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ON C (n)-EXTENDIBLE CARDINALS

KONSTANTINOS TSAPROUNIS

Abstract. The hierarchies of C (n)-cardinals were introduced by Bagaria in [1] and were further studied
and extended by the author in [18] and in [20]. The case of C (n)-extendible cardinals, and of their C (n)+-
extendibility variant, is of particular interest since such cardinals have found applications in the areas of
category theory, of homotopy theory, and of model theory (see [2], [3], and [4], respectively). However, the
exact relation between these two notions had been left unclarified. Moreover, the question of whether the
Generalized Continuum Hypothesis (GCH) can be forced while preserving C (n)-extendible cardinals (for
n > 1) also remained open. In this note, we first establish results in the direction of exactly controlling
the targets of C (n)-extendibility embeddings. As a corollary, we show that every C (n)-extendible cardinal
is in fact C (n)+-extendible; this, in turn, clarifies the assumption needed in some applications obtained in
[3]. At the same time, we underline the applicability of our arguments in the context of C (n)-ultrahuge
cardinals as well, as these were introduced in [20]. Subsequently, we show that C (n)-extendible cardinals
carry their own Laver functions, making them the first known example of C (n)-cardinals that have this
desirable feature. Finally, we obtain an alternative characterization of C (n)-extendibility, which we use to
answer the question regarding forcing the GCH affirmatively.

§1. Introduction. The machinery of elementary embeddings is ubiquitous in the
context of large cardinals, having been very intensively used and studied for several
decades. However, and despite the fact that we have a rich theory regarding the
critical point—usually denoted by κ—of such embeddings,1 the general question
of what kind of properties are (or can be) satisfied by the image of the critical
point—usually denoted by j(κ)—remains quite elusive and widely open.2

In the direction of imposing some structure on the aforementioned image j(κ),
one possibility is to consider reflection properties that this ordinal may satisfy. This
path was initiated, in its generality, by Bagaria, who introduced the so-called C (n)-
cardinals in [1]. These are strengthenings of the usual large cardinals, adding to each
standard definition the extra requirement that the image j(κ) of the embedding in
question is an ordinal that is Σn-correct in the universe. Bagaria developed the
theory of the various C (n)-hierarchies and, moreover, showed that such notions
are closely related to the general theme of reflection for the set-theoretic universe.
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Generalized ContinuumHypothesis (GCH).
1It being, arguably, the main focus of study, since it is, typically, the large cardinal in question.
2Of course, there are various special cases of large cardinal embeddings for which we do have some

information regarding properties that the image of the critical point satisfies. Nevertheless, no general
account has emerged so far, certainly nothing comparable to the rich available theory that focuses on
the critical point itself.
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For instance, he established in [1] a level-by-level correspondence between the C (n)-
extendible cardinals and Vopěnka’s Principle (VP), where the latter is a well-known
reflection principle, having high consistency strength. Subsequently, the hierarchies
of C (n)-cardinals were further studied and extended by the author in [18] and in
[20] (see also [15] for another related work). Among these hierarchies, the notion
of C (n)-extendibility is of particular interest since it has found several applications
in other mathematical contexts, such as category and homotopy theory (see [2] and
[3]), as well as model theory (see the recent [4]).
Nevertheless, many set-theoretic questions regarding the various C (n)-cardinals
have remained unanswered. For instance, and except for some special cases (see
[18] and [20]), it is not generally clear what kind of forcing constructions preserve
or destroy a given C (n)-cardinal, such as a C (n)-supercompact (for n � 1) or a
C (n)-extendible (for n > 1).
For example, the following question concludes [18]:

Question 1.1. Suppose that κ is C (n)-extendible, for some n > 1. Can we force
the GCH while preserving the C (n)-extendibility of κ?

Furthermore, Bagaria has also considered a variant of C (n)-extendibility, called
C (n)+-extendibility, that has served as an assumption in some of the applications
obtained in [3].3 However, the annoying issue of whether these two notions coincide
had remained open. Some progress towards its resolution was made by Bagaria and
Brooke-Taylor (see, e.g., Propositions 14 and 15 in [2]), but the following question
was stated in [2] as an open problem, for n > 1:

Question 1.2. Is it consistent to have a C (n)-extendible cardinal that is not
C (n)+-extendible?

In this present note, we start by giving the necessary preliminaries, together with
an overview of earlier related work, in Section 2. In Section 3, we first establish
results in the direction of exactly controlling (properties of) the targets of C (n)-
extendibility embeddings; we view this as an advance towards building some relevant
theory regarding the images of appropriate large cardinal embeddings. In particular,
we completely resolve Question 1.2 (negatively) by showing that, in fact, the two
hierarchies coincide. At the same time, we adapt our arguments in the context of
C (n)-ultrahuge cardinals as well. Subsequently, we give a characterization of C (n)-
extendible cardinals in terms of elementary embeddings between the H�’s. This
brings us to Section 4, where we show thatC (n)-extendible cardinals carry their own
Laver functions (while we also hint at a similar result for C (n)-ultrahugeness). This
is the first known instance of a C (n)-cardinal notion having this desired feature. In
Section 5, we use the aforementioned characterization ofC (n)-extendibility in order
to answer Question 1.1 affirmatively, arguing that, after forcing with the standard
class iteration that forces the global GCH in the universe, every C (n)-extendible
cardinal is preserved. Finally, in Section 6, we briefly give some (easy) observations
regarding the issue of separating levels of C (n)-extendibility.

3Note, though, that there is a slight divergence in terminology: C (n)+-extendibility is called C (n)-
extendibility in [3]. Nevertheless, this latter term was later abandoned by Bagaria in his general study of
C (n)-cardinals, and the term C (n)+-extendibility has been in use ever since.
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§2. Preliminaries.
2.1. Notation. Our notation and terminology are mostly standard; we refer the
reader to [12] or [14] for an account of all undefined set-theoretic notions. We
write ON for the class of all ordinals. For any set x, we write rk(x) for the rank
of x. If κ is an (infinite) cardinal, we let Hκ stand for the collection of all sets
whose transitive closure has size less than κ. We denote by GCH the Generalized
ContinuumHypothesis; i.e., the assertion that, for every infinite cardinal κ, we have
that 2κ = κ+.
For every natural number n, we let C (n) denote the closed and unbounded proper
class of ordinals α that are Σn-correct in V , that is, ordinals α such that Vα is a
Σn-elementary substructure ofV (denoted byVα ≺n V ). Note thatC (0) = ON. For
every n � 1, the statement “α ∈ C (n)” is expressible by a Πn-formula (but not by
any Σn-formula). This is proven by induction on n, with the base case arising from a
characterization of α ∈ C (1) as those uncountable cardinals α for which Vα = Hα
(see [1]).
For any set of ordinals A, we let sup(A) denote its supremum and we let Lim(A)
denote the collection of its limit points, that is, Lim(A) = {� : sup(A ∩ �) = �}.
Given a limit ordinal α with cf(α) > � and some C ⊆ α, we say that C is a club in
α if sup(C ) = α and α∩Lim(C ) ⊆ C ; moreover, we say thatC is a �-club in α, for
some regular � < cf(α), if sup(C ) = α and {� ∈ α ∩ Lim(C ) : cf(�) = �} ⊆ C .
Likewise, if I ⊆ cf(α) is an ordinal interval, then C is called I -club in α if it is
�-club in α, for all regular � ∈ I .
Given any function f and any A ⊆ dom(f), we let f � A denote the restriction
of f to A; moreover, we let f“A denote the pointwise image of A under f, i.e.,
f“A = {f(x) : x ∈ A}. If κ � � are (infinite) cardinals, we let Pκ� = {x ⊆ � :
|x| < κ}. We use the three-dot notation in order to indicate partial functions, that
is, f

