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Separation scaling for viscous vortex
reconnection
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Reconnection plays a significant role in the dynamics of plasmas, polymers and
macromolecules, as well as in numerous laminar and turbulent flow phenomena in
both classical and quantum fluids. Extensive studies in quantum vortex reconnection
show that the minimum separation distance δ between interacting vortices follows a
δ(t) ∼ t1/2 scaling. Due to the complex nature of the dynamics (e.g. the formation of
bridges and threads as well as successive reconnections and avalanche), such scaling has
never been reported for (classical) viscous vortex reconnection. Using direct numerical
simulation of the Navier–Stokes equations, we study viscous reconnection of slender
vortices, whose core size is much smaller than the radius of the vortex curvature. For
separations that are large compared to the vortex core size, we discover that δ(t) between
the two interacting viscous vortices surprisingly also follows the 1/2-power scaling for both
pre- and post-reconnection events. The prefactors in this 1/2-power law are found to
depend not only on the initial configuration but also on the vortex Reynolds number
(or viscosity). Our finding in viscous reconnection, complementing numerous works
on quantum vortex reconnection, suggests that there is indeed a universal route for
reconnection – an essential result for understanding the various facets of the vortex
reconnection phenomena and their potential modelling, as well as possibly explaining
turbulence cascade physics.
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1. Introduction

Reconnection, a fundamental topology-transforming event, has been a subject of intense
recent study in both classical (Pumir & Kerr 1987; Melander & Hussain 1989; Kida &
Takaoka 1994; Kleckner & Irvine 2013) and quantum (Koplik & Levine 1993; Barenghi,
Donnelly & Vinen 2001; Bewley et al. 2008; Paoletti, Fisher & Lathrop 2010) fluids,
as well as in many other fields, such as plasmas (Priest & Forbes 2000), polymers and
macromolecules (Vazquez & De Witt 2004). In turbulent flows, vortex reconnection
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FIGURE 1. Schematic of the evolution of (classical) viscous vortex reconnection: (a) before,
(b) during and (c) after reconnection. The curved arrows indicate the rotating directions of the
vortices, and the dashed straight arrows represent the directions of vortex motion. Note that
the actual reconnection, which is intrinsically three-dimensional, is never complete in classical
fluids, leaving unreconnected parts as threads.

appears to be the main mechanism for energy cascade: (i) in quantum fluids, reconnection
excites a cascade of Kelvin waves leading to energy dissipation via emissions of phonons
and rotons (Kivotides et al. 2001; Vinen, Tsubota & Mitani 2003); (ii) in classical fluids,
finer and finer scales and turbulence avalanche can occur through successive reconnections
(Melander & Hussain 1989; Yao & Hussain 2020b). Reconnection is also believed to play
an essential role in several other physical phenomena, such as fine-scale mixing (Hussain
1986) and noise generation (Leadbeater et al. 2001; Daryan, Hussain & Hickey 2020).

One simple but important question in reconnection is the time scaling of the minimum
distance δ(t) between the two interacting vortices. Assuming that the reconnection is a
local process in space and the circulation Γ is the only relevant dimensional quantity
involved, dimensional analysis yields

δ(t) = A±(Γ |t − t0|)1/2, (1.1)

where t0 is the reconnection time, and A− and A+ are dimensionless factors for pre- and
post-reconnection, respectively. Such a 1/2-power scaling has been numerically observed
for reconnection of line vortices using the Biot–Savart (B–S) law (de Waele & Aarts 1994;
Kimura & Moffatt 2017) and also for reconnection of quantized vortices by integrating
the Gross–Pitaevksii equation (Nazarenko & West 2003; Villois, Proment & Krstulovic
2017). In addition, recent quantum experiments (Paoletti et al. 2010; Fonda, Sreenivasan &
Lathrop 2019) confirmed this scaling when the distances between two interacting vortices
are large compared with the vortex diameter but small compared with those from other
adjacent vortices. Note that deviations from this 1/2 scaling were also reported in several
works (Zuccher et al. 2012; Allen et al. 2014; Rorai et al. 2016).

