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Pulsatile channel and pipe flows constitute a fundamental flow configuration with
significant bearing on many applications in the engineering and medical sciences.
Rotating machinery, hydraulic pumps or cardiovascular systems are dominated by
time-periodic flows, and their stability characteristics play an important role in their
efficient and proper operation. While previous work has mainly concentrated on the
modal, harmonic response to an oscillatory or pulsatile base flow, this study employs a
direct–adjoint optimisation technique to assess short-term instabilities, identify transient
energy-amplification mechanisms and determine their prevalence within a wide parameter
space. At low pulsation amplitudes, the transient dynamics is found to be similar to
that resulting from the equivalent steady parabolic flow profile, and the oscillating flow
component appears to have only a weak effect. After a critical pulsation amplitude is
surpassed, linear transient growth is shown to increase exponentially with the pulsation
amplitude and to occur mainly during the slow part of the pulsation cycle. In this latter
regime, a detailed analysis of the energy transfer mechanisms demonstrates that the huge
linear transient growth factors are the result of an optimal combination of Orr mechanism
and intracyclic normal-mode growth during half a pulsation cycle. Two-dimensional
sinuous perturbations are favoured in channel flow, while pipe flow is dominated by
helical perturbations. An extensive parameter study is presented that tracks these flow
features across variations in the pulsation amplitude, Reynolds and Womersley numbers,
perturbation wavenumbers and imposed time horizon.
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1. Introduction

Pulsatile flows are a common phenomenon in a variety of engineering flows, and they are
ubiquitous in physiological configurations. The pulsatile flow through tubular geometries
plays a key role in the haemodynamic system of many species as it is responsible for
the transport of oxygenated blood to the organs and muscular tissue (Ku 1997; Pedley
2000). While in many of these configurations inertial effects are too weak to cause and
sustain turbulent fluid motion, a variety of cardiovascular diseases can be linked to flow
instabilities in the arteries (Chiu & Chien 2011). In addition, geometric modifications
of the standard fluid-carrying vessels, such as stenoses, aneurysms or other pathologies,
further amplify adverse flow effects and aggravate physiological consequences. For these
reasons, a better understanding of pulsatile flows, and the perturbation dynamics they
support, would be beneficial, if not mandatory, for improved diagnostics as well as the
design of advanced medical devices.

Despite their importance in medical and engineering applications, pulsatile flows –
and in particular their stability characteristics – have received far less attention than
their steady analogues. Pulsatile flows comprise a steady as well as a time-periodic
component. This is in contrast to oscillatory flows which consist of a harmonic part,
but lack a steady background flow. The periodic time dependence precludes a standard
modal approach, based on temporal Fourier normal modes, and instead calls for more
complex methods, such as Floquet analysis. Furthermore, pulsatile flows are governed
by a far larger suite of parameters than steady flows: besides the common Reynolds
number Re and the wavenumbers of the perturbations, pulsatile flows depend on the
pulsation amplitudes and the non-dimensional frequency (the Womersley number Wo). For
a non-modal analysis, the time horizon over which growth or decay is measured and the
phase shift of the perturbation within a base-flow cycle have to be accounted for as well.
Within this high-dimensional parameter space, a rich and varied perturbation dynamics
can be observed, with important transitions between distinct flow behaviours.

The stability of pulsatile flow has been addressed by a few key studies that laid
the foundation for our current understanding of its perturbation dynamics. An account
of the pertinent body of literature has been presented in Pier & Schmid (2017) with
emphasis on the modal treatment via Floquet analysis. A resume of earlier work on
general time-periodic flows has been presented in Davis (1976). Further notable work
by von Kerczek (1982) has built on this foundation and established a framework for the
analysis of flows with a harmonic base flow. Generic configurations such as a Stokes
layer (Blennerhassett & Bassom 2002) or channel and pipe flow with time-periodic
pressure gradients (Thomas et al. 2011), have been investigated with modal techniques
and have been mapped out as to their stability characteristics across a range of governing
parameters. The influence of wall modifications, such as stenoses or aneurysms, on
the overall stability behaviour has been addressed via numerical simulations (see, e.g.
Blackburn, Sherwin & Barkley 2008; Gopalakrishnan, Pier & Biesheuvel 2014).

The role of pulsation in the transition from laminar to turbulent pipe flow has been
recently investigated by Xu et al. (2017) and Xu & Avila (2018). These studies in particular
concentrated on the emergence and life cycle of localised ‘puffs’, together with their role in
triggering transition in the presence of a pulsating flow component, since the occurrence
of turbulent bursts in each cycle has been found to be sensitive on flow parameters and
configuration details. A strong influence of the Womersley number has been reported, and
a distinct regime-switching across three proposed parameter regions has been observed
(Xu et al. 2017). These experimental findings have been further corroborated by direct
numerical simulations initiated by a localised perturbation (Xu & Avila 2018). The earlier
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numerical study by Tuzi & Blondeaux (2008) concluded that at moderate but subcritical
Reynolds numbers only parts of the harmonic cycle (around flow reversal) support
turbulent flow via an instability and an associated break of the flow’s symmetry.

While the early body of literature on time-periodic flows has concentrated on a modal
(Floquet) approach, more recent studies have employed an initial-value perspective on the
analysis of perturbation dynamics and energy growth. Biau (2016) has analysed the generic
oscillatory Stokes layer as to its potential to support transiently growing perturbations
over a forcing cycle. This study isolated the Orr mechanism as the dominant process by
which energy amplification could be achieved efficiently for sufficiently high unsteady
amplitudes. In particular the decelerating part of the forcing cycle has been identified as
prone to strong non-modal growth. Complementary nonlinear simulations further verified
that triggering by these mechanisms can yield subcritical transition to turbulence. A
similar technique has been applied in a recent study by Xu, Song & Avila (2021) for
oscillatory and pulsating pipe flow. Among others, they have reported that pulsating pipe
flows are generally dominated by helical perturbations. In accordance with Biau (2016),
a strong Orr-type mechanism has been found to dominate, once a threshold pulsation
amplitude has been exceeded. Again, only half of the forcing cycle supported growth of
the kinetic perturbation energy; disturbances have been observed to rapidly reach energy
levels that facilitate a transition to turbulent fluid motion, often via localised disturbances.

These latter studies advocate the treatment of pulsatile flow as a generally
time-dependent flow, distinct from a periodic Floquet ansatz. Over the past decades, the
application of these non-modal techniques to hydrodynamic stability calculations has
resulted in a more complete understanding of shear-driven instability phenomena. The
generality of this approach (Schmid 2007) is well-suited for assessing pulsatile flow over a
range of time scales, thus mapping out the optimal perturbation dynamics over partial and
multiple pulsation cycles. This non-modal approach for time-dependent flows is based on a
variational principle arising from a partial-differential-equation-constrained optimisation
problem. It results in a direct–adjoint system of equations (Luchini & Bottaro 2014) that
produce the maximum energy growth of perturbations over a prescribed time horizon.
Time-dependent base flows are treated naturally within this formalism, and short-term
energy amplification mechanisms, for example over a partial pulsation cycle, can be
detected and extracted effectively. Over the past years, this computational framework has
been successfully brought to bear on a variety of complex flow configurations (see, e.g.
Magri (2019) and Qadri et al. (2021) for applications in reactive flows), and has furnished
quantitative stability measures beyond the time-asymptotic limit and without the need for
simplifying assumptions.

This article follows up on and extends earlier work (Pier & Schmid 2017) that
demonstrated the influence of a pulsating flow component on the stability of channel
flow via a linear (Floquet) and nonlinear analysis. In this present study, we focus on
non-modal effects and the occurrence of transient energy amplification mechanisms under
conditions that are asymptotically stable, both for rectangular channel and cylindrical
pipe flows. The unsteady nature of the base flow lends itself to a formulation as a
partial-differential-equation-constrained optimisation problem for the maximum energy
gain which is subsequently solved by a variational approach based on direct–adjoint
looping.

The main finding, and significance, of our investigation consists of the quantification
of extremely large transient growth, brought on by the unsteady nature of the base
flow. By considering both channel and pipe flows and carefully studying energy transfer
mechanisms, we identify the fundamental mechanisms responsible for this huge growth,
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common to both geometries. This amplification potential translates directly into a strong
sensitivity for the rise of coherent structures over one or many pulsatile cycles. While
this feature of pulsatile flows has been observed and reported in previous studies, an
encompassing treatment of this phenomenon, including its presence in parameter space
and its manifestation in dominant spatial structures, is still missing in the literature
on unsteady flows. Our findings also have a direct connection to classifying transition
scenarios in wall-bounded flows under the influence of cyclic base flow variations, thus
extending the classical scenarios for steady flows and potential routes for the transition to
turbulence occurring during part of the cycle.

Despite our attempt to analyse pulsating channel and pipe flows comprehensively,
judicious choices had to be made to arrive at an emerging picture for the perturbation
dynamics prevailing in these configurations. The ensuing parameter ranges have been
selected to capture the most compelling and representative flow phenomena, while limiting
our focus to flows encountered in physiological and medical situations. Haemodynamic
applications, across a range of blood vessel geometries, are well covered by our choice
of parameters. Nonetheless, configurations outside this parameter range are touched upon
as well, to establish continuity or bifurcations in flow behaviour and to connect to other
studies that investigate such parameter regimes in more detail, e.g. Xu et al. (2021).

