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SUMMARY
This paper presents two frontal plane algorithms for 3D
dynamic bipedal walking. One of which is based on the
notion of symmetry and the other uses reinforcement
learning algorithm to learn the lateral foot placement. The
algorithms are combined with a sagittal plane algorithm and
successfully applied to a simulated 3D bipedal robot to
achieve level ground walking. The simulation results
showed that the choice of the local control law for the
stance-ankle roll joint could significantly affect the perform-
ance of the frontal plane algorithms.

KEYWORDS: Bipedal walking; Frontal plane algorithms; Con-
trol law; Stance-ankle joint roll.

1. INTRODUCTION
In our previous paper,1 a general control architecture was
proposed. In the architecture, we assume that the motion in
the three orthogonal planes (sagittal, frontal and transverse)
can be independently considered. Three-dimensional walk-
ing algorithms can then be formulated by synthesizing the
control algorithms for each of the orthogonal planes. The
paper presented a few examples of control algorithms for
the sagittal plane motion control.

In this paper, the control algorithms for the frontal plane
are described. It is responsible for the lateral balance of the
bipedal walking. In comparison with the sagittal plane
motion control, much fewer strategies for the frontal plane
motion control have been proposed. Goddard et al.2 and,
Hemami and Wyman3 used a three-link planar model to
study the frontal plane motion of a biped. Iqbal et al.4

presented a model for studying the involvement of the
central nervous system in the execution of voluntary
movements in the frontal plane.

In this paper, two strategies for the frontal plane are
explored. In the first implementation, a reinforcement
learning algorithm is used to learn the lateral foot placement
of the swing leg at the end of each step such that a stable
lateral motion can be achieved. The other implementation
uses the notion of symmetry to generate the control law for
the lateral swing leg behavior. The reinforcement learning
algorithm is used, if necessary, to learn the offset value for
the control law.

The algorithms for the frontal and sagittal planes are then
combined and applied to a simulated 3D bipedal robot “M2”
(Figure 1) to achieve dynamic walking behaviors. In the

simulation, we apply two different local control laws at the
stance-ankle roll joint. Simulation results reveal that an
appropriate choice of the local control law is crucial for the
algorithms to be successful.

The organization of this paper is as follows. Section 2
presents the heuristics of the frontal plane motion for
bipedal walking. Section 3 describes the proposed frontal
plane motion control algorithms. The two strategies men-
tioned earlier are introduced. Section 4 studies the effects of
the local control law at the stance-ankle roll joint on the
learning rate for the first strategy. Two local control laws are
compared by applying the overall control algorithm to the
simulated M2. Section 5 presents the implementation of the
frontal plane strategy that is based on the notion of
symmetry. Simulation studies are used to demonstrate the
effectiveness of such a strategy. An analysis is carried out to
verify the approach.

2. HEURISTICS OF FRONTAL PLANE MOTION
In the frontal plane, the biped uses lateral foot placement to
maintain its lateral balance. During steady forward walking,
the body’s lateral velocity varies periodically like a
sinusoidal waveform.5 The body needs to swing from side to
side because each leg alternatively bears the weight of the
body and the legs are separated in lateral direction.6 The
average lateral velocity has to be zero if the biped follows a
straight line walking path. At each step, the lateral velocity
of the body is expected to change sign exactly once.

If we consider the legs’ inertia in the frontal plane to be
negligible, the body height to be maintained at a constant
value (in level ground walking), the stance ankle to be un-
actuated, and the body posture to be upright; the frontal
plane motion can be coarsely modelled using a linear
inverted pendulum model adopted by Latham7 and Kajita
and Tani8 as shown in Figure 2. The dynamic equation for
the linear inverted pendulum model is as follows:

ẍ=
g
h

x (1)

where x is the horizontal coordinate of the body’s center of
mass from a vertical plane that passes through the ankle
joint, g is the gravitational constant and h is the height.

