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The aim of this article is to study the existence and uniqueness of solution for a quasistatic

fully coupled thermoelastic problem arising from some metallurgical processes. We consider

mixed boundary conditions for both submodels, and a Robin boundary condition for the

thermal one. Furthermore, the reference temperature, the thermal conductivity and the

Lamé’s parameters are assumed to depend on the material point.
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1 Introduction

In this paper, we carry out a mathematical analysis of a thermoelastic coupled prob-

lem for non-homogeneous materials arising from metallurgical industry where materials

are processed under strong temperature gradients. An important example is the thermo-

mechanical modelling of an aluminium electrolytic cell, where aluminium is produced by

reduction of alumina (see Bermúdez et al. [5]); the electrolytic cell consists of a rectangu-

lar steel shell with an inner covering of different insulating and refractory materials, and

the study of its thermomechanical deformations is essential in order to determine the cell

life. Another important example is the thermomechanical modelling of slabs during direct

chill castings of alloys (see Barral and Quintela [4]); during this process large thermal

stresses develop inside the slab due to thermal gradients and solidification shrinkage;

these deformations can disrupt the casting process and influence the slab quality. Recently

also the thermomechanical modelling of structures exposed to fire is becoming extremely

important for security (see Flint et al. [19]). In all these processes it is very important to

take into account the mechanical heat dissipation, the non-homogeneity of the materials

and the non-linearity of the boundary conditions. The mathematical analysis of these

problems becomes very difficult due to all these aspects, the coupling between the motion

and energy conservation equations and the lack of regularity of the real data.
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As a first step, in Barral et al. [2, 3] we studied the existence, uniqueness and regularity

of the mechanical problem when the behaviour law is of Maxwell–Norton type with

temperature-dependent coefficients. In the present work, we deal with the coupling with

the thermal problem, assuming, as a first approach, that the material is linear elastic and

non-homogeneous; we consider the boundary conditions found in industrial applications

like the aforementioned ones, that is, mixed boundary conditions in both submodels and

also a Robin type boundary condition for the thermal one. Specifically, we prove the

existence and uniqueness of the solution. Some regularity properties in space and time of

this solution will be given in a forthcoming paper.

In the literature, there exist several existence and uniqueness results for thermoelastic

problems. The equations of the coupled thermoelasticity were considered for the first time

by Duhamel [12] in 1837 and we refer the reader to papers [8, 10, 13–15,21, 25–32,36] for

the existence and uniqueness results for the dynamic case. On the other hand, in 1960

Boley and Weiner [6] studied the theory for the quasistatic case for the first time, and

later several results of existence and uniqueness were published in the papers [1,9,11,34].

We highlight the work of Viaño [35], where the existence and uniqueness of solution for

a quasistatic thermoelastic problem considering a contact condition was proved; later, in

Figueiredo and Trabucho [17, 18] this result was extended to three different behaviour

laws to the dynamic case. Following these works, in this paper we apply the Galerkin’s

method, in order to prove the existence of a solution for a thermoelastic problem, where

the main difficulties are:

− the problem is assumed to be quasistatic,

− a convection heat transfer boundary condition is considered in the thermal submodel,

− the reference temperature, the thermal conductivity and the Lamé’s parameters depend

on the material point, and

− the lack of regularity hypotheses on the data, in order to analyse the models arising

from the metallurgical industrial processes previously cited.

The uniqueness of solution for this problem is proved via Gronwall’s lemma, following

the works of Gawinecki [20, 22–24] and Gawinecki et al. [26].

The outline of this paper is as follows. First, in Section 2 we will describe the math-

ematical model. After introducing in Section 3 the appropriate functional framework and

proposing a weak formulation, in Section 4, we will prove the existence of solution to the

problem. We will obtain the uniqueness of such solution in Section 5 and finally, some

conclusions will be given in Section 6.

2 Mathematical model

2.1 Domain and notation

Let Ω ⊂ �3 be an open and bounded set with smooth boundary. We refer the motion of

the body to a fixed system of rectangular Cartesian axes Op1p2p3.

Let g(p, t) be a scalar function; we represent by g(t) the function p −→ g(p, t) and ∇g
its gradient with respect to p.

If u, v are vector fields in �3, their scalar product is represented by u · v. Furthermore,

∇u and Div u denote the gradient and the divergence of u, respectively.
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We denote by S3 the space of symmetric second-order tensors over �3 and by: its scalar

product. Furthermore, if τ is a tensor field, |τ |, tr(τ ) and Div τ denote the norm induced

by this scalar product, its trace and its divergence, respectively.

We consider the notation ∂rt in order to denote the partial derivative with respect to t

of order r, with r ∈ �. As usual, for r = 1 we will omit the superscript r.

We represent by [0, tf] the time interval of interest. The thermoelastic problem consists

of determining the displacement field u(p, t) and the temperature field θ(p, t) at each (p, t)

in Ω × (0, tf].

2.2 Boundary conditions

Let Γ = ∂Ω be the boundary of Ω and n its outward unit normal vector. We assume that

Γu,D , Γu,N , Γθ,D , Γθ,N and Γθ,R are open subsets of Γ , such that

• Γ = Γ u,D ∪ Γ u,N = Γθ,D ∪ Γθ,N ∪ Γθ,R ,

• Γu,D ∩ Γu,N = ∅, Γθ,D ∩ Γθ,N = ∅, Γθ,D ∩ Γθ,R = ∅, Γθ,R ∩ Γθ,N = ∅,

• meas(Γu,D) > 0 and meas(Γθ,D ∪ Γθ,R) > 0.

We consider the following boundary conditions:

• The displacement is known on the Dirichlet mechanical boundary Γu,D

u = uD on Γu,D × (0, tf].

• On Γu,N we apply surface forces of density g

σ(θ, u) n = g on Γu,N × (0, tf].

• The convection heat transfer boundary condition is given by the thermal conductivity of

the material k, the coefficient of convective heat transfer αc and the external convection

temperature θe on Γθ,R

k∇θ · n = αc(θ
e − θ) on Γθ,R × (0, tf].

• The heat flux h on the Neumann thermal boundary Γθ,N is known

k∇θ · n = h on Γθ,N × (0, tf].

• The temperature is known on the Dirichlet thermal boundary Γθ,D

θ = θD on Γθ,D × (0, tf].

2.3 Equilibrium equations and behaviour law

We consider a thermodynamic process with the following:

• small displacements and small velocities,
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• small temperature changes with respect to the reference temperature θr ,

• a constant coefficient of thermal expansion α,

• the Lamé’s parameters λ, μ, the thermal conductivity of the material κ, and the specific

heat at constant deformation cF independent of temperature.

Under these assumptions, the behaviour of the body and the evolution of its temperature

are governed by the following equilibrium equations:

−Div σ(θ, u) = b in Ω × (0, tf],

ρ0cF∂tθ = −3θrαKDiv ∂tu + Div (k∇θ) + f in Ω × (0, tf],

(see, for instance, Naya-Riveiro and Quintela [33]). Here

• σ(θ, u) is the stress tensor given by the thermoelastic behaviour law

σ(θ, u) = Λ−1 : ε(u) − 3α(θ − θr)KI in Ω × (0, tf],

where Λ−1 is the elasticity tensor defined as

Λ−1 : τ = λtr(τ )I + 2μτ , ∀τ ∈ S3; (2.1)

ε(u) denotes the linearized deformation tensor, I is the identity tensor and K is the bulk

modulus of the material:

K =
1

3
(3λ+ 2μ).

• b are the body forces per unit volume at the reference configuration.

• ρ0 is the reference density.

• f is the body heat per unit volume at the reference configuration.

2.4 Initial conditions

We consider the following set of initial conditions:

u(0) = u0, θ(0) = θ0 in Ω, (2.2)

where u0 and θ0 must satisfy the following compatibility conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ(θ0, u0) = Λ−1 : ε(u0) − 3α(θ0 − θr)KI in Ω,

−Div σ(θ0, u0) = b(0) in Ω,

u0 = uD(0) on Γu,D,

σ(θ0, u0) n = g(0) on Γu,N ,

θ0 = θD(0) on Γθ,D.

