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Abstract
The locus of aerodynamic centres of a finite wing is the collection of all spanwise section aerodynamic centres,
and depends on aspect ratio, wing sweep and planform shape. This locus is of great importance in the positioning
of vortex elements in lifting-line theory. Traditionally, these vortex elements are placed along the quarter-chord of
a wing, leading to inaccurate predictions of aerodynamic coefficients for swept wings due to the discontinuity in
the line of vorticity at the wing root. An analytical solution was presented by Küchemann in 1956 to determine the
locus of aerodynamic centres as a function of sweep. While experimental studies have been performed to visualise
this locus, no large amount of data is available to fully evaluate the accuracy of Küchemann’s analytical solution. In
the present study, a numerical approach is taken using a high-order panel method for inviscid, incompressible flow
to calculate the locus of aerodynamic centres for elliptic wings over a wide range of sweep angles, aspect ratios and
profile thicknesses. An inviscid panel method is chosen over full CFD solutions because of their ability to isolate
the inviscid phenomena. Küchemann’s prediction is compared to this numerical data. The root mean square error
is calculated for each wing in a broad design space to determine the accuracy of Küchemann’s theory. It is shown
to be remarkably accurate over the range of cases studied, with the root mean square error staying below 4% for all
wings with aft sweep and aspect ratios higher than RA = 5. The actual difference between Küchemann’s prediction
and numerical data is lower than that for the majority of the span for many of the wing designs considered, with the
RMS error being skewed by the results at the tip. Results demonstrate that Küchemann’s analytical equations can
be used as an accurate approximation for the locus of aerodynamic centres and could be used in modern numerical
lifting-line algorithms∗.

Nomenclature
b span
c local chord
C̃L section lift coefficient
C̃L,α two-dimensional lift-curve slope
C̃m section moment coefficient about the quarter-chord
C̃P section pressure coefficient
Exac/c difference between analytical and numerical results for chordwise aerodynamic centre position
ns number between 0 and 1 related to the chordwise distribution of vorticity
RA aspect ratio
RMS root mean square error
x axial coordinate

∗This manuscript was previously published and presented by Moorthamers [1] at AIAA SciTech 2020 Forum in Orlando, Florida.
Some statements have been slightly reworded.
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xac axial coordinate of aerodynamic centre
y spanwise coordinate
z normal coordinate
yac normal coordinate of aerodynamic centre
�xac deviation in chordwise aerodynamic centre position
ηroot spanwise distance from root as a fraction of the local chord
ηtip spanwise distance from tip as a fraction of the local chord
κL lift parameter used in Equation (11)
κm moment parameter used in Equation (11)
λs weighting function
�c/2 half-chord sweep
�c/4 quarter-chord sweep
�e effective sweep

1. Introduction
The numerical lifting-line algorithm of Phillips and Snyder [2] is a direct analog to the classical lifting-
line theory of Prandtl [3]. It has been shown to be accurate for wings with aspect ratios greater than
about 4 [2]. Similarly to Prandtl [3] in his classical lifting-line theory, the bound vortices are positioned
along the wing quarter-chord line, the theoretical aerodynamic centre of a two-dimensional aerofoil
according to thin aerofoil theory. The method is proven to be accurate for wings without sweep, and
Phillips and Snyder [2] claim that the prediction of the lift slope for a swept wing is comparable to
other potential flow and inviscid computational fluid dynamics solutions. However, the use of sweep
introduces a singularity in the slope of the quarter-chord which causes strong downwash in the root
region and an over-prediction of induced drag. Phillips and Snyder [2] state that in fact the locus of
sections aerodynamic centres shifts aft near the root, and suggest that moving the line of vorticity to this
locus would remove the discontinuity in the slope. The locus of aerofoil section aerodynamic centres is
the collection of individual aerodynamic centres of spanwise sections taken from wing root to wing tip.

While the quarter-chord point is the theoretical aerodynamic centre of a two-dimensional thin aero-
foil, it is not where the locus of aerodynamic centres of a finite three-dimensional wing lies. It is
well known that the locus of swept wings does not follow the wing quarter-chord. Because of three-
dimensional aerodynamic effects these individual section aerodynamic centres are not necessarily equal
to their counterpart in two-dimensional flow. Therefore, placing the bound vortices along the quarter-
chord point is a cause for error in modeling the aerodynamic properties of swept wings using lifting-line
theory. It is expected that placing the vorticity instead along this locus will significantly improve the
results obtained by the numerical lifting-line method proposed by Phillips and Snyder [2] for swept
wings.