...X −→ Y means that dom(f) ⊆ X , with the inclusion possibly being proper.
If P is a forcing poset, we write V P for the universe of P-names. If κ, � are
regular cardinals, we let Add(κ, �) denote the poset consisting of partial functions
p
... �× κ −→ 2 with |p| < κ; as usual, the ordering is given by reversed inclusion.
If j is a nontrivial elementary embedding, we write cp(j) for its critical point.
Following the standard practice, whenever we lift embeddings to forcing extensions
we use the same letter j for the lifted version of the embedding.
Finally, we will need the following standard facts regarding definability and
correctness of supercompact and of extendible cardinals. The statement “κ is super-
compact” is Π2-definable (see the discussion after Exercise 22.8 in [14]); moreover, if
κ is supercompact, then κ ∈ C (2) (i.e., every supercompact cardinal is Σ2-correct—
see Proposition 22.3 in [14]). The statement “κ is extendible” is Π3-definable (see
the hint of Exercise 23.9 in [14]); moreover, if κ is extendible, then κ ∈ C (3) (i.e.,
every extendible cardinal is Σ3-correct—see Proposition 23.10 in [14]).

2.2. C (n)-extendible cardinals. The following definition is due to Bagaria.4 As
usual in the context of C (n)-cardinals, this is actually a schema of definitions, one
for each meta-theoretic natural number n � 1.

4For a comprehensive treatment of C (n)-extendible cardinals, see [1] and [18].
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Definition 2.1 ([1]). We say that a cardinal κ is �-C (n)-extendible, for some
� > κ, if there exists some � and an elementary embedding j : V� −→ V� with
cp(j) = κ, j(κ) > � and j(κ) ∈ C (n). Moreover, we say that κ is C (n)-extendible,
if it is �-C (n)-extendible for all � > κ.

We note that, by Proposition 3.3 in [1], a cardinal is extendible if and only if it
is C (1)-extendible. In terms of definability of this hierarchy, for every n � 1, the
statement “κ is �-C (n)-extendible” is Σn+1-expressible; hence, for every n � 1, the
statement “κ is C (n)-extendible” is Πn+2-expressible (see Section 3 in [1]). In terms
of correctness, for every n � 1, if the cardinal κ is C (n)-extendible then κ ∈ C (n+2)
(cf. Proposition 3.4 in [1]). Moreover, the hierarchy of C (n)-extendible cardinals
is proper; for every n � 1, the least C (n)-extendible cardinal is below the least
C (n+1)-extendible cardinal, assuming both exist (cf. Proposition 3.5 in [1]).
As an indication of the strength of these notions, we mention that if there is a
C (2)-extendible cardinal, then there are unboundedly many supercompacts in the
universe. To see this, let κ beC (2)-extendible and note thatκ ∈ C (4) (by Proposition
3.4 in [1]). Meanwhile, the statement “there are unboundedly many supercompact
cardinals” is easily seen to be Π4-expressible (given the Π2-definability of super-
compactness). By standard facts (see, for instance, Propositions 23.6 and 23.7 in
[14]), this statement holds in Vκ and, thus, holds in the universe as well, due to the
correctness of κ.
In a similar manner, using the analogous definability and correctness properties,
we have that if there is a C (n+2)-extendible cardinal (for n � 1), then there are
unboundedly many C (n)-extendibles in the universe (cf. Proposition 3.6 in [1]).
The following variant of C (n)-extendibility is of particular interest:

Definition 2.2 ([1]). We say that a cardinal κ is �-C (n)+-extendible, for some
� > κ with � ∈ C (n), if there is some � ∈ C (n) and an elementary embedding
j : V� −→ V� with cp(j) = κ, j(κ) > � and j(κ) ∈ C (n). Moreover, we say that κ
is C (n)+-extendible, if it is �-C (n)+-extendible for all � > κ with � ∈ C (n).
Every C (n)+-extendible cardinal is C (n)-extendible; see the relevant discussion in
Section 4 of [2]. As noted in [1], the two notions coincide when n = 1. In Section
3, we shall generalize this to all n, showing that the two hierarchies completely
coincide.
Note that C (n)-extendibility, following the traditional definition of usual
extendibility, is witnessed locally by set embeddings between rank initial segments
of the universe. Building on Bagaria’s work, we further studied C (n)-extendible car-
dinals in [18]. In particular, we obtained a characterization of C (n)-extendibility in
terms of class elementary embeddings, as follows.

Definition 2.3 ([18]). A cardinal κ is called jointly �-supercompact and �-
superstrong, for some �, � � κ, if there is an elementary embedding j : V −→ M
withM transitive, cp(j) = κ, j(κ) > �, �M ⊆M and Vj(�) ⊆M .
For the global notion, we say that κ is jointly supercompact and �-superstrong,
for some fixed � � κ, if it is jointly �-supercompact and �-superstrong, for every
� � κ; moreover, we say that κ is jointly supercompact and superstrong if it is
jointly �-supercompact and �-superstrong, for every � � κ.
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The following fact has been mentioned before (see, e.g., the discussion after
Definition 2.24 in [18]); for completeness, let us now provide a proof of it.

Fact 2.4. If κ is the least supercompact, then κ is not jointly �-supercompact and
κ-superstrong, for any �.

Proof. Let κ be the least supercompact and, aiming for a contradiction, sup-
pose that, for some �, there is an elementary embedding j : V −→ M with M
transitive, cp(j) = κ, j(κ) > �, �M ⊆ M and Vj(κ) ⊆ M . The fact that j is κ-
superstrong (i.e., the fact thatVj(κ) ⊆M ) implies that j(κ) ∈ C (1) (see Proposition
2.2 in [1]). Hence, the supercompactness of κ, which is a Π2-expressible statement,
reflects from V down to Vj(κ). Then, by elementarity, we get that there is α < κ
such that Vκ |= “α is supercompact”. It follows that α is an actual supercompact
cardinal (i.e., one in V ), again due to the Π2-definability of supercompactness
and the correctness of κ. This contradicts the minimality of κ and concludes the
proof. �
The C (n)-version of the previous definition is obtained in a straightforward
manner, by appending the additional requirement that j(κ) ∈ C (n), both for the
local and for the global notion. Then, for every n � 1:
Theorem 2.5 ([18]). A cardinal κ is C (n)-extendible if and only if it is jointly
C (n)-supercompact and κ-superstrong if and only if it is jointly C (n)-supercompact
and superstrong.

The previous theorem is stated as Corollary 2.31 in [18] (see also its subsequent
remarks, as well as Theorem 2.28 in [18] for a level-by-level correspondence).
As we will be mainly working with the above (alternative) characterization of
C (n)-extendibility, let us now say a few words regarding the complexity of describing
embeddings that are jointly �-C (n)-supercompact and �-superstrong via appropriate
(long) extenders. For every fixed n � 1:
Lemma 2.6. The statement “κ is jointly �-C (n)-supercompact and �-superstrong”
is Σn+1-expressible using extenders.

