena]
<ù(suppH[n]

|a|
(ó)) = {éa ◦ ena(mi) | i < k and mi 6=⊤}= a,

we have suppH[n]
|a|
(ó) = |a|, which yields 〈a,ó〉 ∈ DH[n](X). By construction we have

ô =H[n](éa ◦ ena)(ó), as required for surjectivity. ⊣

In view of Definition 2.4, the previous considerations yield the following result,
which completes the reconstruction of the function h that appears in the informal
argument from the introduction:

Corollary 3.7 (ACA0). A family T of N-trees is progressive at n if, and only if,
the prae-dilator H[T ,n] is a dilator.

To proceed we recall the functions h0(ã) = supn∈N
h(n,ã) and

f (ä) = otp(T0)+1+
∑

ã<ä

(h0(ã)+1)

from the informal argument. Supremum and infinite sum can be implemented as
dependent sums: Given an order X and an X -indexed family of orders Yx, the set

Σx∈XYx = {〈x,y〉 |x ∈ X and y ∈ Yx}

is ordered according to the clause

〈x,y〉<Σx∈XYx 〈x
′,y′〉 ⇐⇒

{

either x<X x
′,

or x= x′ and y<Yx y
′.

The elements of a binary sum Y0+Y1 = Σi∈{0,1}Yi will be written as 〈⊥,y0〉 and y1
rather than 〈0,y0〉 resp. 〈1,y1〉 (intuitively, this means that we read the definition of
f as a single sum over 1+ ä). If F = (F ,ìF) is a normal dilator that represents f,
then the values of ìF should correspond to the smallest elements of the summands
h0(ã)+1. Since there does not appear to be a uniform way to choose these elements,
we slightly deviate from the definition of f and consider the summands 1+h0(ã)+1
instead. It will be convenient to represent the latter by a single dependent sum. For
this purpose we consider the order

N
∞
–1 = {– 1}∪N∪{∞},

which extends the natural numbers by a new minimal and maximal element. We
now define H[– 1] =H[∞] as the constant dilator with values

H[– 1](X) =H[∞](X) = {⋆},

for a new symbol ⋆ (note H[– 1]( f )(⋆) = ⋆ and suppH[–1]X (⋆) = ∅). Assuming ä ∼= X
and ã ∼=X ↾x, the summand1+h0(ã)+1 can thenbe represented (or rather bounded)
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by the dependent sum

Σn∈N∞
–1
H[n](X ↾x),

which extends the sum Σn∈NH[n](X ↾x) by a minimal element 〈– 1,⋆〉 and amaximal
element 〈∞,⋆〉. Let us now define orders F(X) that represent the values f (ä) of the
function from the informal argument given in the introduction. We will later equip
F with the structure of a coded normal prae-dilator such that DF(X)∼= F(X) holds
for any order X.

Definition 3.8 (ACA0). For any family T of N-trees and any order X we define

F(X) = F [T ](X) = T ⊤
0 +Σx∈XΣn∈N∞

–1
H[T ,n](X ↾x),

with the usual order on a dependent sum.

According to the above explanations, elements of F(X) have the form 〈⊥,ó〉
with ó ∈ T0∪{⊤} or 〈x,〈n,ó〉〉 with x ∈ X , n ∈ N

∞
–1 and ó ∈H[n](X ↾x). Elements

of the second form will be written as 〈x,n,ó〉, with one pair of angle brackets
omitted. At the beginning of this section we have expressed Π11-induction along the
natural numbers in terms of a family T of N-trees. In this setting, the conclusion of
induction amounts to the statement that all trees Tn are well-founded. The following
result implies that this is the case if F has a well-founded fixed point.

Theorem 3.9 (ACA0). Consider a family T of N-trees. Given an order X with an
embedding î : F [T ](X)→ X , we can construct an embedding J : Σn∈NT

⊤
n → X .

Proof. The informal argument from the introduction would suggest to construct
the branches T ⊤

n ∋ ó 7→ J(〈n,ó〉) by recursion on n, but the required recursion
principle is not available in our base theory. Remarkably, the reconstruction of the
informal argument in terms of dilators is sufficiently finitistic to allow for a definition
of J by course-of-values recursion over the codes of pairs in Σn∈NT

⊤
n . To ensure that

the required values of J are available in the recursion step we make two assumptions
about the coding of pairs and sequences: First, we assume that

