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Background. Previous studies suggest that abnormalities in maternal immune activity during pregnancy alter the
offspring’s brain development and are associated with increased risk for schizophrenia (SCZ) dependent on sex.

Method. Using a nested case–control design and prospectively collected prenatal maternal sera from which interleukin
(IL)-1β, IL-8, IL-6, tumor necrosis factor (TNF)-α and IL-10 were assayed, we investigated sex-dependent associations
between these cytokines and 88 psychotic cases [SCZ=44; affective psychoses (AP)=44] and 100 healthy controls from
a pregnancy cohort followed for >40 years. Analyses included sex-stratified non-parametric tests adjusted for multiple
comparisons to screen cytokines associated with SCZ risk, followed by deviant subgroup analyses using generalized
estimating equation (GEE) models.

Results. There were higher prenatal IL-6 levels among male SCZ than male controls, and lower TNF-α levels among
female SCZ than female controls. The results were supported by deviant subgroup analyses with significantly more
SCZ males with high IL-6 levels (>highest quartile) compared with controls [odd ratio (OR)75=3.33, 95% confidence
interval (CI) 1.13–9.82], and greater prevalence of low TNF-α levels (<lowest quartile) among SCZ females compared
with their controls (OR25=6.30, 95% CI 1.20–33.04) and SCZ males. Higher levels of IL-6 were only found among
SCZ compared with AP cases. Lower TNF-α levels (non-significant) also characterized female AP cases versus controls,
although the prevalence of the lowest levels was higher in SCZ than AP females (70% v. 40%), with no effect in SCZ or
AP males.

Conclusions. The results underscore the importance of immunologic processes affecting fetal brain development and
differential risk for psychoses depending on psychosis subtype and offspring sex.
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Introduction

Epidemiologic and preclinical studies have suggested
associations between maternal infection, prenatal ex-
posure to inflammatory cytokines and risk for schizo-
phrenia (SCZ) (McGrath & Murray, 2003; Brown &
Derkits, 2010). Earlier studies investigated maternal
immune function and later onset of SCZ in offspring
using direct measures of maternal infection, such as

antibody titers in sera collected during pregnancy.
Brown et al. (2004a, 2009) provided serologic evidence
of elevated maternal antibodies to influenza virus and/
or toxoplasmosis during the pregnancies of cases with
psychoses versus controls. Our group (Buka et al. 2001a)
and others (Brown & Derkits, 2010) reported that off-
spring of mothers with elevated immunoglobulin (Ig)
G and IgM levels and antibodies to herpes simplex
virus type 2 during pregnancy were at increased risk
for SCZ and other psychoses. The diversity of microbes
across these studies suggested that cytokines and other
inflammatory markers generated in response to ma-
ternal obstetric conditions may function as a common
pathway that alters the offspring’s early brain
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development and increases risk for SCZ and other
psychoses (Gilmore & Jarskog, 1997; Patterson, 2007;
Brown & Derkits, 2010; Hornig, 2013).

In similar studies, our group (Buka et al. 2001b) and
Brown et al. (2004b) reported significant associations
of risk for SCZ and SCZ spectrum respectively with
elevated tumor necrosis factor (TNF)-α and/or inter-
leukin (IL)-8 levels in maternal serum collected during
late pregnancy. Consistent with neuropathologic
changes reported in SCZ, in vitro and in vivo animal
studies have complemented these findings. Thus, rat
neuronal cultures (human late second-trimester
equivalent) exposed to IL-1β, IL-6 and TNF-α resulted
in a dose-dependent reduction in dendritic length
and number in the frontal cortex (Marx et al. 2001;
Gilmore et al. 2004). Furthermore, multiple studies
(Zuckerman & Weiner, 2003; Smith et al. 2007a,b)
have noted a relationship between prenatal cytokine
exposure and behavioral or brain abnormalities in the
offspring. Peripheral induction of cytokines through
administration of the innate immune activator and
viral mimic polyinosinic:polycytidylic acid (poly I:C)
was shown to alter latent inhibition (LI) in rodents,
demonstrating post-pubertal emergence of LI dis-
ruption and pronounced alterations in hippocampal
morphology (Zuckerman & Weiner, 2003). This was
consistent with demonstration of persistent hyperactiv-
ity and hippocampal and cerebellar abnormalities
in rodents subsequent to exposure to virus-induced,
pro-inflammatory cytokine elevations during a period
analogous to the early third trimester (Hornig et al.
1999). Taken together, these animal and human studies
support the view that prenatal exposure to inflam-
matory cytokines results in altered neurocellular devel-
opment information processing deficits and increased
SCZ risk.