Proof. First of all, we note that there are various known ways in which the
existence of a jointly �-C (n)-supercompact and �-superstrong embedding can be
captured, i.e., formalized, via the existence of appropriate extenders. For example,
Corollary 2.32 (and its subsequent remarks) in [18] gives one such way, using ordi-
nary (but long) extenders. For another example, the detailed discussion appearing
in Section 5 of [1] explains how one can use extenders of the Martin-Steel form
in order to capture �-C (n)-supercompactness—in fact, a formal characterization
is given there in terms of such extenders (see also the statement of Theorem 2.20
in [18]).
Now, given any such extender E that is jointly �-C (n)-supercompact and �-
superstrong for κ (i.e., such that its associated embedding jE is), we may verify this
fact about E inside V	, for some large enough cardinal 	 ∈ C (n) (e.g., we may pick
	 ∈ C (n) with cf(	) sufficiently above all the relevant information). Such V	 cor-
rectly verifies the fact thatE is an extender whose associated embedding jE is jointly
�-C (n)-supercompact and �-superstrong for κ. More concretely, let us fix some
formula 
(κ, �,E) asserting that “the extender E is jointly �-supercompact and �-
superstrong for κ” (using, for instance, the formal characterization given in Section
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5 of [1]). Then, for any � > κ, the statement “κ is jointly �-C (n)-supercompact and
�-superstrong” can be expressed, e.g., as follows:

(∃	 ∈ C (n))(∃E ∈ V	)(cf(	) > �rk(E) + �� ∧ V	 |= (
(κ, �,E) ∧ jE(κ) ∈ C (n))),
which is easily seen to be Σn+1-expressible (in the parameters κ and �). We note
that the crucial contribution to the complexity of this statement comes from the
requirement “	 ∈ C (n)”, which is Πn-expressible. �
The above lemma gives us, in particular, an alternative and very useful way
of expressing (levels of) C (n)-extendibility (mindful of the level-by-level cor-
respondence given by Theorem 2.28 in [18]) via the existence of appropriate
extenders.
Let us also recall that for n = 1, that is, for ordinary extendibility, we have (yet)
another characterization in terms of elementary embeddings between theH�’s:

Theorem 2.7 ([17]). A cardinal κ is extendible if and only if for all � = �� � κ,
there exists some cardinal 	 and an elementary embedding j : H�+ −→ H	+ with
cp(j) = κ and j(κ) > �+ 1.

In [17], this theorem is stated as Corollary 1.4 and it is subsequently used in order
to show that every extendible cardinal is preserved by the standard class iteration
that forces the global GCH in the universe (cf. Theorem 2.2 in [17]).

2.3. C (n)-ultrahuge cardinals. Ultrahuge cardinals and their C (n)-versions were
recently introduced by the author, as a natural strengthening of the usual superhuge
cardinals. Let us recall the relevant definition:

Definition 2.8 ([20]). A cardinal κ is called �-ultrahuge, for some � � κ, if
there exists an elementary embedding j : V −→ M withM transitive, cp(j) = κ,
j(κ) > �, j(κ)M ⊆M and Vj(�) ⊆M . Moreover, we say that κ is ultrahuge, if it is
�-ultrahuge for all � � κ.

For any given n � 1, the C (n)-version of ultrahugeness is defined accordingly, by
appending—as expected—the additional requirement that j(κ) ∈ C (n).
Clearly, a cardinal is ultrahuge if and only if it is C (1)-ultrahuge. As discussed in
[20], if κ isC (n)-ultrahuge then it isC (n)-extendible and, thus, κ ∈ C (n+2) as well. In
addition, for every n � 1, the statement “κ is �-C (n)-ultrahuge” is Σn+1-expressible
and, hence, the statement “κ is C (n)-ultrahuge” is Πn+2-expressible. Moreover, we
showed in [20] that theC (n)-ultrahuge cardinals form a proper hierarchy that refines
the usual large cardinal hierarchy between thewell-known notions of superhugeness
and almost 2-hugeness; see Theorem 4.3 (and its subsequent remarks) in [20].
Let us now turn to our current treatment of C (n)-extendible (and of C (n)-
ultrahuge) cardinals, for n � 1.

§3. Controlling targets. We first establish results in the direction of exactly con-
trolling (properties of) the targets of C (n)-extendibility embeddings. We start with
n = 2.

Proposition 3.1. Suppose that κ is C (2)-extendible. Then, for all � > κ, there is
some � > � and an elementary embedding j : V −→M withM transitive, cp(j) = κ,
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j(κ) > �, �M ⊆ M , Vj(�) ⊆ M and such that both j(κ) and j(�) are supercom-
pact cardinals. Moreover, � may be taken to be an inaccessible cardinal that belongs
to C (2).
Proof. Let κ be a C (2)-extendible cardinal and fix some � > κ + 1. Let � > � be
any C (2) cardinal that is the target of some �-C (2)-extendibility embedding for κ.
That is, let h : V −→ N be an elementary embedding withN transitive, cp(h) = κ,
h(κ) > �, �N ⊆ N , Vh(�) ⊆ N and h(κ) = � ∈ C (2). Of course, � is inaccessible.
Let U be the usual normal measure on κ that is derived from h and note that

U ∈ Vκ+2 ⊆ V�. By elementarity, W = h(U) is a normal measure on � in the
sense of N . But note that W ∈ V�+2 ⊆ Vh(�) ⊆ N , so W is indeed a normal
measure on � (i.e., in V ). Now, a standard reflection argument shows that the
set {α < κ : Vκ |= “α is supercompact”} belongs to U ; thus, by elementarity,
the set {α < � : V� |= “α is supercompact”} belongs to W . Moreover, note that
� ∈ C (2) both in V and in N ; the latter because, by elementarity, � = h(κ) is C (2)-
extendible inN and, thus, it belongs to C (2) (indeed C (4)) by Proposition 3.4 in [1].
Consequently, and since being supercompact is Π2-expressible, for every α < � we
have that α is supercompact in V if and only if it is supercompact in N if and only
if it is supercompact in V� .
For this choice of �, let j : V −→ M be an elementary embedding witnessing
the (� + 2)-C (2)-extendibility of κ, i.e., M is transitive, cp(j) = κ, j(κ) > � + 2,
�M ⊆M , Vj(�)+2 ⊆M and j(κ) ∈ C (2). Note that j(�) is inaccessible. Moreover,
note that � ∈ C (2) inM as well: since being in C (2) is Π2-expressible, we have that
Vj(κ) |= � ∈ C (2); thus, and sinceM |= j(κ) ∈ C (4) (by Proposition 3.4 in [1]), it
follows thatM |= � ∈ C (2).
Since W is a normal measure on �, we have that j(W) is a normal measure on
j(�) in the sense ofM . But notice that j(W) ∈ Vj(�)+2 ⊆ M , from which we get
that j(W) is indeed a normal measure on j(�) in V . In addition, by elementarity
and the above discussion, we have that

D = {α < j(�) :M |= “α is supercompact”} ∈ j(W).
At this point, wemomentarily pause the proof in order to show the following lemma.
As this lemma is intended to be used in other similar proofs further below in this
note, we state it in the format that will also serve our future purposes.