In contrast to the vast literature on the time scaling of δ(t) in quantum fluids, very limited
results have been reported for reconnection in classical fluids, which are governed by the
Navier–Stokes (N–S) equations (figure 1). By performing the direct numerical simulation
(DNS) of two antiparallel vortex tubes reconnection, Hussain & Duraisamy (2011) found
that the minimum distance δ between the vortex centroids scales asymmetrically as (t0 −
t)3/4 and (t − t0)2 before and after the reconnection. Note that in this study, the vortex
core size σ is comparable to the initial separation distance δ between these vortices (i.e.
σ/δ ≈ 0.4) – which definitely breaks the local assumption required for the 1/2 scaling.
Inspired by the recent works of Moffatt & Kimura (2019a,b) on the finite time singularity
of Euler and N–S equations, we studied reconnection of two colliding slender vortex rings
(the ratio between the initial vortex core size σ and the radius of the ring R is approximately
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Separation scaling for reconnection

0.01) and found that δ(t) before reconnection follows a 1/2 scaling when σ � δ � R (Yao
& Hussain 2020a). The main objective of the present work is to further elucidate the time
scaling of minimum separation distance for (classical) viscous vortex reconnection. In
particular, we want to address the following questions: (i) Does the time scaling of the
minimum distance follow δ ∼ t1/2 scaling both before and after reconnection? (ii) What
dictates the prefactors in the scaling? (iii) What are the similarities/differences between
classical and quantum vortex reconnections?

2. Results

Previous studies of the dynamics of slender vortices are mainly based on the vortex
filament (VF) method, which is based on the B–S law (Siggia 1985; de Waele &
Aarts 1994; Kimura & Moffatt 2018). To regularize the singular kernel of the B–S
integral, a cutoff needs to be employed. With such regularization, the B–S integration
always diverges near the singular time of reconnection (Villois et al. 2017; Kimura &
Moffatt 2018). An ad hoc ‘cut-and-paste’ algorithm is typically required for studying
post-reconnection scenarios (Schwarz 1985; Baggaley 2012; Galantucci et al. 2019).
However, as reconnection in classical fluids is very complex, such an algorithm is very
difficult to implement. Hence, the VF method is mainly employed for studying the
pre-reconnection event.

With the rapid development of supercomputers these days, DNS for considerably
large-scale flow problems are becoming feasible. Here, we aim to employ DNS of the N–S
equations for studying viscous reconnection of slender vortices. The numerical method
employed here is the same as those used in Yao & Hussain (2020b). To understand
what is universal in reconnections, three different vortex configurations are considered.
Case I is two colliding vortex rings, which is the same as that in Moffatt & Kimura
(2019a,b) and Yao & Hussain (2020a) for studying the possible formation of finite time
singularity of Euler and N–S equations. Case II is two initially rectilinear, orthogonal
vortices, which corresponds to the limit where the radii of curvature κ of two vortices
are extremely large. Finally, to study the interaction of vortices with significantly different
curvatures, following Galantucci et al. (2019), we also consider a case of a vortex ring
interacting with an isolated vortex tube (Case III). For all cases, the initial vorticity
distribution in the cross-section is assumed to be Gaussian along radial r direction
ω(r) = Γ0/(4πσ 2

0 ) exp[−r2/4σ 2
0 ] with the circulation Γ0 = 1 and core scale σ0 = 0.01.

Compared with those in the past studies (Melander & Hussain 1989; Boratav, Pelz
& Zabusky 1992; Kida & Takaoka 1994; Chatelain, Kivotides & Leonard 2003), the
distinction of our simulations is the larger ratio of the radius of curvature to the core size
(i.e. R0/σ0 ≥ 100). As the viscous effect is an essential issue in classical fluids, for each
configuration, two different Reynolds numbers (ReΓ ≡ Γ0/ν = 2000 and 4000), achieved
by changing the kinematic viscosity ν, are considered. More technical details are described
in the supplementary material and movies available at https://doi.org/10.1017/jfm.2020.
558.