This research is part of a larger effort towards the research and development of morphing wings,
which are of great interest to researchers in both academia and industry. The use of deforming surfaces
for stability and control as opposed to traditional control surfaces is expected to decrease aerodynamic
drag as well as produce a lower radar signature. The Air Force Research Lab [4–8], DARPA [9], FlexSys
[10] and others [11] are developing technologies to enable such morphing surfaces. One approach that is
often taken is allowing the wings to change camber at different spanwise locations along the wing. The
ability to change camber over the complete wing span greatly increases the number of design variables
involved with this new type of aircraft configuration. Combined with the fact that these morphing air-
craft can morph mid-flight to optimise for the various flight phases they go through, these many design
variables mean higher-fidelity aerodynamic analysis tools are not a viable option for use in configuration
optimisation because of computational expense. This demands a computationally efficient lower-order
method to rapidly explore a design space and find optimal configurations. The numerical lifting-line
algorithm by Phillips and Snyder [2] provides one candidate for such a method if the aforementioned
issues for swept wing calculations can be solved. Therefore, an easy way to calculate the locus of section
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aerodynamic centres needs to be found, so it could be used as an input for the placement of the bound
vorticity in the numerical method.

Dietrich Küchemann [12] provides an approximation for the location of the aerodynamic centre as a
function of spanwise location for a swept wing with a symmetric aerofoil of arbitrary thickness. Here
we present his method of calculating the location of the locus of aerodynamic centres, but do so in a
more modern notation. On a sheared wing of infinite span the line of vorticity is modeled along the
same angle as the geometric sweep. In a finite wing, the interaction between vortex effects of the wing
tip and wing root means the line of vorticity will never attain the angle of geometric sweep. Küchemann
therefore defines the effective sweep angle to take this effect into account, and iteratively arrives at

�e = �c/2[
1 +

(
C̃L,αcos�c/2

RAπ

)2
]1/4 , (1)

where �c/2 is the sweep angle of the half-chord line, C̃L,α is the section lift-curve slope and RA is the
wing aspect ratio. In Equation (1), the local section lift curve slope C̃L,α depends on the camber and
thickness of the local aerofoil. Note that in Equation (1), Küchemann uses half-chord sweep instead of
the now more conventional quarter-chord sweep. For the present work, it is assumed the quarter-chord
sweep can be used directly instead of the half-chord in Equation (1). Küchemann defines a weighting
function to account for the influence of wing root and tip regions dependent on the spanwise position
between root and tip. The weighting function is given by

λs = λ(ηroot) − λ(ηtip), (2)

where

λ(η) =
√

1 +
(

2π
tan�e

�e

η

)2

− 2π
tan�e

�e

η, (3)

and

ηroot ≡ y

c
, (4)

ηtip ≡ b/2 − y

c
. (5)

Here, b is the wing span, y is the local spanwise coordinate and c is the local chord length. In the case
of wings without sweep, indeterminate terms with zero in the numerator and denominator appear in
Equation (3). Therefore, L’Hospital’s rule is used to evaluate Equation (3) with �e = 0 as

λ(η)|�e=0 =
√

1 + (2πη)
2 − 2πη. (6)

With the weighting function given in Equation (2) determining the amount of influence of vortex effects
from the wing root and tip regions, the location of the aerodynamic centre at any spanwise location can
be found from

xac

c
= 1 − ns

2
, (7)

where

ns = 1 − 1 + λs
�e
π/2

2

[
1 +

(
C̃L,αcos�e

πRA

)2
] 1

4(1+2|�e |/π)

. (8)

It should be noted that there is likely a mistake in Equation (91) in Küchemann’s paper [12]. The term
within parentheses of the exponent in the denominator of Equation (8) was typeset as (1 + 2|�e|π) in
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Figure 1. Comparison of Küchemann’s analytical solution [12] for the locus of section aerodynamic
centres and experimental data by Kolbe [13], Hall [14], Graham [15] and Weber [16]. Data extracted
from Phillips [17].