〈n,⊤〉<N 〈n+1,ó〉

holds for any ó ∈ T ⊤
n+1 (we write <N to stress that the codes are compared with

respect to the usual order on the natural numbers). If we agree to represent the
symbol ⊤ by the number zero, then this is satisfied for the usual Cantor coding of
pairs. Second, we assume that the code of a finite sequence bounds its length, so
that we have

〈n, i〉<N 〈n+1,〈s0, ... ,sk–1〉〉

for any element 〈s0, ... ,sk–1〉 ∈ Tn+1 and all i < k. The values

J(〈0,ó〉) = î(〈⊥,ó〉)

are defined without recursive calls. To specify the remaining values we abbreviate

Jn(i) =

{

J(〈n, i〉) if i codes an element of Tn,

⊤ otherwise.
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We can now complete the recursive definition of J by setting

J(〈n+1,⊤〉) = î(〈J(〈n,⊤〉),∞,⋆〉),

J(〈n+1,〈s0, ... ,sk–1〉〉) = î(〈J(〈n,⊤〉),n,〈〈Jn(0),s0〉, ... ,〈Jn(k – 1),sk–1〉〉〉).

To show that this defines an embedding J : Σn∈NT
⊤
n → X we verify the following

properties by simultaneous induction on j:

(i) If j codes an element of Σn∈NT
⊤
n , then we have J(j) ∈ X .

(ii) If j0, j1 < j code elements j0 <Σn∈NT
⊤
n
j1, then we have J(j0)<X J(j1).

(iii) If we have j = 〈n,ó〉 for some ó ∈ Tn, then we get J(j)<X J(〈n,⊤〉).

Claim (i) ismost interesting for j= 〈n+1,〈s0, ... ,sk–1〉〉, where the second component
of the pair lies in Tn+1. To show that J(j) lies in X it suffices to establish

〈〈Jn(0),s0〉, ... ,〈Jn(k – 1),sk–1〉〉 ∈H[n](X ↾J(〈n,⊤〉)).

In view of Definition 3.2 this requires Jn(i) ∈ (X ↾J(〈n,⊤〉))⊤ for all i < k, which
can be deduced from parts (i) and (iii) of the simultaneous induction hypothesis.
We also need Jn(i) <X Jn(i

′) for all i, i′ < k that code elements i <KB i
′ of Tn. This

follows from the induction hypothesis for (ii). To verify the induction step for (ii)
one needs to distinguish several cases. We simplify the notation by writing

J(〈n+1,ó〉) = î(〈J(〈n,⊤〉),Jn(ó)〉)

for both ó ∈ Tn+1 and ó = ⊤ (to be read as an implicit definition of Jn(ó)). In the
case of an inequality

〈0,ó〉<Σn∈NT
⊤
n

〈n+1,ó′〉

we observe that 〈⊥,ó〉 and 〈J(〈n,⊤〉),Jn(ó′)〉 lie in the left resp. right summand
of the order F(X). Since î is order preserving we can infer

J(〈0,ó〉) = î(〈⊥,ó〉)<X î(〈J(〈n,⊤〉),Jn(ó′)〉) = J(〈n+1,ó′〉).

Let us now consider an inequality

〈n+1,ó〉<Σn∈NT
⊤
n

〈n′+1,ó′〉

with n< n′. The induction hypothesis yields J(〈n,⊤〉)<X J(〈n
′,⊤〉) and hence

〈J(〈n,⊤〉),Jn(ó)〉<F(X) 〈J(〈n
′,⊤〉),Jn

′

(ó′)〉.

To conclude we apply î to both sides. Finally, we look at an inequality

〈n+1,ó〉<Σn∈NT
⊤
n

〈n+1,ó′〉

with ó <T ⊤
n+1
ó′. It is straightforward to see that Jn(ó) preceeds Jn(ó′) in the order

Σn∈N∞
–1
H[n](X ↾J(〈n,⊤〉)), both for ó′ ∈ Tn+1 and for ó

′ =⊤. We thus get

J(〈n+1,ó〉) = î(〈J(〈n,⊤〉),Jn(ó)〉)<X î(〈J(〈n,⊤〉),Jn(ó′)〉) = J(〈n+1,ó′〉),

as desired. Claim (iii) is straightforward once we know that the relevant values of J
lie in X (in case n=m+1 one uses the inequality m<∞ in N∞

–1 ). ⊣
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Our next goal is to show that F = F [T ] can be extended into a (coded) normal
prae-dilator such that we have DF(X) ∼= F(X) for any order X. To explain the
definition of ìF we recall that 〈– 1,⋆〉 is the minimal element of Σn∈N∞

–1
H[n](X),

independently of the order X.