2.1. Colliding vortex rings
We first consider the interaction of two circular vortex rings, which are symmetrically
placed with the initial inclination angle θ = π/4 (figure 2a). The initial radius of the ring
is selected as R0 = 1. In addition, the initial minimum distance between these two vortex
rings is chosen as δ0 = 0.2 so that the interaction between the vortices can be considered
as localized (σ0 � δ0 � R0). Note that this vortex set-up represents the typical antiparallel
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FIGURE 2. Reconnection of colliding vortex rings: (a) initial configuration, and evolution of
δ2(t) at ReΓ = 2000 ( ) and 4000 ( , red) for (b) pre- and (c) post-reconnection phases.
The blue dashed lines indicate the linear scaling. The insets are flow structures represented by
vorticity isosurface at 5 % of maximum initial vorticity |ω| = 0.05ω0 for ReΓ = 2000; and δ as
a function of |t − t0| for ReΓ = 4000 with the dashed line referring the t1/2 scaling.

configuration. The evolution of the flow structure for ReΓ = 2000 is shown in the insets
of figure 2 and also in supplementary movies 1 and 2. The structures for ReΓ = 4000,
which are quite similar, are not shown due to high computational cost for rendering.
Several features that distinctly differ from quantum reconnection deserve to be noted.
First, as the rings approach each other under self-induction, they also undergo significant
core deformation and form two thin vortex sheets. Second, the reconnection process is
not discrete as for quantized vortices, and circulation transfer rate and the reconnection
time strongly depend on viscosity ν, and hence on ReΓ (Hussain & Duraisamy 2011;
Yao & Hussain 2020b). Finally, reconnection is never complete; as a consequence, the
circulation in the reconnected bridges is relatively smaller than the initial circulation Γ0 of
the vortices.

The appropriate determination of δ(t) relies heavily on the accurate tracking of the
location of the vortex axis (Fonda et al. 2014; Villois et al. 2016), which is rather
challenging in classical fluids. First, unlike vortex filaments or quantized vortices, where
the axis location is almost precise, the vorticity field in classical fluids is continuously
distributed. Second, vortex cores are typically distributed in irregular shapes without any
clear centre: before reconnection, the vortices undergo significant core deformation, and,
after reconnection, the reconnected vortex lines take some time to collect together to form
the bridge.

Due to the twofold symmetry of the initial condition considered, the minimum distance
δ between these two interacting rings before and after reconnection should occur in the
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Cases ReΓ a− t−0 a+ t+0
1. Colliding vortex rings 2000 0.38 0.26 2.19 0.30

4000 0.38 0.26 2.27 0.30
2. Orthogonal vortex tubes 2000 0.29 0.60 0.94 0.65

4000 0.29 0.61 0.99 0.63
3. Vortex ring and tube 2000 0.39 0.96 1.28 1.09

4000 0.40 0.93 1.34 1.03

TABLE 1. Fitted values of the prefactors a± and t±0 for the minimum distance scaling
δ(t) ∼ a±|t − t±0 |1/2. The superscript ± stands for before (−) and after (+) the reconnection,
respectively.