The present paper represents the culmination of several years of work; a preliminary
version of the main results has been presented at the 12th European Fluid Mechanics
Conference in Vienna (Pier & Schmid 2018).

2. Flow configurations and governing equations

This investigation considers viscous incompressible flow through infinite channels and
pipes of constant diameter. In this context, a flow is characterised by a velocity vector
field u(x, t) and a scalar pressure field p(x, t) that depend on position x and time t and are
governed by the Navier–Stokes equations

∂u
∂t

+ (u · ∇)u = νΔu − ∇p, (2.1)

0 = ∇ · u, (2.2)

where ν is the kinematic viscosity of the fluid, and the pressure has been redefined to
eliminate the constant fluid density.

The channel-flow configuration calls for a formulation using Cartesian coordinates,
while cylindrical coordinates are appropriate for pipe flows. In order to address both
configurations with similar mathematical and numerical tools, we adopt a general
formalism using three spatial coordinates x0, x1, x2 and associated velocity components
u0, u1, u2. When analysing channel flow with respect to a Cartesian reference frame,
the variables x0, x1 and x2 denote wall-normal, streamwise and spanwise coordinates,
respectively, while they stand for radial, streamwise and azimuthal coordinates when
studying pipe flow in a cylindrical setting. Whatever the configuration, the flow domain
corresponds to |x0| < D/2 where D is the channel or the pipe diameter, and no-slip
boundary conditions prevail along the solid walls at |x0| = D/2.

A formulation of the incompressible Navier–Stokes equations ((2.1) and (2.2))
in cylindrical coordinates comprises more terms than one in Cartesian coordinates.
Nevertheless, the resulting equations have a very similar structure, and the above notations
allow us to cast the governing equations into a single general system of partial differential
equations, pertaining to both channel and pipe configurations, the details of which are
given in Appendix A.
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3. Base flows and non-dimensional control parameters

Pulsatile base flows driven by a spatially uniform and temporally periodic streamwise
pressure gradient are obtained as exact solutions of the Navier–Stokes equations and
consist of a velocity field in the streamwise x1-direction with profiles that only depend on
time t and on the wall-normal/radial coordinate x0. Denoting by Ω the pulsation frequency,
the base velocity profiles may be expanded as temporal Fourier series,

U1(x0, t) =
∑

n

U(n)
1 (x0) exp(inΩt), (3.1)

and are associated with a periodic flow rate

Q(t) =
∑

n

Q(n) exp(inΩt). (3.2)

In the above expressions, the conditions Q(−n) = [Q(n)]� and U(−n)
1 (x0) = [U(n)

1 (x0)]�

ensure that all flow quantities are real (with � denoting a complex conjugate).
By invariance of these base flows in the streamwise x1-direction, the different

harmonics in the expansion (3.1) are not coupled through the nonlinear terms of
the Navier–Stokes equations and the velocity components U(n)

1 (x0) are analytically
obtained by solving simple differential equations derived for each harmonic component.
The mean-flow component U(0)

1 (x0) displays a parabolic Poiseuille profile. For n /= 0,
following Womersley (1955), the profiles U(n)

1 (x0) are obtained in terms of Bessel
functions in cylindrical coordinates corresponding to pipe flows, while they are obtained
in terms of exponential functions in Cartesian coordinates corresponding to channel flows.

Pulsatile channel or pipe flows are characterised by the Womersley number

Wo ≡ D
2

√
Ω

ν
, (3.3)

which is a non-dimensional measure of the pulsation frequency, and may be interpreted
as the ratio of the pipe radius (or the channel half-diameter) to the thickness δ = √

ν/Ω

of the oscillating boundary layers developing near the walls. A pulsatile base flow is then
completely specified by the Fourier components Q(n) of its flow rate (3.2), and the velocity
profiles of the different harmonics (3.1) are obtained as

U(n)
1 (x0) = Q(n)

A
W
(

x0

D/2
,
√

nWo
)

. (3.4)

In the above expression, A denotes the relevant measure of the cross-section (A = D for
channels and A = πD2/4 for pipes) and the function W is the normalised velocity profile
pertaining to each harmonic component. The analytic expressions of W for channel and
pipe flows are given in Appendix B.

In this investigation, we only consider pulsatile flows with a non-vanishing mean flow
rate Q(0). Thus, the definition of the Reynolds number may be based on mean velocity
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Q(0)/A, diameter D and viscosity ν, leading to

Re ≡ Q(0)

ν
for channels and Re ≡ Q(0)

ν

4
πD

for pipes. (3.5)

Moreover, using Q(0) as reference, the flow rate waveform is completely determined by the
non-dimensional ratios

Q̃(n) ≡ Q(n)

Q(0)
, (3.6)

corresponding to the amplitude (and phase) of the oscillating flow rate components (n > 0)
relative to the mean flow.

In order to reduce the dimensionality of the control-parameter space for the rest of this
paper, we will only consider base flow rates with a single oscillating component

Q(t) = Q(0)(1 + Q̃ cos Ωt), (3.7)

where the pulsation amplitude Q̃ ≡ 2Q̃(1) may be assumed real without loss of generality.
Note that the theoretical and numerical methods developed for the present investigation
are also suitable for studying the dynamics of pulsating base flows with higher harmonic
content.

4. Mathematical formulation

This entire study considers the dynamics of small-amplitude perturbations developing
in the basic pulsatile channel and pipe flows specified in the previous section. The
incompressible Navier–Stokes equations are, therefore, linearised about these base flows.
Considering that the base flows do not depend on the streamwise coordinate x1 nor
on the spanwise/azimuthal coordinate x2, infinitesimally small velocity and pressure
perturbations may thus be written as spatial normal modes of the form

ud(x0, t) exp i(α1x1 + α2x2), (4.1)

pd(x0, t) exp i(α1x1 + α2x2), (4.2)

where α1 and α2 are streamwise and spanwise/azimuthal wavenumbers, respectively.
Separation of total flow fields into basic and perturbation quantities and substitution of the
expansions (4.1) and (4.2) into the governing equations (2.1) and (2.2) linearised about the
relevant time-periodic base flow then yields a system of coupled linear partial differential
governing equations of the form

A∂tq(x0, t) = L(x0, t)q(x0, t), (4.3)

where

q(x0, t) ≡

⎛
⎜⎜⎜⎜⎝

ud
0(x0, t)

ud
1(x0, t)

ud
2(x0, t)

pd(x0, t)

⎞
⎟⎟⎟⎟⎠ and A ≡

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟⎠ . (4.4a,b)

Here, the superscript d refers to components of the direct problem, to be distinguished
from the adjoint variables below (4.6). The spatial differential operator L(x0, t) in (4.3) is
a 4-by-4 matrix and its coefficients involve ∂0-differentiation, depend on the wavenumbers
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α1 and α2 as well as on the base velocity profiles U1(x0, t); see Appendix C for explicit
expressions of all these terms.

When studying transient growth effects and searching for optimal initial perturbations
that are maximally amplified over a finite-time horizon, it is necessary to choose an
appropriate measure of disturbance size (Schmid 2007). Using a classical energy-based
inner product, the adjoint governing equations associated with the direct problem (4.3) are
routinely obtained as

A∂tq†(x0, t) = L†(x0, t)q†(x0, t), (4.5)

and the adjoint differential operator L†(x0, t) is explicitly given in Appendix D. In contrast
with the direct (4.3), the adjoint equations (4.5) have negative diffusion coefficients and
the adjoint fields

q†(x0, t) ≡

⎛
⎜⎜⎜⎝

ua
0(x0, t)

ua
1(x0, t)

ua
2(x0, t)

pa(x0, t)

⎞
⎟⎟⎟⎠ , (4.6)

are integrated backwards in time.
Denoting by {q(x0, ti), |x0| < D/2} an initial perturbation at time ti, the evolution of this

disturbance at subsequent times t > ti and the associated perturbation energy E(t) are then
obtained by solving the initial-value problem corresponding to (4.3) with q(x0, ti) specified
for |x0| < D/2. The temporal evolution of the perturbation amplitude is then characterised
by the ratio E(t)/E(ti), for t > ti.

The maximum possible amplification of a disturbance over the interval ti < t < tf is
obtained as

G(ti, tf ) = max
{q(x0,ti)}

E(tf )
E(ti)

, (4.7)

by optimising over all possible initial conditions at t = ti. Note that, since the base flow
is time-periodic, the amplification factor depends not only on the duration tf − ti of the
temporal evolution but also on the phase of its starting point ti within the pulsation cycle.

The particular initial condition at t = ti that achieves the largest amplification at t = tf
is referred to as the optimal perturbation and the resulting flow fields at t = tf as the
optimal response. In practice, the amplification factors G(ti, tf ) and associated optimal
perturbations and responses are iteratively computed by successive direct–adjoint loops,
consisting of temporal integration of the direct (4.3) from ti to tf and of the adjoint
equations (4.5) from tf to ti, using the numerical methods described in the next section.