Equation 1 can be integrated to give the relationship
between ẋ and ẍ:

ẋ2

2
=

gx2

2h
+C (2)

where C is the integration constant which Kajita, Tani and
Kobayashi9 called the orbital energy.
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Given the velocity ẋ and the position x of the system at
any instant, C can be computed, and equation 2 defines the
relationship between ẋ and x for all other time before the
next support exchange event.

When C is greater than zero, the mass approaching the
vertica plane that passes through the pivoting point will be
able to travel across the plane. When C is less than zero, the
mass will not be able to travel across the vertical plane.
Instead, it reverts its direction of travel at some instance of
time. In the frontal plane implementation, C is desired to be
less than zero because it is desirable for the body’s lateral
velocity to change sign within the step.

Since this model is a coarse model for the frontal plane,
it is not utilized to plan the swing leg motion. Instead, it is
only used for the failure detection in the learning algorithm
(see Section 3). The model is also used in the frontal plane
local control based on the stance-ankle roll joint (see
Section 4).

3. FRONTAL PLANE ALGORITHM
This section describes the control algorithm for the frontal
plane. They are designed for the biped walking along a

straight path. The algorithm can be decomposed into the
stance leg and swing leg sub-algorithms.

For the stance leg, we have the hip and ankle roll joints.
Let’s assume that the desired body roll angle with reference
to the vertical is zero (upright posture). This can be
regulated by installing a PD controller at the stance-hip roll
joint. A DC term can be added to account for the moment
due to the body and the swing leg weights so that high
stiffness is not required for the joint. The stance-ankle roll
joint implementation will be presented in Section 4.

For the swing-leg control in the frontal plane, the desired
trajectory of the swing-hip roll angle and the swing-ankle
roll angle are required. The desired swing-ankle roll angle is
obtained by geometric consideration. For example, the
swing foot is maintained to be parallel to the ground when
the foot is in the air. Once these angles are given, PD
controllers are used to generate the desired torques at the
respective joints.

The behavior of the swing-hip roll angle is the key
determinant for the lateral stability of bipedal walking.
There are several ways to generate the trajectory of the
desired swing-hip roll angle. Two strategies are presented
here. In the first strategy, the desired end position � f (with
respect to the vertical) of the swing leg in the frontal plane
is generated before the beginning of the next step using the
reinforcement learning method. The trajectory of the roll
angle � of the swing leg is then planned using a third degree
polynomial. The swing time is assumed to be a constant.

The second strategy is based on the notion of symmetry.
The desired swing leg roll angle is set to mirror the actual
stance-leg roll angle. The reinforcement learning method is
used to learn the offset � to the nominal desired swing-leg
roll angle provided by the symmetry approach (see Section
5).

Q-learning using CMAC (Cerebellar Model Articulation
Control) as the function approximator for the Q-factors1,10 is
adopted to be the reinforcement learning method for both

Fig. 1. Three dimensional biped: M2.1

Fig. 2. Massless leg model: Linear inverted pendulum. x is the
horizontal coordinate of the point mass from the vertical plane that
passes through the ankle joint.
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implementations. The learning aims to avoid the failure
states in the frontal plane. The following subsections
describe the state variables and reward function used in
these strategies.

3.1. State variables
The frontal plane motion control is assumed to be weakly
coupled to the sagittal plane motion. Thus, the state
variables for the sagittal plane are not considered in the
frontal plane learning implementation. The following state
variables are chosen (see Figure 3) for the frontal plane
motion control:

(1) The velocity of the body in the y-direction, ẏ+ ;
(2) The roll angle of the new swing leg (with respect to the

vertical), �+ ;
(3) The roll angle of the new stance leg (with respect to the

vertical), �+ .

The superscript + indicates that the variable is detected at
the end of the support exchange (just before the beginning
of a new step).