Lemma 3.2. Suppose that h : V −→ N is a jointly �-supercompact and �-
superstrong embedding for κ, for some � > κ+1. Let U be the usual normal measure
on κ that is derived from h, let � = h(κ) and letW = h(U). Furthermore, suppose that
j : V −→ M is a jointly (� + 2)-supercompact and (� + 2)-superstrong embedding
for κ. In this situation, if A ⊆ j(�) is a (j(κ), j(�))-club subset of j(�), then we have
that A ∈ j(W).
Proof of lemma. Suppose that we are in the situation of the lemma. Note that,
by the closure of the models N and M (as already explained in the proof above),
we have thatW is a normal measure on the inaccessible �, while j(W) is a normal
measure on the inaccessible j(�) (i.e., as all these are computed in V ).
Let ϕ(α, �,X ) be the statement “every (α, �)-club subset of � belongs to X”. To
establish the lemma, note that it is enough to verify that ϕ(j(κ), j(�), j(W)) holds
inM , since Vj(�)+2 ⊆M .
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By elementarity of j, we have that M |= ϕ(j(κ), j(�), j(W)) if and only if
ϕ(κ, �,W) holds in V . But the latter is true if and only if ϕ(κ, �,W) holds in N ,
because V�+2 ⊆ Vh(�) ⊆ N . Therefore, by elementarity of h now, we have that
ϕ(κ, �,W) = ϕ(κ, h(κ), h(U)) holds in N if and only if S ∈ U , where

S = {α < κ : ϕ(α, κ,U)}.
Fix α < κ and let C ⊆ κ be an (α, κ)-club in κ. It is enough to check that C ∈ U
or, equivalently, that κ ∈ h(C ). By elementarity, h(C ) is an (α, h(κ))-club subset
of h(κ). But note that C ⊆ h(C ), with C being unbounded in κ. Thus, h(C ) is
unbounded in κ and therefore, since h(C ) is (α, h(κ))-club in h(κ), we get that
κ ∈ h(C ), as desired. �
Returning to the proof of the proposition, we now perform an elementary chain
construction in order to build various factor embeddings of j, in such a way that
each witnesses, in M , the �-C (2)-extendibility of κ and, moreover, is such that
the image of � is supercompact in the sense of M . For more examples of such
constructions and relevant details, the interested reader may consult [18].
We fix an initial limit ordinal �0 ∈ (j(�), j(�)) and we let

X0 = {j(f)(j“�, x) : f ∈ V, f : Pκ� × V� −→ V, x ∈ V�0} ≺M.
For any � + 1 < j(�), given �� and X� , we let ��+1 = sup(X� ∩ j(�)) + � and

X�+1 = {j(f)(j“�, x) : f ∈ V, f : Pκ� × V� −→ V, x ∈ V��+1} ≺M.
If � < j(�) is limit and we have already defined �α and Xα for every α < �, we let
�� = supα<� �α and X� =

⋃
α<� Xα ≺ M . This concludes the description of our

elementary chain.
For any � < j(�) with cf(�) > �, let us consider �� = supα<� �α and the
corresponding structure X� =

⋃
α<� Xα , that is,

X� = {j(f)(j“�, x) : f ∈ V, f : Pκ� × V� −→ V, x ∈ V��} ≺M.
The inaccessibility of j(�) implies that �� < j(�), where note that cf(��) = cf(�) >
�. We then let 
� : X� ∼=M� be the Mostowski collapse and consider the composed
map j� = 
� ◦ j : V −→ M� , producing a commutative diagram of elementary
embeddings as usual (with k� = 
−1� ).
Now, for any such �, the embedding j� is (a factor of the initial j and) jointly
�-supercompact and �-superstrong for κ. To see this, we employ a straightforward
adaptation of (the proof of) Proposition 2.18 in [18]; namely, in a totally analogous
manner, we initially get the following representation of the modelM� :

M� = {j�(f)(j�“�, x) : f ∈ V, f : Pκ� × V� −→ V, x ∈ V��}.
From this, we can now deduce that �M� ⊆ M� , i.e., that j� is �-supercompact
for κ. This closure under �-sequences, which is proven exactly as in the proof of
Proposition 2.18 in [18], essentially comes from the fact that the initial j was �-
supercompact and that cf(��) = cf(�) > �, by choice of �. Moreover, we have that
cp(j�) = κ, j�(κ) = j(κ) and

j�(�) = cp(k�) = sup(X� ∩ j(�)) = ��.
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Finally, from the above representation of M� and the fact that the initial j was
�-superstrong, it easily follows that j� is �-superstrong for κ as well (i.e., Vj� (�) ⊆
M�).
Furthermore, again by the inaccessibility of j(�), for every α < j(�) we have that
j�(α) < j(�); hence, the relevant (either Martin-Steel or ordinary but long) exten-
der E that is derived from j� and that witnesses its joint �-supercompactness and
�-superstrongness actually belongs to Vj(�) ⊆ M . Indeed,M certainly thinks that
“E is jointly �-supercompact and �-superstrong for κ” and, moreover, it correctly
computes the values jE(κ) = j(κ) and jE(�) = j�(�) = �� .
To summarize, for every � < j(�) with cf(�) > �, we can construct an embedding
j� that is a factor of j, that is jointly �-supercompact and �-superstrong for κ, that
is witnessed by some (long) extender inside M and, moreover, whose target j�(�)
we can sufficiently control, as explained above.
Now consider the collection of all possible targets j�(�) arising as above (this
collection is included in j(�)), for the various choices of � < j(�) with cf(�) > �.
It is easy to see that this collection is actually a [�+, j(�))-club in j(�), i.e., it is
closed under sequences of length �, for every (regular) � ∈ [�+, j(�)).5 Therefore,
appealing to Lemma 3.2, we get that this collection in fact belongs to j(W) and,
hence, it has nonempty intersection with the set D displayed before that lemma.
That is, there must exist some � < j(�) with cf(�) > � for which the corresponding
target j�(�) is supercompact in the sense ofM .
We now have all the necessary ingredients for concluding the proof. First of all,
recalling (the proof of) Lemma 2.6, note that the statement “there exists an extender
E that witnesses the joint �-supercompactness and �-superstrongness of κ and such
that both jE(κ) and jE(�) are supercompact cardinals” is Σ3-expressible in the
parameters κ and �. This is because supercompactness is Π2-expressible, which
means that, in the setting of Lemma 2.6, it is enough to require that 	 ∈ C (2) (and
with sufficiently large cofinality) in order to correctly verify, inside V	, that jE(κ)
and jE(�) are supercompact cardinals. Moreover, by all the previous discussion,
this statement is true inM .
But since j(κ) is Σ3-correct inM (in fact, it is even Σ4-correct inM ), it follows
that the aforementioned Σ3-expressible statement reflects to Vj(κ). Then, since j(κ)
is Σ2-correct in V , we get that the same actually holds in V , i.e., there exists some
(extender) embedding jE that is jointly �-supercompact and �-superstrong for κ
and such that the targets jE(κ) and jE(�) are both supercompact cardinals. �
In particular, the previous proposition confirms the (known) fact that if there
exists a C (2)-extendible cardinal, then there are unboundedly many supercompact
cardinals in the universe.6 Moreover, it leads us to the following result:

Corollary 3.3. If κ is C (2)-extendible, then it is C (2)+-extendible.