Population-level studies investigating the neuro-
behavioral consequences of gestational immune
changes have examined the effects of obstetric con-
ditions occurring during the second and third trime-
sters of pregnancy, such as pre-eclampsia (Dalman
et al. 1999; Eide et al. 2013). This is particularly relevant
for studies of sex differences in the risk for psychosis,
as this is a crucial period of the organizational effects
of gonadal hormones on sexually differentiated brain
development (Handa et al. 1994; Kawata, 1995; Tobet,
2002). In fact, previous studies linked conditions
suggesting maternal immune disruption during preg-
nancy (e.g. influenza, pre-eclampsia) to higher SCZ
risk among male offspring (Dalman et al. 1999),
explaining, in part, the higher risk of SCZ in males
than females (Castle et al. 1993; O’Connell et al. 1997).
For the past 25 years, we have been investigating the
hypothesis that fetal disruptions during the middle
to latter half of pregnancy will contribute to sex

differences in risk for SCZ (Goldstein & Walder,
2006). IL-1β, IL-6, IL-8, TNF-α and IL-10 receptors are
located in, among other regions, the hippocampus, ven-
tromedial and paraventricular hypothalamic nuclei,
amygdala and locus coeruleus (Harbuz et al. 1992;
Schobitz et al. 1993; Szelenyi & Vizi, 2007), brain re-
gions that are normally sexually dimorphic at the vol-
ume level (Goldstein et al. 2001) or at the nuclei level in
animals (Handa et al. 1994; Kawata, 1995; Tobet, 2002;
Stratton et al. 2011) and are found to be abnormal in
SCZ. These normally sexually dimorphic brain regions,
implicated in the fetal hormonal programming of
the brain (Seckl, 2001; Seckl & Walker, 2001), also co-
localize with immune markers, suggesting that hor-
monal–immune interactions play an important role in
regulating the sex-dependent development of these
key brain areas.

The current investigation used a nested case–control
design and prospectively collected prenatal sera from
a cohort followed from pregnancy to age 48 years to
investigate the associations of the pro-inflammatory
cytokines IL-1β, IL-6, IL-8, TNF-α, and the anti-
inflammatory cytokine IL-10, with the sex-dependent
risk for SCZ. We hypothesized that levels of these
pro-inflammatory cytokines would be significantly
higher among SCZ cases compared with controls
whereas levels of the anti-inflammatory cytokine
IL-10 would be lower, with the most significant effects
among male offspring with SCZ.

Method

Participants were selected from 17741 pregnancies en-
rolled between 1959 and 1966 into the Boston and
Providence sites of the Collaborative Perinatal Project
(CPP), also known as the New England Family Study
(NEFS) (Goldstein et al. 2010, 2011; Seidman et al.
2013). The CPP of the National Institute of Neuro-
logical and Communicative Disorders and Stroke was
initiated over 40 years ago to prospectively investigate
prenatal and familial antecedents of childhood neuro-
psychiatric disorders by ascertaining 50000 preg-
nancies and following offspring to age 7 (Niswander
& Gordon, 1972). In a series of studies, we identified
participants with psychoses among the original par-
ents (Goldstein et al. 2010, 2011) and offspring now
adults in their late 40s (Goldstein et al. 2010; Seidman
et al. 2013).

As detailed in the online Supplementary material,
through our ascertainment procedures we identified
200 offspring with possible, probable or definite psy-
chotic and/or bipolar disorder. Of these, 114 had a
DSM-IV major psychotic disorder; nine were deter-
mined from medical charts alone; and the remainder
completed diagnostic interviews (most with medical
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charts as well). For the current study, we included only
those subjects for whom third-trimester maternal sera
were available. Diagnoses were grouped based on pre-
vious literature (Faraone & Tsuang, 1985; Kendler et al.
1985; Gottesman, 1991; Tsuang et al. 1993; Goldstein
et al. 2010). The final sample included 44 with schizo-
phrenia psychoses (40 SCZ; four with schizo-affective
disorder – depressed type) and 44 with affective psy-
choses (AP: 21 bipolar disorder with psychosis; 15
schizo-affective disorder – bipolar type; eight with
major depressive disorder with psychosis).

Controls were selected from families participating
in a parallel high-risk study that identified original
study parents with psychotic disorders and unaffected
control parents (Goldstein et al. 2010, 2011). Controls
wereNEFSadult offspring forwhomparents andgrand-
parents, along with the parents’ siblings, were free
of any known lifetime history of psychosis, bipolar,
schizotypal, recurrent major depressive disorder,
suicide attempts or psychiatric hospitalizations, as
described previously (Goldstein et al. 2010). Siblings
of the controls were also free of any lifetime history
of psychosis or bipolar disorder. Although controls
were free of any psychotic diagnoses, 59% (64 of 108)
had some lifetime Axis I psychiatric diagnosis, the
most common being substance abuse.