3.2. Reward function and return computation
The reinforcement learning algorithm adopts a reward
function r that only issues a punishment value when a
failure state is encountered:

r=�0
Rf

for �t ≤�≤�u and Ct ≤C≤Cu

otherwise (failure)
(3)

where � is the stance-leg roll angle (Figure 3) bounded by
�l, and �u; C is the orbital energy bounded by Cl and Cu;
and Rf is a negative constant (punishment). Note that the
failure condition based on � is checked at all times. The
failure condition based on C is checked only at the end of
the support exchange.

For such a reward function, a “farsighted” approach for
the return computation has to be adopted. That is, the
discount rate � for the return computation is set to a value
close to one (say 0.9).

4. LOCAL CONTROL IN FRONTAL PLANE
This section describes the use of the stance-ankle’s roll joint
as a local control mechanism to assist the lateral balance.
Two local control law candidates will be compared.
Considering the right support phase, the first control law
candidate for the stance-ankle roll joint’s torque �ar is given
as follows:

�ar =�Barẏ (4)

where Bar is a constant gain and ẏ is the lateral velocity of
the body. This control law is chosen because the biped
average lateral velocity is desired to be zero. It tries to
reduce the lateral velocity to zero at all times.

The other local control law candidate is built upon a
coarse model for the frontal plane. The linear inverted
pendulum model described in Section 2 is selected to be the
coarse model. The model has the following explicit
solutions:

y(t )=C1e
	t +C2e

�	t

ẏ(t )=C1	ewt �C2	e�wt

where y is the horizontal position of the midpoint between
the hips measured from the stance ankle; ẏ is the time
derivative of y; 	 is equal to �g/h; C1 and C2 are constants
that can be computed given the value of y and ẏ at a given
time.

Based on the linear inverted pendulum model, the desired
frontal plane motion during the right support phase can be
represented as in Figure 4. Let’s assume that the height h is
constant. The black circle represents the point mass of the
linear inverted pendulum model. The figure illustrates that
the body changes the direction of lateral motion once during
the single support phase. This is possible only if the orbital
energy C is less than zero. For a given swing time Ts, it is
desirable by symmetry that the lateral velocity ẏ of the body
be zero at half time Ts /2. Furthermore, for regular walking,
it is desirable that y(TS /2) be the same for every step. Once
a value for y(Ts /2) is chosen, the values of C1 and C2 can be
obtained as follows:

C2 =
y(Ts /2)

2
e

	Ts

2 (5)

Fig. 3. State variables for the learning implementation in the
frontal plane motion are the values of y, � and � at the end of the
support exchange (just before a new step begins).

Fig. 4. The frontal plane motion during the right support phase
based on the linear inverted pendulum model. The black circle
represents the point mass of the linear inverted pendulum model.
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C1 =C2e
�	Ts (6)

For this case, the control law at the stance-ankle roll joint
(for the right support phase) is given as follows:

�ar =Kar(y
d �y)+Bar(ẏ

d � ẏ) (7)

where yd and ẏd are the desired lateral position and velocity
of the midpoint between the hips (measured from the stance
ankle) given by the linear inverted pendulum model; Kar and
Bar are constant gains.

The desired torque �ar from both control laws are
bounded to prevent the stance foot from tipping over its side
edges. Let’s denote �aru and �arl to be the upper and lower
bounds for �ar, respectively. Simple static analysis is used to
generate the bounds:

�aru =KaruM glfw /2 (8)

tarl =�KarlMglfw /2 (9)

where M is the total mass of the biped; g is the gravitational
constant; lfw is the foot width; Karu and Karl are the positive
discount factors.

4.1. Implementations
In the frontal plane, the reinforcement learning algorithm is
used to learn the end position of the swing leg roll angle �f ,
whereas the swing time Ts is set to be constant. The
algorithm is summarized in Table I. The effectiveness of
both local control law candidates will be compared.