symmetry Ss and collision Sc planes, respectively – which makes the determination of δ(t)
relatively easy. Following Hussain & Duraisamy (2011) and Yao & Hussain (2020a), we
take the vorticity centroid (computed as the centroid of above 75 % of its maximum) to be
the centre for vortices in these two planes. Figure 2(b) displays the evolution of δ2(t) for the
pre-reconnection event, with the top inset showing δ as a function of t0 − t on a log–log
scale for ReΓ = 4000. The clear following of linear scaling for δ2(t) at the early time
suggests that δ(t) ∼ a−(t−0 − t)1/2, with a− the constant prefactors for pre-reconnection
corresponding to A−Γ 1/2 in (1.1), and t−0 the critical time when δ → 0. For both ReΓ

cases, δ2(t) collapses initially and then slowly deviates from linear scaling when δ ∼ O(σ ).
The deviation happens earlier for the ReΓ = 2000 case, which is due to the more rapid
increase of the core size caused by stronger viscous diffusion. A linear fit on δ2(t) between
0 < t < 0.15 for ReΓ = 4000 gives t−0 = 0.26 and a− = 0.38 (table 1). As the circulation
remains constant at Γ = 1 during this time, the dimensionless prefactor A− = a− = 0.38,
which is quite close to A = 0.4 reported in de Waele & Aarts (1994).

When two bridges move sufficiently apart from the interacting region, a clear linear
scaling for δ2(t) can be observed for both ReΓ cases (figure 2c). Hence, δ ∼ a+(t − t+0 )1/2

scaling also holds in the post-reconnection dynamics when the two bridges’ vortices are
mainly governed by the mutual interaction. The early evolution of δ2(t) deviates from the
linear scaling, presumably for two main reasons. First, when the bridges are too close,
they are under the influence of other unreconnected structures, such as threads, and other
parameters besides Γ may be relevant in determining δ. Second, the reconnected vortex
lines, initially in a thin vortex sheet shape, take time to accumulate to form a circular shape,
and the circulation Γ continuously increases during this phase. A fit in the linear region
gives t+0 ≈ 0.30 for both ReΓ cases, and a+ = 2.19 and 2.27 for ReΓ = 2000 and 4000,
respectively (table 1). Different from quantized vortices, where reconnection is discrete
and t0 is almost the same for pre- and post-reconnection, here reconnection is a continuous
process, and hence t+0 is slightly larger than t−0 . Consistent with previous studies, a+ is
always larger than a−, indicating that the vortices separate much faster than their approach.
Compared to the pre-reconnection process, the effect of ReΓ on δ(t) is more apparent
for the post-reconnection. It is because, in classical fluids, the dynamics of reconnection,
such as the reconnection time and the circulation transfer rate, strongly depends on the
viscosity ν. In general, reconnection is faster at higher ReΓ , which explains why δ2(t)
follows linear scaling earlier at ReΓ = 4000. In addition, as ReΓ increases, reconnection
is more complete (Yao & Hussain 2020a). The variation of a+ with respect to ReΓ is
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FIGURE 3. Reconnection of orthogonal vortex tubes: time evolution of δ2(t) at ReΓ = 2000
( ) and 4000 ( , red) for (a) the pre- and (b) post-reconnection phases, with the dashed lines
indicating linear scaling. The insets are flow structures represented by vorticity isosurface |ω| =
0.05ω0; the bottom inset in (b) is δ as a function of |t − t0| for ReΓ = 4000 with the dashed line
indicating the t1/2 scaling.

mainly attributed to different circulations Γ in the reconnected bridges – which is difficult
to be precisely determined.

2.2. Orthogonal vortex tubes
As one of the simplest configurations, the reconnection of orthogonal vortex tubes has
been extensively studied for both classical (Boratav et al. 1992; Beardsell, Dufresne &
Dumas 2016; Jaque & Fuentes 2017) and quantum (Zuccher et al. 2012; Galantucci et al.
2019) fluids. Similar to Case I, here the initial distance between these two rectilinear
vortices is chosen as δ0 = 0.2. The insets in figures 3(a) and 3(b) and also supplementary
movie 3 show the evolution of the flow structures for ReΓ = 2000. The evolution is quite
similar to that in Boratav et al. (1992) for the thick vortex core case: the vortex tubes
first develop into locally antiparallel configuration under mutual induction, then collide
with each other due to self-induction; after reconnection, they recede away. Different from
quantum cases (Villois et al. 2017; Galantucci et al. 2019), the unreconnected threads,
which wrap around the bridges, are distinct after reconnection. In addition, a Kelvin
wave is observed after reconnection. In quantum fluids, nonlinear interaction of Kelvin
waves creates waves of shorter and shorter wavelength, which is considered as the main
mechanism for energy cascade (Baggaley & Barenghi 2011); in classical fluids, however,
the Kelvin wave would rapidly decay due to viscous effect. It would be interesting to
compare the difference in the Kelvin wave evolution as well as its role on energy cascade
between the quantum and classical reconnections.