Human subjects approval was granted by Harvard
University, Brown University, Partners Healthcare sys-
tem and local psychiatric facilities. Written consent
was obtained from all study participants interviewed,
and subjects were compensated for participating.

Biological samples

From 1959 to 1966, maternal serum samples were col-
lected approximately every 2 months from prenatal to
delivery and stored at −20 °C at the National Institutes
of Health (NIH) repository. We selected five immune
molecules (IL-1β, IL-6, IL-8, TNF-α and IL-10) for
assay because their associated receptors are located in
highly sexually dimorphic brain regions in stress cir-
cuitry. Assays from the beginning of the third trimester
were analyzed (measured in pg/ml), given that this
time point is within the period of hormonal regulation
of sexual brain differentiation, and the primary hy-
potheses in this study involved sex-dependent risk
estimates. Sera samples were available for 88 cases
and 100 controls. Missing data reflect 2% of draws
that were not performed and absence of samples
from the NIH repository or cracked vials obviating
their use.

Maternal cytokine levels were assessed using a
multiplexed, bead-based immunoassay (Milliplex™

human cytokine panel, MPXHCYTO-60 K, Millipore,
USA) on a Luminex 3D™ detection platform

(Luminex Corporation, USA) (Vignali, 2000). Assay
sensitivities ranged from 0.1 to 0.4 pg/ml. Twenty-five
microliters of each serum sample were diluted 1:1
in Assay Buffer and run with six serial dilutions (3.2–
10000 pg/ml) of cytokine standards, two quality con-
trol and one normal serum standards on each 96-well
plate (Martins, 2002). All samples, standards and
controls were run in duplicate. Assays were completed
according to the manufacturers’ protocols, with
overnight incubation at 4 °C on a shaker prior to de-
tection of the mean fluorescence intensity (MFI) of
analyte-specific immunoassay beads by Luminex 3D.
Raw data (MFI) were captured using Luminex
xPONENT™ software (v. 4.0.846.0) and concen-
trations of immune factors in each sample were inter-
polated from standard curves using a five-parameter,
weighted, logistic regression curve equation in
Milliplex Analyst™ (v. 3.5.5.0). Measurements below
the lower limit of detection were excluded. For
measurements at or above the upper limit of analyte
detection, samples were assayed again at multiple
serial dilutions using Assay Buffer to bring concentra-
tions into a detectable range.

Statistical analyses

The pro-inflammatory cytokines included IL-1β, IL-8,
IL-6 and TNF-α. Although IL-6 can also be anti-
inflammatory, its impact has been considered pro-
inflammatory in many contexts (Elenkov, 2008;
Drexhage et al. 2010) and it was therefore categorized
here as pro-inflammatory. The impact of IL-10, an
anti-inflammatory cytokine, on psychosis risk was
also examined. Cytokine data were positively skewed
(skew>|0.8|) and thus natural log (ln) transformed
to minimize departures from Gaussian distributions.
With the exception of ln(TNF-α), the distributions of
ln transformed variables were not skewed.

Sex-stratified analyses were conducted to test the im-
pact of prenatal immune abnormalities on risk for SCZ,
predicting that levels of cytokines would be higher
among SCZ males versus controls using a two-step ap-
proach. We first screened the five cytokines to identify
those for which levels differed between SCZ cases
and controls by sex. Given the skew of the ln(TNF-α)
distribution, and for consistency across all cytokines,
group comparisons were conducted using non-
parametric tests, primarily the Wilcoxon rank-sum
test. If the two populations differed in spread (using
the Ansari–Bradley test), the Kolmogorov–Smirnov
test was used. Multiple comparisons for each screen
set were adjusted using the ‘step-up’ procedure of
Hochberg (1988).

Considering the limited statistical power, given our
sample size, we used a liberal threshold of p40.20
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when adjusting for multiple comparisons to improve
sensitivity of the initial screen. For cytokines with a
median difference that met this adjusted threshold,
we conducted analyses based on deviant subgroups.
For differences in which cases had higher levels of pre-
natal cytokines than controls, the deviant subgroup
was created above the highest quartile (75th percentile)
of the control ln transformed levels. For differences in
which cases had lower levels of prenatal cytokines
than controls, the deviant subgroup was created
below the lowest quartile (25th percentile) of the con-
trol ln transformed levels. The frequency of subjects,
by SCZ status, in the deviant subgroup was calculated
and tested using χ2 unless there were 45 subjects in a
cell, in which case Fisher’s exact test was applied.
Similar analyses were conducted for APs to determine
specificity of the SCZ results. Adjusted odds ratios
(ORs) from the deviant subgroup analyses were cal-
culated using the generalized estimating equation
(GEE) method, adjusted for intrafamilial correlation
and demographic variables for which there were sig-
nificant differences by SCZ and sex. For male-specific
analyses, these variables were ethnicity, marital status
and study site. There were no significant differences
between female cases and controls on any of the poten-
tial confounding variables examined.