In linearly stable configurations, all perturbations eventually decay and the maximal
transient growth for given wavenumbers α1 and α2,

Gmax(α1, α2) = max
ti,tf

G(ti, tf ;α1, α2), (4.8)

is well defined and takes finite values. Obviously, Gmax(α1, α2) also depends on the base
flow configuration and its control parameters. For a given pulsating base flow, the largest
possible transient amplification that may be achieved is obtained as

Gmax
max = max

α1,α2
Gmax(α1, α2), (4.9)

by considering all possible wavenumbers.
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5. Numerical implementation

The direct and adjoint temporal evolution problems (4.3) and (4.5) are first order in time
and involve spatial differential operators in the wall-normal x0-coordinate.

For spatial discretisation we use a Chebyshev spectral method with collocation points
spanning the whole diameter of the channel or the pipe. Whether considering channel
or pipe flows, all computations are restricted to half of the domain, 0 ≤ x0 ≤ D/2, by
taking into account the symmetry or antisymmetry of the different flow fields and using
the associated discretised differential operators of corresponding symmetry. For channel
flow calculations carried out in Cartesian coordinates, the parity of the different flow
fields depends on the sinuous or varicose nature of the perturbation under consideration.
Note that for all the channel flow configurations considered in this paper, the dynamics is
dominated by sinuous perturbations. For pipe flow calculations carried out in cylindrical
coordinates, it is the value (even or odd) of the azimuthal mode number that determines
the parity of each of the different flow fields. Note that the singularities in the differential
operators at the pipe axis (x0 = 0) are only ‘apparent’ (Boyd 2001): the exact solution is
analytic at the axis even though the coefficients of the differential equations are not. Thus
a consistent implementation of the symmetry/antisymmetry conditions at the axis removes
any apparent singularities and guarantees that the spectral method yields smooth solutions.

Time-marching of the direct and adjoint incompressible Navier–Stokes equations uses
a second-order accurate predictor–corrector fractional-step method, derived from Raspo
et al. (2002). In classical fashion, the maximal gain G(ti, tf ), together with optimal initial
perturbation and final response, is then obtained by direct–adjoint loops, maximising the
energy growth from t = ti to t = tf . All subsequent quantities Gmax and Gmax

max are derived
from the gain G, by maximising over ti and tf , and over α1 and α2.

Resorting to the general formulation of the governing equations detailed in the
Appendix A and taking advantage of the relevant symmetry properties of the different flow
fields thus leads to a numerical implementation capable of handling all configurations of
the present investigation.

This entire numerical solution procedure is a generalisation of an approach already used
in our previous investigation (Pier & Schmid 2017), and its implementation in C++ is based
on the ‘home-spun’ PackstaB library (Pier 2015, § A.6). The interested reader is referred
to these references for further details of the general method.

6. Pulsating channel flow

The objective of the present section, which is the core part of the paper, is to investigate
how the well known transient-growth properties of steady channel flow are modified by the
presence of a pulsating base flow component. Starting with a steady Poiseuille flow, the
approach consists of studying the influence of pulsation as the amplitude Q̃ is increased
from 0 for different values of the Womersley number Wo.

First, we consider the growth rates G of streamwise-invariant and spanwise-periodic
streaks since they display the largest transient growth for Poiseuille flow. Then, the
strikingly different behaviour observed for two-dimensional (spanwise-invariant) flows
calls for a systematic computation of all possible three-dimensional perturbations. Having
established the optimal amplification rates Gmax that prevail over the whole wavenumber
plane, we are then in a position to derive the maximal achievable energy amplification
Gmax

max for a given pulsating base flow and to document its dependence on the pulsation
amplitude Q̃, the Womersley number Wo and the Reynolds number Re. Finally, a detailed
discussion of the energy transfer mechanisms allows us to highlight the various growth
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mechanisms that come into play during the different stages of the evolution and to
explain the huge growth factors that are observed for pulsating flows, already for moderate
pulsation amplitudes. We recall that sinuous perturbations prevail for all the situations
investigated here; thus, all the results presented in this section correspond to flow fields of
sinuous symmetry.

The vast parameter space of the problem requires a systematic exploration of the flow
physics and a concentration on essential characteristics by a progressive compression of
the governing parameters. To this end, we successively investigate the growth of streaks,
two-dimensional and three-dimensional disturbances, before focusing on transient energy
growth and the energy transfer mechanisms that accompany the observed amplifications.
We conclude by isolating the shape and dynamics of the two- and three-dimensional
structures that optimally exploit the unsteady background flow and thus exhibit maximal
energy growth. Along this analysis, we present a sequential reduction of the parameter
space, starting from the effect of cycle length and cycle phase, via spatial scales to the
time horizon for optimal growth. Within each step, the essential features of the transient
instability will be presented, before reducing the parameter dependency for the subsequent
analysis. This section then culminates in the detailed examination of the most amplified
disturbances, for the two- and three-dimensional case, under the influence of a pulsatile
background flow.

6.1. Growth of streaks
In steady channel Poiseuille flow, largest transient growth is known to occur for initial
conditions which are spanwise periodic and consist of streamwise aligned vortices, thus
corresponding to perturbations with α1 = 0 and α2 /= 0. Figure 1(a) shows the optimal
transient amplification at Re = 1000, 2000, . . . , 5000 computed for α2 = 4, which is near
the most transiently amplified spanwise wavenumber. (Throughout this paper, length
scales are non-dimensionalised with respect to the channel (or pipe) diameter D.) For a
steady base flow, the energy growth factor G(ti, tf ) only depends on the duration tf − ti,
here measured in mean-flow advection units τQ ≡ D2/Q(0). Replotting these data for
G/Re2 and measuring the duration tf − ti in diffusion units τν ≡ D2/ν = ReτQ, the curves
in figure 1(b) confirm the known scaling laws, leading to a maximum transient growth of
Gmax � 1.1 × 10−4Re2 at tmax/τQ � 1.9 × 10−2Re.

Adding to this steady base flow a pulsatile component of given amplitude and frequency,
the transient growth properties are characterised by G(ti, tf ) which then depends both on
the phase of the initial perturbation ti within the pulsation period T ≡ 2π/Ω and on the
duration tf − ti of the temporal evolution. For Re = 2000 and Re = 5000, figure 2 shows
plots of the growth factors G(ti, tf ) for pulsation amplitudes Q̃ = 0.4 and 1.0 at Wo = 10.
It is found that the amplitude Q̃ of the base flow modulation only weakly influences the
streak growth. Even increasing Q̃ to values larger than unity (corresponding to negative
flow rates during part of the pulsation cycle), does not significantly alter the distribution
of G(ti, tf ): the maximum amplification remains at the same level and the growth hardly
depends on the phase ti/T . Thus streamwise-invariant (α1 = 0) perturbations appear to
be almost unaffected by the time-dependent component of the base flow and to display a
dynamics predominantly dictated by the time-averaged base flow. The discussion of energy
transfer mechanisms in § 6.5 below will shed further light on this observation. Comparing
figure 2(a) with 2(c), and 2(b) with 2(d), the similarity observed between plots at different
Re and same Q̃ also indicates that the scaling of G with Re2 remains valid for the transient
growth of streaks in pulsating base flows.
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Figure 1. Optimal energy growth for streaks with α2 = 4 and α1 = 0 in steady channel Poiseuille flow at
Re = 1000, 2000, . . . , 5000. (a) Duration tf − ti of growth phase measured in mean-flow advection time scale
τQ. (b) Rescaled growth factors G/Re2 and tf − ti measured in diffusion time scale τν = ReτQ.
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Figure 2. Optimal transient amplification for streaks with α2 = 4 and α1 = 0 at (a,b) Re = 2000 and
(c,d) Re = 5000. Pulsating channel flow at Wo = 10 and (a,c) Q̃ = 0.4 and (b,d) Q̃ = 1.0.

6.2. Growth of two-dimensional perturbations
Two-dimensional spanwise invariant perturbations, corresponding to α2 = 0 and α1 /= 0,
exhibit much weaker transient amplification than streaks for the same steady Poiseuille
flow. Figure 3 plots the transient growth properties prevailing for Poiseuille flow at Re =
1000, 2000, . . . , 5000 for perturbations with α1 = 2 and α2 = 0, near the most unstable
two-dimensional perturbation. Here, the maximal amplification Gmax scales linearly with
the Reynolds number and reaches much lower values than those corresponding to streaks
(see figure 1a); note that this maximal amplification is also reached for a much shorter
time horizon.
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Figure 3. Optimal energy growth for two-dimensional perturbations α1 = 2 and α2 = 0 in channel Poiseuille
flow at Re = 1000, 2000, . . . , 5000.