Küchemann’s paper. However, from his derivation and previous equations it can only be concluded that
it has to be in fact (1 + 2|�e|/π), which is what is used in this study.

It is convenient to express the section aerodynamic centre location as a shift from its position in
two-dimensional flow. The deviation of aerodynamic centre location relative to the two-dimensional
aerodynamic centre position at any spanwise location can be calculated using Küchemann’s analytical
approach as (

�xac

c

)
Küchemann

= 1 − ns

2
−

(xac

c

)
2D

. (9)

Figure 1 shows a comparison between the locus as found using Küchemann’s approach and experimental
data points from others [13–16] for different wing designs. The dashed line shows the locus of section
aerodynamic centres as predicted by Küchemann and the circular symbols indicate the experimental
data points. The locus is seen to move forward towards the wing tip and aft towards the wing root.

While Fig. 1 shows promise for the accuracy of Küchemann’s analytical approach, the amount of
available experimental data for evaluation is limited. Therefore this present research uses a numerical
approach using potential flow to calculate the locus of section aerodynamic centres of finite wings and
generate data to evaluate the accuracy of Küchemann’s work. If proven to be accurate, Küchemann’s
analytical approach can be suggested as an input to an ongoing research attempt to improve the existing
numerical lifting-line method by Phillips and Snyder [2] for swept wings.

2. Numerical method
To evaluate the accuracy of the locus of section aerodynamic centres as calculated using Küchemann’s
analytical method presented in Section 1, a set of data points for swept, elliptic wings is built using an
inviscid panel method. The open-source potential flow solver PANAIR is used to accurately calculate
the locus of section aerodynamic centres. PANAIR is a high order panel method using linear potential
flow theory for inviscid subsonic and supersonic flow simulations [18]. High Reynolds number flows
approach the results of insviscid studies in the limit as the Reynolds number approaches infinity.
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Figure 2. Cosine-clustered grid with 20 × 20 panels. The grid used in PANAIR calculations has 80 × 80
panels.

Other research on swept wings has been done using full CFD simulations with higher fidelity than
panel codes [19, 20]. The advantage of using a potential panel code as opposed to using CFD lies in
the ability to provide continuous spanwise pressure distributions thanks to the structured grid. This is
harder to achieve on the unstructured grids of modern CFD codes. Because of the potential nature of the
theory behind Küchemann’s approximation, a panel code should be used that can fully isolate inviscid
phenomena. CFD solutions will always include some viscosity. The results from PANAIR can be used
to benchmark CFD solvers using the inviscid Euler equations.

Since PANAIR is well established in literature [21–23], no further validation will be provided in the
scope of this research. Because PANAIR is limited by memory restrictions, a grid resolution study was
performed to ensure its validity in the current research [24]. A grid consisting of 80 chordwise panels
by 80 panels in the spanwise direction per semispan is used, for a total of 6400 panels per semispan. The
geometry is defined using cosine-clustered quadrilateral panels with a higher concentration of nodes
along the leading and trailing edges and near the wing root and tip. Only half the span of the wing needs
to be meshed since PANAIR takes symmetry into account during its computations. Figure 2 shows a top-
down view with a reduced number of panels for visibility purposes. The positive x-axis points towards
the trailing edge of the wing, the positive y-axis is directed towards the right wing tip, and the z-axis
points upward, coming out of the paper as shown in Fig. 2.

PANAIR outputs the pressure coefficient on each of the panel corner nodes as defined by

C̃P = −2uc − [
u2

c + v2
c + w2

c

]
, (10)

where uc, vc and wc are the axial, normal and spanwise velocity components, respectively. The method
detailed by Moorthamers [24] is used to integrate this pressure coefficient along each individual span-
wise section of the wing in order to calculate section lift, drag, normal, axial and moment coefficients.
The location of the aerodynamic centre of each spanwise section is found from

xac

c
= − 2κm

ωκL

, (11)

zac

c
= 0, (12)
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Figure 3. Locus of section aerodynamic centres of two elliptic wings with varying quarter-chord
sweep.