To determine the minimum distance δ(t) between these two vortex tubes, the axis of
the vortex tubes needs to be tracked. Here, we propose a vortex tracking method based on
the vortex lines that go through the vortex centre at the boundary. First, the centriod of the
vortex tubes at the planes x = −π and y = −π is determined using the same procedure
as discussed above. Then, vortex lines that seed from these two centres are integrated
using the ‘stream3’ function in Matlab. Figure 4 (and supplementary movie 4) show the
time evolution of the vortex axis for ReΓ = 2000, and the evolution at ReΓ = 4000 is
quantitatively the same. It is clear that the axis of vortex tubes is unambiguously identified.
Finally, δ is taken as the shortest distance between these two vortex lines.
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FIGURE 4. Evolution of the vortex axes for the orthogonal vortex tubes case at ReΓ = 2000:
(a) t = 0, (b) t = 0.45, (c) t = 0.8 and (d) t = 1.2.

For the pre-reconnection, δ2(t) initially varies slowly during the phase of the formation
of antiparallel configuration (figure 3a). Then, the perturbed vortex tubes approach each
other rapidly with δ2(t) following a clear linear scaling. A slight difference in the evolution
of δ2(t) can be observed between ReΓ = 2000 and 4000 cases, indicating a weak Reynolds
number effect on the pre-reconnection evolution. For both ReΓ cases, the linear fit shows
that a− ≈ 0.29, which is slightly smaller than the case of the colliding rings. Figure 3(b)

shows that δ2(t) also follows linear scaling after reconnection, and the δ ∼ t1/2 scaling
extends far beyond the initial separation distance δ0. Consistent with Case I, the prefactor
increases with ReΓ , with a+ = 0.93 and 0.99 for ReΓ = 2000 and 4000, respectively.
Again, the vortices move faster after the reconnection than before it. Similar to the finding
in Villois et al. (2017), the prefactors a+ are smaller than those in Case I, which might be
due to a smaller curvature of the cusps generated after reconnection in this case.

2.3. Vortex ring and tube interaction
The third case we considered is a vortex ring interacting with an isolated rectilinear vortex
tube. The radius of the ring is the same as the colliding vortex rings case, namely, R0 = 1.
To reveal the cross-over from driven (δ ∼ t) to interaction (δ ∼ t1/2) region observed in
Galantucci et al. (2019), the initial distance is chosen as twice the previous cases, namely,
δ0 = 0.4. The vortex set-up and the subsequent evolution for ReΓ = 2000 represented by
vortex surfaces and tracked vortex axis are shown in the top insets in figures 5(a) and
5(b), respectively (see also supplementary movies 5 and 6). Due to the self-induction, the
vortex ring approaches the vortex tube; during this phase, both the vortex ring and tube
are perturbed; at close approach, the vortex ring and tube are also deformed into locally
antiparallel configuration (i.e. t = 1). It further confirms the argument that reconnection
physics of two vortices should be independent of the initial spatial configuration (Siggia
& Pumir 1985). After reconnection, parts of the vortex ring and tube exchange with each
other, and, due to the Kelvin wave, the newly formed vortex ring and tube become further
perturbed with the threads connecting them.