The evolution of two-dimensional transient growth properties as the amplitude Q̃ of
the pulsating component is increased is given in figure 4. After increasing Q̃, a second
maximum emerges in the plot of G, located around ti/T = 0.2 and (tf − ti)/T = 0.5. In
contrast with the situation prevailing for streaks, this second maximum is seen to rapidly
grow with Q̃ and to become the dominant feature, here already for Q̃ � 0.1. While streaks
display much larger transient growth for steady Poiseuille flow, these two-dimensional
perturbations are found to become the most efficient optimal perturbations for pulsatile
base flows, beyond some threshold value of the pulsating amplitude Q̃. This overwhelming
growth of two-dimensional perturbations for pulsatile conditions will be explained in
§ 6.5, below, by detailed monitoring of the amplification process in comparison with the
dynamics of temporal Floquet eigenmodes.

6.3. Growth of three-dimensional perturbations
The very different transient growth behaviour observed for streaky and two-dimensional
perturbations calls for a systematic investigation in the entire (α1, α2)-wavenumber plane.
For a given pulsating base flow, the optimal energy amplification Gmax(α1, α2) (4.8) is
obtained by maximising the transient growth G(ti, tf ;α1, α2) over all values of ti and tf
at each prescribed wavenumber. We have systematically explored the control-parameter
space spanning the ranges 1000 ≤ Re ≤ 5000, 5 ≤ Wo ≤ 15 and 0 ≤ Q̃ ≤ 1, and a few
characteristic results are presented below.

The plot of Gmax for steady Poiseuille flow (Q̃ = 0) at Re = 4000 (figure 5a) confirms
that strongest transient growth occurs for streaks (with α1 = 0) and that the largest value
of Gmax � 1763 is reached at α2 � 4.09 (indicated by a black dot). Two-dimensional
perturbations (with α2 = 0) experience growth factors that are two orders of magnitude
smaller, with Gmax � 30 for α1 = 3.1.

The distribution of maximal amplification factors Gmax in the (α1, α2)-plane evolves
significantly as the amplitude Q̃ of the pulsating component is increased for a given
pulsation frequency. Figure 5(b–g) reveal that, as Q̃ is increased, the maximum energy
growth (indicated by a black dot) rapidly switches over from streaks to two-dimensional
perturbations that experience growth factors sharply increasing with Q̃ while those
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Figure 4. Optimal transient amplification for two-dimensional perturbations with α2 = 0 and α1 = 2 at (a–c)
Re = 2000 and (d–f ) Re = 5000. Pulsating base flow at Wo = 10 and (a,d) Q̃ = 0.04, (b,e) Q̃ = 0.10 and (c, f )
Q̃ = 0.20.

experienced by streaks (along the α2-axis) do not much depend on Q̃ nor on Wo.
Comparison of the results obtained with Wo = 8 (figure 5b,c), Wo = 10 (figure 5d,e)
and Wo = 12 (figure 5f,g) demonstrates that the rate of increase of Gmax with Q̃ varies
significantly with Wo and is larger for lower values of the Womersley number.

Figures 5(h–j) illustrate the behaviour at Re = 2000. For steady Poiseuille flow
(figure 5h), the isolines of Gmax display a similar structure as for Re = 4000 (figure 5a)
but with lower levels. After increasing the amplitude Q̃ of the pulsating flow component at
Wo = 10, figures 5(i,j) show that two-dimensional perturbations again eventually dominate
the response. However, at this lower Reynolds number, a larger value of Q̃ is required for
the two-dimensional perturbations to emerge, and the increase of Gmax with Q̃ also occurs
at a lower rate. Thus Gmax is found to reach values of the order of 105 at Re = 2000 for
Q̃ = 0.5 and Wo = 10 (figure 5j), while at Re = 4000 values in excess of 1011 are observed
(figure 5e).

6.4. Maximal transient growth
The maximal transient energy amplification achievable for a given base flow has been
defined as Gmax

max (4.9) and is derived by maximising Gmax(α1, α2) over the entire
wavenumber plane.
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Figure 5. Isolines of maximum energy growth Gmax in (α1, α2)-wavenumber plane for base flows with Re =
4000 (a–g) and Re = 2000 (h–j). (a,h) Steady Poiseuille flow (Q̃ = 0), (b,d, f,i) pulsating base flows with
Q̃ = 0.2, (c,e,g,j) pulsating base flows with Q̃ = 0.5. Womersley numbers: Wo = 8 in panels (b,c), Wo = 10
in panels (d,e,i,j), Wo = 12 in panels ( f,g). The black dots indicate the wavenumbers where Gmax reaches its
largest value.

Figure 6 plots the evolution of Gmax
max as the pulsation amplitude Q̃ is continuously

increased for Womersley and Reynolds numbers in the range 5 ≤ Wo ≤ 15 and 1000 ≤
Re ≤ 5000, respectively. At low values of Q̃, the pulsating flow component has a very weak
influence and Gmax

max remains near the value prevailing for steady Poiseuille flow at the same
Reynolds number. For these low pulsation amplitudes, the optimal initial perturbation
corresponds to streaks (with α1 = 0) and the associated growth duration tf − ti remains
very close to that prevailing for the equivalent mean Poiseuille flow (see also figure 8,
below).
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Figure 6. Evolution of maximal transient energy amplification Gmax
max with Q̃ for 5 ≤ Wo ≤ 15 at

(a) Re = 1000, (b) Re = 2000, (c) Re = 4000 and (d) Re = 5000.

Beyond some critical value of Q̃, the amplification factor Gmax
max starts to increase

exponentially with Q̃, as illustrated by the nearly constant slopes in the logarithmic plots
of figure 6 (note the different vertical scale used in figure 6a for Re = 1000). This critical
value Q̃c of the pulsation amplitude depends on Wo and Re as shown in figure 7(a):
increasing the Reynolds number is found to promote the two-dimensional perturbations
which become the dominant feature already for Q̃ > 0.1 around Re = 5000. For Q̃ > Q̃c,
the rate of the exponential growth of Gmax

max with Q̃ corresponds to the slopes seen in figure 6
and significantly increases as the Womersley number decreases. As a result, Gmax

max rapidly
reaches ‘astronomical’ values, several orders of magnitude beyond the amplification rates
prevailing for the corresponding steady Poiseuille flows. These exponential rates have been
computed as

κ ≡ 1
Gmax

max

∂Gmax
max

∂Q̃
, (6.1)

and their variation with Re and Wo is given in figure 7(b). In this plot the values of κ

have been computed by taking the average over Q̃c < Q̃ < Q̃c + 0.1, but note that the
growth rate remains nearly constant over much larger intervals of Q̃ in the two-dimensional
regime. Obviously, the growth rates are enhanced with the Reynolds number and they
also significantly increase towards the lower Womersley numbers, corresponding to longer
pulsation periods.

The regime change in the transient growth behaviour occurring for Q̃ = Q̃c is
further illustrated in figure 8 at Re = 4000. The evolution with pulsation amplitude
Q̃ of the streamwise α1 and spanwise α2 wavenumbers associated with the maximally
amplified optimal perturbations display a sharp transition from streaky (α1 = 0, α2 /= 0)
to two-dimensional (α1 /= 0, α2 = 0) perturbations. For Wo = 6 and 8, the spanwise
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Figure 7. (a) Critical values Q̃c for transition between streaky and two-dimensional maximally amplified
perturbations. (b) Exponential growth rate κ of Gmax

max with Q̃ in the two-dimensional regime.

wavenumber here directly switches from α2 � 4 to 0. For higher values of Wo, however,
a small range in Q̃ is observed where the maximally amplified perturbations consist of
oblique waves with small but finite values of α2. This corresponds to configurations where
the amplification of two-dimensional perturbations is still in competition with streaks,
so that the maximum of Gmax in the (α1, α2)-plane occurs slightly off the α1-axis, as
illustrated by the black dot in figure 5( f ) and corresponding dots in figure 8(a,b). It is then
only for higher values of Q̃ that purely two-dimensional (α2 = 0) perturbations prevail.

The transition from streaky to two-dimensional maximally amplified perturbations is
also accompanied by a significant change in the duration of the growth phase tf − ti,
shown in figure 8(c) in mean-flow advection units τQ and in figure 8(d) in units of
the pulsation period T . These two time scales are associated with different dynamical
features and related as Wo2T = (π/2)ReτQ. At weak pulsation amplitudes Q̃, the duration
tf − ti remains very close to the value prevailing for streaks developing in the equivalent
steady Poiseuille flow, here approximately 75τQ at Re = 4000 (compare with figure 1).
At higher pulsation amplitudes, when two-dimensional perturbations dominate, maximal
amplification occurs over intervals tf − ti that approximately correspond to half a pulsation
period, T/2. Thus, the transition from streaky to two-dimensional perturbations also
coincides with a change in the dynamical time scale: from streak growth essentially
dictated by the mean flow to two-dimensional perturbations strongly amplified over half a
pulsation cycle.

6.5. Discussion of energy transfer mechanisms
In this final subsection on channel flows, we investigate the energy production and
dissipation mechanisms in order to explain the different transient-growth scenarios that
have been identified.