Definition 3.10 (ACA0). Given an order embedding f : X → Y , we define a
function F( f ) : F(X)→ F(Y) by

F( f )(〈⊥,ó〉) = 〈⊥,ó〉,

F( f )(〈x,n,ó〉) = 〈f (x),n,H[n]( f ↾x)(ó)〉,

where f ↾x : X ↾x→ Y ↾ f (x) is the restriction of f. In order to define a family of
functions suppFX : F(X)→ [X ]

<ù we stipulate

suppFX (〈⊥,ó〉) = ∅,

suppFX (〈x,n,ó〉) = {x}∪ suppH[n]X↾x (ó).

Finally, we define functions ìFX : X → F(X) by setting

ìFX (x) = 〈x,– 1,⋆〉

for each order X and each element x ∈ X .

In order to apply Theorem 3.9 we will invoke the principle that every normal
dilator has a well-founded fixed point. For this purpose we need the following
result:

Proposition 3.11 (ACA0). The restriction of the previous constructions to the
category of natural numbers defines a coded normal prae-dilator F = F [T ], for each
family T of N-trees.

Proof. It is straightforward to check that F is a functor and that suppF is
a natural transformation, invoking Lemma 3.5 for the corresponding properties
ofH[n]. To verify the support condition from part (ii) of Definition 2.1 we consider
an element

ô = 〈m0,n,ó〉 ∈ F(m)

with m0 <m and ó ∈H[n](m0) (observe m↾m0 =m0). In view of

suppFm(ô) = {m0}∪ supp
H[n]
m0
(ó)

we write |suppFm(ô)| = k+1. Let éô ◦ enô : k+1→ m denote the embedding with

range suppFm(ô), as in Definition 2.1. Due to supp
H[n]
m0
(ó) ∈ [m0]

<ù we see that

(éô ◦ enô)↾k : k→ éô ◦ enô(k) =m0

has range suppH[n]m0
(ó). Hence the support condition for H[n] yields

ó =H[n]((éô ◦ enô)↾k)(ó0)

for some element ó0 ∈H[n](k) (in case n ∈ {– 1,∞} we have ó = ⋆= ó0). Setting

ô0 = 〈k,n,ó0〉 ∈ F(k+1),
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we get ô = F(éô ◦ enô)(ô0), as required by the support condition for F. To prove that
F = (F ,ìF) is normal we must establish

ô <F(m) ì
F
m(k)⇐⇒ suppFm(ô)⊆ {0, ... ,k – 1},

for arbitrary numbers k < m and any element ô ∈ F(m). Let us first assume that
we are concerned with an element of the form ô = 〈⊥,ó〉. In this case the left
side of the equivalence is satisfied, since ô lies in the first summand of F(m) while
ìFm(k) = (k,– 1,⋆) lies in the second. The right side of the equivalence holds because
of suppFm(ô) = ∅. Now consider an element

ô = 〈m0,n,ó〉.

Since 〈– 1,⋆〉 is the smallest element of Σn∈N∞
–1
H[n](k) we have

ô <F(m) ì
F
m(k)⇐⇒m0 < k.

In view of suppH[n]m0
(ó)⊆ {0, ... ,m0 – 1} we also have

suppFm(ô)⊆ {0, ... ,k – 1}⇐⇒m0 < k,

which completes the proof of the required equivalence. ⊣

Let us also connect the orders F(X) to the coded prae-dilator F :

Lemma 3.12 (ACA0). We have F(X)∼=D
F(X) for any order X.

Proof. Again, this is an instance of the general result from [7,
Proposition 2.5]. As an alternative to the general result, the claim can be deduced
from Lemma 3.6: In view of that result (which readily extends to n ∈ {– 1,∞}) it
suffices to show

T ⊤
0 +Σx∈XΣn∈N∞

–1
DH[n](X ↾x)∼=DF(X).

Every element of the second summand on the left side has the form 〈x,n,〈a,ó〉〉, for

a finite subset a ⊆ X ↾x and an element ó ∈ H[n](|a|) with suppH[n]
|a|
(ó) = |a|. The

desired isomorphism can now be specified by stipulating

〈⊥,ó〉 7→ 〈∅,〈⊥,ó〉〉,

〈x,n,〈a,ó〉〉 7→ 〈{x}∪a,〈|a|,n,ó〉〉.

To see that the values lie in DF(X) one observes 〈|a|,n,ó〉 ∈ F(|{x}∪a|) and

suppF|{x}∪a|(〈|a|,n,ó〉) = {|a|}∪ suppH[n]
|a|
(ó) = |a|+1 = |{x}∪a|.