where ω, κL and κm are variables used by Moorthamers [24] in the definitions of lift and moment coeffi-
cients. Equations (11) and (12) are developed from relations for the aerodynamic centre by Phillips [25]
which include trigonometric and aerodynamic nonlinearities. The locus of section aerodynamic centres
for a wing is then the collection of points found by applying Equations (11) and (12) at each spanwise
section. It is convenient to express it as a shift with respect to the two-dimensional aerodynamic centre
location, as given by Equation (13).(

�xac

c

)
PANAIR

= xac

c
−

(xac

c

)
2D

, (13)

where xac/c is calculated from Equation (11) and
(

xac
c

)
2D

is the two-dimensional position of the
aerodynamic centre for a section using the same profile.

Figure 3 shows an example of the locus as calculated from PANAIR for two elliptic wings of aspect
ratio 8, one without sweep and one with a quarter-chord sweep angle of 20◦.

Figure 4 shows the deviation of the locus of aerodynamic centres of the same two wings from the
location of the aerodynamic centre for a two-dimensional section defined using the same profile by
making use of Equation (13).

3. Results
The locus of section aerodynamic centre locations as calculated using Küchemann’s analytical method
given by Equation (9) is here compared to results from PANAIR. For the purpose of the present research,
all wings investigated feature a NACA 0012 profile unless stated otherwise. The lift curve slope of this
profile is calculated with a two-dimensional vortex panel method to be C̃L,α = 6.9207. The aerodynamic
centre of a NACA 0012 aerofoil is found to lie at (xac/c)2D = 0.2619 using the same vortex panel method.
First this NACA 0012 profile will be used on a range of wing designs to understand how the accuracy
of Küchemann’s theory changes for varying aspect ratio and sweep angle. After this, the influence of
profile thickness will be looked at and forward wing sweep is introduced to see if the conclusions still
hold for this new set of wing designs.
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Table 1. Reference wings
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Figure 4. Deviation �xac as computed using PANAIR for two elliptic wings with varying quarter-chord
sweep.

3.1 Evaluation of accuracy as a function of aspect ratio and sweep
Two specific wings will be discussed before analysing the root mean square error for a large set of wings.
The first is an elliptic wing with aspect ratio RA = 2 and a quarter-chord sweep of �c/4 = 0◦. It lies at the
lower extreme of the range of design parameters included in this study and shows the largest error. The
second wing is chosen as a more typical, practical wing design and features an elliptic planform with
aspect ratio RA = 8 and a quarter-chord sweep of �c/4 = 20◦. They will be denoted as Wing I and Wing
II from here onwards and are summarised in Table 1.

Figure 5 shows the locus of section aerodynamic centres for Wing I as calculated by Küchemann’s
analytical method and the inviscid panel method using a solid and dotted line respectively. The unswept
quarter-chord line is shown as a dashed line. Note that the plot is not scaled equally on each axis for
visualisation purposes.

It can be seen that for unswept, low aspect ratio wings, both the method by Küchemann and the
numerical method using PANAIR predict the locus to move forward of the quarter-chord a lot over the
full span of the wing. This is because of the trailing vortices originating at the wing tips are in close
proximity of each other and generate downwash over the full wing. This was also hinted at by Küchemann
[26] and shown to be true at the root section by Moorthamers [24]. This effect decreases as the aspect
ratio increases since the influences of the tip vortices lie farther apart. Figure 6 demonstrates this using an
unswept wing of aspect ratio RA = 30. In this case both the analytical and numerical analyses approach
the quarter-chord line as expected.

The deviation in location of each spanwise section aerodynamic centre of Wing I with respect to that
of a two-dimensional NACA 0012 aerofoil in inviscid flow, located at (xac/c)2D = 0.2619, is given in
Fig. 7 using both the analytical and numerical approach. Note that the numerical solution predicts a larger
shift of the aerodynamic centre than the analytic prediction. The numerical result shows a deviation of
nearly 7% of the chord at the root, which is roughly 1.5% more than the analytic result. Both curves
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Figure 5. Locus of section aerodynamic centres for Wing I. Quarter-chord is indicated by the dashed
line.

