
Natural Language Engineering (2020), 26, pp. 31–47
doi:10.1017/S1351324919000317

ARTICLE

Term evaluation metrics in imbalanced text
categorization
Behzad Naderalvojoud∗ and Ebru Akcapinar Sezer

Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
∗Corresponding author. Emails: n.behzad@hacettepe.edu.tr, ebru@hacettepe.edu.tr

(Received 9 February 2018; revised 15 May 2019; accepted 16 May 2019; first published online 12 July 2019)

Abstract
This paper proposes four novel term evaluation metrics to represent documents in the text categorization
where class distribution is imbalanced. These metrics are achieved from the revision of the four com-
mon term evaluation metrics: chi-square, information gain, odds ratio, and relevance frequency. While the
common metrics require a balanced class distribution, our proposed metrics evaluate the document terms
under an imbalanced distribution. They calculate the degree of relatedness of terms with respect to minor
andmajor classes by considering their imbalanced distribution. Using thesemetrics in the document repre-
sentation makes a better distinction between the documents of the minor and major classes and improves
the performance of machine learning algorithms. The proposed metrics are assessed over three popular
benchmarks (two subsets of Reuters-21578 and WebKB) by using four classification algorithms: support
vector machines, naive Bayes, decision trees, and centroid-based classifiers. Our empirical results indicate
that the proposed metrics outperform the common metrics in the imbalanced text categorization.

Keywords: Text classification; Class imbalance problem; Term evaluation; Machine learning

1. Introduction
The class imbalance problem (or so-called imbalanced data learning problem) is one of the main
challenges in the machine learning community. This problem occurs when one class has a large
number of instances (called the majority class) while the other has only a few (called the minor-
ity class) (Maloof 2003; Guo and Viktor 2004; He and Garcia 2009). In this case, most machine
learning algorithms tend toward the majority class and ignore the minor one (Kübler, Liu and
Sayyed 2018). This problem arises from the fact that machine learning algorithms need a balanced
training data to learn an ideal model. This is because they attempt to minimize the overall error
rate on the training data and assume that all misclassification errors have equal costs. Therefore,
such algorithms will have difficulty in recognizing the minority class documents (Japkowicz and
Stephen 2002; Chawla, Japkowicz, and Kotcz 2004).

Many approaches have been proposed to deal with the class imbalance problem in text classi-
fication: for example, instance weighting (Sun et al. 2006; Sun, Lim, and Liu 2009), cost-sensitive
learning (Liu and Zhou 2006), resampling techniques including oversampling and undersampling
(Chawla, Bowyer, Hall and Kegelmeyer 2002; Chen, Lin, Xiong, Luo and Ma 2011; Iglesias, Seara
Vieira and Borrajo 2013), and term weighting (Liu, Loh, Kamal and Tor 2007; Naderalvojoud,
Sezer and Ucan 2015; Haddoud, Mokhtari, Lecroq and Abdeddaïm 2016). This paper tackles this
problem by using a term weighting strategy, in which documents are represented by relying on
the terms’ local frequency and class-based weights. The class-based weights indicate the degree
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Figure 1. Distribution of theminority class in contrast to themajority one. FN errors of theminority andmajority classes are
shown for learnedmodel.

of relatedness of terms with respect to document classes. The objective is to highlight the doc-
uments of the minority class and make a distinction between the minority and majority classes.
At this point, term evaluation metrics play an important role in document indexing because they
change the representation of documents in the vector space according to the class-based weights.
However, the imbalanced distribution of documents does not allowmetrics to perform a fair class-
based evaluation over terms. This problem is addressed in this paper, in which the weaknesses of
the four common term evaluation metrics—namely, chi-square (χ2), information gain (IG), odds
ratio (OR), and relevance frequency (RF)—are investigated in imbalanced circumstances. Four
novel alternative metrics are then proposed: each metric is an alternative for a particular common
metric where data are imbalanced.

Figure 1 depicts the class imbalance problem mentioned in this paper. The left diagram indi-
cates the distributions of the minor and major classes on the training data using the blue and
green curves, respectively. The linear model learned using these two distributions is shown by
the right dashed line. However, the distribution of the minor class is too limited, so the learned
model is biased toward the majority class. In this diagram, the light blue curve shows the actual
distribution of the minority class that is not completely available in the training data. If this actual
distribution were known, the ideal model would become the left dashed line shown in this dia-
gram. The changes in the false negative (FN) errors of the learned model can be seen in Figure 1
when moving to the ideal model. While the number of FN errors of the major class increases
in the ideal model, the same error decreases substantially in the minor one, so that they reach a
balanced situation. Moving from the learned model to the ideal model leads to fewer FN errors
for the minority class and it may result in increasing the prediction accuracy. In other words,
the tendency to the majority class should be eliminated to increase the prediction accuracy for the
minority class. The same situation can be seen in the right diagram, which uses data points in the
instance space. In this study, our goal is to highlight the minor class and differentiate it from
the major one by representing documents using class-based term evaluation metrics. This
approach attempts to decrease the influence of the majority class and shrink the error region
between the minor and major classes.