The fact that the given map is order preserving (and hence injective) is verified as in
the proof of [8, Lemma 3.10]. To establish surjectivity we consider an element

〈b,〈m,n,ó〉〉 ∈DF(X).

In view of Definition 2.2, we have 〈m,n,ó〉 ∈ F(|b|), which yields ó ∈H[n](m), and

|b|= suppF|b|(〈m,n,ó〉) = {m}∪ suppH[n]m (ó).
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Let x be the largest element of b and set a= b\{x}. It is straightforward to conclude

m = |a| and suppH[n]m (ó) = {0, ... , |a| – 1}, which yields 〈a,ó〉 ∈ DH[n](X ↾x). Hence
〈b,〈m,n,ó〉〉 arises as the image of 〈x,n,〈a,ó〉〉, as needed for surjectivity. ⊣

We can draw the following conclusion:

Proposition 3.13 (ACA0). A family T of N-trees is progressive if, and only if, the
normal prae-dilator F [T ] is a normal dilator.

Proof. For the first direction we assume that T is progressive. According to
Definition 3.1 this means that T0 is well-founded and that Tn is progressive at every
n∈N. The latter implies that themapsX 7→H[n](X) preserve well-foundedness, due
to Proposition 3.3. We must show thatDF(X)∼= F(X) is well-founded for any given
well-order X. Aiming at a contradiction, assume there is a descending sequence in

F(X) = T ⊤
0 +Σx∈XΣn∈N∞

–1
H[n](X ↾x).

As T ⊤
0 is well-founded this sequence must stay within the second summand, so

that we can write it as k 7→ 〈xk,nk,ók〉. Since X and N
∞
–1 are both well-founded,

there must be values x ∈ X and n ∈ N
∞
–1 such that we have xk = x and nk = n for

all indices k above some bound K ∈ N. It follows that K ≤ k 7→ ók is a descending
sequence in H[n](X ↾ x), contradicting the well-foundedness of that order (note
that H[– 1](X ↾x) = {⋆}=H[∞](X ↾x) is well-founded in any case). For the other
direction we assume that F(X) ∼= DF(X) is well-founded for any well-order X. We
immediately learn that T0, which can be embedded intoF(∅), is well-founded. In view
of Proposition 3.3 it remains to show thatX 7→H[n](X) preserves well-foundedness
for any number n. Given a well-order X, we observe that X⊤ = X ∪{⊤} is a well-
order that contains X = X⊤ ↾⊤. The embedding

H[n](X) ∋ ó 7→ 〈⊤,n,ó〉 ∈ F(X⊤)

witnesses the well-foundedness of H[n](X). ⊣

Putting things together, we can deduce the first direction of our main result:

Theorem 3.14 (ACA0). Assume that every normal dilator has a well-founded fixed
point. Then (each instance of ) Π11-induction along the natural numbers holds.

Proof. Given a Π11-formula ϕ(n) (possibly with parameters), we can use the
Kleene normal form theorem (see [15, Lemma V.1.4]) to find a ∆00-formula è(ó,n)
with

ϕ(n)↔∀f∃mè( f [m],n),

where the universal quantifier ranges over functions f :N→N. Now define a family
T of N-trees by stipulating

〈s0, ... ,sk–1〉 ∈ Tn ↔ “we have ¬è(〈s0, ... ,si–1〉,n) for all i ≤ k”.

Hence ¬ϕ(n) is equivalent to the statement that Tn has a branch. If we equip Tn with
the Kleene–Brouwer order, then we obtain

ϕ(n)↔ “Tn is well-founded”.
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According to Proposition 3.11 the family T gives rise to a normal prae-dilator F [T ].
To establish the induction principle we assume ϕ(0) and ∀n(ϕ(n)→ ϕ(n+1)). In
view of Definition 3.1 these assumptions mean that T is progressive. We can then
use Proposition 3.13 to infer thatF [T ] is a normal dilator. Invoking the assumption
of the present theorem we obtain a well-order X and an embedding

î : F [T ](X)∼=DF [T ](X)→ X ,

where the isomorphism comes from Lemma 3.12. Now Theorem 3.9 tells us that
the dependent sum Σn∈NT

⊤
n can be embedded into X. Since the latter is a well-order

this ensures that all trees Tn are well-founded. We thus obtain ∀nϕ(n), which is the
conclusion of the desired induction principle. ⊣