In the sagittal plane, we adopt the implementation in
which a myopic reinforcement learning agent is used to
learn the horizontal end position of the swing foot with
reference to the hip.1 The algorithms for the frontal and
sagittal planes are combined to form a three-dimensional
(3D) walking algorithm.

There are many ways to implement this algorithm. One
approach is to train the sagittal plane’s motion control first
followed by the frontal plane’s, or vice versa. Another
approach is to train them simultaneously. The latter
approach is more attractive for physical implementation
since the former approaches require special training setup to
constrain the biped to the sagittal or frontal plane motion.

However, the latter approach requires proper partitioning of
the failure conditions so that the cause of failure can be
correctly attributed, that is, whether it is due to the sagittal
or frontal plane motion.

The 3D algorithm is applied to the simulated biped M2.
In every iteration, the biped starts to walk from a standing
posture with both ankles directly below the respective
hip joints. Its body is given an initial velocity of
[ẋ ẏ ż]T =[0.6 m/s, �0.42 m/s, 0 m/s]T.

The learning processes in both the sagittal and frontal
planes are carried out simultaneously. The learning target is
to achieve 100 seconds of walking without violating the
failure conditions in both the sagittal and frontal planes. The
desired walking speed and swing time TB are set at 0.4 m/s
and 0.5 second, respectively. In the frontal plane, y(Ts /2) is
set to be equal to 1/8 of the hip spacing (0.184 m) for the
local control based on equation 7.

4.2. Simulation results
Figure 5 shows the resulting learning curves for the
implementations. The solid and dotted graphs are the
learning curves for the implementations in which the frontal
plane local controls were based on equations 4 and 7,
respectively. The latter implementation had a much better
performance since it was able to reach the target at around
200 iterations.

For the implementation whose local control is based on
equation 7, the simulation data for the walking after the
learning target had been achieved are shown in Figure 6.
The top graph shows the state of the system. State 5 and 6
correspond to the right-support and the left-support, respec-
tively. State 7 corresponds to the transition from the
right-support to the left-support and State 8 corresponds to
the transition from the left-support to the right-support. q.y,
qd.y and q.roll are the graphs for the horizontal position,
horizontal velocity and roll angle of the body with respect to
the global frame in the simulation, respectively. q.lh_roll
and q.rh_roll are the roll angles of the left and right legs,
respectively. Those variables with “i” preceding them are
the state variables for the reinforcement learning algorithm
and that with “u” preceding it is the action.

Although the biped was able to walk without reaching the
failure state, it is observed that the behavior of the biped in
the frontal plane was “chaotic” (from the graphs of q.lh_roll
and q.rh_roll). Furthermore, the action sequence (u(n))
from the frontal plane agent did not seem to converge to any
regular pattern. It could be due to the fact that there was no
mechanism installed to make the agent behave in a regular
manner. That is, the agent was just “told” to ensure the
biped did not violate the failure conditions, but not to
behave in a regular manner. The next section presents an
implementation in which regularity for the frontal plane
motion is built into the algorithm.

5. NOTION OF SYMMETRY
One key problem of the approach presented in the previous
section was that the frontal plane learning agent behaved in
a chaotic manner. That is, the desired end position of the
swing-hip roll angle did not converge to a limit point or

Table I. Reinforcement learning implementation for the frontal
plane: F_1.

Description Remark

Implementation code F_1
Swing time Constant
Learning output (action), u End position of the swing leg

roll angle, �f

Key parameters:

Reward function Equation 3
�u 0.26rad
�l �0.15rad
Cu 0.1
Cu �0.1
Discount factor � 0.9 (farsighted)
Action set U {0.001n � for – 0.06≤0.001n

≤0.1 and n�Z}
Policy greedy
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regular pattern. One solution is to use a reward function that
penalizes such a chaotic behavior. Another approach is to
build regularity into the algorithm. The latter approach is
adopted in this section and it is based on the notion of
symmetry. Ralbert11 used it to design an algorithm for foot
placement to control the forward speed of a hopping
machine. His work resulted in a simple implementation
which did not require any dynamic model of the legged
machine.