The rest of the paper is organized as follows. Section 2 reviews weighting and indexing meth-
ods in text classification. The common class-based term evaluation metrics are investigated in
Section 3. We describe our proposed metrics in Section 4 and report the experimental results in
Section 5. Finally, Section 6 presents our conclusions and future work.

2. Related work
In text classification, term weighting is used for document representation (also known as doc-
ument indexing). In the vector space model (VSM), a document is represented as a vector that
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comprises a set of unique terms without regard to grammatical issues or the order of the terms.
Here, each element of the vector is known as an input attribute, and its value indicates its con-
tribution to the document: d = {w1, . . . ,wk}, where wi is the weight of the ith term and k is the
size of the attribute set (Lan et al. 2005). In a simple form, a document is represented by term fre-
quency (tf ): d = {tf1, . . . , tfk}. In the tf representation, two documents having similar terms may
have different similarities. Therefore, this representation might be more accurate than the binary
one, in which only the occurrence of terms is considered (Lan et al. 2009). However, tf is a local
parameter, and a vector with tf weights reflects local features of a document in the data space.
In this case, if all classes have a sufficient number of documents, tf -based indexing/weighting
can provide a more discriminating representation for documents of different classes. However,
in imbalanced data sets, tf may not differentiate the document distribution of the minority class
from the majority class in the VSM.

As an alternative solution, the tfidf term weighting approach (Salton and Buckley 1988; Soucy
and Mineau 2005) was used to deal with the class imbalance problem in many studies (Robertson
2004; Ren and Sohrab 2013; Taşcı and Güngör 2013; Trstenjak et al. 2014). In this approach,
the inverse document frequency (idf ), as a collection frequency component, is multiplied by tf
in the document indexing (Salton and Buckley 1988). The idf value of term t is calculated by
Equation (1).

idf (t)= log
N
nt

(1)

where N denotes the number of documents in the whole collection and nt is the number of doc-
uments in which term t occurs at least once. The idf takes into consideration those terms that
occur rarely in the document collection. It assumes that, if a term frequently occurs across all doc-
uments, it cannot be considered an important term in the collection. Even though tfidf does not
take into account the class membership in documents, it performs well on imbalanced data sets.
In imbalanced data sets, because the minority class contains far fewer documents in the collec-
tion, most of the terms belonging to this class would possess high idf values. Therefore, the tfidf
method highlights the minority class documents from the collection and consequently improves
the performance of classification algorithms.

However, the problem of the idf parameter is that it assigns the same weights to terms that
occur in different classes. Hence, some other studies (Lan et al. 2009; Deng et al. 2014; Domeniconi
et al. 2015; Ko 2015) focused on the category-based term weighting approach to improve the
performance of text classification. In such supervised approaches, feature selection metrics have
been used in the term weighting scheme instead of idf . Their results indicated that category-based
metrics can be more effective than idf in text classification. However, not all feature selection
metrics provide more satisfactory results than idf , especially in imbalanced cases (Debole and
Sebastiani 2004; Naderalvojoud et al. 2014).

While many studies have been conducted using document indexing-based approaches, Ren
and Sohrab (2013) have proposed a class-indexing-based term weighting to improve the perfor-
mance of text classification in different circumstances. This approach addresses the inverse class
frequency and inverse class space density frequency (ICSδF) in the term weighting scheme and
incorporates them into the tfidf method. In another study (Kim and Kim 2016), document prob-
abilistic models such as naive Bayes and multinomial term models have been employed in the
term weighting scheme.

As noted above, many other approaches have been proposed to handle the class imbalance
problem, but we restrict our attention to those for which term evaluation functions (TEFs) can
improve performance. For instance, oversampling is known to be an effective solution in this
domain. However, generating synthetic training samples, using simple techniques such as random
duplicates, has little influence on the performance of machine learning algorithms. Moreo et al.
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(2016) proposed a distributional random oversampling (DRO) technique that outperforms state-
of-the-art methods such as SMOTE (Synthetic Minority Oversampling Technique) (Chawla et al.
2002). The advantage of DRO is that it can generate new examples based on particular parame-
ters that are calculated using a particular TEF. A similar approach is used in Sun et al. (2006) to
select a subset of the majority class (in other words undersampling the majority class) to reach the
desired level of balance. In this approach, the representativeness of each document in the majority
class is calculated based on the discriminative power of terms. These two approaches show the
importance of TEFs in resampling techniques, which is also the contribution of this paper. More
recently, manifold-based synthetic oversampling approaches have received more attention in the
literature (Bellinger, Drummond, and Japkowicz 2018).

In addition, resampling techniques can be employed in some algorithmic-based methods such
as ensemble and active learning. These two approaches transfer the data resampling stage into
the training process and benefit from the advantage of resampling in ensemble and active learn-
ing algorithms. For example, Bloodgood (2018) investigated different data selection strategies
in SVM-Active Learning algorithm to handle the imbalance problem. In such cases, document
indexing methods can influence the performance of selection strategies. In another study, multi-
ple SVM classifiers were trained over the whole minority class andmultiple subsets of the majority
class separately, and combined using an ensemble method (Awasare and Gupta 2017). In such
methods, different clustering techniques are applied to the majority class. In this case, TEFs can
be used as a criterion in determining the characteristics of each cluster.