§4. From induction to well-founded fixed point. In the first part of this section we
describe a relativized notation system for the initial fixed point Fix(T) of a given
normal prae-dilator T, working in RCA0. Theorem 3.14 implies that RCA0 cannot
prove the principle that Fix(T) is well-founded wheneverT is a dilator. In the second
part of the present section we show that this principle follows from Π11-induction
along the natural numbers. This reversal of Theorem 3.14 completes the proof of
our main result.
Section 4 of [8] contains a construction of the derivative X 7→ ∂TX of a given

normal prae-dilator T. Our order Fix(T) will coincide with the order ∂T0 that arises
from this construction. Since the definition of the full derivative ∂T is considerably
more involved than the definition of the single fixed point Fix(T), we think that it
is nevertheless worthwhile to give an independent construction of the latter.
To motivate our construction we assume that we already have an order Fix(T)

that admits an embedding î : DT(Fix(T))→ Fix(T). According to Definition 2.2
the set DT(Fix(T)) consists of pairs 〈a,ó〉 of a finite set a⊆ Fix(T) and an element
ó ∈ T(|a|) with suppT|a|(ó) = |a|. The idea is that the value î(〈a,ó〉) ∈ Fix(T) can be

represented by a term î〈a,ó〉. This leads to the following:

Definition 4.1 (RCA0). For each normal prae-dilator T we define a set Fix(T)
of terms by the following inductive clause: Given a finite set a ⊆ Fix(T) and an
element ó ∈ T(|a|) with suppT|a|(ó) = |a|, we add a term î〈a,ó〉 ∈ Fix(T).

Note that Fix(T) 6= ∅ is equivalent to T(0) 6= ∅. To define the order relation
on Fix(T) we need a suitable length function LT : Fix(T)→ N. In the context of
RCA0 it will be important that quantifiers of the form ∀s∈Fix(T)(LT(s) ≤ n→ ...)
are bounded. For this purpose we ensure that LT(s) bounds the Gödel number psq
of the term s (we have psq = s if the previous definition is already arithmetized).
Inductively we set

LT(î〈a,ó〉) = max{pî〈a,ó〉q,1+
∑

s∈a 2 ·LT(s)}.

To define a relation <Fix(T) on Fix(T) we will decide î〈a,ó〉 <Fix(T) î〈b,ô〉 by
recursion onLT(î〈a,ó〉)+LT(î〈b,ô〉). In the recursion step wemay assume that the
restriction of<Fix(T) to a∪b is already determined (note that 2 ·LT(s)<LT(î〈a,ó〉)
for s ∈ a allows us to decide s <Fix(T) s). If this restriction is linear, then we may
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consider the unique function |éa∪ba | : |a| → |a∪b| with

ena∪b ◦|é
a∪b
a |= éa∪ba ◦ ena,

where ena∪b : |a∪b| → a∪b and ena : |a| → a are the unique increasing enumerations
with respect to the order <Fix(T) and é

a∪b
a : a →֒ a∪b is the inclusion map (similarly

for éa∪bb : b →֒ a∪ b). The following is reminiscent of Definition 2.2, which makes
sense because we are aiming at an isomorphism between Fix(T) and DT(Fix(T)).

Definition 4.2 (RCA0). To define a binary relation <Fix(T) on Fix(T) we
recursively stipulate that î〈a,ó〉 <Fix(T) î〈ô,b〉 holds if, and only if, the restriction

of <Fix(T) to a∪b is linear and we have T(|é
a∪b
a |)(ó)<T(|a∪b|) T(|é

a∪b
b |)(ô).

As suggested by the notation, we have the following property:

Lemma 4.3 (RCA0). The relation<Fix(T) is a linear order onFix(T), for any normal
prae-dilator T.

Proof. It is straightforward to see that <Fix(T) is irreflexive, invoking the same
property of the orders <T(m). To conclude one simultaneously verifies

s<Fix(T) t∨ s= t∨ t<Fix(T) s,

s<Fix(T) t∧ t<Fix(T) r→ s<Fix(T) r,

by induction on LT(s)+LT(t) and LT(s)+LT(t)+LT(r), respectively. Concerning
trichotomy for s = î〈a,ó〉 and t = î〈b,ô〉, we use the induction hypothesis to infer
that <Fix(T) is linear on a∪b (note that r<Fix(T) r

′ <Fix(T) r→ r<Fix(T) r is available
for r,r′ ∈ a∪b, due to the factor 2 in the definition ofLT). According to the previous
definition we obtain an inequality between s and t, unless we have

T(|éa∪ba |)(ó) = T(|éa∪bb |)(ô).