Following the notations introduced in § 4, we consider a perturbation of the form

u(x0, t) exp i(α1x1 + α2x2) + c.c. with u(x0, t) ≡

⎛
⎜⎝

u0(x0, t)
u1(x0, t)
u2(x0, t)

⎞
⎟⎠ , (6.2)
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Figure 8. Characterisation of the maximally amplified optimal perturbations as the pulsation amplitude Q̃ is
increased for Wo = 6, 8, 10, 12, 14 at Re = 4000. (a) Streamwise wavenumber α1, (b) spanwise wavenumber
α2, (c) duration of transient growth tf − ti measured in mean-flow advection units τQ and (d) in pulsation
periods T .

using a complex-valued three-dimensional velocity vector u(x0, t). Such a perturbation is
associated with an instantaneous kinetic energy per unit volume of

E(t) = 1
D

∫ +D/2

−D/2
e(x0, t) dx0, (6.3)

where
e(x0, t) = ‖u(x0, t)||2 ≡ u(x0, t) · [u(x0, t)]�, (6.4)

represents the local energy density. Thus, the temporal energy variation,

dE(t)
dt

= 1
D

∫ +D/2

−D/2
(∂tu(x0, t) · [u(x0, t)]� + u(x0, t) · [∂tu(x0, t)]�) dx0, (6.5)

follows from the dynamics of u(x0, t), governed by the Navier–Stokes equations linearised
about the pulsating base flow (4.3). Separating terms due to interaction with the base flow
from those involving viscous dissipation leads to

dE(t)
dt

= Π(t) − Θ(t), (6.6)

where

Π(t) = 1
D

∫ +D/2

−D/2
π(x0, t) dx0 and Θ(t) = 1

D

∫ +D/2

−D/2
θ(x0, t) dx0, (6.7a,b)
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with

π(x0, t) = −∂U1(x0, t)
∂x0

(u0(x0, t)[u1(x0, t)]� + [u0(x0, t)]�u1(x0, t)) (6.8)

and
θ(x0, t) = 2ν(‖∂0u(x0, t)‖2 + (α2

1 + α2
2)‖u(x0, t)‖2). (6.9)

The term π(x0, t) accounts for energy transfer between the pulsating base flow and
the perturbation: it essentially represents energy production due to base-flow shear, but
negative values may occur and its profile across the channel crucially depends on the
relative phases of u0(x0, t) and u1(x0, t).

Another quantity of interest is the instantaneous growth rate

σ(t) ≡ 1
2E(t)

dE(t)
dt

= Π(t) − Θ(t)
2E(t)

, (6.10)

particularly relevant during phases of near-exponential amplification.
Close monitoring of the spatiotemporal development of the base-flow interaction

π(x0, t) and the dissipation θ(x0, t) terms will clarify the amplification mechanisms that
govern the different stages of the dynamics.

We focus on two characteristic configurations that have already been discussed:
pulsating base flows at Re = 4000 and Wo = 10 with two different pulsation amplitudes,
Q̃ = 0.1 and Q̃ = 0.2, associated with streaky and two-dimensional maximally amplified
perturbations, respectively.

6.5.1. Streaky maximally amplified optimal perturbation
For the lower pulsation amplitude of Q̃ = 0.1, a maximal amplification of Gmax

max =
1.77 × 103 is achieved from ti = 0.166T to tf = 1.389T for streamwise invariant and
spanwise periodic perturbations with α1 = 0 and α2 = 4.073. The associated temporal
evolution of the perturbation energy E(t) is shown in figure 9(a), with the corresponding
instantaneous growth rate σ(t) in figure 9(b). Here, the transient growth is seen to
follow the classical pattern prevailing for steady Poiseuille flow: a strong and very short
initial boost for ti < t < t� = 0.175T (blue parts of the curves), followed by a phase of
gradually weakening growth for t� < t < tf (in red) towards the maximum response. And
indeed, these curves in figure 9(a,b) are almost identical to the accompanying insets
that correspond to the maximally amplified perturbations for steady Poiseuille flow at
the same Reynolds number, characterised by α1 = 0, α2 = 4.088, Gmax

max = 1.76 × 103.
This evolution is the result of energy production Π(t) and dissipation Θ(t), shown in
figure 9(c). As can be seen by plotting these quantities relative to the instantaneous
energy in figure 9(d), viscous dissipation plays here a minor part in the transient growth
throughout the entire process from ti to tf .

The temporal evolution of the spatial structure of the maximally amplified streaky
perturbation is illustrated in figure 10. Selected snapshots correspond to the thick black
dots in figure 9: ti = 0.166T optimal initial perturbation (thick blue curves); t = 0.169T
(thin blue curves); t� = 0.175T at maximal instantaneous growth (thick green curves);
t = 0.500T (thin red curves); tf = 1.389T optimal response (thick red curves). In order
to enable comparison of these profiles throughout the temporal evolution, they have here
all been normalised to unit total energy. As expected, the initial perturbation consists in
streamwise aligned vortices, that fill the entire channel cross-section, with a vanishing
streamwise velocity component: see thick blue curves in figure 10(a–c) and corresponding
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Figure 9. Temporal development of maximally amplified perturbation at Re = 4000, Wo = 10 and Q̃ = 0.1.
Optimal perturbation is streamwise invariant with α1 = 0 and α2 = 4.073. (a) Evolution of energy E(t) from
ti = 0.166T to tf = 1.389T , leading to Gmax

max = 1.77 × 103. (b) Corresponding instantaneous growth rate σ(t).
(c) Energy production Π(t) (solid line) and dissipation Θ(t) (dashed line). (d) Production and dissipation
terms relative to instantaneous energy. Insets in panels (a) and (b) correspond to maximally amplified streaks
for steady Poiseuille flow at same Reynolds number.

vector plot in figure 10(e). Transient amplification promotes streamwise velocity while
reducing wall-normal and spanwise velocity components, leading to a final response
that solely consists of streamwise velocity: see thick red curves in figure 10(a–c) and
u1-isolines in figure 10( f ). The energy production profiles π shown in figure 10(d) result
from the interaction of base flow shear with u0 and u1, and are therefore significant
only around t� = 0.175T (green curve), while displaying vanishing levels near ti and tf .
Dissipation profiles θ (not shown) remain at small values throughout the entire evolution.

Clearly, in this regime, the oscillating component of the base flow has a very weak
influence, the amplification process operates as for the equivalent steady Poiseuille flow
by redistributing streamwise momentum by streamwise vortices, and the dynamics is
essentially dictated by the lift-up effect. This insensitivity to the pulsating base-flow
component explains why the maximal growth factors Gmax

max prevailing for streaky optimal
perturbations remain at nearly constant level as Q̃ is increased, as observed in figure 6.

6.5.2. Two-dimensional maximally amplified optimal perturbation
A markedly different scenario prevails at higher pulsation amplitudes when the largest
transient amplification is achieved for two-dimensional (streamwise periodic and spanwise
invariant) perturbations.

As already shown in figure 5(d), for a pulsation amplitude of Q̃ = 0.2, the maximally
amplified optimal initial perturbation at Re = 4000 and Wo = 10 occurs for α1 = 2.619
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Figure 10. Evolution of spatial structure of maximally amplified streaks for Re = 4000, Wo = 10 and Q̃ = 0.1.
Spatial profiles of flow fields (normalised to unit total energy) over half-channel 0 ≤ x0 ≤ D/2 at different
snapshots: ti = 0.166T optimal initial perturbation (thick blue lines); t = 0.169T (thin blue lines); t� = 0.175T
at maximum growth rate (thick green lines); t = 0.500T (thin red lines); tf = 1.389T optimal response (thick
red lines). Envelope of (a) wall-normal |u0(x0, t)|, (b) streamwise |u1(x0, t)| and (c) spanwise |u2(x0, t)|
velocity perturbations. (d) Energy production π(x0, t) terms. Snapshots of velocity fields in half-channel
over two spanwise wavelengths (λ2 = 2π/α2): (e) vector plot of (u0, u2) for initial perturbation at ti and
( f ) equispaced isolines of streamwise component u1 of response at t = tf .
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Figure 11. Temporal development of maximally amplified perturbation at Re = 4000, Wo = 10 and Q̃ = 0.2.
Optimal perturbation is two-dimensional with α1 = 2.619 and α2 = 0. (a) Evolution of energy E(t) from
ti = 0.168T to tf = 0.698T , leading to Gmax

max = 5.48 × 104. (b) Corresponding instantaneous growth rate σ(t).
(c) Energy production Π(t) (solid line) and dissipation Θ(t) (dashed line). (d) Production and dissipation terms
relative to instantaneous energy. Growth occurs in two stages: phase I (in blue) for ti < t < t� and phase II (in
red) for t� < t < tf , separated by stall at t� = 0.251T (green vertical line).

and α2 = 0 and leads to an amplification of Gmax
max = 5.48 × 104 from ti = 0.168T to

tf = 0.698T . The temporal evolution of the perturbation energy is given in figure 11(a),
with the associated instantaneous growth rate in figure 11(b). The transient growth that
occurs over the interval ti < t < tf is here seen to develop in two stages: first a relatively
short period (phase I, blue curves) of rapid growth followed by a longer interval (phase
II, red curves) of weaker but almost constant growth. Between these two stages, the
amplification stalls and the instantaneous growth displays a minimum value, which is here
slightly negative around t� = 0.251T . This two-stage evolution results from production
and dissipation contributions, as illustrated in figure 11(c,d): a first peak in Π(t) during
phase I is responsible for the rapid growth of the perturbation, followed by a sustained
nearly exponential increase during phase II. The contribution of the relative dissipation
Θ(t)/2E(t) is significant only at the very beginning, before rapidly dropping to low values.