(2.3)

2.5 Problem (P)

Summing up, the problem we are going to study is the following:
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Problem (P)

Find u(p, t) and θ(p, t) in Ω × (0, tf], satisfying:

−Div σ(θ, u) = b in Ω × (0, tf], (2.4)

ρ0cF∂tθ = −3θrαKDiv ∂tu + Div (k∇θ) + f in Ω × (0, tf], (2.5)

σ(θ, u) = Λ−1 : ε(u) − 3α(θ − θr)KI in Ω × (0, tf], (2.6)

u = uD on Γu,D × (0, tf], (2.7)

σ(θ, u) n = g on Γu,N × (0, tf], (2.8)

k∇θ · n = αc(θ
e − θ) on Γθ,R × (0, tf], (2.9)

k∇θ · n = h on Γθ,N × (0, tf], (2.10)

θ = θD on Γθ,D × (0, tf], (2.11)

u(0) = u0, θ(0) = θ0 in Ω. (2.12)

3 A weak formulation

Let us assume that (u, θ) is a smooth enough solution to Problem (P) and θr is not null

in Ω. Applying Green′s formula to equation (2.4), using boundary condition (2.8) and

thanks to expression (2.6), we can deduce∫
Ω

(
Λ−1 : ε(u)

)
: ε(v) dp− 3

∫
Ω

α(θ − θr)KI : ε(v) dp =

∫
Γu,N

g · v dΓ +

∫
Ω

b · v dp, (3.1)

for all v ∈ D(Ω̄) = [D(Ω̄)]3 with v = 0 on Γu,D and t ∈ (0, tf]. Analogously, considering

energy equation (2.5), applying Green′s formula and using boundary conditions (2.9) and

(2.10), we obtain the variational equality:∫
Ω

ρ0cF

θr
∂tθφ dp = −3

∫
Ω

αKI : ε(∂tu)φdp−
∫
Ω

k∇θ · ∇
(
φ

θr

)
dp

+

∫
Γθ,R

αcθ
e

θr
φ dΓ −

∫
Γθ,R

αcθ

θr
φ dΓ +

∫
Γθ,N

h

θr
φ dΓ +

∫
Ω

f

θr
φ dp, (3.2)

for all φ ∈ D(Ω̄) with φ = 0 on Γθ,D and t ∈ (0, tf].

3.1 Functional framework

In this subsection, we introduce the spaces of admissible displacements and temperatures

that ensure that equalities (3.1) and (3.2) are well defined; we also introduce some bilinear

operators in order to simplify the notation of the variational formulation.

We consider Lr(Ω) = [Lr(Ω)]3, 1 � r � ∞ and H1(Ω) = [H1(Ω)]3 with their usual

norms.

• The admissible displacements space is

H1
0,Γu,D

(Ω) = {v ∈ H1(Ω) : v|Γu,D
= 0},

which is a Hilbert space with the usual norm in H1(Ω).
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• The admissible temperature space is

H1
0,Γθ,D

(Ω) = {φ ∈ H1(Ω) : φ|Γθ,D = 0},

which is also a Hilbert space with the usual norm of H1(Ω).

We denote by

• 〈·, ·〉u the duality between H1
0,Γu,D

(Ω) and its dual, H1′
0,Γu,D

(Ω), and

• 〈·, ·〉θ the duality between H1
0,Γθ,D

(Ω) and its dual, H1′
0,Γθ,D

(Ω).

Let us introduce

• The bilinear form a(·, ·) defined on H1(Ω) × H1(Ω) by

a(u, v) =

∫
Ω

(Λ−1 : ε(u)) : ε(v) dp. (3.3)

• The bilinear form κ(·, ·) on H1(Ω) ×H1(Ω) such that

κ(φ,ψ) =

∫
Ω

k∇φ · ∇
(
ψ

θr

)
dp. (3.4)

• The bilinear form c(·, ·) defined on H1(Ω) ×H1(Ω) by

c(φ,ψ) =

∫
Γθ,R

αc
φ

θr
ψ dΓ . (3.5)

• Finally, the bilinear form m(·, ·) on L2(Ω) × H1(Ω) such that

m(φ, v) =

∫
Ω

3φαKI : ε(v) dp. (3.6)

3.2 Assumptions

From now on we will assume the following hypotheses:

(H1) The elasticity tensor Λ−1 ∈ [L∞(Ω)]4 and there exists amin > 0 such that

(Λ−1 : τ ) : τ � amin|τ |2, ∀τ ∈ S3.

(H2) The reference temperature θr ∈ W 1,∞(Ω), and there exists θr,min > 0 such that

θr(p) � θr,min in Ω.

(H3) The reference density ρ0 > 0, the specific heat at constant deformation cF > 0 and

the coefficient of thermal expansion α > 0.

(H4) The thermal conductivity coefficient k ∈ W 1,∞(Ω), and there exists kmin > 0 such

that k(p) � kmin in Ω.

(H5) The body forces b ∈ W 2,2(0, tf; L2(Ω)).
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(H6) The body heat f ∈ W 1,2(0, tf;L
2(Ω)).

(H7) uD is the restriction to Γu,D × (0, tf) of a function called ūD such that

ūD ∈ W 2,2(0, tf; H
1
2 (Γ )).

(H8) θD is the restriction to Γθ,D × (0, tf) of a function called θ̄D such that

θ̄D ∈ W 2,2(0, tf;H
1
2 (Γ )).

(H9) The surface forces g ∈ W 2,2(0, tf; L2(Γu,N)) and h ∈ W 1,2(0, tf;L
2(Γθ,N)).

(H10) The coefficient of convective heat transfer αc ∈ L∞(Γθ,R), and there exists αc,min > 0

satisfying αc(p) � αc,min a.e. on Γθ,R .

(H11) The external convection temperature θe ∈ W 1,2(0, tf;L
2(Γθ,R)).

(H12) The initial conditions u0 ∈ H1(Ω) and θ0 ∈ H1(Ω).

(H13) The initial conditions u0 and θ0 satisfy the following:

a(u0, v) − m(θ0 − θr, v) =

∫
Γu,N

g(0) · v dΓ +

∫
Ω

b(0) · v dp, ∀v ∈ H1
0,Γu,D

(Ω),

u0 = uD(0) on Γu,D, θ0 = θD(0) on Γθ,D.

Definition 3.1 We define in L2(Ω) the following scalar product

(φ,ψ)2 =

∫
Ω

ρ0cF

θr
φψ dp.

Notice that (·, ·)2 is well defined thanks to hypotheses (H2) and (H3) and it is equivalent to

the usual one; we denote by ‖ · ‖2 its associated norm.

Using expressions (3.1) and (3.2), the operators defined in Subsection 3.1, and taking into

account Definition 3.1, we propose the following weak formulation of Problem (P):

Problem (VP)

Find (u(t), θ(t)) ∈ H1(Ω) ×H1(Ω) satisfying a.e. t ∈ (0, tf):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(u(t), v) − m(θ(t) − θr, v) =

∫
Γu,N

g(t) · v dΓ +

∫
Ω

b(t) · v dp, ∀v ∈ H1
0,Γu,D

(Ω), (3.7a)

(∂tθ(t), φ)2 + κ(θ(t), φ) + m(φ, ∂tu(t)) + c(θ(t), φ) =

∫
Ω

f(t)

θr
φ dp+ c(θe(t), φ)

+

∫
Γθ,N

h(t)

θr
φ dΓ , ∀φ ∈ H1

0,Γθ,D
(Ω), (3.7b)

the boundary conditions (2.7), (2.11) and the initial conditions (2.12).