Due to suppT|a|(ó) = |a| (cf. Definition 4.1) and the naturality of suppT we see that

a can be recovered from the left side of this equality, namely as

a= [éa∪ba ]
<ù ◦ [ena]

<ù(suppT|a|(ó)) = [ena∪b]
<ù ◦ [|éa∪ba |]<ù(suppT|a|(ó)) =

= [ena∪b]
<ù(suppT|a∪b|(T(|é

a∪b
a |)(ó))).

Since b can be recovered in the same way, the above equality implies a= b. We can
conclude that |éa∪ba | and |éa∪bb | coincide (in fact, they are both equal to the identity
on |a|). Since the order embedding T(|éa∪ba |) = T(|éa∪bb |) is injective we get ó = ô and
thus s = t, as required for trichotomy. To establish transitivity between s = î〈a,ó〉,
t= î〈b,ô〉 and r= î〈c,ñ〉 one considers the inclusions into a∪b∪c and uses the fact
that T(|a∪b∪ c|) is a linear order. ⊣

We will see that the following yields a fixed point in the sense of Definition 2.12.

Definition 4.4 (RCA0). We define îT :D
T(Fix(T))→ Fix(T) by stipulating

îT(〈a,ó〉) = î〈a,ó〉,

for each normal prae-dilator T.

Let us verify the expected property:
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Proposition 4.5 (RCA0). Given a normal prae-dilator T, the order Fix(T) and the
function îT :D

T(Fix(T))→ Fix(T) form a fixed point of T.

Proof. According to Definition 2.12 we must show that îT is an order
embedding. In view of Definitions 2.2 and 4.2 the implication

〈a,ó〉<DT (Fix(T)) 〈b,ô〉=⇒ î〈a,ó〉<Fix(T) î〈b,ô〉

is immediate, if <Fix(T) is linear on a ∪ b. The latter holds by
Lemma 4.3. ⊣

After Definition 2.12 we have discussed additional properties of fixed points,
which one might want to require. Let us show that these properties are satisfied for
the fixed point that we have constructed.

Theorem 4.6 (RCA0). The following holds for any normal prae-dilator T:

(a) The embedding îT :D
T(Fix(T))→ Fix(T) is an isomorphism.

(b) Given any fixed point îX : D
T(X)→ X of T, there is an order embedding of

Fix(T) into X.

Proof. In view of Definitions 4.1 and 2.2 it is clear that î〈a,ó〉 ∈ Fix(T) implies
〈a,ó〉 ∈ DT(Fix(T)), which yields claim (a). To establish claim (b) we construct a
function j : Fix(T)→ X by recursion over terms, setting

j(î〈a,ó〉) = îX (〈[ j]
<ù(a),ó〉).

By simultaneous induction on LT(r) and LT(s)+LT(t), respectively, we show

r ∈ Fix(T)→ j(r) ∈ X ,

s<Fix(T)t→ j(s)<X j(t).

To establish the first claim we write r = î〈a,ó〉. The simultaneous induction
hypothesis implies that j is strictly increasing and hence injective on a. Given that
a and [ j]<ù(a) have the cardinality, it is immediate that î〈a,ó〉 ∈ Fix(T) implies
〈[ j]<ù(a),ó〉 ∈DT(X), as needed. To show the second claim we assume

s= î〈a,ó〉<Fix(T) î〈b,ô〉= t.

According to Definition 4.2 this inequality amounts to

T(|éa∪ba |)(ó)<T(|a∪b|) T(|é
a∪b
b |)(ô).

The induction hypothesis tells us that j is order preserving on a∪b. This yields

j ◦ ena∪b = en[ j]<ù(a∪b),

since the functions on both sides enumerate the set [ j]<ù(a∪b) in increasing order
(with respect to <X ). Using the defining property of |é

a∪b
a | we obtain

en[ j]<ù(a∪b) ◦|é
a∪b
a |= j ◦ ena∪b ◦|é

a∪b
a |= j ◦ éa∪ba ◦ ena =

= é[ j]
<ù(a∪b)

[ j]<ù(a)
◦ j ◦ ena = é

[ j]<ù(a∪b)

[ j]<ù(a)
◦ en[ j]<ù(a),
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where the last equality is established as above. Since the functions | f | are uniquely
determined by their defining property, we can conclude

∣

∣

∣
é
[ j]<ù(a∪b)

[ j]<ù(a)

∣

∣

∣
=

∣

∣éa∪ba
∣

∣ .