5.1. Implementation
The notion of symmetry is a simple but general concept. In
the context of the frontal plane motion, this notion is applied
to set the desired swing-leg roll angle � of the biped. The
desired swing-leg roll angle is set to mirror the behavior of
the stance-leg roll angle �. Assuming that the body roll

angle is equal to zero at all times, the control law to generate
the desired torque �hrs for the swing-hip roll joint (for the
right support phase) can be formulated as follows:

�hrs =Khrs(���)+Bhrs(�̇��̇) (10)

where Khrs and Bhrs are the proportional and derivative gains,
respectively.

The local control law for the stance-ankle roll joint is the
same as equation 4. The desired torque �ar of the stance-
ankle roll joint is also bounded by the same bounds
(equations 8 and 9). A reinforcement learning algorithm
almost similar to the previous implementation is used to
learn the offset � for the desired swing-hip roll angle before
the beginning of each step. That is, equation 10 becomes:

�hrs =Khrs(�+���)+Bhrs(�̇��̇). (11)

Fig. 5. The learning curves for the simulated biped when implementations introduced in Section 4 were used. The solid-line and dotted-
line graphs are the learning curves for the implementations in which the frontal plane’s local controls were based on equations 4 and
7 respectively.
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The details of this reinforcement learning implementation
are not listed here because it turns out that learning is not
required for such an implementation. In the sagittal plane,
we adopt the same implementation as before. The combined
algorithms is then applied to the simulated M2. In every
iteration, the biped starts to walk from a standing posture
with an initial velocity. The learning processes in both the
sagittal and frontal planes are carried out simultaneously.
The learning target is to achieve 100 seconds of walking
without violating the failure conditions in both the sagittal
and frontal planes. The desired walking speed and height are
set at 0.4 m/s and 0.84 m, respectively. The swing time is
fixed at 0.5 second.

5.2. Simulation results
It was discovered that the frontal plane learning is not
required for the 3D walking. That is, the swing-hip roll joint

control based on equation 10 and the local control law based
on equation 4 for the stance-ankle roll joint could yield a
stable frontal plane motion.

Three of the learning curves (corresponding to different
start conditions) for the overall implementation are shown in
Figure 7. The results show that the biped was able to achieve
the learning target much faster than that in the previous
implementations (Section 4). The reason is that the biped is
now only required to learn in the sagittal plane. Thus, the
learning curve is comparable to that of the planar (sagittal
plane) implementation in our previous paper.1

Figure 8 shows the stick diagram of the dynamic walking
of the simulated M2 after the learning target was achieved.
The simulation data concerning the frontal plane motion
(after the learning target was achieved) are shown in Figure
9. The lateral velocity and the roll angle of the body were
well-behaved. The hip-roll motions were also much more

Fig. 6. The simulation data (after the simulated M2 has achieved the learning target) for the implementation introduced in Section 4.
The local control was based on equation 7.
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regular than the previous implementation (see the graphs of
q.lh_roll and q.rh_roll). However, there was a slight drifting
of the average horizontal position y of the body. It was
mainly because there was a slight asymmetry in the frontal
plane motion of the biped.

There are several ways to correct the drifting in the lateral
direction. One of which is to create asymmetry in the local
control at the stance-ankle roll joint when the drifting is
exceeded by a preset amount. Another approach is to use the
transverse motion (yaw). For example, if the biped has
drifted to one side, the stance-hip yaw joint can be used to
change the walking direction to nullify the drift.

The feasibility of achieving the frontal plane control
based on the notion of symmetry and the local control
mechanism without the need for learning was a very
interesting finding. In fact, the frontal plane control strategy
was quite “robust” because the biped did not encounter a

single failure in the frontal plane even while it was learning
the sagittal plane motion.