Remark 3.2 From hypothesis (H1) we can deduce that expressions (3.3) and (3.6) define a

continuous form in H1(Ω) × H1(Ω) and in L2(Ω) × H1(Ω), respectively. Furthermore, the

operator a is symmetric and since meas(Γu,D) > 0,

a(v, v) � amin‖v‖2
H1

0,Γu,D
(Ω), ∀v ∈ H1

0,Γu,D
(Ω), (3.8)
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i.e. the bilinear form a(·, ·) is H1
0,Γu,D

(Ω)-elliptic. On the other hand, considering hypotheses

(H2) and (H10), expression (3.5) defines a symmetric continuous form in H1(Ω) × H1(Ω),

and furthermore,

c(φ,φ) �
αc,min

‖θr‖L∞(Ω)
‖φ‖2

L2(Γθ,R ), ∀φ ∈ H1(Ω). (3.9)

Remark 3.3 Taking into account hypotheses (H2) and (H4), equality (3.4) defines a con-

tinuous form in H1(Ω) ×H1(Ω). For simplicity of notation, κ will be considered as the sum

of two bilinear forms κ1 and κ2, in this way

κ(φ,ψ) = κ1(φ,ψ) + κ2(φ,ψ) =

∫
Ω

k

θr
∇φ · ∇ψ dp−

∫
Ω

k∇φ · ∇θr
θ2
r

ψ dp. (3.10)

Thanks to Poincaré’s inequality in H1
0,Γθ,D

(Ω), the expression of κ1 defines a norm of H1(Ω)

which is equivalent to the usual one (see Brezis [7]). Furthermore, it satisfies the following:

κ1(φ,φ) �
kmin

‖θr‖L∞(Ω)
‖φ‖2

H1
0,Γθ,D

(Ω), ∀φ ∈ H1
0,Γθ,D

(Ω). (3.11)

4 Existence of a solution to Problem (VP)

Theorem 4.1 Under assumptions (H1)–(H13), there exists a solution (u, θ) of Problem (VP)

such that

u ∈ L∞(
0, tf; H1(Ω)

)
, ∂tu ∈ L2

(
0, tf; H1(Ω)

)
, and (4.1)

θ ∈ L∞(
0, tf;H

1(Ω)
)
, ∂tθ ∈ L2

(
0, tf;L

2(Ω)
)
. (4.2)

The proof is divided into five steps and follows the following scheme. First, we transform

the problem into a homogeneous one and the Galerkin method is applied in order to

derive a sequence of problems approximating the Problem (VP), for which the existence

and uniqueness of solution is shown. Then, based on some a priori estimates, and using

a limit procedure, the deduced Galerkin sequence is proved to be convergent and so, the

existence of solution for the original problem is obtained.

4.1 Step I: A variable change by translation

Assumptions (H7) and (H8) imply the existence of u and θ satisfying (see Duvaut and

Lions [16]):

u ∈ W 2,2(0, tf; H1(Ω)) and u = uD on Γu,D × (0, tf], (4.3)

θ ∈ W 2,2(0, tf;H
1(Ω)) and θ = θD on Γθ,D × (0, tf]. (4.4)

Hence, we deduce that u ∈ C1([0, tf]; H1(Ω)) and θ ∈ C1([0, tf];H
1(Ω)).
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Let us define the following translations in the unknowns and the initial conditions:

ũ = u − u, ũ0 = u0 − u(0), θ̃ = θ − θ, θ̃0 = θ0 − θ(0). (4.5)

Therefore, with respect to these new unknowns, Problem (VP) can be transformed into

an equivalent one:

Problem (ṼP )

Find (ũ(t), θ̃(t)) ∈ H1
0,Γu,D

(Ω) ×H1
0,Γθ,D

(Ω) satisfying a.e. t ∈ (0, tf)⎧⎪⎪⎨⎪⎪⎩
a(ũ(t), v) − m(θ̃(t), v) = 〈Lu(t), v〉u, ∀v ∈ H1

0,Γu,D
(Ω), (4.6a)

(∂tθ̃(t), φ)2 + κ(θ̃(t), φ) + m(φ, ∂tũ(t)) + c(θ̃(t), φ)

= 〈Lθ(t), φ〉θ, ∀φ ∈ H1
0,Γθ,D

(Ω), (4.6b)

and the initial conditions

ũ(0) = ũ0, θ̃(0) = θ̃0. (4.7)

In equations (4.6a) and (4.6b), Lu(t) and Lθ(t) are the linear forms defined by the following:

〈Lu(t), v〉u =

∫
Γu,N

g(t) · v dΓ +

∫
Ω

b(t) · v dp− a(u(t), v)

+ m(θ(t) − θr, v), ∀v ∈ H1
0,Γu,D

(Ω), (4.8)

〈Lθ(t), φ〉θ =

∫
Ω

f(t)

θr
φ dp+ c(θe(t), φ) +

∫
Γθ,N

h(t)

θr
φ dΓ − (∂tθ(t), φ)2

− κ(θ(t), φ) − m(φ, ∂tu(t)) − c(θ(t), φ), ∀φ ∈ H1
0,Γθ,D

(Ω). (4.9)

Notice that, since a, m, (·, ·)2, k and c are continuous forms and thanks to hypotheses

(H2), (H5), (H6), (H9)–(H11), Lu(t) and Lθ(t) are also continuous forms for all t ∈ [0, tf].

Summing up, it is enough to prove the existence of a solution to Problem (ṼP ) satisfying{
ũ ∈ L∞(

0, tf; H1
0,Γu,D

(Ω)
)
, ∂tũ ∈ L2

(
0, tf; H1

0,Γu,D
(Ω)

)
, and

θ̃ ∈ L∞(
0, tf;H

1
0,Γθ,D

(Ω)
)
, ∂tθ̃ ∈ L2

(
0, tf;L

2(Ω)
)
.

(4.10)

4.2 Step II: Existence and uniqueness of a solution for each approximated problem

First of all we remark that thanks to hypothesis (H13) and to variable change (4.5), we

deduce

ũ0 ∈ H1
0,Γu,D

(Ω), θ̃0 ∈ H1
0,Γθ,D

(Ω),

a(ũ0, v) − m(θ̃0, v) = 〈Lu(0), v〉u, ∀v ∈ H1
0,Γu,D

(Ω).
(4.11)

Since the space H1
0,Γu,D

(Ω) (respectively H1
0,Γθ,D

(Ω)) is separable, there exists a numerable

base {wu
i }i∈� (respectively {wθi }i∈�), such that for all m ∈ � the elements of the set

{wu
j }mj=1 (respectively {wθj }mj=1) are linearly independent, and the finite linear combinations
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of the wu
j , j ∈ � are dense in H1

0,Γu,D
(Ω) (respectively, wθj in H1

0,Γθ,D
(Ω)). In addition, we

can choose a base in H1
0,Γθ,D

(Ω) satisfying

(wθk , w
θ
l )2 = δkl , l, k ∈ �.

Furthermore, we can choose wu
1 = ũ0 if ‖ũ0‖H1

0,Γu,D
(Ω) � 0, and

wθ1 =
θ̃0

‖θ̃0‖2

if ‖θ̃0‖2 � 0,

or any other function with unitary norm in other case.

We denote by Hum
0,Γu,D

= [wu
j ]
m
j=1 and Hθm

0,Γθ,D
= [wθj ]

m
j=1 the subspaces generated by {wu

j }mj=1

and {wθj }mj=1, respectively.