The mechanisms responsible for the growth of the perturbation differ in both phases,
as illustrated by the profiles in figure 12. These plots show the evolution of the spatial
distribution of various fields by selected snapshots, corresponding to the thick black dots
in figure 11. Note that the perturbation profiles have again been normalised to unit total
energy. The envelopes of wall-normal |u0| and streamwise |u1| velocity components in
figure 12(a,b) show that the initial perturbation at ti (thick blue curves) is localised toward
the wall with maximum amplitude around x0 = 0.4D, before spreading over the entire
channel cross-section in the subsequent evolution. The spatial distribution of the base-flow
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Figure 12. Evolution of spatial structure of maximally amplified (two-dimensional) optimal perturbation
for Re = 4000, Wo = 10 and Q̃ = 0.2. Spatial profiles of flow fields (normalised to unit total energy) over
half-channel 0 ≤ x0 ≤ D/2 at different snapshots: ti = 0.168T optimal initial perturbation (thick blue lines);
t = 0.186T and t = 0.210T in phase I (thin blue lines); t� = 0.251T at stall (thick green lines); t = 0.300T
and t = 0.500T in phase II (thin red lines); tf = 0.698T optimal response (thick red lines). (a) Envelope of
wall-normal |u0(x0, t)| and (b) streamwise |u1(x0, t)| velocity perturbations. (c) Energy production π(x0, t)
and (d) dissipation θ(x0, t) terms. Snapshots of (u0, u1) velocity fields in half-channel over two streamwise
wavelengths (λ1 = 2π/α1): (e) initial perturbation at t = ti and ( f ) response at t = tf .

interaction terms π(x0, t) (shown in figure 12c) reveals that the driving mechanism is
strong and concentrated around x0 = 0.4D in phase I (blue curves) while weaker and
evenly spread out in phase II (red curves). In contrast, plots of θ(x0, t) (figure 12d) show
that dissipation is only significant in the initial stages for t � ti and reduced to a very thin
boundary layer near the wall throughout the rest of the evolution. The vector plot of the
initial perturbation in a streamwise channel cross-section (figure 12e) highlights the flow
structures concentrated near the wall and characteristically tilted upstream. In contrast, the
final response (figure 12f ) fills the entire channel.
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Figure 13. Temporal energy evolution of maximally amplified perturbation (blue and red curves) compared
with least stable normal mode (thick black curve), at Re = 4000, Wo = 10 and Q̃ = 0.2, for α1 = 2.619.
Normal-mode energy exponentially decays in the long term, according to a Floquet multiplier of μF = 0.0766,
but displays intracyclic amplification by a factor of Gnm = 4.30 × 103, approximately during half a pulsation
period. Optimal perturbation is amplified by Gmax

max = 5.48 × 104. Phase II (in red) closely follows normal mode
while phase I (in blue) is very similar to optimal growth prevailing for steady Poiseuille flow at same parameters
(inset). Grey sinusoidal curve represents base flow rate Q(t) (not to scale).

Finally, we compare the dynamics of the present maximally amplified optimal
perturbation with the development of the temporal normal mode prevailing for the same
pulsating base flow at the same spatial wavenumbers. Such normal modes have been
extensively computed and characterised in our previous investigation (Pier & Schmid
2017), using both Floquet eigenproblems and linearised direct numerical simulations.

All pulsatile base flows under consideration here are linearly stable so that temporal
eigenmodes decay in the long term. The thick black curve in figure 13 shows the temporal
evolution of perturbation energy for the least stable normal mode at Re = 4000, Wo = 10
and Q̃ = 0.2, with α1 = 2.619 and α2 = 0. The negative mean slope in this logarithmic
plot confirms the decay, governed by a Floquet multiplier of μF = 0.0766. Thus, the
perturbation energy of this normal mode is reduced by a factor of μ2

F after each
pulsation period. However, within each pulsation cycle, significant modulation occurs.
This intracyclic growth and decay has been shown to approximately coincide with
base-flow deceleration and acceleration phases (Pier & Schmid 2017), as indicated by
the grey sinusoidal line representing Q(t). Here, the normal mode displays an intracyclic
amplification of Gnm = 4.30 × 103.

Comparison of optimal-perturbation and normal-mode energy curves reveals that,
during phase II (t� < t < tf , red part of curve in figure 13), the optimal perturbation closely
follows the normal-mode dynamics. And, indeed, optimal perturbation and normal mode
also display very similar flow fields during that interval.

In the initial phase I (ti < t < t�, blue part of curve in figure 13), however, the maximally
amplified perturbation takes advantage of the optimal initial condition responsible for the
initial boost in the response through the Orr mechanism. The amplification during phase I
is almost identical to the maximal growth experienced by a two-dimensional optimal initial
condition for steady Poiseuille flow at the same Reynolds number and same streamwise
wavenumber, shown in the inset in figure 13.

These considerations reveal that the maximally amplified two-dimensional perturbation
is an optimal combination of Orr mechanism (phase I) and intracyclic normal-mode
growth over half a pulsation cycle (phase II). Growth during phase I is essentially
determined by the equivalent steady Poiseuille base flow: the resulting amplification factor
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therefore scales approximately linearly on Re while being largely independent of Wo and
Q̃. In contrast, growth during phase II closely follows the intracyclic amplification of the
associated temporal eigenmodes, and the magnitude of this intracyclic growth has been
shown to strongly depend on Wo and Q̃: whatever the Womersley number, it increases
almost exponentially with Q̃, and the increase is fastest at the lower values of Wo (Pier
& Schmid 2017). This exponential growth with Q̃ explains why two-dimensional optimal
perturbations always eventually prevail over streaky perturbations, as observed in figure 6.

The maximal growth factor Gmax
max is obviously always larger than either contribution

of phase I or of phase II to the total growth. But while the contribution of phase I
remains at moderate levels (one or two orders of magnitude, as for steady Poiseuille
flow), it is phase II that is responsible for the huge amplification factors prevailing as the
modulation amplitude Q̃ increases. As a result, except for weak pulsation amplitudes, the
Orr mechanism only contributes a small factor to the maximal growth Gmax

max, while most
of the amplification process is due to modal growth during base-flow deceleration.

7. Pulsating pipe flow

After having presented detailed results for channel flows, we now turn to the transient
growth properties of pulsating flows through circular pipes. The organisation of this
section is similar to the previous one. However, since most features are equivalent, many
details may be omitted here.

By adopting the general formulation appropriate for both Cartesian and cylindrical
coordinates, the analysis of pulsating pipe flows is carried out with the same numerical
codes as previously used for pulsating channel flows. Due to periodicity in the azimuthal
coordinate, the wavenumber α2 only takes integer values, but otherwise the numerical
implementation proceeds as for a Cartesian formulation. Recall that the apparent
singularity at the pipe axis (x0 = 0) resolves itself by taking advantage of the symmetry
properties relevant for each flow component, since all flow fields are either symmetric or
antisymmetric in the radial coordinate x0.

7.1. Transient growth of streaks and helical perturbations
Since for steady Hagen–Poiseuille flow, streamwise invariant streaks with α2 = 1 and
α1 = 0 undergo the largest non-modal growth, we first consider the transient amplification
features prevailing for the same type of perturbations developing in pulsating pipe flows.
Figure 14 shows the amplification factors G(ti, tf ) obtained at Wo = 10, for Re = 2000
and 5000, Q̃ = 0.4 and 1.0. The control parameters are the same as those used in figure 2
for pulsating channel flow, and it is observed that the transient growth properties are very
similar.

For streamwise periodic (α1 /= 0) perturbations, the least stable temporal modes
correspond to helical perturbations with α2 = 1. Investigation of transient growth
characteristics for α1 /= 0 also confirms that perturbations with α2 = 1 dominate over
axisymmetric perturbations (α2 = 0) as well as over those of higher azimuthal order
(α2 ≥ 2).

Figure 15 illustrates the transient growth properties for α2 = 1 and α1 = 2 at Wo = 10
and Re = 2000 and Re = 5000 as the amplitude Q̃ of the pulsating base flow component
is increased. As for pulsating channel flow, a second maximum emerges that rapidly
dominates the dynamics beyond some value of the base flow modulation amplitude.
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Figure 14. Optimal transient amplification for streaks with α2 = 1 and α1 = 0 at (a,b) Re = 2000 and (c,d)
Re = 5000. Pulsating pipe flow at Wo = 10 and (a,c) Q̃ = 0.4 and (b,d) Q̃ = 1.0.