The same holds with b at the place of a. Hence we get

T
(
∣

∣

∣
é
[ j]<ù(a∪b)

[ j]<ù(a)

∣

∣

∣

)

(ó)<T(|a∪b|) T
(
∣

∣

∣
é
[ j]<ù(a∪b)

[ j]<ù(b)

∣

∣

∣

)

(ô).

In view of Definition 4.2 this yields 〈[ j]<ù(a),ó〉<DT (X) 〈[ j]
<ù(b),ô〉. Since îX is an

order embedding we can infer

j(s) = îX (〈[ j]
<ù(a),ó〉)<X îX (〈[ j]

<ù(b),ô〉) = j(t),

as required. ⊣

Let us point out that the function j that we have constructed in the previous
proof respects the structure of the fixed points (Fix(T),îT) and (X ,îX ). To see what
this means we recall that j induces a function DT(j) : DT(Fix(T))→ DT(X), given
by DT(j)(〈a,ó〉) = 〈[ j]<ù(a),ó〉 (cf. the discussion after Definition 2.4). Hence the
defining equation of j amounts to

j ◦îT = îX ◦D
T(j).

An order embedding j with this property could be called a morphism of fixed points.
A straightforward induction on terms shows that all morphisms from Fix(T) to X
must coincide. Hence Fix(T) can be characterized as the initial fixed point of T,
which is unique up to isomorphism.
In the first half of this section we have constructed a fixed point Fix(T) of a

given normal prae-dilator T, working in RCA0. To complete the proof of our main
result we will now use Π11-induction along the natural numbers to show that Fix(T)
is well-founded whenever X 7→ DT(X) preserves well-foundedness (so that T is a
normal dilator). For this purpose we consider the construction of Fix(T) in stages:

Definition 4.7 (RCA0). Given a normal prae-dilator T, we define a height
function hT : Fix(T)→ N by setting

hT(î〈a,ó〉) = max({hT(s)+1 |s ∈ a}∪{0}).

For each number n we consider the set

Fixn(T) = {s ∈ Fix(T) |hT(s)< n},

ordered as a subset of Fix(T).

An infinite union of well-orders is not generally well-ordered. However, it is
straightforward to see that an order is well-founded if it is the union of well-founded
initial segments. This explains the importance of the following result, which is similar
to Proposition 5.6 of [8]. Note that the proof makes crucial use of the assumption
that T is normal.

Proposition 4.8 (RCA0). Consider a normal prae-dilator T. The order Fixn(T) is
an initial segment of Fix(T), for any number n.
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Proof. It suffices to show that

hT(s)< hT(t) =⇒ s<Fix(T) t

holds for all s, t ∈ Fix(T). Arguing by induction on LT(s) +LT(t), we consider
terms s = î〈a,ó〉 and t = î〈b,ô〉. If we have hT(s) < hT(t), then there must be an
element t′ ∈ b such that hT(s

′)< hT(t
′) holds for all s′ ∈ a. By induction hypothesis

we get a⊆ Fix(T)↾ t′. Also note that s ∈ Fix(T) implies 〈a,ó〉 ∈DT(Fix(T)). Since
T = (T ,ìT) is normal we can invoke Proposition 2.9 to obtain

〈a,ó〉<DT (Fix(T)) D
ìT

Fix(T)
(t′).

On the other hand t′ ∈ b yields b 6⊆ Fix(T)↾ t′ and hence

D
ìT

Fix(T)
(t′)≤DT (Fix(T)) 〈b,ô〉.

From Proposition 4.5 we know that îT is order preserving. We can thus conclude

s= îT(〈a,ó〉)<Fix(T) îT(〈b,ô〉) = t,

as required. ⊣

In order to deduce the well-foundedness of Fixn+1(T) from the one of Fixn(T) we
will use the following result:

Proposition 4.9 (RCA0). For any normal prae-dilator T and any number n we
have an isomorphism DT(Fixn(T))∼= Fixn+1(T) of linear orders.

Proof. Proposition 4.5 tells us that îT : D
T(Fix(T)) → Fix(T) is an order

embedding. Also note that

DT(Fixn(T)) = {〈a,ó〉 ∈DT(Fix(T)) |a⊆ Fixn(T)}

is a suborder of DT(Fix(T)) (cf. the proof of Theorem 2.11). To conclude it suffices
to show that îT maps D

T(Fixn(T)) onto Fixn+1(T). Given a⊆ Fixn(T), we observe
that hT(s)< n holds for all s ∈ a. This implies

hT(îT(〈a,ó〉)) = hT(î〈a,ó〉) = sup{hT(s)+1 |s ∈ a} ≤ n< n+1,

as required for îT(〈a,ó〉) ∈ Fixn+1(T). Conversely, Theorem 4.6 shows that any
element of Fixn+1(T) arises as the image îT(〈a,ó〉) of some 〈a,ó〉 ∈ D