For each m ∈ �, we consider the following problem, which approximates Problem (ṼP ),

in a sense that will be specified later:

Problem (ṼPm)

Find (ũm(t), θ̃m(t)) ∈ Hum
0,Γu,D

×Hθm
0,Γθ,D

for all t ∈ (0, tf) satisfying

⎧⎪⎪⎨⎪⎪⎩
a(ũm(t), v) − m(θ̃m(t), v) = 〈Lu(t), v〉u, ∀v ∈ Hum

0,Γu,D
, (4.12a)

(∂tθ̃m(t), φ)2 + κ(θ̃m(t), φ) + m(φ, ∂tũm(t)) + c(θ̃m(t), φ)

= 〈Lθ(t), φ〉θ, ∀φ ∈ Hθm
0,Γθ,D

, (4.12b)

and the initial conditions

ũm(0) = ũ0, θ̃m(0) = θ̃0. (4.13)

Lemma 1 Under assumptions (H1)–(H13), for each m ∈ �, there exists a unique solution

(ũm, θ̃m) of Problem (ṼPm) such that

ũm ∈ C1
(
[0, tf];H

1
0,Γu,D

(Ω)
)

and θ̃m ∈ C1
(
[0, tf];H

1
0,Γθ,D

(Ω)
)
. (4.14)

Proof The proof is based on transforming Problem (ṼPm) into an equivalent one

expressed as a differential system, whose existence and uniqueness of solution is easily

proved. For this purpose, we take into account that if there exists a solution, it will admit

the expression

ũm(t) =

m∑
i=1

g̃im(t)wu
i , θ̃m(t) =

m∑
i=1

h̃im(t)wθi ,

and ũm(0) =

m∑
i=1

g̃im(0)wu
i = ũ0, θ̃m(0) =

m∑
i=1

h̃im(0)wθi = θ̃0.
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Then, Problem (ṼPm) is equivalent to the following differential system:{
[Am]t{g̃m(t)} − [Mm]t{h̃m(t)} = {Lum(t)},
{∂th̃m(t)} + [Km]t{h̃m(t)} + [Mm]{∂tg̃m(t)} + [Hm]t{h̃m(t)} = {Lθm(t)}, (4.15)

with the initial conditions

{g̃m(0)} =

{
e1 if ũ0 � 0,

0 if ũ0 = 0,
(4.16)

{h̃m(0)} =

{
‖θ̃0‖2e1 if θ̃0 � 0,

0 if θ̃0 = 0,
(4.17)

where e1 is the first vector of the canonic base, and in system (4.15) we use the superscript

t to denote the transpose of a matrix.

In system (4.15), we have used the following notation:

[Am]ij = a(wu
i ,w

u
j ), [Mm]ij = m(wθi ,w

u
j ), [Km]ij = κ(wθi , w

θ
j ), and

[Hm]ij = c(wθi , w
θ
j ) with 1 � i, j � m.

{g̃m(t)} = (g̃1m(t), . . . , g̃mm(t))t and {h̃m(t)} = (h̃1m(t), . . . , h̃mm(t))t.

{Lum(t)} = (〈Lu(t),w
u
1〉u, . . . , 〈Lu(t),w

u
m〉u)

t and

{Lθm(t)} = (〈Lθ(t), wθ1〉θ, . . . , 〈Lθ(t), wθm〉θ)t.

Differentiating with respect to time the first equation of system (4.15), and substituting

{∂tg̃m(t)} in the second equation, we obtain the following equivalent problem:

Problem (ṼPm)a
Find {g̃m}, {h̃m} ∈ C1([0, tf]; �m) satisfying{ [

[Im] + [Mm][Am]−1[Mm]t
]

{∂th̃m(t)} +
[
[Km]t + [Hm]t

]
{h̃m(t)} = {Lm(t)}, (4.18a)

{g̃m(t)} = [Am]−1
[
{Lum(t)} + [Mm]t{h̃m(t)}

]
, (4.18b)

with the initial conditions (4.16) and (4.17). In equation (4.18a) Lm is given by

{Lm(t)} = {Lθm(t)} − [Mm][Am]−1{∂tLum(t)}. (4.19)

We deduce from the coercivity of operator a, given by relation (3.8), that the matrix [Am]

is symmetric and positive defined and so also its inverse

([Am]−1p, p)�m � γ‖p‖2, ∀p ∈ �m, (γ > 0). (4.20)

Taking into account Remarks 3.2 and 3.3, we deduce that

Lum ∈ C1
(
[0, tf]; �m

)
and Lθm ∈ C

(
[0, tf];�

m
)
.

Hence, Problem (ṼPm) is equivalent to Problem (ṼPm)a. In order to prove the existence

and uniqueness of solution for this former problem, we notice that equation (4.18a) with

the initial condition (4.17) admits a unique solution, since Lm ∈ C([0, tf]; �m) and the
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matrix [Sm] = [Im] + [Mm][Am]−1[Mm]t is invertible. Indeed, −1 is not a proper value

of [Mm][Am]−1[Mm]t because if there existed any p ∈ �m, p � 0, ‖p‖ = 1 such that

[Mm][Am]−1[Mm]tp = −p, replacing it into inequality (4.20), we would obtain:

−1 = (−p, p) = ([Mm][Am]−1[Mm]tp, p) = ([Am]−1 [Mm]tp, [Mm]tp) � γ‖ [Mm]tp‖2 � 0,

which is a contradiction.

In consequence, there exists a unique {h̃m} satisfying expressions (4.17) and (4.18a).

Finally, we can define {g̃m} through relation (4.18b), which satisfies equality (4.16) thanks

to compatibility property (4.11). �

4.3 Step III: A priori estimates

Our aim is to obtain the limit of the sequences {ũm}m∈� and {θ̃m}m∈� as m → ∞. For that

purpose, it is necessary to obtain some a priori estimates independent of m. From now

on, cl , l � 1, will denote a positive constant.

Lemma 2 (A priori estimates I) Under assumptions (H1)–(H13), the sequences {ũm}m∈�

and {θ̃m}m∈� given by Lemma 1, satisfy

(a) the sequence {ũm}m∈� is bounded in L∞(0, tf; H1
0,Γu,D

(Ω)),

(b) the sequence {θ̃m}m∈� is bounded in L∞(0, tf;L
2(Ω)) and in L2(0, tf;H

1
0,Γθ,D

(Ω)).

Proof Considering Problem (ṼPm) and taking as test functions v = ∂tũm(t) and

φ = θ̃m(t), we obtain for any t ∈ (0, tf]:

⎧⎨⎩
a(ũm(t), ∂tũm(t)) − m(θ̃m(t), ∂tũm(t)) = 〈Lu(t), ∂tũm(t)〉u,

(∂tθ̃m(t), θ̃m(t))2 + κ(θ̃m(t), θ̃m(t)) + m(θ̃m(t), ∂tũm(t)) + c(θ̃m(t), θ̃m(t))

= 〈Lθ(t), θ̃m(t)〉θ.

Adding these equations, taking into account definitions (3.3) and (3.10), Remark 3.2 and

integrating over (0, t), we can deduce

1

2
a(ũm(t), ũm(t)) +

1

2
‖θ̃m(t)‖2

2 +

∫ t

0

κ1(θ̃m(s), θ̃m(s))ds+

∫ t

0

c(θ̃m(s), θ̃m(s))ds

=
1

2
a(ũ0, ũ0) +

1

2
‖θ̃0‖2

2 −
∫ t

0

κ2(θ̃m(s), θ̃m(s)) ds+ 〈Lu(t), ũm(t)〉u − 〈Lu(0), ũ0〉u

−
∫ t

0

〈∂tLu(s), ũm(s)〉uds−
∫ t

0

〈Lθ(s), θ̃m(s)〉θds. (4.21)

Since a, Lu, Lθ, ∂tLu are continuous, and taking into account hypotheses (H2), (H4),

(H10), Remark 3.2, Hölder’s inequality and definition of κ2 from expression (3.10), we
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obtain the following:

1

2
a(ũm(t), ũm(t)) +

1

2
‖θ̃m(t)‖2

2 +

∫ t

0

κ1(θ̃m(s), θ̃m(s))ds+
αc,min

‖θr‖L∞(Ω)

∫ t

0

‖θ̃m(s)‖2
L2(Γθ,R ) ds

�
1

2
amax‖ũ0‖2

H1
0,Γu,D

(Ω) +
1

2
‖θ̃0‖2

2+
‖k‖L∞(Ω)‖∇θr‖L∞(Ω)

θ2
r,min

∫ t

0

‖∇θ̃m(s)‖L2(Ω)‖θ̃m(s)‖L2(Ω)ds

+ ‖Lu(t)‖H1′
0,Γu,D

(Ω)‖ũm(t)‖H1
0,Γu,D

(Ω) + ‖Lu(0)‖H1′
0,Γu,D

(Ω)‖ũ0‖H1
0,Γu,D

(Ω)