5See the analogous Proposition 2.8 in [18] for more details.
6This was already explained in the preliminaries. On the other hand, note that we cannot get

unboundedly many extendibles: if κ is C (2)-extendible and � > κ is the least extendible above κ,
then V� |= “κ is C (2)-extendible” (since this is a Π4-expressible statement that reflects from V down to
the Σ3-correct cardinal �) and, also, V� |= “κ is the maximum extendible” (due to the Σ3-correctness of
� and the fact that it is the least extendible above κ). In other words, it is consistent that there exists a
C (2)-extendible cardinal without any extendibles above it.
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Proof. Letκ beC (2)-extendible andfix some� > κwith � ∈ C (2). ByProposition
3.1, fix some inaccessible and Σ2-correct � > � and an elementary embedding
j : V −→ M withM transitive, cp(j) = κ, j(κ) > �, �M ⊆ M , Vj(�) ⊆ M and
such that j(κ) and j(�) are both supercompact cardinals.
Now consider the restricted embedding j � V� : V� −→ Vj(�), which is clearly
�-extendible for κ. Moreover, since V� |= � ∈ C (2), it follows by elementarity that
Vj(�) |= j(�) ∈ C (2). But the latter must be true in V , since j(�) is supercompact
and, thus, Σ2-correct in V . Consequently, the (even more) restricted embedding
j � V� : V� −→ Vj(�) witnesses the �-C (2)+-extendibility of κ. �
Thinking of Proposition 3.1 as our “base case”, we now generalize. For n � 1:
Theorem 3.4. Suppose that κ is C (n+2)-extendible. Then, for all � > κ, there
is some � > � and an elementary embedding j : V −→ M with M transitive,
cp(j) = κ, j(κ) > �, �M ⊆ M , Vj(�) ⊆ M and such that both j(κ) and j(�) are
C (n)-extendible cardinals. Moreover, � may be taken to be an inaccessible cardinal
that belongs to C (n+2).

Proof. We follow a similar strategy as in the proof of Proposition 3.1. Suppose
that κ is C (n+2)-extendible, for some n � 1, and fix � > κ + 1. Let � > � be any
C (n+2) cardinal that is the target of some �-C (n+2)-extendibility embedding for κ.
That is, let h : V −→ N be an elementary embedding withN transitive, cp(h) = κ,
h(κ) > �, �N ⊆ N , Vh(�) ⊆ N and h(κ) = � ∈ C (n+2). Of course, � is inaccessible.
Let U be the usual normal measure on κ that is derived from h and note that

U ∈ Vκ+2 ⊆ V�. Let W = h(U) and observe that W ∈ V�+2 ⊆ Vh(�). Similarly
to Proposition 3.1, we now get that W is a normal measure on � (i.e., in V ) and
that the set {α < � : V� |= “α is C (n)-extendible”} belongs toW . Moreover, note
that � ∈ C (n+2) both in V and in N ; the latter because, by elementarity, � = h(κ)
is C (n)-extendible in N and, thus, it belongs to C (n+2) by Proposition 3.4 in [1].
Consequently, and since being C (n)-extendible is Πn+2-expressible, for every α < �
we have that α is C (n)-extendible in V if and only if it is C (n)-extendible inN if and
only if it is C (n)-extendible in V� .
Next, for this choice of �, we let j : V −→ M be an elementary embedding
witnessing the (� + 2)-C (n+2)-extendibility of κ, i.e., M is transitive, cp(j) = κ,
j(κ) > � + 2, �M ⊆ M , Vj(�)+2 ⊆ M and j(κ) ∈ C (n+2). Note that j(�) is
inaccessible and that, once again, we are in the situation of Lemma 3.2. Moreover,
note that � ∈ C (n+2) inM as well: since being in C (n+2) is Πn+2-expressible, we have
that Vj(κ) |= � ∈ C (n+2); thus, and sinceM |= j(κ) ∈ C (n+4) (by Proposition 3.4
in [1]), it follows thatM |= � ∈ C (n+2).
As in Proposition 3.1, we have that j(W) is a normal measure on j(�) (i.e., in
the sense of V ) and also:

D′ = {α < j(�) :M |= “α is C (n)-extendible”} ∈ j(W).
Now, we once more perform an elementary chain construction in order to build
various factor embeddings of j, in such a way that each witnesses, in M , the �-
C (n+2)-extendibility ofκ and,moreover, is such that the imageof � isC (n)-extendible
in the sense ofM . The definition of the elementary chain is exactly as in the proof
of Proposition 3.1, hence we will not repeat it here.
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For any � < j(�) with cf(�) > �, let us again consider �� = supα<� �α and the
corresponding structure X� =

⋃
α<� Xα , that is,

X� = {j(f)(j“�, x) : f ∈ V, f : Pκ� × V� −→ V, x ∈ V��} ≺M.
The inaccessibility of j(�) again implies that �� < j(�), where cf(��) = cf(�) > �.
We let 
� : X� ∼= M� be the Mostowski collapse and consider the composed
map j� = 
� ◦ j : V −→ M� , producing a commutative diagram of elementary
embeddings as usual (with k� = 
−1� ). As in the proof of Proposition 3.1, we employ
the arguments from Proposition 2.18 in [18] in order to conclude, again, that, for
every such �, the embedding j� is jointly �-supercompact and �-superstrong for κ
(and a factor of j) where, in fact, cp(j�) = κ, j�(κ) = j(κ) and j�(�) = cp(k�) =
sup(X� ∩ j(�)) = �� .
As before, by the inaccessibility of j(�), the relevant extender E that is derived
from j� and that witnesses its joint �-supercompactness and �-superstrongness
actually belongs to Vj(�) ⊆ M . Indeed, M certainly thinks that “E is jointly �-
supercompact and �-superstrong for κ” and, moreover, it correctly computes the
values jE(κ) = j(κ) and jE(�) = j�(�) = �� .
We now consider again the collection of all possible targets j�(�) arising as
above (this collection is included in j(�)), for the various choices of � < j(�)
with cf(�) > �. As before, this collection is a [�+, j(�))-club in j(�) and so, by
Lemma 3.2, it actually belongs to j(W). Hence, it has nonempty intersection with
the set D′ displayed above, i.e., there is some � < j(�) with cf(�) > � for which the
corresponding target j�(�) is C (n)-extendible in the sense ofM .
Now, again recalling (the proof of) Lemma 2.6, the statement “there exists an
extenderE witnessing the joint �-supercompactness and �-superstrongness ofκ and
such that both jE(κ) and jE(�) are C (n)-extendible cardinals” is Σn+3-expressible
in the parameters κ and �. By all the previous discussion, this statement is true in
M . But since j(κ) is Σn+3-correct inM (in fact, it is even Σn+4-correct inM ), this
statement reflects to Vj(κ). Then, since j(κ) is Σn+2-correct in V , we get that the
same actually holds in V , i.e., there is an (extender) embedding jE that is jointly
�-supercompact and �-superstrong for κ and such that the targets jE(κ) and jE(�)
are both C (n)-extendible cardinals. �
In particular, for every n � 1, the previous theorem confirms the (known) fact
that if there exists a C (n+2)-extendible cardinal, then there are unboundedly many
C (n)-extendible cardinals in the universe (see Proposition 3.6 in [1]). Moreover, it
leads us to the following result that answers Question 1.2 negatively, in showing that
the notions of C (n)-extendibility and of C (n)+-extendibility coincide. Let us remark
that, independently from our results and in the context of a different study, Gitman
and Hamkins have very recently reached the same conclusion; see [10].