Results

As shown in Table 1 (for combined sex results, see
Supplementary Table S1), subjects were primarily
Caucasian, married and from Boston. Male cases in-
cluded significantly more African-Americans (χ22=
9.49, p=0.002), single mothers (χ23=6.77, p=0.03) and
participants from Providence (χ21=3.94, p<0.05) than
controls. There were no significant differences between
female cases and controls for any of the potential con-
founding variables examined.

Table 2 presents the sex-stratified non-parametric
results of the cytokine assays for the SCZ and control
subject groups (for combined sex results, see Supple-
mentary Table S2). Median levels of IL-1β and IL-6
were higher among male SCZ cases than controls, sig-
nificantly for IL-6 alone (2.81 pg/ml v. 1.06 pg/ml,
pHochberg=0.05). Median levels of TNF-α were similar
among male cases and controls (3.74 pg/ml v. 3.73 pg/
ml, pHochberg =0.78). Among females, median levels of
IL-1β, IL-8 and IL-6 were higher among subjects with
SCZ compared with controls, but maternal prenatal
levels of TNF-α were lower among SCZ versus controls
(1.79 pg/ml v. 3.86 pg/ml, pHochberg=0.15).

About two times the number of male SCZ subjects
had IL-6 levels above the highest quartile than controls
(47% v. 23%, Table 3a), with a 3.33 adjusted odds [95%
(confidence interval (CI) 1.13–9.82] of having IL-6

levels above this threshold. Above the deviant thresh-
old, female SCZ cases and their controls were similar
in prevalence (33% v. 27%, Table 3a; for combined
sex results, see Supplementary Table S3). The inter-
action between case status and sex for IL-6 was not sig-
nificant (Z=1.43, p=0.15). In these analyses, there
were no significant differences between AP cases and
controls (Table 3b; for combined sex results, see
Supplementary Table S3). For males and females, devi-
ant levels of IL-6 were non-significantly elevated
among SCZ cases compared with AP (OR 2.04 and
2.66 respectively; Table 4). In fact, given that ORs
were of similar magnitudes in male and female
SCZ subjects, combining both sexes resulted in a sig-
nificantly higher likelihood of SCZ subjects being in
the deviant subgroup of IL-6 compared with AP (OR
3.14, 95% CI 1.12–8.79, see Supplementary Table S3),
suggesting that high levels of IL-6 may be specific to
SCZ psychoses, but not dependent on sex.

Despite the small sample of SCZ females, it was
among these females that low levels of TNF-α (values
below the lowest quartile of the control distribution)
were significantly more prevalent than among female
controls (70% v. 23%, Fisher’s exact, p=0.01; see
Table 3a) or SCZ males (70% v. 26%, Fisher’s exact,
p=0.02, data not presented), with a trend toward a
higher prevalence in female SCZ versus female APs
(70% v. 40%, Fisher’s exact, p=0.11; see Table 4). The
interaction between case status and sex for TNF-α
was significant (Z=2.48, p=0.01).

Discussion

Among the five cytokines examined in this study, we
found differences by SCZ case status for IL-6 and
TNF-α. Exposure to high maternal levels of IL-6 was
significantly more prevalent among SCZ cases than
controls, particularly male SCZ cases. By contrast,
and despite having a smaller female case sample
size, the association of low levels of TNF-α to SCZ
was specific for females, with low levels being signifi-
cantly or marginally significantly more prevalent in fe-
male SCZ than in female controls, female APs or SCZ
males. The differential findings by sex cannot be
explained by sampling bias from age at follow-up,
given that we ascertained subjects up to the age of 48
years, that is through the major risk period for SCZ.

Our findings suggest that prenatal exposure to dif-
ferent immune markers may differentially affect the
development of psychoses, an effect that is dependent
on psychosis type, offspring sex and the gestational
timing of the serum draw. These factors may explain
the inconsistency of our findings relative to those
from earlier studies. Our earlier study in a small sam-
ple (Buka et al. 2001b) and the study by Brown et al.
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(2004b) reported higher levels of maternal TNF-α and
IL-8 respectively, in cases with psychoses compared
with controls. The inconsistency of our findings with
those previous findings may result, in part, from
the lack of sample stratification by psychosis subtype
and the inclusion of non-psychotic cases within the
SCZ spectrum (e.g. schizotypal personality disorder)
(Brown et al. 2004b). Furthermore, partly because of
sample size, neither previous study tested for sex
effects. In addition, the timing of sample acquisition
differed in both previous studies (delivery, Buka et al.