+

∫ t

0

‖∂tLu(s)‖H1′
0,Γu,D

(Ω)‖ũm(s)‖H1
0,Γu,D

(Ω)ds

+

∫ t

0

‖Lθ(s)‖H1′
0,Γθ,D

(Ω)‖θ̃m(s)‖H1
0,Γθ,D

(Ω)ds, (4.22)

amax being the constant of continuity of a(·, ·). Using the inequality

2
√
α
√
βab � αa2 + βb2, where α, β > 0, (4.23)

with α = 1
2

and β = 1
2

for the fifth term on the right-hand side of inequality (4.22)

and taking into account properties (3.8) and (3.11), we rewrite expression (4.22) in the

following form:

amin

2
‖ũm(t)‖2

H1
0,Γu,D

(Ω) +
1

2
‖θ̃m(t)‖2

2 +
kmin

‖θr‖L∞(Ω)

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds

+
αc,min

‖θr‖L∞(Ω)

∫ t

0

‖θ̃m(s)‖2
L2(Γθ,R ) ds

�
1

2

[
(amax + 1)‖ũ0‖2

H1
0,Γu,D

(Ω) + ‖θ̃0‖2
2 + ‖Lu(0)‖2

H1′
0,Γu,D

(Ω)

]
+

‖k‖L∞(Ω)‖∇θr‖L∞(Ω)

θ2
r,min

∫ t

0

‖θ̃m(s)‖H1
0,Γθ,D

(Ω)‖θ̃m(s)‖L2(Ω)ds

+ ‖Lu(t)‖H1′
0,Γu,D

(Ω)‖ũm(t)‖H1
0,Γu,D

(Ω) +

∫ t

0

‖∂tLu(s)‖H1′
0,Γu,D

(Ω)‖ũm(s)‖H1
0,Γu,D

(Ω)ds

+

∫ t

0

‖Lθ(s)‖H1′
0,Γθ,D

(Ω)‖θ̃m(s)‖H1
0,Γθ,D

(Ω)ds. (4.24)

Now, we apply again inequality (4.23) to the following terms on the right-hand side of

inequality (4.24):

• the second term with α =
kmin

4‖θr‖L∞(Ω)
and β =

‖k‖2
L∞(Ω)‖∇θr‖2

L∞(Ω)‖θr‖L∞(Ω)

θ4
r,minkmin

,

• the third term with α =
1

amin
and β =

amin

4
,

• the fourth term with α =
1

4
and β = 1, and

• the fifth term with α =
kmin

4‖θr‖L∞(Ω)
and β =

‖θr‖L∞(Ω)

kmin
.
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Hence, we get

amin

2
‖ũm(t)‖2

H1
0,Γu,D

(Ω) +
1

2
‖θ̃m(t)‖2

2 +
kmin

‖θr‖L∞(Ω)

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds

+
αc,min

‖θr‖L∞(Ω)

∫ t

0

‖θ̃m(s)‖2
L2(Γθ,R ) ds

�
1

2

[
(amax + 1)‖ũ0‖2

H1
0,Γu,D

(Ω) + ‖θ̃0‖2
2 + ‖Lu(0)‖2

H1′
0,Γu,D

(Ω)

]
+

kmin

4‖θr‖L∞(Ω)

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds+

‖θr‖L∞(Ω)

kmin

∫ t

0

‖Lθ(s)‖2
H1′

0,Γθ,D
(Ω)ds

+
‖k‖2

L∞(Ω)‖∇θr‖2
L∞(Ω)‖θr‖L∞(Ω)

θ4
r,minkmin

∫ t

0

‖θ̃m(s)‖2
L2(Ω)ds

+
1

amin
‖Lu(t)‖2

H1′
0,Γu,D

(Ω) +
amin

4
‖ũm(t)‖2

H1
0,Γu,D

(Ω) +
1

4

∫ t

0

‖∂tLu(s)‖2
H1′

0,Γu,D
(Ω)ds

+

∫ t

0

‖ũm(s)‖2
H1

0,Γu,D
(Ω)ds+

kmin

4‖θr‖L∞(Ω)

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds. (4.25)

From equality Lu(t) = Lu(0) +

∫ t

0

∂tLu(s)ds, and applying inequality (4.23), we deduce

‖Lu(t)‖2
H1′

0,Γu,D
(Ω) � 2‖Lu(0)‖2

H1′
0,Γu,D

(Ω) + 2tf

∫ t

0

‖∂tLu(s)‖2
H1′

0,Γu,D
(Ω)ds. (4.26)

Then, thanks to the previous expression and taking into account Definition 3.1 in the

second term on the left-hand side of inequality (4.25), this can be rewritten as follows:

c1

(
‖ũm(t)‖2

H1
0,Γu,D

(Ω) + ‖θ̃m(t)‖2
L2(Ω) +

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds+

∫ t

0

‖θ̃m(s)‖2
L2(Γθ,R ) ds

)
� c2

[
‖ũ0‖2

H1
0,Γu,D

(Ω) + ‖θ̃0‖2
2 + ‖Lu(0)‖2

H1′
0,Γu,D

(Ω)

]
+ c3

[∫ t

0

‖ũm(s)‖2
H1

0,Γu,D
(Ω)ds+

∫ t

0

||θ̃m(s)||2L2(Ω)ds

]
+ c4

[∫ t

0

‖∂tLu(s)‖2
H1′

0,Γu,D
(Ω)ds+

∫ t

0

‖Lθ(s)‖2
H1′

0,Γθ,D
(Ω)ds

]
, (4.27)

with

c1 =min

{
amin

4
,

ρ0cF

2‖θr‖L∞(Ω)
,

kmin

2‖θr‖L∞(Ω)
,

αc,min

‖θr‖L∞(Ω)

}
, c2 = max

{
amax + 1

2
,
amin + 4

2amin

}
,

c3 = max

{
‖k‖2

L∞(Ω)‖∇θr‖2
L∞(Ω)‖θr‖L∞(Ω)

θ4
r,minkmin

, 1

}
and c4 = max

{
amin + 8tf

4amin
,

‖θr‖L∞(Ω)

kmin

}
.
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If we introduce the notation

|||L|||2 =

∫ tf

0

(
‖∂tLu(s)‖2

H1′
0,Γu,D

(Ω) + ‖Lθ(s)‖2
H1′

0,Γθ,D
(Ω)

)
ds,

Φm(t) = ‖ũm(t)‖2
H1

0,Γu,D
(Ω) + ‖θ̃m(t)‖2

L2(Ω),

expression (4.27) can be rewritten as follows:

Φm(t) +

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds+

∫ t

0

‖θ̃m(s)‖2
L2(Γθ,R ) ds

�
c2

c1

[
‖ũ0‖2

H1
0,Γu,D

(Ω) + ‖θ̃0‖2
2 + ‖Lu(0)‖2

H1′
0,Γu,D

(Ω)

]
+
c3

c1

∫ t

0

Φm(s)ds+
c4

c1
|||L|||2. (4.28)

Since ‖ũ0‖H1
0,Γu,D

(Ω), ‖θ̃0‖2 and |||L|||2 are bounded data, we deduce

Φm(t) � c5 +
c3

c1

∫ t

0

Φm(s)ds.

In consequence, thanks to Gronwall’s lemma we obtain a bound for Φm(t) with t ∈ [0, tf].

Therefore, there exists M1,u,θ independent of m, such that

‖ũm(t)‖2
H1

0,Γu,D
(Ω) � M1,u,θ, ||θ̃m(t)||2L2(Ω) � M1,u,θ, 0 � t � tf . (4.29)

This concludes the proof taking into account again expression (4.28). �

Lemma 3 (A priori estimates II) Under assumptions (H1)–(H13), the sequences {ũm}m∈�

and {θ̃m}m∈� given by Lemma 1, satisfy:

(a) the sequence {∂tũm}m∈� is bounded in L2(0, tf; H1
0,Γu,D

(Ω)),

(b) the sequence {∂tθ̃m}m∈� is bounded in L2(0, tf;L
2(Ω)),

(c) the sequence {θ̃m}m∈� is bounded in L∞(0, tf;H
1
0,Γθ,D

(Ω)).