Corollary 3.5. For every n � 1, ifκ isC (n)-extendible, then it isC (n)+-extendible.
Proof. The case n = 1 is discussed in [1], while the case n = 2 is Corollary 3.3. So
fix some n � 3, suppose that κ is C (n)-extendible and fix some � > κ with � ∈ C (n).
By Theorem 3.4, fix some inaccessible and Σn-correct � > � and an elementary
embedding j : V −→ M with M transitive, cp(j) = κ, j(κ) > �, �M ⊆ M ,
Vj(�) ⊆ M and such that j(κ) and j(�) are both C (n−2)-extendible cardinals. In
particular, by Proposition 3.4 in [1], both j(κ) and j(�) belong to C (n).

https://doi.org/10.1017/jsl.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.31


ON C (n)-EXTENDIBLE CARDINALS 1123

Now consider the restricted embedding j � V� : V� −→ Vj(�), which is clearly
�-extendible for κ. Moreover, since V� |= � ∈ C (n), it follows by elementarity
that Vj(�) |= j(�) ∈ C (n). But the latter must be true in V , since j(�) ∈ C (n).
Consequently, the (evenmore) restricted embedding j � V� : V� −→ Vj(�) witnesses
the �-C (n)+-extendibility of κ. �
Let us remark that, in the light of Corollary 3.5, it now follows that the assumption
of C (n)+-extendibility that has been used in various results appearing in [3] and
elsewhere has now been rendered redundant.7 The situation is thus clarified in the
sense thatweonly need to considerC (n)-extendible cardinals,without any additional
requirements on their witnessing embeddings, a notion that so far appears to be a
rather robust and well-behaved one.
Before we briefly turn to the context of ultrahugeness, we also give a descrip-
tion of C (n)-extendibility in terms of elementary embeddings between the H�’s.
This description will be crucially used in the Section 5, where we deal with the
preservation of C (n)-extendible cardinals by the GCH forcing iteration. The fol-
lowing is a straightforward adaptation of our corresponding result in [17], for
each n � 1:
Proposition 3.6. Let κ be a cardinal and let � = �� > κ. Then, κ is (� + 1)-
C (n)-extendible if and only if there is a cardinal 	 and an elementary embedding
j : H�+ −→ H	+ with cp(j) = κ, j(κ) > �+ 1 and j(κ) ∈ C (n).
Proof. This is totally analogous to the proof of Proposition 1.3 in [17], by just
appending everywhere the additional clause “j(κ) ∈ C (n)”. �
Using Theorem 3.4, we obtain the following characterization.

Proposition 3.7. For every n � 1, a cardinal κ is C (n+2)-extendible if and only if,
for all � = �� > κ, there is some 	 and an elementary embedding j : H�+ −→ H	+
with cp(j) = κ, j(κ) > � and such that j(κ) is a C (n)-extendible cardinal.

Proof. Suppose that κ is C (n+2)-extendible and fix some � = �� > κ. By The-
orem 3.4, fix some � > � and an elementary embedding h : V −→ M with M
transitive, cp(h) = κ, h(κ) > �, �M ⊆ M , Vh(�) ⊆ M and such that h(κ) is
C (n)-extendible. Then, exactly as in the proof of Proposition 1.3 in [17] and for
	 = h(�), we get an elementary embedding j : H�+ −→ H	+ with cp(j) = κ and
j(κ) = h(κ); thus, j(κ) > � and j(κ) is a C (n)-extendible cardinal.
Conversely, fix some � = �� > κ and let j : H�+ −→ Hj(�)+ be an elementary
embedding with cp(j) = κ, j(κ) > � and such that j(κ) is a C (n)-extendible
cardinal. Since j(κ) is C (n)-extendible, we have that j(κ) ∈ C (n+2). Therefore, by
Proposition 3.6 above, we have that κ is (�+ 1)-C (n+2)-extendible. �
We remark that, given our earlier results, the case n = 0 in Proposition 3.7 is
totally analogous: one just replaces “j(κ) is a C (n)-extendible cardinal” by “j(κ) is
a supercompact cardinal” in the final clause of the proposition.
Towards concluding the current section, let us now briefly turn to C (n)-ultrahuge
cardinals. As it will become clear, we shall appropriately adapt Proposition 3.1 and
Theorem 3.4 in the context of C (n)-ultrahugeness embeddings. The arguments and

7Recalling that C (n)+-extendibility is called C (n)-extendibility in [3].
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the results are totally parallel, hence we will skip several details. Once again, we
start with n = 2:
Proposition 3.8. Suppose that κ is C (2)-ultrahuge. Then, for all � > κ, there
is some � > � and an elementary embedding j : V −→ M with M transitive,
cp(j) = κ, j(κ) > �, j(κ)M ⊆M , Vj(�) ⊆M and such that both j(κ) and j(�) are
supercompact cardinals. Moreover, � may be taken to be an inaccessible cardinal that
belongs to C (2).
Proof. Let κ be a C (2)-ultrahuge cardinal and fix some � > κ + 1. Let � > � be
any C (2) cardinal that is the target of some �-C (2)-ultrahugeness embedding for κ.
That is, let h : V −→ N be an elementary embedding withN transitive, cp(h) = κ,
h(κ) > �, h(κ)N ⊆ N , Vh(�) ⊆ N and h(κ) = � ∈ C (2). Of course, � is inaccessible.
Let U be the usual normal measure on κ that is derived from h and letW = h(U).
As before, W is indeed a normal measure on � (i.e., in V ) and, also, the set
{α < κ : Vκ |= “α is supercompact”} belongs to U . Thus, by elementarity, the
set {α < � : V� |= “α is supercompact”} belongs to W . Moreover, note again
that � ∈ C (2) both in V and in N . Consequently, and since being supercompact is
Π2-expressible, for every α < � we have that α is supercompact in V if and only if
it is supercompact in N if and only if it is supercompact in V� .
For this choice of �, let j : V −→ M be an elementary embedding witnessing
the (� + 2)-C (2)-ultrahugeness of κ, i.e.,M is transitive, cp(j) = κ, j(κ) > � + 2,
j(κ)M ⊆M , Vj(�)+2 ⊆M and j(κ) ∈ C (2). Note that j(�) is inaccessible and that,
once again, we are in the situation of Lemma 3.2 (in fact, here we indeed have even
more closure under sequences for the models N and M ). In addition, notice that
� ∈ C (2) inM as well. As in Proposition 3.1, j(W) is indeed a normal measure on
j(�) in V and also:

D = {α < j(�) :M |= “α is supercompact”} ∈ j(W).
We again perform an elementary chain construction in order to build various factor
embeddings of j, in such a way that each witnesses, inM , the �-C (2)-ultrahugeness
of κ and, moreover, is such that the image of � is supercompact in the sense of
M . The definition of the chain is slightly different from the one in Proposition 3.1;
this is because we need to adapt to the current context, where we are interested in
closure under j(κ)-sequences for the targetmodels. So, we fix an initial limit ordinal
�0 ∈ (j(�), j(�)) and we let
X0 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× V� −→ V, x ∈ V�0} ≺M.