In this paper, we introduce five TEFs that can be used in different approaches to improve the
performance of imbalanced text classification. However, we evaluate the effect of our proposed
metrics on document indexing, as this is the basic and inevitable step in all machine learning
algorithms. Therefore, we do not need to apply any extra preprocessing steps to observe how well
the proposed metrics improve the performance of machine learning algorithms.

3. Class-based term evaluation metrics
In text classification, feature selection is employed to reduce the dimension of the input data by
selecting more discriminating features. Feature selection metrics based on probability and infor-
mation theory compute the relevance (or irrelevance) power of terms with respect to a certain
category (Zheng et al. 2004; Yang et al. 2012; Yin et al. 2013; Uysal 2016). Hence, using these met-
rics instead of idf seems reasonable in document indexing (Domeniconi et al. 2015; Ko 2015).
However, most of them suffer from the class imbalance problem, so they cannot distinguish
between the minor and major classes when documents are represented based on these metrics.
This section investigates these weaknesses over four common term evaluation metrics where the
class distribution is imbalanced.

We use some special terms and expressions in the rest of this paper as follows. For a given term
t and category k, (1) relevant documentsmeans the documents in which term t occurs at least once;
(2) relevant terms are all the words that occur mostly in the documents of category k; (3) irrelevant
terms are all the words that very rarely occur in the documents of category k; (4) discriminating
terms are all the words that can distinguish documents of category k from the others. This means
that both relevant and irrelevant terms can be considered as discriminating terms.

3.1 Chi-square
In statistics, the chi-square (χ2) test is used to determine whether there is a significant association
between two categorical variables (McHugh 2012). This approach is used in feature selection to
measure the association of a certain term with a particular category. This type of chi-square test is
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Table 1. General notation for binary contingency
table

First variable (term t)

t t̄

Second variable k a b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(category k) k̄ c d

accomplished by a binary contingency table, Table 1, when only two nominal values are available
for each variable.

In Table 1, a, b, c, and d denote the number of instances/documents corresponding to the
variable values and N denotes the number of all instances in the whole collection. This notation
will be used in all the other metrics that will be described later. From the binary contingency table,
the chi-square metric is calculated by Equation (2) (Ko, Park, and Seo 2004; Zheng et al. 2004;
Domeniconi et al. 2015):

χ2(t, k)= N[P(t, k)P(t̄, k̄)− P(t, k̄)P(t̄, k)]2

P(t)P(t̄)P(k)P(k̄)

=N
(ad − bc)2

(a+ c)(b+ d)(a+ b)(c+ d)

(2)

The probabilities of Equation (2) are interpreted on a collection of documents. We only explain
one of them as an example: P(t, k̄) indicates the occurrence probability of term t in a random
document that does not belong to category k. On the other hand, P(t) is the probability of term t
and P(k) is the probability of category k.

However, this metric suffers from imbalanced class distribution. In other words, it cannot effec-
tively evaluate terms with respect to the minority class. In such classes, the values of a, b, and c
are much smaller than d. Under this condition, small changes in the values of a, b, and c cannot
make a significant impact on the chi-square value. This is important because, in practice, large
changes may not be observed in the distribution of relevant and less relevant terms of the minor-
ity class. In other words, the value of d mitigates the effect of changes in the values of a, b, and
c when two relevant and less relevant terms are compared by the chi-square metric. This means
that chi-square cannot make a clear distinction between the relevant terms with different levels
(e.g., strong, medium, or weak) in the minority class. In Section 4.1, we will demonstrate that the
chi-square metric cannot produce appropriate weights for strongly relevant terms of the minority
class.

3.2 Information gain
In text classification, IG selects features or terms that provide more information on the mem-
bership relation between categories and documents. In this case, IG is computed by Equation (3)
(Zheng et al. 2004) for two random variables ti and kj, which denote the ith term in the feature set
and the jth category in the document set, respectively.

IG(ti, kj)=
∑

k∈{kj,k̄j}

∑
t∈{ti,t̄i}

P(t, k) log
P(t, k)
P(t)P(k)

(3)

Although IG can identify the discriminating terms for text classification, it cannot make a fair
evaluation of the relevant terms of the minority class. To clarify this issue, we look at IG when it
is used to make a decision tree.
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In a decision tree, IGmeasures the quality of each feature or term in splitting documents with
respect to a particular category, where the presence or absence of each one is considered (Yang and
Pedersen 1997; Zheng et al. 2004; Lee and Lee 2006). IG uses two types of entropy—namely parent
and children—to determine which terms in the feature set can better distinguish documents of a
certain category from the others. Here, entropy measures the impurity level of samples through
the given category. Each category splits documents into two groups according to their class mem-
bership. Thus, documents that are uniformly distributed between these two groups will possess
a high entropy value. For term t, which is the ith feature in the feature set, and category k, IG is
calculated by Equation (4).