2001b; second trimester, Brown et al. 2004b), possibly
resulting in differential impact of gestational immune
markers (Meyer et al. 2006; Aguilar-Valles & Luheshi,
2011), and as a function of sex (Goldstein & Walder,
2006). The difference in gestational timing of the sera
draws is an important point as the maternal immune
system exhibits considerable fluctuation during the
course of pregnancy (Sargent, 1992). In Buka et al.
(2001b), term levels of TNF-α were significantly greater
among psychotic cases (predominately male) com-
pared with controls. However, among male SCZ in

Table 1. Demographic information on the 188 subjects with third-trimester cytokine data from the schizophrenia (SCZ) case–control study
stratified by sex

Psychosis (SCZ and AP) Controls

Males (n=53) Females (n=35) Males (n=48) Females (n=52)

Categorical variablesa, n (%)
Ethnicity, mother
Caucasian 41 (77.4) 28 (80.0) 47 (97.9) 46 (88.5)
African-American 12 (22.6) 7 (20.0) 1 (2.1) 4 (7.7)
Other 0 (0.0) 0 (0.0) 0 (0.0) 2 (3.8)

Socio-economic status of origin, quartile
Lowest 14 (26.4) 7 (20.0) 10 (20.8) 10 (19.2)
Lower middle 16 (30.2) 5 (14.3) 10 (20.8) 18 (34.6)
Upper middle 14 (26.4) 10 (28.6) 15 (31.3) 9 (17.3)
Highest 7 (13.2) 13 (37.1) 13 (27.1) 12 (23.1)
Missing 2 (3.8) 0 (0.0) 0 (0.0) 3 (5.8)

Marital status, mother
Single 6 (11.3) 2 (5.7) 0 (0.0) 1 (1.9)
Married 47 (88.7) 32 (91.4) 47 (97.9) 48 (92.3)
Divorced 0 (0.0) 0 (0.0) 1 (2.1) 2 (3.8)
Separated 0 (0.0) 1 (2.9) 0 (0.0) 1 (1.9)

Season of birth
Winter (December–February) 12 (22.6) 8 (22.9) 10 (20.8) 13 (25.0)
Spring (March–May) 14 (26.4) 10 (28.6) 17 (35.4) 10 (19.2)
Summer (June–August) 14 (26.4) 8 (22.9) 11 (22.9) 15 (28.8)
Fall (September–November) 13 (24.5) 9 (25.7) 10 (20.8) 14 (26.9)

Study site
Boston 35 (66.0) 26 (74.3) 40 (83.3) 38 (73.1)
Providence 18 (34.0) 9 (25.7) 8 (16.7) 14 (26.9)

Continuous variablesb, mean (S.D.)
Maternal variables
Age (years) 26.0 (6.3) 25.1 (5.5) 25.3 (4.7) 27.4 (6.7)
Education (years) 10.5 (2.2) 10.8 (2.0) 11.3 (2.4) 11.4 (2.6)

Offspring variables
Year of birth 1962.2 (1.9) 1963.0 (1.9) 1962.7 (1.8) 1962.8 (2.0)

AP, Affective psychoses; S.D., standard deviation.
a Cases versus controls (categorical variables). Compared with male controls, among male SCZ cases there were more

African-Americans (χ22=9.49, p=0.002), single mothers (χ32=6.77, p=0.03) and participants from Providence (χ12=3.94, p<0.05).
Among the categorical variables, there were no differences between female cases and controls.

b Cases versus controls (continuous/count variables): there were no significant differences between cases and controls by sex
among the continuous variables.
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the current study, where samples were drawn at the
early third trimester, TNF-α levels were similar to
those among controls. Comparing term sample assays
with samples from the early third trimester, we found
that the mean TNF-α levels from the former samples
were elevated above those reported from the latter,
particularly among the cases. The mean TNF-α level
among mothers of SCZ males was 34% higher at
term than at early third trimester (6.18 pg/ml v. 4.60
pg/ml) whereas the mean level among controls was
10% higher (4.57 pg/ml v. 4.09 pg/ml).

IL-6, a regulator of white matter growth, can enter
the fetal brain during a key period of sexual differ-
entiation (Dahlgren et al. 2006). Altered IL-6 levels
found in the brain tissue of male, but not female, rat
offspring as a result of hypothyroxinemia prompted
by prenatal insult with polychlorinated biphenyls
(PCBs) are associated with sex-specific alterations in

cerebellar white matter proteins (Miller et al. 2010).
Furthermore, in response to lipopolysaccharide (LPS)
stimulation, blood from human male fetuses revealed
a pro-inflammatory response of elevated IL-6 concen-
trations not found in females (Kim-Fine et al. 2012).
However, in response to mild maternal asthma,
placental levels of IL-6 were significantly, and only, el-
evated among the female fetuses (Scott et al. 2009).
Animal models have also established that injection of
pregnant mice with IL-6 alters offspring behavior and
cortical brain development, although specificity by off-
spring sex has not been examined. When administered
in late second trimester in animal models of psychosis,
IL-6, IL-1β and TNF-α reduced the number and length
of frontal cortical dendrites (Marx et al. 2001; Gilmore
et al. 2004) and induced deficits in prepulse and latent
inhibitions (Zuckerman & Weiner, 2003; Smith et al.
2007b). Likewise, mimicking infection in pregnant