This maximum is again located near ti/T = 0.2 and (tf − ti)/T = 0.5 and corresponds
thus to amplification over half a pulsation cycle.

7.2. Optimal growth at given wavenumbers
The maximal transient growth Gmax, computed by optimisation of G(ti, tf ) over all values
of ti and tf for fixed wavenumbers α1 and α2, is shown in figure 16. In each plot the
evolution of Gmax curves for 0 < α1 < 6 is illustrated as Q̃ is increased from Q̃ = 0 to
Q̃ = 1 in steps of 0.1. Panels (a–c) compare the growth of axisymmetric perturbations,
α2 = 0 in panel (a), with that of helical perturbations, α2 = 1 in panel (b) and α2 = 2 in
panel (c). Clearly, under pulsating flow conditions, axisymmetric initial conditions
undergo transient amplification that is not much larger than for the equivalent steady
Poiseuille flow, as demonstrated by the nearly overlapping curves in figure 16(a).
Non-axisymmetric perturbations, however, experience transient amplification that rapidly
grows with Q̃, and strongest growth occurs for α2 = 1 (figure 16b). Computation of
Gmax for all α2 ≤ 6 (results not shown) reveals that the same scenario prevails at higher
azimuthal order, but the rate of increase of Gmax with Q̃ is significantly weaker for higher
α2.

Evolution of the growth characteristics for Re = 4000 with different Womersley
numbers, Wo = 8 in panel (d), Wo = 12 in panel (e) and Wo = 14 in panel ( f ), confirms
again that largest amplification factors occur for lower pulsation frequencies, i.e., longer
pulsation cycles.

Finally, values obtained at lower Re = 2000 for Wo = 8 in panel (g), 10 in panel (h)
and 14 in panel (i) show that the general trend is similar but with lower values of Gmax, as
expected for lower Re.

7.3. Maximal amplification
Finally, the maximal amplification Gmax

max achievable for a given pulsating pipe flow
is obtained by optimising Gmax(α1, α2) over all streamwise wavenumbers α1 and
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Figure 15. Optimal transient amplification for helical perturbations with α2 = 1 and α1 = 2 at (a–c)
Re = 2000 and (d–f ) Re = 5000. Pulsating pipe flow at Wo = 10 and (a,d) Q̃ = 0.1, (b,e) Q̃ = 0.4 and
(c, f ) Q̃ = 0.6.

azimuthal mode numbers α2. Figure 17 shows the variation of Gmax
max as the pulsation

amplitude Q̃ is increased for Womersley numbers in the range 5 ≤ Wo ≤ 15 and Re =
2000, 3000, 4000 and 5000. The behaviour is again found to be similar to that prevailing
for pulsating channel flows: at low pulsation amplitudes, Gmax

max hardly departs from the
value corresponding to the equivalent steady Poiseuille flow; beyond a critical value Q̃c of
the pulsation amplitude Q̃, transition to approximately exponential growth of Gmax

max with
Q̃ takes over. The results shown in figure 17(a) perfectly match those of figure 4(a) of Xu
et al. (2021), for the subset of control parameter values that is common to both studies.
This agreement further validates our methods.

The variation with Wo and Re of the critical value Q̃c for crossover between the two
regimes is shown in figure 18(a). In the exponential regime prevailing for Q̃ ≥ Q̃c, the
growth rates κ corresponding to the slopes in figure 17 are given in figure 18(b), computed
according to (6.1). For a given Reynolds number, the curves of Q̃c in figure 18(a) are seen
to display a minimum for moderate values of the Womersley number, while they increase
both for large and small values of Wo. The increase of Q̃c with Wo for Wo ≥ 10 is strongest
at lower values of the Reynolds number. In contrast, for Wo ≤ 10 the values of Q̃c depend
much less on Re.
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Figure 16. Maximum energy growth Gmax for pulsating pipe flows, over 0 < α1 < 6 at Q̃ = 0.0, 0.1, 0.2,
. . . , 1.0. Here (a–f ) Re = 4000 and (g–i) Re = 2000; (a–c,h) Wo = 10, (d,g) Wo = 8, (e) Wo = 12 and ( f,i)
Wo = 14; (a) α2 = 0, (b,d–i) α2 = 1 and (c) α2 = 2.

Comparison of the values of Q̃c and κ for pipe flows (figure 18) with those prevailing for
channel flows shown in figure 7, reveals that pipe flows require larger pulsation amplitudes
to switch to the regime with exponentially growing amplification factors Gmax

max. This is
especially true for lower Womersley numbers (see also figure 20 below with additional data
for Wo = 3). Also, while the growth rates κ display very similar trends for both channel
(figure 7b) and pipe configurations (figure 18b), the values for pipe flows are approximately
half those of channel flows.

The streamwise wavenumber α1 associated with the most amplified perturbation as
the pulsation amplitude Q̃ is varied for a range of Womersley numbers is monitored
in figures 19(a) and 19(b) for Re = 2000 and Re = 4000, respectively. These plots
demonstrate that the regime change occurring at Q̃c is indeed associated with a jump
in streamwise wavenumber from α1 = 0 for Q̃ < Q̃c to finite α1-values for Q̃ > Q̃c. In
contrast with channel flows, however, for all pulsating pipe flow configurations investigated
here, the optimal perturbations always occur with azimuthal mode number α2 = 1. Thus
the critical value Q̃c always corresponds to a transition from streaky (α1 = 0, α2 = 1) to
helical (α1 /= 0, α2 = 1) optimal perturbations, at the same azimuthal mode number.
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Figure 17. Evolution of maximal transient energy amplification Gmax

max for pulsating pipe flows with Q̃ for
Wo = 5, 6, 7, . . . , 15 at (a) Re = 2000, (b) Re = 3000, (c) Re = 4000 and (d) Re = 5000.
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Figure 18. (a) Critical values Q̃c for transition between streaky and helical maximally amplified perturbations
in pulsating pipe flows. (b) Exponential growth rate κ of Gmax

max with Q̃ in the helical regime.

This regime change is also associated with a discontinuity in the duration of the growth
phase tf − ti for the optimal amplification process, as illustrated in figure 19(c,d) for
Re = 4000. The optimised duration tf − ti is given in mean-flow advection units τQ in
figure 19(c) and in units of the pulsation period T in figure 19(d). These plots illustrate
that pulsating pipe flows display similar transient dynamics as channel flows: for Q̃ < Q̃c,
the optimal duration tf − ti remains close to the value prevailing for the average parabolic
flow profile; for Q̃ > Q̃c, when helical perturbations dominate, maximal amplification
occurs over intervals corresponding approximately to half a pulsation period. Thus our
results confirm the findings of Xu et al. (2021) that helical perturbations dominate the
transient growth at large pulsation amplitudes. By our detailed comparison of channel and
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Figure 19. Characterisation of the maximally amplified optimal perturbations as the pulsation amplitude Q̃ is
increased for Wo = 6, 8, 10, 12, 14. Streamwise wavenumber α1 at (a) Re = 2000 and (b) Re = 4000. Duration
of transient growth tf − ti at Re = 4000 (c) measured in mean-flow advection units τQ and (d) in pulsation
periods T .

pipe configurations at moderate pulsation frequencies, we have been able to highlight the
fundamental growth mechanisms, which are common to both geometries.

8. Conclusion

Considering pulsating flows through both channels and pipes, we have investigated the
non-modal transient energy amplification resulting from optimal initial conditions. Our
study has systematically covered the pulsating base flows for 1000 ≤ Re ≤ 5000, 5 ≤
Wo ≤ 15 and 0 ≤ Q̃ ≤ 1.

While channel and pipe flows display quite different linear modal stability
characteristics, their non-modal transient growth features are found to be very similar in
situations that are linearly stable. Optimal energy growth occurs according to two distinct
scenarios. At weak pulsation amplitudes Q̃, the behaviour is similar to that resulting
from the equivalent steady Poiseuille flow, and the oscillating flow component appears
to have only a small effect. Beyond a critical value of Q̃, however, transient growth
increases exponentially with Q̃ and reaches astronomical values, already for moderate
pulsation amplitudes. In this latter regime, optimal growth mainly occurs over half a
pulsation period, during the slow part of the pulsation cycle, and closely follows the
intracyclic amplification of the associated Floquet eigenmodes. We have previously shown
(Pier & Schmid 2017) that the intracyclic modulation amplitudes derived from temporal
normal modes may be huge, even for linearly decaying eigenmodes. The maximal transient
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Figure 20. Evolution of maximal transient energy amplification Gmax
max with Q̃ for Wo = 3, 5, 10, 15 and 20 at

Re = 5000, for (a) channel and (b) pipe configurations.

amplification factors Gmax
max computed in the present investigation are even larger since

they take advantage of both this normal-mode intracyclic growth and non-modal Orr-type
amplification, which contributes in the early stage of the growth process.