IG(t, k)= E(D)−
∑
v∈{t,t̄}

|{d ∈D|fi = v}|
|D| E({d ∈D|fi = v}) (4)

In Equation (4), D is the document set, fi denotes the ith feature, and v is its value or weight in
document d. In this equation, the parent entropy E(D) is calculated as

∑
i∈{k,k̄}

∑ −P(i) log P(i).
By splitting documents based on the presence and absence of term t, the children entropy is
obtained from

∑
v∈{t,t̄} P(v)E(D|v). It indicates the impurity of the corresponding document sub-

sets (documents in which term t has occurred or has not occurred) and shows howwell documents
of each subset are distributed with respect to category k. A large difference between the parent and
children entropies leads to a high IG value and it shows that the given term is a good feature to
distinguish category k from the others. In a balanced case, where we have the same number of sam-
ples for the two groups of data, the parent entropy yields the maximum value of 1. In this case, a
less impure class distribution in each of the child subsets can demonstrate that term t is a strong
discriminating feature with respect to category k. In other words, when the child subsets are less
impure, they will have a low entropy that leads to a high IG value. However, in an imbalanced case,
the difference between parent and children entropies cannot be large for relevant terms. In this
case, the parent entropy always has a low value for the minority class and each of the child subsets
is less impure for relevant terms. Therefore, both the parent and children entropies will have low
values, so that the difference between them cannot clearly distinguish between the relevant terms
of the minority class.

3.3 Odds ratio
In statistics, if the probability of an event is p, the odds or chance of the occurrence of that event is
calculated as p/(1− p). TheOR is taken into account when the odds of occurrence of two different
events are compared. In text classification, the OR compares the odds of term t occurring in two
groups of documents belonging or not belonging to category k, as in Equation (5) (Liu, Loh and
Sun 2009):

OR(t, k)= log
odds(t, k)
odds(t, k̄)

= log
P(t|k)/[1− P(t|k)]
P(t|k̄)/[1− P(t|k̄)] = log

ad
bc

(5)

The main idea is to measure the difference (ratio) between distributions of term t in the doc-
uments belonging and not belonging to category k. According to this difference, OR determines
whether a term is relevant, irrelevant, or neutral with respect to category k by producing posi-
tive, negative, and zero weights, respectively. However, it suffers from imbalanced distribution of
classes. In this case, when OR evaluates terms based on the minority class, it will classify most
terms as relevant, because the value of d is much larger than the other document frequencies, a,
b, and c shown in Equation (5). In other words, OR cannot make a proper distinction between
relevant and irrelevant terms.
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3.4 Relevance frequency
RF (Lan et al. 2009) is another strong term evaluation metric. Unlike the previous metrics, RF
only considers the distribution of relevant documents and assumes that increasing or decreasing
the distribution probabilities of irrelevant documents (P(t̄, k) and P(t̄, k̄)) cannot have any impact
on the discriminating power of terms (Lan et al. 2009). In other words, adding or deleting docu-
ments that do not contain term t does not affect a term’s quality. According to this sense of term
evaluation, the RF metric is formulated as in Equation (6):

RF(t, k)= log
[
2+ P(t, k)

P(t, k̄)

]
= log

[
2+ a/N

c/N

]
= log

[
2+ a

max{1, c}
]

(6)

The problem of the RF metric is that it does not know the imbalance ratio, because it ignores
the values of b and d. Two terms with two different values of a and c, such that the ratio of a to
c is the same for each term, will have the same importance in the minority class. For example,
RF calculates the same weights for two terms having document frequencies (a= 1, c= 1) and
(a= 20, c= 20).

4. Proposed term evaluation metrics for imbalanced texts
Two main problems are observed in all of the metrics presented above. The first is that the prior
metrics cannot make a clear distinction between the relevant terms of the minority class. In other
words, they produce similar weights for all relevant terms.

The second problem is that the common metrics measure the discriminating power of terms.
As mentioned above, both relevant and irrelevant terms can be considered as discriminating fea-
tures in text classification. From this perspective, the presence or absence of these features can
separate the documents of the minor and major classes. However, documents in the overlapping
region between minor and major classes cannot be distinguished well. These documents are sim-
ilar to both classes and may possess both relevant and irrelevant terms simultaneously. In this
region, when a metric identifies a word as relevant with respect to the minor class, that word
is likely to be considered irrelevant with respect to the major (non-minor) class. These types of
words are more likely to have similar weights if we use metrics that only consider the discrimi-
nating power of terms. Therefore, such metrics in document indexing cannot be used to clearly
distinguish between the documents in the overlapping region.

We address these two problems in our proposedmetrics. Regarding the first problem, we revise
the RF metric as Equation (7) and name it as conditional RF (CRF).

CRF(t, k)= log
[
2+ P(t|k)

P(t|k̄)
]

= log
[
2+ a/(a+ b)

max{1, c}/(c+ d)

]
(7)

In CRF, we have replaced the joint probabilities by the conditional ones. Here, the distributions
of relevant documents are taken into account with respect to the minor and nonminor classes.
Unlike the RF metric, CRF retains the values of b and d so that it can differentiate two words that
have the same relative values of a and c.