Figure 6(a) displays the evolution of δ(t), with figures 6(b) and 6(c) showing δ2(t)
before and after reconnection, respectively. Initially, δ(t) scales almost linearly with t
and the approaching velocity can be approximately determined by the initial self-induced
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FIGURE 5. Evolution of flow structures for vortex ring and tube interaction for ReΓ = 2000:
(a) represented by vorticity isosurface at 5 % of maximum initial vorticity, i.e. at |ω| = 0.05ω0,
and (b) by tracked vortex axis.

velocity of the ring and the mutual-induced velocity between the ring and the tube.
Consistent with the previous two cases, when the two vortices are close to each other,
a clear t1/2 scaling for δ is observed (inset in figure 6b). The transition between driven
(δ ∼ t) and interaction (δ ∼ t1/2) regions happens at δ ∼ 0.3. The prefactor for ReΓ =
4000 is a− = 0.40, which is very close to Case I.

From figure 6(c), it is clear that δ(t) ∼ t1/2 scaling holds after reconnection, with the
prefactor a+ = 1.28 and 1.34 for ReΓ = 2000 and 4000, respectively. The values are
between the colliding vortex rings and orthogonal tubes cases. The 1/2 scaling breaks
down when the vortex ring moves sufficiently far away from the tube. Note that the
cross-over between the t1/2 to t1 scalings for δ(t) in the post-reconnection is not observed.
Instead, for this case δ(t) remains almost constant after some time. The reason is that the
travelling velocity of the perturbed vortex ring is roughly the same as that of the perturbed
part of the tube. When the oscillations in the vortex tube and ring die out and the vortex
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FIGURE 6. Interaction of vortex ring and tube: (a) time evolution of δ(t); and δ2(t) for (b) the
pre-reconnection and (c) post-reconnection phases. Symbols and , red, refer to ReΓ = 2000
and 4000, respectively, and the blue dashed lines indicate linear scaling. The insets in (b) and
(c) show separation distance δ as a function of |t − t0| for ReΓ = 4000 with the dashed line
indicating the t1/2 scaling.

ring regains its circular shape, we should expect δ(t) ∼ t as suggested in Galantucci et al.
(2019).

3. Conclusions

The question of whether there is a universal scaling/route for reconnection has been
extensively studied and debated (Zuccher et al. 2012; Villois et al. 2017; Fonda et al. 2019).
Prior works on quantum vortex reconnection have shown clear evidence for the existence
of a universal δ ∼ t1/2 scaling; however, due to the complex nature for reconnection
in classical fluids (presumably due to viscosity), this scaling has never been confirmed
previously. With the aid of recent advances in supercomputing, we performed DNS of
viscous reconnection for slender vortices at ReΓ = 2000 and 4000. Three different initial
conditions are considered, namely, two colliding vortex rings; orthogonal and straight
vortex tubes; and vortex ring interacting with a tube. For all these cases, the vortices evolve
into locally antiparallel configuration – akin to the finding in Villois et al. (2017) for the
reconnection of quantum vortices. When the distance between two interacting vortices
is large compared with their core size, and the dynamics is predominately governed by
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their mutual induction, we observe, for the first time, that the approach and separation
distances follow a symmetrical 1/2-power scaling, independent of the initial configuration.
The discrepancies in previous studies (Hussain & Duraisamy 2011; Yao & Hussain 2020b)
are due to the fact that the length scale of vortex core size σ is approximately the
same order as the separation δ and should be incorporated when considering the scaling.
Although the dynamics of the reconnection is substantially different from that in quantum
fluids, the surprisingly similar results in classical fluids regarding δ(t) scaling suggest that
there is indeed a universal route towards reconnection. Consistent with previous results
(Zuccher et al. 2012; Boué et al. 2013; Villois et al. 2017), we find that the prefactors a±
in the square root law are not universal and depend on the initial configuration as well
as the Reynolds number (or viscosity) – which is a distinct feature for classical vortex
reconnection.
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