We also observed that the local control law (equation 4)
that did not work well in the previous implementation
actually did a good job here. This illustrates that the choice
of the control law for the stance-ankle roll joint depends on
the swing leg strategy.

The following subsection analyzes this frontal plane
motion control strategy using a simple model. The model is
meant to provide some insight for the strategy, especially
the stabilization issue.

5.3. Analysis
This subsection describes the analysis of the symmetry
approach for the lateral balance. A simple linear double
pendulum model as shown in Figure 10 is used in the

Fig. 7. Three learning curves for the dynamic walking of the simulated biped. The learning was only required in the saggital plane. The
frontal plane implementation was based on the notion of symmetry.

Fig. 8. Stick diagram of the dynamic walking of the simulated M2 after the learning target was achieved. Only the left leg is shown
in the diagram and the images are 0.1 second apart.
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analysis. It is used to validate that the symmetry approach
can result in a stable motion. In this model, the body is a
point mass M that is constrained to move along the
horizontal constraint line 1. The swing leg’s mass m is
assumed to be concentrated at the foot and it is constrained
to move along the horizontal constraint line 2. x1 and x2 are
chosen to be the generalized coordinates for this model. x1

is the horizontal distance of the body mass M measured
from the stance ankle. x2 is the horizontal distance of the leg
mass m measured from the body mass. �1 is the torque
exerted on the stance leg by the ground. �2 is the torque
exerted on the swing leg by the stance leg. Let’s assume that
the biped’s single support period or swing time Ts is fixed,
and the support exchange occurs instantaneously.

If the support exchange event is temporarily neglected,
the dynamic equations of this model can be obtained by
Newtonian mechanics as follows:

�(m+M)h
mh

mh
mh� �ẍ1

ẍ2
�+�� (m+M)g

0
0

mg� �x1

x2
�

=��1
0

1
1� ��1

�2
� (12)

Based on the symmetry approach adopted earlier, the
control laws for �1 and �2 are formulated as follows:

Fig. 9. The simulation data (after the simulated biped has achieved the learning target) for the implementation in which the frontal plane
algorithm is based on the notion of symmetry.
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�1 =K1ẋ1 (13)

�2 =KP(x1 �x2)+KD(ẋ1 � ẋ2) (14)

Now, let’s substitute the control laws for �1 and �2 into
equation 12 to yield equation 15:

A �ẍ1

ẍ2
� +B �ẋ1

ẋ2
� +C �x1

x2
�=�0

0� (15)

where

A=�(m+M)h
mh

mh
mh�

B=��KD +K1

�KD

KD

KD
�

C=�� (m+M)g�KP

�KP

KP

mg+KP
�

Equation 15 can be rearranged as follows:

�ẍ1

ẍ2
�=D �ẋ1

ẋ2
�+E �x1

x2
� (16)

where

D=�A�1B

E=�A�1C

Finally, the above equations can be expressed in the
following state space form:

ẏ1

ẏ2

ẏ3

ẏ4

=

0
E(1,1)

0
E(2,1)

1
D(1,1)

0
D(2,1)

0
E(1,2)

0
E(2,2)

0
D(1,2)

1
D(2,2)

y1

y2

y3

y4

(17)

where y� =[y1 y2 y3 y4]
T =[x1 ẋ1 x2 ẋ2]

T; D(i, j ) and E(i, j )
denote the elements at row i and column j of matrix D and
E, respectively.