Figure 6. Locus of section aerodynamic centres for a wing of RA = 30 and �c/4 = 0◦. Quarter-chord is
indicated by the dashed line.

go towards zero deviation near the tip region, meaning they approach the two-dimensional value of the
section aerodynamic centre.

A similar analysis is shown for Wing II in Fig. 8. Wing II features an aspect ratio of RA = 8 and a
quarter-chord sweep of �c/4 = 20◦. Note that again, the plot axes are not scaled equally for visualisation
purposes. As predicted by theory, the locus moves aft near the wing root region because of the increased
downwash produced by the bound vortices in this region and the subsequent redistribution of chordwise
loading. The deviation in location of each spanwise section aerodynamic centre of this wing with respect
to that of a two-dimensional NACA 0012 aerofoil in inviscid flow is given in Fig. 9. It can be seen that
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Figure 7. Deviation �xac from two-dimensional aerodynamic centre location for Wing I.

Figure 8. Locus of section aerodynamic centres for a wing of RA = 8 and �c/4 = 20◦. Quarter-chord is
indicated by the dashed line.

that the curves for the analytical result and the numerical approach match more closely than was the
case in Fig. 7 for the unswept wing with aspect ratio RA = 2, and hence Küchemann’s theory is a more
accurate predictor for Wing II than for Wing I.

An evaluation of the accuracy of Küchemann’s theory is made at each individual spanwise section
by taking the difference of the shift in aerodynamic centre location as calculated using the numerical
and analytical method as

Exac/c =
(

�xac

c

)
PANAIR

−
(

�xac

c

)
Küchemann

. (14)
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Figure 9. Deviation �xac from two-dimensional aerodynamic centre location for Wing II.

Figure 10. Exac/c for Wing I and Wing II.

The difference between the prediction by the numerical and analytical methods as defined by Equation
(14), Exac/c, is given along the span for Wing I and Wing II in Fig. 10. Note that the difference is smallest
for the wing with higher aspect ratio and sweep. The sharp increase near the wing tip can be explained
by considering the terms �xac/c in Equation (14). The presence of the chord in the denominator and the
fact that this chord approaches zero for an elliptic wing means the magnitudes of the terms involved in
Equation (14) increase. Also, as a consequence of the potential flow theory used in PANAIR, the sharp
corners involved with the panels wrapping around the wing tip generate a sharp peak in the local lift
coefficient and hence the shift of section aerodynamic centre location.

To evaluate the accuracy of Küchemann’s analytic solution to the locus of aerodynamic centres over
a wide range of aspect ratios and quarter-chord sweep angles, multiple numerical simulations were run
to generate data for comparison. Table 2 defines limits to a range of design parameters of the swept
elliptic wings for which the locus of aerodynamic centres is investigated.
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Table 2. Range of design parameters

Design parameter Value Step size
�c/4[◦] 0 – +40 1
RA 2 – 30 1
Aerofoil NACA 0012

Figure 11. Exac/c for wings of RA = 8 and different quarter-chord sweep angles.

Figure 11 shows Exac/c along the complete wing semispan for varying quarter-chord sweep angles
with constant aspect ratio. Wing II is depicted using a solid line as a reference. It can be seen that as the
wing sweep increases and hence the locus moves away from the two-dimensional aerodynamic centre,
the difference between the numerical and analytical result increases over the whole span. It stays within
1% of the local chord for 90% of the semispan for all sweep angles, only increasing beyond that at the
tip, where the small chord amplifies the differences. Note that at high enough sweep angles, Exac/c turns
positive as opposed to low sweep angles. This means that Küchemann predicts a farther shift aft than
the numerical approach at low sweep angles whereas at higher sweep angles the numerical prediction
will lie aft of the analytical result.

To see the effect of aspect ratio on the accuracy of Küchemann’s theory according to Equation (14),
Fig. 12 shows Exac/c for wings with a quarter-chord sweep angle �c/4 = 20◦ and different aspect ratios.
Again Wing II is the solid reference line. Note that the accuracy greatly decreases with decreasing aspect
ratio, but still lies within 2.5% of the local chord length of the numerical result for the lowest aspect ratio.
It can be seen that Küchemann’s theory becomes more accurate with increasing aspect ratio.