Because term evaluationmetrics are used in document indexing, we transform negative weights
to positive ones. In the VSM, zero values in document vectors indicate the nonoccurrence of a
term in the given document. Therefore, when we transform vectors to another space using a term
weighting strategy, negative weights would detract from themeaningfulness of the vectors. Hence,
we add 2 to the OR, because the base of the logarithm is 2 in Equation (8). In addition, OR is very
sensitive to the value of c. In fact, OR assumes that none of the probabilities in Equation (5) are
zero, so we consider an epsilon value to handle cases where probabilities are zero. For example,
P(t|k̄) in Equation (5) equals epsilon in the case of c being zero. Because epsilon is a very small
value in the denominator of this fraction, it sharply increases the value of the OR.
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To resolve this problem, we ignore the c value in Equation (8) when it is zero and calculate the
OR by relying on the value of b. In this case, b becomes a determinative factor inOR for computing
the relevance of the given term. We name this the soft OR (SOR) because its value is softer than
OR for cases where c is zero.

SOR(t, k)= log
[
2+ ad

max{1, b}max{1, c}
]

(8)

For the chi-square and IGmetrics, we revise these as Equations (9) and (10), respectively. The
χ1 metric is an asymmetric version of χ2 in which relevant terms are differentiated from irrele-
vant ones. Adding 1 in Equation (9) avoids χ1 producing negative weights. Actually, χ1 produces
nonnegative weights which measure the relevance level of terms.

χ1(t, k)= 1+ P(t, k)P(t̄, k̄)− P(t, k̄)P(t̄, k)
P(t)P(k)

= 1+ ad − bc
(a+ c)(a+ b)

(9)

The same strategy is used in IG1 to measure the degree of relevance of terms instead of their
discriminating power. According to Equation (10), IG1 is calculated from the difference between
two components: while the first componentmeasures the degree of relevance, the second one indi-
cates the degree of irrelevance. This difference is considered a determinative factor in calculating
the relevance of terms with respect to a particular category.

IG1(t, k)= P(t|k) log P(t, k)
P(t)P(k)

− P(t|k̄) log P(t, k̄)
P(t)P(k̄)

= a
a+ b

log
aN

(a+ c)(a+ b)
− c

c+ d
log

cN
(a+ c)(c+ d)

(10)

Tomake a comparisonwith our previous work, we also use the Positive Negative Features (PNF)
metric (Naderalvojoud et al. 2015), proposed for imbalanced texts, as an additional baseline in this
paper. PNF is defined in Equation (11).

PNF(t, k)= 1+ P(t|k)− P(t|k̄)
P(t|k)+ P(t|k̄) (11)

According to Naderalvojoud et al. (2015), PNF has shown good performance in imbalanced
text classification. Here, we assess its performance with various machine learning algorithms and
compare it with our proposed metrics for the evaluation of terms.

4.1 Empirical evaluation on the proposedmetrics
To demonstrate the behavior of all evaluation metrics on the relevant terms of the minority class,
we construct an empirical example using the grain category of Reuters-21578 data set. The grain
category, with 41 documents, is the most minor category of the eight popular categories of the
Reuters data set (Cachopo 2007).

In this example, we choose five relevant terms with respect to the grain category; this means
words that mostly occur in the grain category and rarely occur in the others. We evaluate them
by the four common metrics investigated in this paper and their revised forms, as well as PNF, to
compare their values. Because these metrics compute weights in different ranges, any comparison
between them will not be meaningful unless a normalization process is applied. To normalize
the metric values, the minimum and maximum values of each metric are calculated based on the
most irrelevant, relevant, and neutral cases. We determine these three cases by using information
elements shown in Table 2. As IG and χ2 calculate the minimum weights for neutral words, their
minimum values are calculated from the neutral case. Equation (12) is used to normalize the
values of all metrics:
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Table 2. Most irrelevant, relevant, and neutral cases based on
document frequency

Information Most Most

elements irrelevant relevant Neutral

a 0 41 20.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b 41 0 20.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c 5444 0 2722
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d 0 5444 2722

Table 3. Evaluation results for five relevant terms of grain category in Reuters data set

Terms Term evaluation metric values

PNF OR SOR RF CRF χ2 χ1 IG IG1

crop 1.000 0.770 0.624 0.678 0.864 0.340 1.000 0.295 0.671
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soil 1.000 0.736 0.364 0.132 0.532 0.024 1.000 0.020 0.512
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

harvest 0.998 0.573 0.499 0.358 0.706 0.155 0.800 0.145 0.593
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

feed 0.993 0.557 0.378 0.132 0.532 0.084 0.500 0.105 0.574
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

agriculture 0.984 0.556 0.371 0.068 0.437 0.180 0.316 0.328 0.728

Document frequency elements

a b c d

crop 14 27 0 5444
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soil 1 40 0 5444
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

harvest 8 33 2 5442
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

feed 7 34 7 5437
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

agriculture 24 17 52 5392

n(x)= x−min (x)
max (x)−min (x)

(12)

where x denotes all possible values of the given metric, x is the metric value belonging to x, and
n(x) is the normalized value of x.