Table 2. Differences in cytokine levels (in pg/ml) between SCZ cases and controls by sex using non-parametric methodsa

Males Females

SCZ
(n=34)

Controls
(n=48)

p value
(non-parametric,
Hochberg)

SCZ
(n=10)

Controls
(n=52)

p value
(non-parametric,
Hochberg)

IL-10
Median 2.73 2.12 0.08 1.15 2.14 0.20
Mean 7.81 2.88 0.32 7.66 3.94 0.60
S.D. 17.52 3.16 15.75 5.07

IL-1β
Median 2.55 1.00 0.16 0.87 0.70 0.86
Mean 8.91 5.27 0.48 18.43 3.50 0.86
S.D. 11.31 10.48 48.71 5.46

IL-8
Median 14.91 15.25 0.39 30.57 16.27 0.84
Mean 46.24 116.35 0.78 81.92 69.34 0.86
S.D. 92.46 387.06 134.06 111.53

IL-6
Median 2.81 1.06 0.01 2.12 1.53 0.16
Mean 12.74 3.74 0.052 13.94 6.37 0.60
S.D. 16.66 7.98 29.70 17.43

TNF-α
Median 3.74 3.73 0.78 1.79 3.86 0.03
Mean 4.60 4.09 0.78 2.80 4.12 0.15b

S.D. 2.77 2.08 2.82 2.32

SCZ, Schizophrenia psychoses; IL, interleukin; TNF, tumor necrosis factor; S.D., standard deviation.
a Comparisons between cases and controls made with the non-parametric Wilcoxon test using the ln transformed cytokine

values. The Wilcoxon rank-sum test investigates differences in medians, with the assumption of identical spreads. If the two
populations differed in spread using the Ansari–Bradley test, the more generalized Kolmogorov–Smirnov test was used.
Tests assume observations from both groups are independent of each other; however, intrafamilial correction adjustment not
made.

b Comparisons between cases and controls for individual cytokines, p40.20 after using the Hochberg method of
adjustment for multiple comparisons.
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Table 3. Differences in third trimester cytokine levels between (a) SCZ cases and (b) AP cases and controls by sex using multivariate deviant subgroup analysisa

Males Females

Deviant subgroup, n (%) Deviant subgroup, n (%)

Cases Controls χ2b p value OR (95% CI) p value Cases Controls χ2b p value OR (95% CI) p value

(a) SCZ cases versus controls

Deviant subgroup: highest quartile (top 75th percentile)
IL-6 16 (47) 11 (23) 4.97 0.03* 3.33 (1.13–9.82) 0.03* 3 (33) 13 (27) 0.70 1.40 (0.30–6.57) 0.67

Deviant subgroup: lowest quartile (lowest 25th percentile)
TNF-α 9 (26) 12 (26) 0.01 0.92 1.26 (0.42–3.81) 0.68 7 (70) 12 (23) 0.01* 6.30 (1.20–33.04) 0.03*

(b) AP cases versus controls

Deviant subgroup: highest quartile (top 75th percentile)
IL-6 5 (28) 11 (23) 0.75 0.98 (0.23–4.14) 0.98 4 (16) 13 (27) 0.39 0.54 (0.15–1.96) 0.35

Deviant subgroup: lowest quartile (lowest 25th percentile)
TNF-α 6 (33) 12 (26) 0.40 0.53 1.33 (0.41–4.35) 0.63 10 (40) 12 (23) 2.37 0.12 2.16 (0.73–6.37) 0.16

SCZ, Schizophrenia psychoses; AP, affective psychoses; OR, odds ratio; CI, confidence interval; IL, interleukin; TNF, tumor necrosis factor; S.D., standard deviation.
a For those case versus control comparisons in which a difference of p40.20 was observed using non-parametric methods adjusted for multiple comparisons. Comparisons between

cases and controls using multivariate deviant subgroup analyses at the 75th (IL-6) or 25th (TNF-α) percentile of the control ln transformed levels (referent) conducted using the general-
ized estimating equation (GEE) method, adjusted for intrafamilial correlation and demographic variables for which there were significant differences by (a) SCZ or (b) AP status and
sex. For the male-specific analyses, these demographic variables were ethnicity, marital status and study site. There were no significant differences between female cases and controls
on any of the potential confounding variables examined.