Figure 13 shows how far the local aerodynamic centre at the root section shifts from the two-
dimensional aerodynamic centre location for aft swept wings of varying sweep and aspect ratio using
a NACA 0012 profile. The curves show the prediction using Küchemann’s approach as a function of
aspect ratio with different lines for different sweep angles, while the dots indicate the numerical results
using PANAIR. It shows that for increasing wing sweep the local section aerodynamic centre moves
aft. For increasing aspect ratio, the local section aerodynamic centre moves aft until it reaches a nearly
constant shift, with (�xac/c)root not increasing with aspect ratio beyond roughly RA = 12. It can be seen
that the analytical and numerical prediction of the shift at the root section line up very well for aft swept
wings.
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Figure 12. Exac/c for wings with �c/4 = 20◦ and different aspect ratios.

Figure 13. �xac/c at centre section for elliptic wings of varying aspect ratio and sweep angles.

For an overview of how accurate Küchemann’s approach is for the full set of wing designs as defined
in Table 2, the root mean square error is defined as:

RMS =
√

1

n

((
Exac/c

)2

1
+ (

Exac/c

)2

2
+ ...

(
Exac/c

)2

n

)
. (15)

Here,
(
Exac/c

)
n
is the difference between the section aerodynamic centre location as predicted by PANAIR

and Küchemann as defined in Equation (14). It is calculated at each spanwise location with a total of
n = 80 locations along the semispan. Because of the node clustering near the wing root and the wing tip,
the difference Exac/c in these regions carries a more significant weight in the RMS calculation than the
differences along the mid-portion of the span. Figure 14 shows the root mean square error as a function
of aspect ratio for lines of constant sweep angle on a logarithmic vertical axis.
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Table 3. Aerofoil data

Aerofoil C̃L,α (xac/c)2D

NACA 0012 6.9207 0.2619
NACA 0015 7.0885 0.2657
NACA 0018 7.2515 0.2696
NACA 0021 7.4152 0.2738

Figure 14. Root mean square error of Exac/c for all wings defined in Table 1.

From Fig. 14 one can deduce that for all wings with aft sweep and aspect ratios higher than RA = 5,
the RMS is below 4% of the local chord. Küchemann’s theory for an estimation of the locus of sec-
tion aerodynamic centres therefore seems accurate when compared to numerical data using PANAIR.
Comparing the line for a quarter-chord sweep angle of �c/4 = 20◦ in Fig. 14 to the values for Exac/c in
Fig. 12 shows that the RMS is skewed by the large differences in the cosine-clustered tip regions, but the
actual difference Exac/c is much lower than the RMS would indicate over most of the span.

3.2 Evaluation of accuracy with thickness variation
Figure 14 shows that Küchemann’s analytic derivation offers a reasonable approach to calculating the
locus of section aerodynamic centres for swept elliptic wings featuring a NACA 0012 profile with an
aspect ratio between 2 and 30 and a quarter-chord sweep angle between 0◦ and 40◦. To see whether
this theoretical approach is valid over a wider range of wing designs, wings with a thickness-to-chord
ratio of between 12% and 21% are investigated. Table 2 describes the aerofoils used in the investigation,
their respective lift curve slopes C̃L,α and the location of their aerodynamic centre for a profile in two-
dimensional flow (xac/c)2D as calculated using a vortex panel method.

Figures 15 and 16 show Exac/c for Wing I and Wing II respectively using all thicknesses mentioned in
Table 3.

In the case of Wing I, the magnitude of Exac/c is seen to increase for increasing wing thickness whereas
for Wing II, the magnitude is lower for thicker aerofoil profiles over the majority of the wing span.
However, Fig. 17 shows that the root mean square error does not necessarily reflect this over a wide
range of wings with geometry defined by Table 1 and thicknesses defined by Table 2. Isolating the
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Figure 15. Exac/c for Wing I with varying profile thickness.

Figure 16. Exac/c for Wing II with varying profile thickness.

lines for wings with quarter-chord sweep �c/4 = 20◦ in Fig. 18, the RMS is actually seen to increase for
increasing aerofoil thickness over all aspect ratios tested.