Table 3 shows the values calculated for the five relevant terms as well as their document fre-
quency elements. This table shows that the proposed metrics reveal the relevant terms better
because they have large weights for them. For example, while χ1 calculates the largest weight of 1
for term “crop,” χ2 produces a weight of 0.340. Despite the imbalanced distribution of documents
between the two classes, the proposed metrics identify the relevant terms better than the common
metrics.

5. Experiments
This section demonstrates the effectiveness of the proposed term evaluation metrics in imbal-
anced text classification where they are used in document indexing. The objective is to show the
superiority of each proposed metric in contrast to its common version. To assess the effect of the
term evaluation metrics in text classification, we employ two baseline indexing methods, tf and
tfidf, which are widely used in text classification. All experiments were conducted on two popular
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Table 4. Statistics of data sets

No. of training No. of test No. of all

Data set documents documents unique terms No. of classes

Reuters-R8 5485 2189 14,575 8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WebKB 2785 1383 7287 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reuters-R52 6532 2568 16,145 52

subsets of Reuters-21578 data set—namely R8 and R52— and theWebKB data set. These data sets
are often considered as imbalanced benchmarks in text classification (Erenel and Altnçay 2012;
Kim and Kim 2016; Ren and Sohrab 2013; Sun et al. 2009).

5.1 Experimental setup
5.1.1 Data sets
The Reuters-21578 is a collection of Reuters newswire articles with 115 categories. However, dif-
ferent subsets of this benchmark are usually used in text classification for different tasks; for
example, single-label or multi-label. In this study, we have used two popular subsets: namely,
R8 and R52, with 8 and 52 categories, respectively (Kim and Kim 2016). The R8 data set consists
of two major categories—namely, earn and acq—with almost 52% and 30% class distributions,
respectively, and six minor categories with almost 3% class distributions. In the R52 data set, the
number of minor classes increases to 50, with an average of 42 documents in each class (less than
1% class distribution). In this benchmark, the imbalance ratio is more critical than in R8 because
there are 18 categories with less than 10 documents.

We have used the WebKB data set as the third benchmark. This has four categories: namely,
student, faculty, course, and project. This benchmark comprises web pages collected from com-
puter science departments of various universities. The data set contains two minor categories,
called project and course, with almost 10% and 20% class distributions, respectively, and twomajor
categories, with 30% and 40% class distributions.

For training and test sets, we have used the split proposed in Cachopo (2007). The split
data for our three data sets can be downloaded from https://www.cs.umb.edu/~smimarog/
textmining/datasets/. Table 4 summarizes the statistics of these data sets.

5.1.2 Performancemetrics
To judge the performance of classification for each category, the F-measure is used in all experi-
ments. The F-measure is a harmonic mean of Precision and Recall and provides a fair judgment
of the classification performance when data are imbalanced. The Precision (P), Recall (R), and
F-measure (F) values are computed for a certain category as in Equations (13), (14), and (15),
respectively (Sebastiani 2002):

P = TP
TP + FP

(13)

R= TP
TP + FN

(14)

F = 2PR
P + R

(15)

where TP, FP, and FN are true positives, false positives, and false negatives, respectively. To eval-
uate the overall performance, the macro-averaged F-measure is used (Sebastiani 2002). As the
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macro-average is calculated based on the average of the individual F-measure values, the number
of test documents in each category does not have any effect on its outcome. Therefore, it can assess
the overall performance better when imbalanced data are present.

5.1.3 Document representation and indexing
To represent documents, we select the most discriminating features or terms from each category.
By selecting the top 1000 words per class using χ2, we almost reduce the input dimensionality by
half. All documents are represented by the selected features and indexed based on term frequency
and class-based weights through Equations (16) and (17) (Debole and Sebastiani 2004):

tf .TEF(ti, dj)= tf (ti, dj)× TEF(ti, cj) (16)

Wi,j = tf .TEF(ti, dj)√∑|T|
k=1 tf .TEF(ti, dj)2

(17)

The paired common and proposed class-based metrics—(χ2 and χ1), (IG and IG1), (OR and
SOR), and (RF and CRF)—are used in the experiments, such that each one is considered as a
TEF in Equation (16). We also use two baseline methods, tf and tfidf , instead of using Equation
(16). These two methods are not class-based, so we consider the PNF as an additional baseline. In
Equation (16), tf (ti, dj) denotes the number of times that term ti occurs in document dj, TEF(ti, cj)
is the value of term ti with respect to the category of document dj (denoted by cj), and |T| denotes
the size of the vocabulary set.