Proof Thanks to Lemma 1 we can derive the first equation of Problem (ṼPm) with respect

to time, and we obtain the following:

{
a(∂tũm(t), v) − m(∂tθ̃m(t), v) = 〈∂tLu(t), v〉u, ∀v ∈ Hum

0,Γu,D
,

(∂tθ̃m(t), φ)2 + κ(θ̃m(t), φ) + m(φ, ∂tũm(t)) + c(θ̃m(t), φ) = 〈Lθ(t), φ〉θ, ∀φ ∈ Hθm
0,Γθ,D

.
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Taking as test functions v = ∂tũm(t), φ = ∂tθ̃m(t), adding the previous equations, applying

definition (3.10) and integrating over (0, t), we get for any t ∈ (0, tf]

∫ t

0

a(∂tũm(s), ∂tũm(s))ds+

∫ t

0

‖∂tθ̃m(s)‖2
2ds+

1

2
κ1(θ̃m(t), θ̃m(t)) +

1

2
c(θ̃m(t), θ̃m(t))

=
1

2
κ1(θ̃0, θ̃0) +

1

2
c(θ̃0, θ̃0) −

∫ t

0

κ2(θ̃m(s), ∂tθ̃m(s))ds+ 〈∂tLu(t), ũm(t)〉u

−〈∂tLu(0), ũ0〉u −
∫ t

0

〈∂2
t Lu(s), ũm(s)〉uds+ 〈Lθ(t), θ̃m(t)〉θ

−〈Lθ(0), θ̃0〉θ −
∫ t

0

〈∂tLθ(s), θ̃m(s)〉θds.

Thanks to hypotheses (H1)–(H12), all terms on the left-hand side of the previous expres-

sion are all non-negative and a, Lu, ∂tLu, ∂2
t Lu, Lθ, ∂tLθ are continuous. So, taking into

account Remarks 3.2 and 3.3, Definition 3.1, and applying Hölder’s inequality, we get

∫ t

0

a(∂tũm(s), ∂tũm(s))ds+
ρ0cF

‖θr‖L∞(Ω)

∫ t

0

‖∂tθ̃m(s)‖2
L2(Ω)ds+

1

2
κ1(θ̃m(t), θ̃m(t))

+
αc,min

2‖θr‖L∞(Ω)
‖θ̃m(t)‖2

L2(Γθ,R ) �
‖k‖L∞(Ω)

2θr,min
‖θ̃0‖2

H1
0,Γθ,D

(Ω) +
‖αc‖L∞(Ω)

2θr,min
‖θ̃0‖2

L2(Γθ,R )

+
‖k‖L∞(Ω)‖∇θr‖L∞(Ω)

θ2
r,min

∫ t

0

‖θ̃m(s)‖H1
0,Γθ,D

(Ω)‖∂tθ̃m(s)‖L2(Ω)ds

+ ‖∂tLu(t)‖H1′
0,Γu,D

(Ω)‖ũm(t)‖H1
0,Γu,D

(Ω) + ‖∂tLu(0)‖H1′
0,Γu,D

(Ω)‖ũ0‖H1
0,Γu,D

(Ω)

+

∫ t

0

‖∂2
t Lu(s)‖H1′

0,Γu,D
(Ω)‖ũm(s)‖H1

0,Γu,D
(Ω)ds+ ‖Lθ(t)‖H1′

0,Γθ,D
(Ω)‖θ̃m(t)‖H1

0,Γθ,D
(Ω)

+ ‖Lθ(0)‖H1′
0,Γθ,D

(Ω)‖θ̃0‖H1
0,Γθ,D

(Ω) +

∫ t

0

‖∂tLθ(s)‖H1′
0,Γθ,D

(Ω)‖θ̃m(s)‖H1
0,Γθ,D

(Ω)ds.

Using inequality (4.23), with α = 1 and β =
1

4
, on the fourth, fifth, sixth, eighth and ninth

terms on the right-hand side of the above inequality, we arrive at

∫ t

0

a(∂tũm(s), ∂tũm(s))ds+
ρ0cF

‖θr‖L∞(Ω)

∫ t

0

‖∂tθ̃m(s)‖2
L2(Ω)ds+

1

2
κ1(θ̃m(t), θ̃m(t))

+
αc,min

2‖θr‖L∞(Ω)
‖θ̃m(t)‖2

L2(Γθ,R ) �
‖k‖L∞(Ω)

2θr,min
‖θ̃0‖2

H1
0,Γθ,D

(Ω) +
‖αc‖L∞(Ω)

2θr,min
‖θ̃0‖2

L2(Γθ,R )

+
‖k‖L∞(Ω)‖∇θr‖L∞(Ω)

θ2
r,min

∫ t

0

‖θ̃m(s)‖H1
0,Γθ,D

(Ω)‖∂tθ̃m(s)‖L2(Ω)ds

+ ‖∂tLu(t)‖2
H1′

0,Γu,D
(Ω) +

1

4
‖ũm(t)‖2

H1
0,Γu,D

(Ω) + ‖∂tLu(0)‖2
H1′

0,Γu,D
(Ω)

https://doi.org/10.1017/S0956792515000169 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000169


Existence and uniqueness of a thermoelastic problem with variable parameters 513

+
1

4
‖ũ0‖2

H1
0,Γu,D

(Ω) +

∫ t

0

‖∂2
t Lu(s)‖2

H1′
0,Γu,D

(Ω)ds+
1

4

∫ t

0

‖ũm(s)‖2
H1

0,Γu,D
(Ω)ds

+ ‖Lθ(t)‖H1′
0,Γθ,D

(Ω)‖θ̃m(t)‖H1
0,Γθ,D

(Ω) + ‖Lθ(0)‖2
H1′

0,Γθ,D
(Ω) +

1

4
‖θ̃0‖2

H1
0,Γθ,D

(Ω)

+

∫ t

0

‖∂tLθ(s)‖2
H1′

0,Γθ,D
(Ω)ds+

1

4

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds. (4.30)

Next, we consider properties (3.8) and (3.11); we apply again inequality (4.23) to the

following terms on the right-hand side of expression (4.30):

• the third term with α =
‖k‖2

L∞(Ω)‖∇θr‖2
L∞(Ω)‖θr‖L∞(Ω)

2θ4
r,minρ0cF

and β =
ρ0cF

2‖θr‖L∞(Ω)
,

• the tenth term with α =
‖θr‖L∞(Ω)

kmin
and β =

kmin

4‖θr‖L∞(Ω)
;

we take into account the equalities

∂tLu(t) = ∂tLu(0) +

∫ t

0

∂2
t Lu(s)ds, Lθ(t) = Lθ(0) +

∫ t

0

∂tLθ(s)ds;

we introduce the notation

|||∂tL|||2 =

∫ tf

0

(
‖∂2

t Lu(s)‖2
H1′

0,Γu,D
(Ω) + ‖∂tLθ(s)‖2

H1
0,Γθ,D

(Ω)

)
ds, (4.31)

and, finally, applying the same reasoning used in inequality (4.26), expression (4.30) can

be rewritten as follows:

c6

[∫ t

0

‖∂tũm(s)‖2
H1

0,Γu,D
(Ω)ds+

∫ t

0

‖∂tθ̃m(s)‖2
L2(Ω)ds+ ‖θ̃m(t)‖2

H1
0,Γθ,D

(Ω) + ‖θ̃m(t)‖2
L2(Γθ,R )

]
� c9

[
‖θ̃0‖2

H1
0,Γθ,D

(Ω) + ‖θ̃0‖2
L2(Γθ,R ) + ‖ũ0‖2

H1
0,Γu,D

(Ω) + ‖∂tLu(0)‖2
H1′

0,Γu,D
(Ω)