Let y�(n)
i denote the initial state vector (subscript i) at the

beginning of the nth step. If the swing time Ts is fixed, the
final state vector (subscript f ) just before the support
exchange is given by the explicit solution of equation 17 as
follows:

y�(n)
f =exp (FTs)y

�(n)
i (18)

where

F=

0
E(1,1)

0
E(2,1)

1
D(1,1)

0
D(2,1)

0
E(1,2)

0
E(2,2)

0
D(1,2)

1
D(2,2)

Now, let’s consider the support exchange event. Let’s
assume that the support exchange is instantaneous and the
previous stance foot is not acted on by any impulsive force.
Also, by the conservation of angular momentum about the
ankle of the new supporting leg and assuming that both
masses remain in their respective constraint lines, the
following boundary conditions can be obtained:

y�(n+1)
i =Gy�(n)

f (19)

where

G=

0

0

1

0

0

�1
0
1

1
0
0
0

0
0
0
0

By substituting equation 19 into equation 18, the following
discrete linear time-invariant system is obtained:

y�(n+1)
i =Hy�(n)

i (20)

where H=G exp (FTs) is the state transition matrix.
From linear control theory, the modulus of all the

eigenvalues 
i of H must be less than unity for equation 20
to be asymptotically stable. Now, let’s assign values to the
parameters of this model so that quantitative analysis can be
carried out. The key parameters are set as follows:
M=20 kg, m=2 kg, h=0.84 m, Ts =0.5 s, and g=9.81 m/s2.
The maximum modulus of the eigenvalues is plotted against
KP and KD for K1 =1,10, 20 and 50 using Matlab™ as shown
in Figure 11. The figure shows that the system indeed has a
zone in the KP-KD plane where the maximum modulus of the
eigenvalues is less than one. The zone is especially obvious
and large for K1 =10. From the figure, it is also observed that
KP and KD should not be too large or too small. Having large
values for these parameters means better tracking of the
desired trajectory. That is, perfect symmetry is not desirable
for the algorithm. On the other hand, if KP and KD are too
small, this will result in a poor tracking of the desired
trajectory. That is, the stance-leg roll angle has little
influence on the swing-leg roll angle.

This analysis validates the frontal plane algorithm
presented in this section. We conclude that a stable motion
in the frontal plane can be achieved if a proper set of KP, KD

and K1 is chosen.

6. DISCUSSION
In this paper, the 3D walking algorithms were constructed
based on the assumption that the motions in the sagittal and

Fig. 10. A linear double pendulum model for the analysis of the
symmetry approach used in the frontal plane algorithm.
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frontal planes could be independently considered. The
successful implementations of the algorithms indirectly
validated this assumption and the proposed control archi-
tecture presented in our previous paper.1

In Section 4, the reinforcement learning algorithm was
used to learn the end position of the swing-leg roll angle �f

before the beginning of each single support phase. Two
local control law candidates for the stance-ankle roll joint
were compared. The simulation results demonstrated that
the choice of the local cqntrol law for the stance-ankle roll
joint could affect the learning rate.

Section 5 illustrated how one could tap the hidden
potential of the notion of symmetry for the bipedal walking
task. The successful application of the notion for the frontal
plane motion control without complex control laws
endorses Raibert’s claim11 that symmetry could be utilized
to simplify the control of legged robots.

The simulation results in both Sections 4 and 5 also
revealed that the choice of the control law for the stance
ankle depends on the selected swing leg strategy. The
control law that did not work well for the frontal plane
implementation in Section 4 actually works well for the
implementation in Section 5.

7. CONCLUSIONS
This paper presented two different frontal-plane motion
control approaches for the simulated biped. In the first
approach, the reinforcement learning algorithm was used to

learn the desired swing-leg roll angle given a set of state
variables. With an appropriate local control at the stance-
ankle roll joint, the algorithm was able to perform
reasonably well.

This paper also presented another approach for the frontal
plane motion control. It was based on the notion of
symmetry. The swing leg was commanded to mirror the
behaviour of the stance leg in the frontal plane. With an
appropriate local control at the stance-ankle roll joint, the
algorithm was successfully implemented to achieve lateral
balance without the need of learning. This approach was
validated by using a simplified dynamic model.

The simulation results also validated that the 3D walking
task could indeed be handled by breaking it down into three
2D motion control sub-tasks corresponding to each of the
three orthogonal planes. This approach is very attractive
because it significantly reduces the complexity of the
overall algorithm.
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