T(Fix(T)).
As above we see that hT(îT(〈a,ó〉)) < n+1 implies hT(s) + 1 < n+1 and hence
hT(s)< n for all s ∈ a, so that we get a⊆ Fixn(T). ⊣

Putting things together, we can now prove the main result of our paper:

Theorem 4.10 (ACA0). The following are equivalent:

(i) Every coded normal dilator has a well-founded fixed point.
(ii) If T is a coded normal dilator, then Fix(T) is well-founded.
(iii) The principle of Π11-induction along the natural numbers holds.

Proof. From Theorem 3.14 we know that (i) implies (iii). Let us point out that
the proof of this direction uses arithmetical comprehension, in the formof theKleene
normal form theorem and the well-foundedness of the Kleene–Brouwer order on a
tree without infinite branch. The other directions can be established over RCA0: To
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see that (ii) implies (i) it suffices to recall that Fix(T) is a fixed point of the given
dilator T, due to Proposition 4.5. It remains to show that (iii) implies (ii). For this
purpose we consider a normal dilator T. According to Proposition 4.8 the order
Fix(T) can be written as a union

Fix(T) =
⋃

n∈N

Fixn(T)

of initial segments. Thus the well-foundedness of Fix(T) reduces to the claim that
Fixn(T) is well-founded for every number n. To establish the latter we argue by
induction on n, as justified by (iii). In viewofFix0(T)= ∅ the base case n=0 is trivial.
Now assume that Fixn(T) is well-founded. Since T is a dilator this implies the well-
foundedness of DT(Fixn(T)) (cf. Definition 2.4). Using the previous proposition
we can infer that Fixn+1(T) ∼= D

T(Fixn(T)) is well-founded, as required for the
induction step. ⊣

The author would like to thank the referee for pointing out the following:

Remark 4.11. The statements from Theorem 4.10 are also equivalent to the
following, still over ACA0:

(iv) If T is a coded normal dilator, then any well-order X can be embedded into
some well-founded fixed point of T.

It is immediate that (iv) implies (i). Conversely, we will establish (iv) by applying (i)
to a modified dilator T[X ]. Given a finite order n = {0, ... ,n – 1}, we consider the
disjoint union

T[X ](n) = X +T(n).

To obtain a linear order, we declare that x <T[X ](n) y <T[X ](n) ó <T[X ](n) ô holds for
any elements x <X y of X and ó <T(n) ô of T(n). Given a morphism f : n→ m, we
define T[X ]( f ) : T[X ](m)→ T[X ](n) by setting

T[X ]( f )(ó) =

{

ó if ó ∈ X ⊆ T[X ](m),

T( f )(ó) if ó ∈ T(m)⊆ T[X ](m).

To obtain a coded prae-dilator, we also define suppT[X ]n : T[X ](n)→ [n]<ù by

suppT[X ]n (ó) =

{

∅ if ó ∈ X ⊆ T[X ](n),

suppTn (ó) if ó ∈ T(n)⊆ T[X ](n).

As a normal dilator, T comes with a natural family of embeddings ìTn : n→ T(n).
In order to turn T[X ] into a coded normal prae-dilator we set

ìT[X ]n (m) = ìTn (m) ∈ T(n)⊆ T[X ](n).

The condition from Definition 2.6 is preserved as both x <T[X ](n) ì
T[X ]
n (m) ∈ T(n)

and suppT[X ]n (x) = ∅ ⊆ m is true for any x ∈ X . For any order Y we have an order
isomorphism

X +DT(Y)∼=DT[X ](Y),
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where x ∈ X corresponds to 〈∅,x〉 ∈ DT[X ](Y). Given that T is a dilator and X is
a well-order, it follows that Y 7→DT[X ](Y) preserves well-foundedness. This means
that T[X ] is a coded normal dilator. Hence statement (i) from Theorem 4.10 yields
a well-order Y that admits an embedding

î :DT[X ](Y)→ Y .

In view of X+DT(Y)∼=DT[X ](Y) we obtain an embedding ofDT(Y) into Y, which
shows that Y is also a fixed point of T (but here we do not get DT(Y) ∼= Y , in
contrast to Theorem 4.6). To establish (iv) it remains to embed X into Y. For this
purpose we compose î with the inclusion of X into X +DT(Y)∼=DT[X ](Y).
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