+‖Lθ(0)‖2
H1′

0,Γθ,D
(Ω) + |||∂tL|||2

]
+ c8

[
‖ũm(t)‖2

H1
0,Γu,D

(Ω) +

∫ t

0

‖θ̃m(s)‖2
H1

0,Γθ,D
(Ω)ds

+

∫ t

0

‖ũm(s)‖2
H1

0,Γu,D
(Ω)ds

]
. (4.32)

The constants in inequality (4.32) are such that

c6 = min

{
amin,

ρ0cF

2‖θr‖L∞(Ω)
,

kmin

4‖θr‖L∞(Ω)
,

αc,min

2‖θr‖L∞(Ω)

}
and c9 = max {c7, c8} ,

with

c7 = max

{
2‖k‖L∞(Ω) + θr,min

4θr,min
,

‖αc‖L∞(Ω)

2θr,min
, 3,

2‖θr‖L∞(Ω) + kmin

kmin

}
and

c8 = max

{
2‖k‖2

L∞(Ω)‖∇θr‖2
L∞(Ω)‖θr‖L∞(Ω) + θ4

r,minρ0cF

4θ4
r,minρ0cF

, 2tf + 1,
2tf‖θr‖L∞(Ω) + kmin

kmin

}
.
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Thanks to Gronwall’s lemma and Lemma 2, we can deduce from expression (4.32) the

existence of a constant M2,u,θ independent of m, such that∫ t

0

‖∂tũm(s)‖2
H1

0,Γu,D
(Ω)ds � M2,u,θ,

∫ t

0

‖∂tθ̃m(s)‖2
L2(Ω)ds � M2,u,θ,

‖θ̃m(t)‖2
H1

0,Γθ,D
(Ω) � M2,u,θ, a.e. t ∈ (0, tf).

�

4.4 Step IV: Passage to the limit

Taking into account some well-known results of compactness, we deduce the following

result from Lemmas 2 and 3:

Corollary 1 Under assumptions (H1)–(H13) there exist

ũ ∈ W 1,2(0, tf; H1
0,Γu,D

(Ω)) ∩ L∞(0, tf; H1
0,Γu,D

(Ω)),

θ̃ ∈ W 1,2(0, tf;L
2(Ω)) ∩ L∞(0, tf;H

1
0,Γθ,D

(Ω)),

and subsequences (again indexed with m) such that, as m → ∞

{ũm}m∈� → ũ in L∞(0, tf; H1
0,Γu,D

(Ω)) weak-star,

{∂tũm}m∈� → ∂tũ in L2(0, tf; H1
0,Γu,D

(Ω)) weak,

{θ̃m}m∈� → θ̃ in L∞(0, tf;H
1
0,Γθ,D

(Ω)) weak-star,

{∂tθ̃m}m∈� → ∂tθ̃ in L2(0, tf;L
2(Ω)) weak.

Furthermore for each m ∈ �, there exists a non-negative integer l � m, such that (ũm, θ̃m)

is the unique solution to Problem (ṼP l).

4.5 Step V: Verifying that (ũ, θ̃) is a solution to Problem (ṼP )

As consequence of Corollary 1, (ũ, θ̃) satisfies properties (4.10). In order to complete the

proof of the existence of a solution, it is necessary to prove that (ũ, θ̃) satisfies Problem

(ṼP ). For this purpose we use the methodology from Viaño [35].

Let j ∈ � be arbitrary and m > j. Then, thanks to Corollary 1, (ũm, θ̃m) is a solution to

Problem (ṼP l), with l dependent on m and l � m > j. We are going to prove that we can

pass to the limit in order to obtain that (ũ, θ̃) is a solution to Problem (ṼP ).

Verifying the weak equation (4.6a) for the mechanical submodel.

Considering in equation (4.12a), the test function vj(t) ∈ Hu j
0,Γu,D

⊂ Hu l
0,Γu,D

such

that

vj(t) = ξ(t)wu
j , ξ ∈ C1(0, tf), ξ(tf) = 0, (4.33)

and integrating over (0, tf), we can pass to the limit as l → ∞, thanks to Corollary
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1, and we obtain∫ tf

0

[
a(ũ(t),wu

j ) − m(θ̃(t),wu
j ) − 〈Lu(t),w

u
j 〉u

]
ξ(t)dt = 0, (4.34)

for all ξ ∈ C1(0, tf), ξ(tf) = 0 and for all j ∈ �. Using the density of the finite

linear combinations of wu
j in H1

0,Γu,D
(Ω), we deduce

a(ũ(t), v) − m(θ̃(t), v) = 〈Lu(t), v〉u, (4.35)

for all v ∈ H1
0,Γu,D

(Ω) in the space of distributions D′(0, tf).

Verifying the weak equation (4.6b) for the thermal submodel.

Let us consider in equation (4.12b) the test function φj(t) ∈ H
θ j
0,Γθ,D

⊂ Hθ l
0,Γθ,D

,

l > j, with l in the same conditions as before

φj(t) = ζ(t)wθj , ζ ∈ C1(0, tf), ζ(tf) = 0. (4.36)

Integrating over (0, tf), taking into account equality

(∂tθ̃l(t), φj(t))2 =
d

dt
(θ̃l(t), φj(t))2 − (θ̃l(t), ∂tφj(t))2, (4.37)

and applying the initial condition (4.13) for θ̃l , we can deduce∫ tf

0

[
−(θ̃l(t), ∂tφj(t))2 + κ(θ̃l(t), φj(t)) + m(φj(t), ∂tũl(t)) + c(θ̃l(t), φj(t))

−〈Lθ(t), φj(t)〉θ
]
dt = (θ̃0, φj(0))2, (4.38)

since φj(tf) = 0. So, thanks to Corollary 1, we can pass to the limit as l → ∞, and

we get ∫ tf

0

−(θ̃(t), wθj )2∂tζ(t)dt+

∫ tf

0

[
κ(θ̃(t), wθj ) + m(wθj , ∂tũ(t))

+c(θ̃(t), wθj ) − 〈Lθ(t), wθj 〉θ
]
ζ(t)dt = (θ̃0, w

θ
j )2ζ(0), (4.39)

for all ζ ∈ C1(0, tf), ζ(tf) = 0. In particular, equation (4.39) is true for all ζ ∈ D(0, tf)

and for all j ∈ �. Using the density of the finite linear combinations of wθj in

H1
0,Γθ,D

(Ω), we deduce

d

dt
(θ̃(t), φ)2 + κ(θ̃(t), φ) + m(φ, ∂tũ(t)) + c(θ(t), φ) = 〈Lθ(t), φ〉θ, (4.40)

for all φ ∈ H1
0,Γθ,D

(Ω) in D′(0, tf). As ∂tθ̃ ∈ L2(0, tf;L
2(Ω)), equality (4.40) is

equivalent to

(∂tθ̃(t), φ)2 + κ(θ̃(t), φ) + m(φ, ∂tũ(t)) + c(θ(t), φ) = 〈Lθ(t), φ〉θ, (4.41)

for all φ ∈ H1
0,Γθ,D

(Ω) in D′(0, tf).

https://doi.org/10.1017/S0956792515000169 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000169


516 P. Barral et al.

In order to complete the proof, we must prove that (ũ, θ̃) satisfies the initial conditions

(4.7) of Problem (ṼP ).

Verifying the initial condition for temperature.

Considering in the weak equality (4.41) the test function given in equation (4.36),

integrating over (0, tf) and taking into account equality (4.37) it results,

∫ tf

0

[
−(θ̃(t), ∂tζ(t)w

θ
j )2 + κ(θ̃(t), ζ(t)wθj ) + m(ζ(t)wθj , ∂tũ(t))

+c(θ̃(t), ζ(t)wθj ) − 〈Lθ(t), ζ(t)wθj 〉θ
]
dt = (θ̃(0), ζ(0)wθj )2,

for all ζ ∈ C1(0, tf), ζ(tf) = 0. Now, if we compare the previous expression with

equality (4.39), we obtain

(θ̃(0), wθj )2ζ(0) = (θ̃0, w
θ
j )2ζ(0), ∀ζ ∈ C1(0, tf), ζ(tf) = 0,

for all non-negative integer j, hence, we conclude θ̃(0) = θ̃0.