b χ2 used to compare groups by deviant subgroup status. For those comparisons in which there were cells with 45 subjects, Fisher’s exact test was used.
* p40.05.
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rodents through peripheral introduction of poly I:C, or
LPS, had lasting offspring effects, such as increased
levels of IL-6 in amniotic fluid and placenta
(Urakubo et al. 2001; Gilmore et al. 2003), reduced
neurogenesis (De Miranda et al. 2010) and behavioral
deficits in offspring (Zuckerman & Weiner, 2003; De
Miranda et al. 2010). Administration of non-steroidal
anti-inflammatory drugs abrogated the effects of pre-
natal poly I:C on offspring neurogenesis and behavior
(De Miranda et al. 2010). Rodent studies demonstrated
specific effects of gestational IL-6 injection on offspring
memory/working memory circuitry (Sparkman et al.
2006), deficits found in SCZ, particularly in men
(Goldstein et al. 1998; Abbs et al. 2011), and that may
be related to prenatal infection (Brown et al. 2009).

Animal studies are consistent with clinical studies
demonstrating higher adult IL-6 levels in SCZ com-
pared to healthy controls (Behrens & Sejnowski, 2009;
Patterson, 2009; Watanabe et al. 2010). Effect sizes of
IL-6 in acutely relapsed and first-episode patients
were comparable and associated with longer illness
duration (Ganguli et al. 1994) and paranoid hallucina-
tions (Müller et al. 1997), and reduced by antipsychotic
treatment (Sugino et al. 2009; Mutlu et al. 2012). Popu-
lation studies, including the current one, demonstrated
that fetal exposure to cytokines, as reflected by levels
detected in maternal gestational sera, had a significant
impact on sex-dependent SCZ risk, underscoring the
etiologic contribution of immune processes prior to ill-
ness onset.

Our finding of lower maternal TNF-α in maternal
prenatal sera of female offspring with SCZ, but not
in males, was unexpected but intriguing. TNF-α has
neuroprotective and neurotoxic effects on brain func-
tion (Twohig et al. 2011), and decreased levels could
result from an increased glucocorticoid response due
to pregnancy complications or other stressful events.
Gonadal hormone and metabolic factors during preg-
nancy could also affect TNF-α. High-dose estradiol
treatment (at levels similar to pregnancy) reduced
T-helper (Th)1 cytokines (including TNF-α), and
shifted the balance toward a Th2 anti-inflammatory
state (Correale et al. 1998), whereas increased TNF-α
was seen with low-dose estradiol exposure. Perhaps
a maternal TNF-α deficit (in the context of a higher
estradiol pregnant state) is further enhanced in
mothers carrying a female versus male fetus, resulting
in higher risk for SCZ in females associated with low
maternal TNF-α. Lower maternal TNF-α was also asso-
ciated with a higher mean glycemic index during the
third trimester, implicating a potential role for meta-
bolic pathways during pregnancy (Moreli et al. 2012).
Reduced maternal TNF-α levels could also result
from dysregulation of the parasympathetic autonomic
nervous system (ANS) following immune challenge.T
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Nicotinic cholinergic signals transmitted by the vagus
nerve to the central nervous system (CNS) after
LPS (endotoxin) exposure inhibited TNF-α responses
(Borovikova et al. 2000) and decreased TNF-α-
mediated neuroprotection (Carlson et al. 1999). Con-
sistent with this, abnormal patterns of autonomic
arousal during social cognition tasks were reported
in SCZ (Jáuregui et al. 2011). Female offspring of
mothers who smoked during pregnancy might be du-
ally affected by nicotine exposure, with effects through
nicotine’s capacity to drive vagal inhibition of TNF-α
(thereby decreasing neuroprotective mechanisms),
and through the more direct (perhaps sex-dependent)
effects of nicotine on developing cholinergic brain
circuitry (Nunes-Freitas et al. 2011). It is likely that
multiple mechanisms regulate the effects of cytokines
on offspring brain development, with specific mechan-
isms depending on timing of exposure. These include:
dysregulation of nerve growth factors (Schobitz et al.
1993; Anisman & Merali, 2002; Gilmore et al. 2003;
Twohig et al. 2011); loss of dendritic connections
(Marx et al. 2001; Gilmore et al. 2004; Twohig et al.
2011) and white matter connectivity (Yoon et al. 1996;
Dammann & Leviton, 1997); apoptosis (Hu et al.
1997); dysregulation of neurotransmitters (Zalcman
et al. 1994; Behrens et al. 2008); and hormonal dysregu-
lation (Schobitz et al. 1993; Anisman & Merali, 2002)
impeding healthy sexual differentiation of the brain
(Handa et al. 1994; Kawata, 1995; Tobet & Hanna,
1997; Goldstein et al. 2001; Tobet, 2002) and brain
aging (Zietz et al. 2001).