5.1.4 Classification algorithms
To assess the effectiveness of the proposed metrics over the learning process, we employ four dif-
ferent machine learning algorithms which have achieved great success in text classification. The
centroid-based algorithm proposed in Naderalvojoud et al. (2015) is the first classifier that we use
in the experiments. This algorithm generates the centroid vectors from documents of each cate-
gory and reflects the effect of indexing methods on the classification model. As the support vector
machine (SVM) is considered the most robust classifier among all well-known classification algo-
rithms (Sun et al. 2009), we employ libSVM implemented inWEKAa (Chang and Lin 2011) by the
linear kernel function as the second classification algorithm. In machine learning, the Naive Bayes
classifier is a probabilistic method that applies Bayes’ theorem by considering the independence
assumptions of the features. Because the discretized version of Naive Bayes (DNB) (Dougherty
et al. 1995) performs better than the simple version, it is used as our third classification algorithm.
Discretization is a variable selection method to transform continuous values to discrete ones. This
technique significantly improves the classification performance of machine learning algorithms,
including Naive Bayes, which are sensitive to the dimensionality of data (Lustgarten et al. 2008).
As our fourth algorithm, we employ the C4.5 decision tree algorithm (Chawla et al. 2002). For
both DNB and C4.5, we have used the WEKA implementation.

5.2 Experimental results and discussion
Figure 2 shows the macro F-measure values obtained from different classifiers on the R52 data
set. As noted above, R52 consists of minor categories having less than 10 documents each. These
minor categories make an impact on the macro F-measure value because most of the classifiers
cannot learn a good model for them and therefore show poor performance. Therefore, R52 can
be considered a good benchmark to reveal the effect of the proposed term evaluation metrics on

ahttps://www.cs.waikato.ac.nz/ml/weka/
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Table 5. Paired t-test results on the macro F-measure values of three classi-
fiers in the R52 data set

P value

χ1 IG1 SOR CRF PNF

tf 0.0973 0.0766 0.0288 0.0271 0.0231
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ2 0.2732 0.0743 0.0120 0.0071 0.0096
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IG 0.0628 0.0902 0.0417 0.0332 0.0585
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OR 0.1311 0.0035 0.0317 0.0244 0.0274
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RF – – 0.1139 0.0835 0.0833
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IDF 0.2706 0.1284 0.0194 0.0159 0.0035
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Figure 2. The overall macro F-measure values
obtained from the R52 data set.

text classification. From the results shown in Figure 2, all of the proposed metrics outperform the
common metrics as well as the tf and tfidf methods using SVM and Centroid classifiers. SVM
and Centroid classifiers achieve the best results using the SOR, CRF, and PNF metrics. Similar
observations apply to the DNB classifier. However, the DNB performs more weakly than SVM
and Centroid on the R52 data set.

To demonstrate the significance of the improvements on the three classifiers, a paired t test
is employed on the macro F-measure values of the classifiers. In our experiment, the macro
F-measure value of each classifier is compared to the corresponding one in the second set, which is
obtained from a different indexing method. Thus, it indicates whether the average performance of
the three classifiers is significantly improved by the proposed indexingmethods. Table 5 shows the
obtained P values at a significance level of 0.05 for cases in which improvements have occurred.
In this table, a dash appears in the cells that do not show any improvement. The first row in this
table indicates the significance of improvements between tf and each of the proposed evaluation
metrics. As the P values are less than 0.05 in three SOR, CRF, and PNF, statistically significant
improvements are achieved by these metrics. In each of the other rows, one common metric is
compared with each of our proposed metrics; the P values less than 0.05 are shown in bold. In
most cases, SOR, CRF, and PNF significantly outperform all of the common metrics excluding
RF, for which improvements are not statistically significant. It can be concluded that the pro-
posed metrics have a major influence on the performance of SVM, Centroid, and DNB classifiers
over the imbalanced data.

We evaluate the performance of the proposed metrics on two other benchmarks in which the
minor categories have a more reasonable number of documents than R52. We perform a pairwise
comparison between the common and proposed metrics in Figure 3. While the left four diagrams
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Figure 3. Performance of the proposed metrics in comparison with their standard forms over R8 (a) and WebKB
(b) data sets.

in Figure 3(a) show the macro F-measure values of the four classifiers on the R8 data set, the right
diagrams in Figure 3(b) show the same results on the WebKB data set.

Figure 3 shows that the proposed IG1 and χ1 outperform their common versions remarkably
using all classifiers on the both benchmarks. We can also see that SOR performs much better than
OR using SVM, DNB, and C4.5 classifiers. The effect of CRF is more tangible on R8, but never-
theless it performs well on WebKB using the SVM and Centroid classifiers. The results between
the proposed metrics and the tfidf method are comparable. While the proposed metrics perform
better than idf in the DNB and Centroid classifiers, they do not preserve this superiority in the
C4.5. In the SVM classifier, CRF outperforms idf on both benchmarks. In addition, in SVM, the
results achieved by the other metrics are very close to idf .
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Table 6. Paired t-test results on themacro F-measure values of four classifiers
in the R8 data set

P value

χ1 IG1 SOR CRF PNF

tf 0.0343 0.0260 0.0273 0.0342 0.0271
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ2 0.0420 0.0873 0.0203 0.0451 0.0322
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IG 0.0062 0.0515 0.0084 0.0237 0.0161
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OR 0.0736 0.0149 0.0414 0.0558 0.0441
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RF – – 0.2181 0.0106 0.0395
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IDF – – 0.321 0.1905 0.1827