Verifying the initial condition for displacements.

As Lu ∈ C1(0, tf; H1′
0,Γu,D

(Ω)) it is possible to derive expression (4.35) in time;

furthermore, since ∂tũ ∈ L2(0, tf; H1
0,Γu,D

(Ω)) and ∂tθ̃ ∈ L2(0, tf;L
2(Ω)), we have

a(∂tũ(t), v) − m(∂tθ̃(t), v) = 〈∂tLu(t), v〉u, ∀v ∈ H1
0,Γu,D

(Ω).

In particular, taking again the test function defined in equation (4.33) and integrating

in time, we deduce

∫ tf

0

[
−a(ũ(t), ∂tξ(t)w

u
j ) + m(θ̃(t), ∂tξ(t)w

u
j ) + 〈Lu(t), ∂tξ(t)w

u
j 〉u

]
dt

= a(ũ(0), ξ(0)wu
j ) − m(θ̃(0), ξ(0)wu

j ) − 〈Lu(0), ξ(0)wu
j 〉u, (4.42)

for all ξ ∈ C1(0, tf), ξ(tf) = 0. Taking into account expression (4.35), the term on

the left-hand side of expression (4.42) vanishes, and since θ̃(0) = θ̃0, we get

a(ũ(0), ξ(0)wu
j ) = [m(θ̃0, w

u
j ) + 〈Lu(0), wu

j 〉u]ξ(0),

for all ξ ∈ C1(0, tf); ξ(tf) = 0. Finally, compatibility condition (4.11) let us write
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this equation in the following equivalent form:

a(ũ(0), wu
j )ξ(0) = a(ũ0, w

u
j )ξ(0), ∀ξ ∈ C1(0, tf), ξ(tf) = 0, ∀j ∈ �.

Therefore, we can conclude that ũ(0) = ũ0 thanks to properties of form a(·, ·).

5 Uniqueness of solution to Problem (VP)

In this section, we prove the uniqueness of solution to Problem (VP). Our proof is based on

applying Gronwall’s lemma following the papers of Gawinecki [20,22–24] and Gawinecki

et al. [26].

Theorem 5.1 Under assumptions (H1)–(H13), there exists a unique solution (u, θ) to Prob-

lem (VP ) satisfying properties (4.1) and (4.2).

Proof In order to establish the uniqueness of the solution to Problem (VP) and since

this problem is equivalent to Problem (ṼP ), it is enough to prove the uniqueness of

the solution to this former problem. To this end, let (ũ1, θ̃1), (ũ2, θ̃2) be two solutions of

Problem (ṼP ) and let us write

ũ = ũ1 − ũ2 ∈ L∞(0, tf; H1
0,Γu,D

(Ω)) and θ̃ = θ̃1 − θ̃2 ∈ L∞(0, tf;H
1
0,Γθ,D

(Ω)).

So, they satisfy a.e. t ∈ (0, tf){
a(ũ(t), v) − m(θ̃(t), v) = 0, ∀v ∈ H1

0,Γu,D
(Ω),

(∂tθ̃(t), φ)2 + κ(θ̃(t), φ) + m(φ, ∂tũ(t)) + c(θ̃(t), φ) = 0, ∀φ ∈ H1
0,Γθ,D

(Ω),

and the initial conditions ũ(0) = 0, θ̃(0) = 0.

Integrating these equations over (0, t), taking as test functions v = ∂tũ(t), φ = θ̃(t),

adding the resulting equations and taking into account Remark 3.3, we arrive at the

following: ∫ t

0

1

2

d

ds
[a(ũ(s), ũ(s))]ds+

∫ t

0

1

2

d

ds
‖θ̃(s)‖2

2ds+

∫ t

0

κ1(θ̃(s), θ̃(s))ds

+

∫ t

0

c(θ̃(s), θ̃(s))ds = −
∫ t

0

κ2(θ̃(s), θ̃(s))ds a.e. t ∈ (0, tf).

Since ũ(0) = 0 and θ̃(0) = 0, and thanks to hypotheses (H2), (H4), (H10) and Hölder’s

inequality, we have the following:

1

2
a(ũ(t), ũ(t)) +

1

2
‖θ̃(t)‖2

2 +

∫ t

0

κ1(θ̃(s), θ̃(s))ds+
αc,min

‖θr‖L∞(Ω)
‖θ̃(t)‖2

L2(Γθ,R )

�
c‖k‖L∞(Ω)‖∇θr‖L∞(Ω)

θ2
r,min

∫ t

0

‖θ̃(s)‖L2(Ω)‖θ̃(s)‖H1
0,Γθ,D

(Ω)ds, (5.2)
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with c the constant of equivalent norms. Taking into account properties (3.8), (3.11), and

using inequality (4.23) with

α =
c2‖k‖2

L∞(Ω)‖∇θr‖2
L∞(Ω)‖θr‖L∞(Ω)

2θ4
r,minkmin

and β =
kmin

2‖θr‖L∞(Ω)
,

we deduce

amin

2
‖ũ(t)‖2

H1
0,Γu,D

(Ω) +
ρ0cF

2‖θr‖L∞(Ω)
‖θ̃(t)‖2

L2(Ω)

+
kmin

2‖θr‖L∞(Ω)

∫ t

0

‖θ̃(s)‖2
H1

0,Γθ,D
(Ω)ds+

αc,min

‖θr‖L∞(Ω)
‖θ̃(t)‖2

L2(Γθ,R )

�
c2‖k‖2

L∞(Ω)‖∇θr‖2
L∞(Ω)‖θr‖L∞(Ω)

2θ4
r,minkmin

∫ t

0

‖θ̃(s)‖2
L2(Ω)ds, (5.3)

and we get

ρ0cF

2‖θr‖L∞(Ω)
‖θ̃(t)‖2

L2(Ω) �
c2‖k‖2

L∞(Ω)‖∇θr‖2
L∞(Ω)‖θr‖L∞(Ω)

2θ4
r,minkmin

∫ t

0

‖θ̃(s)‖2
L2(Ω)ds.

Thanks to Gronwall’s lemma, we can conclude that ‖θ̃(t)‖2
L2(Ω)

= 0 a.e. t ∈ (0, tf), hence

θ̃1 = θ̃2. Furthermore, using again inequality (5.3), we directly deduce that ‖ũ(t)‖H1
0,Γu,D

(Ω) =

0 a.e. t ∈ (0, tf). In consequence, we conclude that ũ1 = ũ2, which finishes the proof. �

6 Conclusions

In this paper we have proved the existence and uniqueness of solution to a quasistatic fully

coupled thermoelastic problem associated with non-homogeneous linear elastic materials.

In the thermal equations we have included the term due to the mechanical heat dissipation

and in the mechanical behaviour law the deformations due to thermal gradients. We have

considered mixed displacement-traction boundary conditions for the mechanical submodel

and mixed Dirichlet–Neumann–Robin for the thermal one. Moreover, we have assumed

that the reference temperature, the thermal conductivity and the Lamé’s parameters

depend on the material point.

Specifically, we have achieved a unique solution (u, θ) satisfying

u ∈ L∞(
0, tf; H1(Ω)

)
, ∂tu ∈ L2

(
0, tf; H1(Ω)

)
, and

θ ∈ L∞(
0, tf;H

1(Ω)
)
, ∂tθ ∈ L2

(
0, tf;L

2(Ω)
)
.

The results obtained in this work represent an improvement on the existing literature

and it will facilitate future research in other open problems arising from mathematical

modelling in industrial processes, such as the analysis of the existence of the solution

when this coupled thermomechanical problem also incorporates a non-linear behaviour

law, when the physical parameters depend not just on the material point but also on the

temperature, or when it is necessary to incorporate a contact condition in the mechanical

submodel.
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