To understand why this happens, Figs 19 and 20 show a zoomed-in view of the locus of section
aerodynamic centres as calculated by Küchemann’s theory and by the numerical method for a wing of
RA = 8 and �c/4 = 20◦ for all thicknesses defined in Table 3. The differences between Küchemann and
PANAIR at the tip are larger for thicker aerofoils. Since the chord is small and hence Exac/c is large at the
tip, this greatly magnifies the RMS. However, it should be noted that over the majority of the span, the
numerical and analytical results match very closely.

Despite the slight increase in RMS with increasing thickness, Fig. 17 shows that it is still below 4%
for all wings with aspect ratios higher than RA = 5, and therefore Küchemann’s analytic approach gives
a reasonable estimation for the locus of section aerodynamic centres.
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Figure 17. Root mean square error of Exac/c for all wings defined in Table 1 for different profile thickness.

Figure 18. Root mean square error of Exac/c for wings with a sweep angle of �c/4 = 20◦ and varying
aspect ratio with different lines for different profile thickness.

3.3 Evaluation of accuracy for forward-swept wings
This section discusses the accuracy of Küchemann’s analytic derivation for the locus of section aerody-
namic centres for forward-swept wings. Wings with forward sweep can be of interest to aircraft designers
because of their favourable properties at high angles of attack. Their inboard sections will stall first,
allowing aileron control authority at high angles of attack. They are also suggested to be beneficial for
use in wing designs with natural laminar flow. With the advent of composite structures, forward-swept
wings are more feasible to produce and hence might see an increased use in aircraft design [27].

Figure 21 shows an elliptic wing of aspect ratio RA = 8 and a quarter-chord sweep angle of �c/4 =
−20◦ and its locus of section aerodynamic centres as calculated by Küchemann’s theory as well as
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Figure 19. Magnified view of the locus of section aerodynamic centres near the centre region for Wing
I with varying profile thickness. Quarter-chord is indicated by the dashed line.

Figure 20. Magnified view of the locus of section aerodynamic centres near the tip region for Wing II
with varying profile thickness. Quarter-chord is indicated by the dashed line.

calculated using the numerical panel method. The locus moves forward near the wing root, opposite to
the behaviour present in a wing swept backwards.

Figures 22 and 23 show a zoomed view of the root region and tip region, respectively, for all wing
thicknesses in Table 3. It can be seen that the numerical and analytical approach match well in the root
region, with the difference between numerical and analytical result increasing for increasing thickness.
However, while Küchemann predicts the locus to follow the quarter chord closely out towards the tip,
the numerical approach using PANAIR shows it to move forward in the outer regions of the wing.

The behaviour at the tip shown in Fig. 23 suggests a bad prediction of the locus by Küchemann as
compared to the numerical calculation and a high negative value for Exac/c, as is confirmed in Fig. 24 for
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Figure 21. Locus of section aerodynamic centres for a wing of RA = 8 and �c/4 = −20◦. Quarter-chord
is indicated by the dashed line.

Figure 22. Magnified view of the locus of section aerodynamic centres near the centre region for a wing
of RA = 8 and �c/4 = −20◦ and varying profile thickness. Quarter-chord is indicated by the dashed line.

all profile thicknesses defined in Table 3. Note that the lower limit on the vertical axis was chosen for
plotting purposes, but that the difference Exac/c does in fact exceed 25% of the local chord length.

On first inspection, with the exception of the very outboard portion of the wing, Fig. 24 suggests that
Küchemann’s analytic derivation correctly predicts the locus of section aerodynamic centres over the
majority of the span of this particular elliptic wing of aspect ratio RA = 8 and a quarter-chord sweep
angle of �c/4 = −20◦. To judge the accuracy of the theory over a wide range of forward-swept wing
designs, the root mean square error as defined by Equation (15) is calculated for the wings defined in
Table 4. The aerodynamic data from Table 3 was used. The results for the RMS across the whole design
space of forward-swept wings are shown in Fig. 25.

https://doi.org/10.1017/aer.2022.34 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.34


1870 Moorthamers and Hunsaker

Table 4. Range of design parameters for forward-
swept wings

Design Parameter Value Step Size
�c/4[◦] 0 – −40 −1
RA 2 – 30 1
Aerofoil NACA 0012 – 0021 3%

Figure 23. Magnified view of the locus of section aerodynamic centres near the tip region for a wing
of RA = 8 and �c/4 = −20◦ and varying profile thickness. Quarter-chord is indicated by the dashed line.