These findings have been firmly established by a comprehensive investigation of
pulsating flows over the range 5 ≤ Wo ≤ 15, deemed to be the most relevant for
applications in the haemodynamic context. In order to explore the expected behaviour
beyond that frequency range, figure 20 shows the maximal achievable transient growth
Gmax

max for channel and pipe flows at Re = 5000, extending the results of figures 6(d) and
17(d) by including data at lower and higher pulsation frequencies, Wo = 3 and Wo = 20,
respectively. At high pulsation frequencies, it is observed that the pulsating component is
rather inefficient in producing Gmax

max factors beyond those prevailing for steady base flows,
a result closely related to the fact that high-frequency pulsation also has a strong stabilising
effect on modal temporal growth rates. In the low frequency regime, the curves for Wo = 3
indicate that strong growth is still possible but requires larger pulsation amplitudes Q̃.
When lowering Wo, the critical value Q̃c for onset of the exponential regime increases
moderately for channel flows and significantly for pipe flows (Q̃c � 0.98 for Wo = 3).
These plots are in agreement with observations already made by Xu et al. (2021) for
pulsating pipe flows. Concerning the spatial structure of the optimal perturbations, the
results of figure 20 follow the same scenario as previously discussed: while streaky
perturbations prevail for Q̃ < Q̃c, at larger pulsation amplitudes two-dimensional and
helical perturbations dominate, respectively, in channel and pipe flows.

It should be noted that a major difference between channel and pipe flows concerns their
linear modal instability features. Indeed, for channel flows there exists a critical Reynolds
number beyond which linear instability occurs. This is well known for steady Poiseuille
channel flow, and the dependence of this critical Reynolds number with the pulsating
flow parameters has been extensively discussed in our previous work (Pier & Schmid
2017). By contrast, steady pipe Poiseuille flow remains linearly stable, whatever the
Reynolds number. For time-periodic base flows, linear instability has been found for purely
oscillating pipe flows (Thomas et al. 2011). However, the presence of a non-vanishing
mean flow rate appears to have a stabilising effect and all pulsating pipe flows considered
in the present study are far from temporal instability.

Another difference is that two-dimensional (spanwise invariant and streamwise
periodic) perturbations are the most unstable or the least stable for channel flows, whereas
the leading linear instability for pipe flows occurs for helical modes with α2 = 1 and
α1 /= 0, which dominate over perturbations of higher azimuthal order (α2 ≥ 2) as well
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as over axisymmetric (α2 = 0) ones. It is found that this remains true for pulsating pipe
flows.

While channel flows are rapidly dominated by two-dimensional sinuous perturbations,
pipe flows are dominated by helical perturbations in similar pulsating flow regimes.
For pipe flows, axisymmetric perturbations never prevail. But note that the Cartesian
equivalent of axisymmetric perturbations are two-dimensional perturbations of varicose
symmetry, which never prevail either. The closest equivalent to a two-dimensional sinuous
perturbation in a cylindrical geometry is a helical perturbation (with α2 = 1).

This study gives a detailed and comprehensive perspective on the perturbation dynamics
in pulsatile channel and pipe flow, treating these configurations within a time-dependent,
initial-value problem formalism and thus avoiding restrictive assumptions of a modal,
time-asymptotic approach. This analysis identified a rich perturbation behaviour driven
by parametric and transient excitation over one or multiple forcing cycles and the
dominance of an Orr-type amplification mechanism at early times that acts efficiently and
selectively across a significant parameter range, once a critical pulsation amplitude has
been surpassed.

Our study lays the foundation for a future analysis of pulsating base flows with higher
harmonic content, such as blood flow rates resulting from the cardiac pulse. The present
approach could also be generalised to take into account compliant walls or to address
nonlinear fluid effects.
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Appendix A. General formulation of the Navier–Stokes equations

In order to handle both Cartesian and cylindrical formulations of the governing
Navier–Stokes equations ((2.1) and (2.2)), a general set of spatial coordinates x0, x1, x2 and
associated velocity components u0, u1, u2 is used. These correspond to either wall-normal,
streamwise and spanwise directions for channel flows, or radial, streamwise and azimuthal
directions for pipe flows, respectively. Using these coordinates and velocity fields, the
components of the incompressible Navier–Stokes equations become

∂tu0 + (u · ∇)u0 − 1
x0

u2
2 = ν

⎛
⎝Δu0 + 1

x2
0

(−u0 − 2∂2u2)

⎞
⎠− ∂0p, (A1)
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∂tu1 + (u · ∇)u1 = ν

⎛
⎝Δu1

⎞
⎠− ∂1p, (A2)

∂tu2 + (u · ∇)u2 + 1
x0

u0u2 = ν

⎛
⎝Δu2 + 1

x2
0

(−u2 + 2∂2u0)

⎞
⎠− 1

x0
∂2p, (A3)

0 = ∂0u0 + 1
x0

u0 + ∂1u1 + 1
x0

∂2u2, (A4)

with the notations
∂0 ≡ ∂x0, ∂1 ≡ ∂x1, ∂2 ≡ ∂x2, (A5a–c)

and

u · ∇ ≡ u0∂0 + u1∂1 + 1
x0

u2∂2, (A6)

Δ ≡ ∂00 + (1/x0)∂0 + ∂11 + (1/x2
0) ∂22. (A7)

In these expressions, the terms enclosed in boxes are only present in the formulation using
cylindrical coordinates and pertaining to the pipe flow configuration. Resorting to such a
general formalism is particularly useful when developing numerical codes to solve both
channel and pipe flows: the boxed terms may be switched on or off depending on the flow
configuration.

Appendix B. Analytic expressions of the pulsating base flow profiles

For pulsating base flows prevailing in infinite channels or pipes, the harmonic components
U(n)

1 (x0) of the streamwise velocity fields (3.1) display profiles following the shape
function W(ξ, ω) with ξ = 2x0/D and ω = √

nWo.
When considering channel flows in Cartesian coordinates, the oscillating velocity

profiles are analytically obtained in terms of hyperbolic functions

W(ξ, ω) ≡
(

cosh(
√

iξω)

cosh(
√

iω)
− 1

)/(
tanh(

√
iω)√

iω
− 1

)
, (B1)

for |ξ | ≤ 1 and ω /= 0, while the steady component is parabolic,

W(ξ, ω = 0) ≡ 3
2(1 − ξ2). (B2)

When considering pipe flows in cylindrical coordinates, the velocity profiles involve
Bessel functions

W(ξ, ω) ≡
(

J0(
√−iξω)

J0(
√−iω)

− 1

)/(
2√−iω

J1(
√−iω)

J0(
√−iω)

− 1

)
, (B3)

with J0 and J1 denoting the classic Bessel functions of the first kind. The steady component
is again parabolic,

W(ξ, ω = 0) ≡ 2(1 − ξ2). (B4)
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All the profiles above are normalised so that their cross-sectional average equals
unity. Thus, the pulsating base flow velocity components (3.4) are simply obtained by
multiplying these profiles with the flow rate coefficients Q(n).

Appendix C. Linear governing equations of direct problem

In the direct formulation of the incompressible Navier–Stokes equations (4.3), the spatial
differential operator L(x0, t) is a 4-by-4 matrix of the form

L(x0, t) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

L00(x0, t) 0 L02(x0, t) −∂0
L10(x0, t) L11(x0, t) 0 −iα1

L20(x0, t) 0 L22(x0, t) − 1
x0

iα2

−∂0 − 1
x0

−iα1 − 1
x0

iα2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

Its coefficients involve ∂0-differentiation, depend on the spatial wavenumbers as well as
on the base flow velocity profiles. Their explicit expressions are the following:

L00(x0, t) = −iα1U1(x0, t) + ν

⎛
⎝Δ − 1

x2
0

⎞
⎠ , (C2)

L11(x0, t) = −iα1U1(x0, t) + νΔ, (C3)

L22(x0, t) = −iα1U1(x0, t) + ν

⎛
⎝Δ − 1

x2
0

⎞
⎠ , (C4)

L10(x0, t) = −∂0U1(x0, t), (C5)

L20(x0, t) = −L02(x0, t) = 2ν
iα2

x2
0

, (C6)

with

Δ ≡ ∂00 + 1
x0

∂0 − α2
1 − 1

x2
0

α2
2 . (C7)

Appendix D. Adjoint problem

In the adjoint formulation of the incompressible Navier–Stokes equations (4.5), the spatial
differential operator L†(x0, t) is obtained as

L†(x0, t) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L†
00(x0, t) L†

01(x0, t) L†
02(x0, t) −∂0

0 L†
11(x0, t) 0 −iα1

L†
20(x0, t) 0 L†

22(x0, t) − 1
x0

iα2

−∂0 − 1
x0

−iα1 − 1
x0

iα2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D1)
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with

L†
00(x0, t) = −iα1U1(x0, t) − ν

⎛
⎝Δ − 1

x2
0

⎞
⎠ , (D2)

L†
11(x0, t) = −iα1U1(x0, t) − νΔ, (D3)

L†
22(x0, t) = −iα1U1(x0, t) − ν

⎛
⎝Δ − 1

x2
0

⎞
⎠ , (D4)

L†
01(x0, t) = ∂0U1(x0, t), (D5)

L†
20(x0, t) = −L†

02(x0, t) = 2ν
iα2

x2
0

. (D6)
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