Table 7. Paired t-test results on themacro F-measure values of four classifiers
in the WebKB data set

P value

χ1 IG1 SOR CRF PNF

tf 0.0077 0.0272 0.0066 0.0032 0.0039
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ2 0.0068 0.0201 0.0064 0.0036 0.0037
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IG 0.0067 0.0203 0.0065 0.0039 0.0037
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OR 0.0432 0.0911 0.0423 0.0401 0.0280
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RF 0.1088 – 0.3418 0.2842 0.0131
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IDF 0.2017 – 0.2601 0.2301 0.1243

To show the significance of improvements achieved by all classifiers, we again apply the paired
t test to the macro F-measure values of the classifiers. Table 6 shows the obtained P values and
compares the common and proposedmetrics on the R8 data set. According to Table 6, all proposed
metrics significantly improve the performance of the four classifiers, in comparison with the tf
method. Furthermore, the three metrics, SOR, CRF, and PNF, outperform all of the common
ones, and most of these improvements are statistically significant.

The significance of the improvements for the WebKB benchmark is presented in Table 7.
According to the P values, the proposed metrics have a significant impact on the performance
of the four classification algorithms where data are imbalanced. P values less than 0.05 are bold
and indicate that the improvements are statistically significant. Themain observation is that, while
the common metrics (IG and χ2) perform weakly, their revised forms (IG1 and χ1) significantly
improve the performance of classification in theWebKB data set. This is clearly seen for χ1, which
outperforms all of the commonmetrics. The improvements achieved by χ1 can be seen in Table 7.

Overall, the results achieved on the two benchmarks demonstrate that the proposed metrics
perform better than the common ones in the four machine learning algorithms. To observe the
effectiveness of the proposed term weighting approach in contrast to other state-of-the-art meth-
ods, we report the results of three resampling approaches: namely, Monolithic, Adaptive, and
Selective proposed in Nguyen and Ho (2010), as well as SMOTE (Chawla et al. 2002). Unlike
SMOTE, which generates synthetic examples randomly in the line segments, the other threemeth-
ods perform manifold-based oversampling using two in-class and out-class strategies. Because
these methods have been evaluated on the same experimental setup as ours (i.e., the same data
set, train/test split, evaluation metric, and classifier), we compare our term weighting approach
with them. Table 8 shows the F-measure values of the SVM classifier over the Reuters data set

https://doi.org/10.1017/S1351324919000317 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000317


Natural Language Engineering 45

Table 8. Termweighting approach versus resampling approach

Termweighting methods Resampling methods

Category IG1 χ1 SOR CRF PNF SMOTE Mono. Adap. Selec.

earn 0.957 0.955 0.977 0.973 0.982 0.745 0.971 0.971 0.829
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

acq 0.918 0.915 0.949 0.943 0.951 0.945 0.955 0.944 0.945
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

trade 0.747 0.811 0.813 0.834 0.876 0.884 0.954 0.954 0.909
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ship 0.645 0.642 0.829 0.862 0.877 0.701 0.828 0.822 0.810
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

grain 0.952 0.889 0.947 0.947 0.818 0.888 0.952 0.952 0.952
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

crude 0.902 0.921 0.934 0.955 0.917 0.902 0.940 0.932 0.923
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interest 0.780 0.871 0.840 0.865 0.867 0.791 0.851 0.844 0.862
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

money-fx 0.727 0.831 0.792 0.818 0.827 0.797 0.818 0.806 0.810

in combination with term weighting approaches and resampling techniques. For each category,
Table 8 shows the top three successful methods in bold. As can be seen, the proposed term weight-
ing approach outperforms the resampling methods in most categories. While the Monolithic
approach is the best in the “acq” and “trade” categories, the term weighting approach produces
the highest F-measure values for the other categories. The results demonstrate the effectiveness
of the proposed term evaluation metrics in document indexing when the class distribution is
imbalanced.

6. Conclusion and future work
In this paper, we proposed four term evaluation metrics based on the common feature selection
metrics: namely, χ2, IG, OR, and RF. We demonstrated that the common metrics require a doc-
ument set with a homogeneous class distribution. In cases where class distribution is imbalanced,
they are unable to distinguish between the strong, medium, and weak relevant terms in the minor
classes. In other words, they calculate similar weights for all relevant terms in the minority class.

In addition, we showed that metrics that evaluate the relevant terms separately from the irrel-
evant ones are more suitable for document indexing. The results achieved from χ1 and IG1

demonstrate that the evaluation metrics should measure the relevance power of terms, instead
of their discriminating power, when they are used in document indexing.

Our experiments over three benchmarks indicated that the proposed metrics achieve more
consistent results than the commonmetrics using machine learning algorithms.We also observed
that both SVM and Centroid classifiers outperform the C4.5 and DNB in imbalanced text
classification.

In a future work, we aim to use the term evaluation metrics in deep neural network models for
weighting documents. In most deep models, documents are represented as a sequence of words.
To enrich this type of representation, we will apply an instance weighting strategy to this sequence
representation using our term evaluation metrics.
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