It should be emphasized that our findings of sex-
differentiated relationships between maternal immune
activation signals and SCZ risk are based on com-
parisons within a sample set subjected to identical
handling conditions. However, samples were frozen
for up to 48 years, raising the possibility of sample de-
hydration or degradation. Dehydration was unlikely
given that we eliminated any samples coming from
tubes that were cracked or had faulty seals. Although
some cytokines may be less stable than others, pre-
vious work using samples stored under similar condi-
tions, and for a similar length of time (>40 years)
(Stroud et al. 2007; Klebanoff et al. 2009), demonstrated
long-term stability of many analytes. To ensure com-
parability of samples across all recruitment years
(1959–1966), we also ruled out any relationship of cyto-
kine levels with sample acquisition year (Spearman’s
correlation all <0.1). Assay controls (purchase of all
reagents from the same lot and completion of all assays
within the same 2-month period) served to further
minimize potential sources of variability in cytokine
measurements. Given the range of procedural safe-
guards we used with this sample set, in addition to
excluding all cytokine values below the level of

detection, the unexpected finding of an association of
SCZ risk with lower TNF-α levels in female offspring
cannot be explained by differential sample handling
or artifacts of assay methods. The fact that there was
a sex difference in risk due to lower TNF-α levels sup-
ports the validity of the assay measurement as it is
highly unlikely that there would be a bias in maternal
assay measurement by sex of the fetus. Similarly, our
finding of an association of SCZ risk with elevated
IL-6 levels, particularly in males, is also independent
of effects due to differences in sample handling or
assay conditions across the sample set.

The findings regarding specificity by sex or psy-
chosis type should be replicated, given our small
sample sizes, particularly female SCZ. In fact, IL-6
was higher in female SCZ cases, but not significantly,
which may be due to low power. This may also have
been true for IL-1β for which all cases showed higher
levels (albeit non-significantly) than controls. TNF-α
was also lower (non-significantly) in AP females versus
controls. These results were not significant probably
because of the substantial standard deviations
and lower effect sizes compared with SCZ females.
Potential low statistical power, however, cannot ex-
plain the significant risks for increased maternal IL-6
exposure among SCZ males and decreased maternal
TNF-α exposure among SCZ females, even though
the specificity of these effects should be further tested.
As described in the online Supplementary material,
based on analyses of the considerable amount of infor-
mation available from this longitudinal study, it does
not seem that the ascertained cases differ considerably
from expectations, for instance in terms of gender
distribution, socio-economic level or family history of
mental illness, even though we had a low rate overall.
Therefore, we anticipate that these study results should
be generalizable to other psychotic samples and
populations.

Several genes implicated in SCZ are also known
to regulate immune processes (Carter, 2009). Infection
and other factors disrupting maternal prenatal im-
mune responses may interact with genetic suscepti-
bility, increasing risk for SCZ (Patterson, 2009; Brown
& Derkits, 2010). For example, gestational injection of
IL-6 into pregnant IL-6 receptor knockout (KO) mice,
or wild-type mice with an antibody directed against
IL-6, did not induce behavioral changes typically
observed after prenatal poly I:C injection (Smith et al.
2007b). Neurogenesis and behavior also remained in-
tact in offspring of toll-like receptor (TLR)-3 KO
dams after poly I:C exposure (De Miranda et al.
2010). Furthermore, cytokine production after infection
or immune challenge may not be limited to the preg-
nant mother, as placental levels of IL-6 were increased
after poly I:C administration to IL-6 KO mated with a
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wild-type father, suggesting that poly I:C reached the
fetal component of the placental unit (Mandal et al.
2010).

In summary, the findings in this study demonstrate
that prenatal immune disturbances in the early third
trimester significantly increased the risk for psychoses
in a sex-dependent manner more than 40 years later.
Male offspring were most strongly affected by ma-
ternal IL-6 elevations; female offspring were affected
when maternal TNF-α levels were lower. The results
underscore the importance of immunologic processes
in brain development and timing of exposure (i.e.
timing of the sexual differentiation of the brain) as
potential etiologic contributors to the sex-dependent
development of SCZ. The findings also highlight the
importance of considering the type of psychosis
and offspring sex in the study design to improve our
understanding of the gestational impact of immunolo-
gic processes on psychosis risk. Finally, our findings
may have implications for other neurodevelopmental
disorders, given the report by Hsiao et al. (2012) on
prenatal immunologic processes implicated in the
risk for autism, which has a 4:1 ratio of boys to girls
(Yeargin-Allsopp et al. 2003).

Supplementary material

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0033291714000683.
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