Figure 24. Exac/c for a wing with RA = 8, �c/4 = −20◦ and varying profile thickness.
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Figure 25. Root mean square error of Exac/c for all wings defined in Table 3.

Figure 26. �xac/c at centre section for elliptic wings of varying aspect ratio and sweep angles.

Comparing Fig. 25 and Fig. 17 and using the zero-sweep curve as a reference shows that overall, the
RMS is higher for the forward-swept wings than for the wings with a positive sweep angle. This is due
to the incorrect prediction of the moving forward of the locus in the outboard portion of the wing as
pointed out in the discussion of Fig. 23. A similar trend to the rearward swept wings can be seen where
the RMS slightly decreases for increasing thickness at low or zero sweep, but the spread of the curves
for increasing sweep increases with increasing thickness. The peaks present at low aspect ratios are due
to some specific aspect ratio and sweep combinations that cause numerically erratic behaviour within
PANAIR.

Figure 26 shows the deviation of the aerodynamic centre from its two-dimensional position as cal-
culated by both the analytical and numerical approach at the root section of wings using a NACA 0012
profile as a function of aspect ratio for varying forward sweep angles. Figure 22 shows that for that par-
ticular wing with aspect ratio RA = 8 and quarter-chord sweep angle of �c/4 = −20◦, Küchemann and
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PANAIR agree well. However, Fig. 26 shows that at low aspect ratios and high sweep combinations,
Küchemann fails to correctly predict the forward shift of the locus by up to 2.5% of the local chord
difference.

From Fig. 25 we can tell that the RMS reaches values higher than 10% for some forward-swept
wing designs. However, the RMS is mainly driven by the behaviour out towards the wing tips, where
the difference between analytical and numerical results are largest. Still, for forward-swept wings, extra
care has to be taken when using Küchemann’s analytic derivation as a prediction of the locus of section
aerodynamic centres.

4. Conclusions
An evaluation of Küchemann’s analytic solution for the locus of section aerodynamic centres is made by
comparing it to a numerical data set. His method is outlined and summarised using modern notation in
Equations (1)–(9). The numerical approach uses the inviscid, incompressible panel method PANAIR to
generate data for the wide range of finite, swept, elliptic wings specified by Tables 2 and 4 for different
thicknesses specified in Table 3. Figure 10 shows that Küchemann’s solution becomes increasingly
accurate for wings of higher aspect ratio, with the difference in numerical and analytical result Exac/c

demonstrated for two example wings and the highest difference being recorded for a wing of aspect
ratio RA = 2 and a quarter-chord sweep of �c/4 = 0◦. For this wing using a NACA 0012 profile, the
difference remains within 1.5% of the local chord near the wing root but grows to roughly 6% of the
local chord near the wing tip.

The wing design of aspect ratio RA = 8 and a quarter-chord sweep of �c/4 = 20◦ is subjected to a
sensitivity study of varying sweep or aspect ratio in Figs 11 and 12 respectively. For the full range of
wing designs with aft sweep and featuring a NACA 0012 profile, Fig. 14 shows that the root mean
square error stays within 4% for wings with aft sweep and aspect ratios higher than RA = 5. The actual
difference between Küchemann’s analytic solution and the numerical data as calculated using PANAIR
is lower than this number for the majority of the span. This is true for all profile thicknesses as shown
in Fig. 17.

In forward-swept wing designs, Fig. 23 shows a noticeable difference between Küchemann and the
numerical solver result on the outboard wing sections. This makes the RMS go over 10% for select wing
designs as seen in Fig. 25. Therefore, more care must be taken when using Küchemann’s analytical
solution to determine the locus on forward swept wings.

In summary, we can conclude that Küchemann has derived an accurate method for prediction of
the locus of section aerodynamic centres as compared to a high order panel method. For conceptual
design stages where multiple wings need analysing in a short time frame, it is recommended to be
used. Forward-swept wings show a higher discrepancy between Küchemann’s analytical method and
the numerical approach. Once the design reaches a more mature state, it is recommended to use a higher
order method at the cost of a larger computational expense.
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