For any � + 1 < j(�), given �� and X�, we let ��+1 = sup(X� ∩ j(�)) + � and
X�+1 = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× V� −→ V, x ∈ V��+1} ≺M.
If � < j(�) is limit and we have already defined �α and Xα for every α < �, we let
�� = supα<� �α and X� =

⋃
α<� Xα ≺ M . This concludes the description of our

elementary chain.8

For any � < j(�) with cf(�) > j(κ), we consider �� = supα<� �α and the
corresponding structure X� =

⋃
α<� Xα , that is,

X� = {j(f)(j“j(κ), x) : f ∈ V, f : Pj(κ)j(κ)× V� −→ V, x ∈ V��} ≺M.
8Note here the use of the modified “seed” j“j(κ) (which certainly belongs toM ).
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The inaccessibility of j(�) again implies that �� < j(�), where cf(��) = cf(�) >
j(κ). We then let 
� : X� ∼= M� be the Mostowski collapse and consider the
composed map j� = 
� ◦ j : V −→ M� , producing a commutative diagram
of elementary embeddings as usual (with k� = 
−1� ). Now, due to our modified
definition of the elementary chain, it is easy to check that, for every such �, the
embedding j� is �-ultrahuge for κ (and a factor of j) where, in fact, cp(j�) = κ,
j�(κ) = j(κ) and

j�(�) = cp(k�) = sup(X� ∩ j(�)) = ��.
In addition, again by the inaccessibility of j(�), for every α < j(�) we have that
j�(α) < j(�); hence, the relevant extender E which is derived from j� and which
witnesses its �-ultrahugeness actually belongs to Vj(�) ⊆ M . Indeed, M certainly
thinks that “E is �-ultrahuge for κ” and, moreover, it correctly computes the values
jE(κ) = j(κ) and jE(�) = j�(�) = �� .
Now consider the collection of all possible targets j�(�) arising as above
(this collection is included in j(�)), for the various choices of � < j(�) with
cf(�) > j(κ). In the current setting, this collection is in fact a (j(κ), j(�))-
club in j(�), i.e., it is closed under sequences of length �, for every (regular)
� ∈ (j(κ), j(�)). Therefore, appealing to Lemma 3.2, we get that this collection
actually belongs to j(W) and, hence, it has nonempty intersection with the set D
displayed above, in the current proof. That is, there must exist some � < j(�) with
cf(�) > j(κ) for which the corresponding target j�(�) is supercompact in the sense
ofM .
The rest of the argument now proceeds exactly as in Proposition 3.1, noting that
the statement “there exists an extender E witnessing the �-ultrahugeness of κ and
such that both jE(κ) and jE(�) are supercompact cardinals” is Σ3-expressible in
the parameters κ and �. This statement is true inM , hence it reflects to Vj(κ). But
since j(κ) is Σ2-correct in V , the desired conclusion follows. �
Having dealt with our “base case”, we now again generalize. For n � 1:
Theorem 3.9. Suppose that κ is C (n+2)-ultrahuge. Then, for all � > κ, there
is some � > � and an elementary embedding j : V −→ M with M transitive,
cp(j) = κ, j(κ) > �, j(κ)M ⊆M , Vj(�) ⊆M and such that both j(κ) and j(�) are
C (n)-ultrahuge cardinals. Moreover, � may be taken to be an inaccessible cardinal that
belongs to C (n+2).

Proof. Given our previous results in this section, this argument should now be
clear.Weproceed exactly as in the proof ofTheorem 3.4, incorporating the necessary
modifications (essentially, in the definition of the elementary chain) as we did for
Proposition 3.8. Of course, we now consider the set:

D′ = {α < j(�) :M |= “α is C (n)-ultrahuge”} ∈ j(W),
from which we obtain a (factor) �-ultrahuge embedding j� such that j�(�) is a
C (n)-ultrahuge cardinal in the sense ofM . Noting that the statement “there exists
an extenderE that witnesses the �-ultrahugeness of κ and such that both jE(κ) and
jE(�) are C (n)-ultrahuge cardinals” is Σn+3-expressible and true inM , the desired
conclusion follows from the fact that j(κ) is Σn+2-correct in V . �
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§4. C (n)-extendibility Laver functions. Towards further enriching the accompa-
nying machinery of C (n)-extendible cardinals (for n > 1), we now show that such
cardinals carry appropriate Laver functions. This generalizes the case n = 1 of
ordinary extendible cardinals, which are known to have their own Laver functions
by the work Corazza (cf. [8]) and of the author (cf. [19]).
Let us first define the term “appropriate Laver function” in the context of C (n)-
extendibility. For n > 1:

Definition 4.1. Suppose that κ is C (n)-extendible. A function �
... κ −→ Vκ is

called a C (n)-extendibility Laver function for κ if, for every cardinal � � κ and any
x ∈ H�+ , there is an (extender) elementary embedding j : V −→ M that is jointly
�-C (n)-supercompact and �-superstrong for κ, and such that j(�)(κ) = x.

We now show the following, taking a similar path as in the proof of Theorem 1.7
in [19]. For every n > 1:

Theorem 4.2. Every C (n)-extendible cardinal carries a C (n)-extendibility Laver
function.

Proof. Suppose that κ is a C (n)-extendible cardinal, for some n > 1, and fix
some well-ordering �κ of Vκ. Towards a contradiction, assume that there is no
C (n)-extendibility Laver function for κ.
We recursively construct a (partial) function �

... κ −→ Vκ, as follows. Given
some α < κ and � � α, we define �(α) only if �“α ⊆ Vα and the following
condition holds: there is � � α andx ∈ H�+ such that, for every extender embedding
j : V −→M that is jointly �-C (n)-supercompact and �-superstrong for α, we have
that j(� � α)(α) �= x. Before continuing with the definition of �(α) in this case, we
need the following:

Claim 4.3. If there is such a � for which the aforementioned condition holds (for
some x ∈ H�+), then there is such a � with � < κ.
Proof of claim. Letα < κ and � � α be given.We check that the aforementioned
condition is Σn+2-expressible, using α and � � α as parameters. For this, suppose
that there is � � α and x ∈ H�+ such that the condition holds.
We employ a similar idea as in the proof ofLemma2.6.Namely, given any extender
E that is jointly �-C (n)-supercompact and �-superstrong for α, we may correctly
verify the fact that jE(� � α)(α) �= x inside V	, where 	 is some (any) sufficiently
large cardinal that belongs toC (n). In fact, any suchV	 correctly verifies both the fact
thatE is an extender whose associated embedding jE is jointly �-C (n)-supercompact
and �-superstrong for α, and that jE (� � α)(α) �= x.
More precisely, as in the proof of Lemma 2.6, fix a formula 
(α, �,E) asserting
that “the extender E is jointly �-supercompact and �-superstrong for α”. Then,
the aforementioned condition on � and x is equivalent to the following statement
ϕ(�, x, α, � � α):

(∀E)(∀	 ∈ C (n) with cf(	) > �rk(E) + ��)�(	,E, �, x, α, � � α),

where � is the statement:

V	 |= ((
(α, �,E) ∧ jE(α) ∈ C (n)) −→ jE(� � α)(α) �= x).
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It is easily seen that ϕ(�, x, α, � � α) is a Πn+1-expressible statement where, again,
the main contribution to this complexity comes from the requirement “	 ∈ C (n)”.
It follows that the stated condition, in full, is equivalent to a statement that is
Σn+2-expressible, using α and � � α as parameters.
To finish the proof, we recall that κ ∈ C (n+2). Hence, if there is a � � α such that
the stated condition holds (for some x ∈ H�+), then this fact must reflect inside Vκ,
from which the conclusion follows. �
Returning to the recursive construction, if we are in the above case, then we let
�α < κ be the least such cardinal � � α, and we let �(α) be the�κ-minimal witness
x ∈ H�+α . Otherwise, we leave � undefined. This concludes the recursive construction
of the function �

... κ −→ Vκ. Note that, by the previous claim, the range of � is
indeed included in Vκ, i.e., �“κ ⊆ Vκ.
According to our assumption, there must exist a least (cardinal) � � κ and
some x ∈ H�+ such that for every jointly �-C (n)-supercompact and �-superstrong
extender embedding j for κ, we have that j(�)(κ) �= x; i.e., every such j fails to
“anticipate” the set x. Let us fix a Πn+1-formula ϕ(�, x) asserting this fact, using
κ and � as parameters. Now fix some � > � with � ∈ C (n+1), some inaccessible
� > �, and an elementary embedding j : V −→ M witnessing the joint �-C (n)-
supercompactness and (�+1)-superstrongness of κ; i.e.,M is transitive, cp(j) = κ,
j(κ) > �, �M ⊆ M , Vj(�)+1 ⊆ M and j(κ) ∈ C (n). Note that j(�) is inaccessible
and that, trivially, the embedding j alsowitnesses the joint �-C (n)-supercompactness
and �-superstrongness of κ. Moreover, notice that, in M , the cardinal � belongs
to C (n+1).9 It follows that, in the modelM , the cardinal � is the least 	 for which
ϕ holds for some x ∈ H	+ ; that is, the model M thinks that � = �κ in the above
notation. Therefore, by elementarity, there exists y ∈ H�+ such that j(�)(κ) = y.
By definition of j(�), we have that M |= ϕ(�, y), a fact that will lead us to the
desired contradiction.
Wenowperforman elementary chain construction in order to obtain an appropri-
ate factor embedding of j that is witnessed by some extender inM and that actually
anticipates the set y. We only mention here that the elementary substructures that
we consider in the current context are of the form:

Xi = {j(f)(j“�, x) : f ∈ V, f : Pκ�× V� −→ V, x ∈ V�i} ≺M.

We initialize the construction by choosing a limit ordinal �0 ∈ (j(κ), j(�)); more-
over, we choose some � < j(�) with cf(�) > �, which serves as the length of our
constructed chain. Then, the desired factor embedding j� results from composing
j with the Mostowski collapse 
� : X� ∼=M� , as usual.
It is now easy to see, along the lines of the proof of Theorem 1.7 in [19],
that j� is a jointly �-C (n)-supercompact and �-superstrong embedding for κ
that is witnessed by some extender E ∈ M , such that M correctly computes
the value jE (�)(κ) = j�(�)(κ). Finally, notice that κ, �, H�+ and y are all
fixed by the Mostowski collapse and, thus, jE(�)(κ) = y, which is the desired
contradiction. �
9To see this, note that, by elementarity, the cardinal j(κ) is Σn+2-correct in M , and that Vj(κ) |=

� ∈ C (n+1).
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Let us remark that, with the appropriate modifications, and with an eye on the
proof of Theorem 5.2 in [20], it is not difficult to show thatC (n)-ultrahuge cardinals
carry their own Laver functions as well.10 Instead of repeating the same arguments
all over again, we omit the details and leave them for the interested reader to
verify.

§5. C (n)-extendibles and the GCH. It is a well-known set-theoretic phenomenon
that forcing globally the GCH preserves many of the usual large cardinals. The
first example of this phenomenon was the case of measurable cardinals, proved
by Jensen (cf. [13]). Afterwards, other similar proofs followed: Menas proved
it for supercompacts (cf. [16]), Hamkins proved it for I1 embeddings (cf. [11]),
and Friedman did it for n-superstrong cardinals (cf. [9]). More recently, Brooke-
Taylor and Friedman proved it for 1-extendible cardinals (cf. [6]), Brooke-Taylor
did it for Vopěnka’s Principle (cf. [5]), the author proved it for (fully) extendible
cardinals (cf. [17]), and Cheng and Gitman did it for remarkable cardinals
(cf. [7]).
For completeness, we recall the following standard definition:

Definition 5.1. The canonical forcing P for global GCH is the class-length reverse
Easton iteration of 〈Q̇α : α ∈ ON〉, where P0 is the trivial poset and, for each
α, if α is an infinite cardinal in V Pα , then Q̇α is the canonical Pα-name for the
poset Add(α+, 1)V

Pα ; otherwise, trivial forcing is done at that stage of the iteration.
Finally, P is the direct limit of the Pα ’s, for α ∈ ON.
It is well-known that P (preserves ZFC and) forces the global GCH (see, for
example, the comments after Definition 1 in [6], or the proof of Theorem 2 in [9]).
Given our previous discussion and results in Section 3, we are now ready to finally
prove the following, for every n � 1:
Theorem 5.2. Every C (n)-extendible cardinal is preserved by the canonical forcing
for global GCH.

Proof. We perform a meta-theoretic induction over natural numbers n � 1.
Recall that the case n = 1 already holds; i.e., ordinary extendible cardinals are
preserved by the GCH forcing P, by Theorem 2.2 in [17].
We first argue for the case n = 2. So, let κ be a C (2)-extendible cardinal and fix
some inaccessible � > κ. By Proposition 3.7 and the remark following it, there is
some 	 and an elementary embedding j : H�+ −→ H	+ with cp(j) = κ, j(κ) > �
and such that j(κ) is a supercompact cardinal. Note that 	 = j(�) is inaccessible
and let G be P-generic over V .
Then, exactly as in the proof of Theorem 2.2 in [17], it follows that the embedding
lifts to j : HV [G ]�+ −→ HV [G ]

j(�)+ in V [G ]. Moreover, since every supercompact cardinal

is preserved by P (cf. [16]), it follows that j(κ) ∈ C (2) in V [G ] and so the lifted
embedding witnesses the (�+1)-C (2)-extendibility of κ in the extension. Since there

10Evidently, one has to define the concept of a “C (n)-ultrahugeness Laver function” first, but this is a
straightforward modification of Definition 4.1, appropriately adapted in the context of C (n)-ultrahuge
cardinals. In order to prove the existence ofC (n)-ultrahugenessLaver functions, note that the elementary
chain construction should be modified along the lines of Proposition 3.8.
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are unboundedly many inaccessibles � > κ, we conclude that the cardinal κ remains
C (2)-extendible in V [G ].
Now fix some n > 2 and suppose that, for each m < n, every C (m)-extendible
cardinal is preserved by P. Let κ be a C (n)-extendible cardinal and fix some inac-
cessible � > κ. By Proposition 3.7, there is some 	 and an elementary embedding
j : H�+ −→ H	+ with cp(j) = κ, j(κ) > � and such that j(κ) is aC (n−2)-extendible
cardinal. Note again that 	 = j(�) is inaccessible and let G be P-generic over V .
Once more, the embedding lifts to j : HV [G ]�+ −→ HV [G ]

j(�)+ in V [G ]. In addition,

by the inductive hypothesis, j(κ) remains C (n−2)-extendible in V [G ]. Therefore, we
have that j(κ) ∈ C (n) in V [G ], and so the lifted embedding witnesses the (� + 1)-
C (n)-extendibility of κ in the extension. Finally, by choosing unboundedly many
inaccessibles � > κ, we obtain that the cardinal κ remains C (n)-extendible in V [G ],
as desired. �

§6. On separating levels of C (n)-extendibility. The preservation of C (n)-
extendible cardinals by the GCH forcing is one happy moment in the general study
of the interaction of C (n)-cardinals with the forcing machinery; in this context,
few other results are available so far (see, e.g., Section 4 in [18]). Indeed, the issue
regarding what kind of forcing constructions preserve or destroy the various C (n)-
cardinals is widely open.11 For instance, the following natural question annoyingly
remains unresolved:

Question 6.1. Let κ be a C (n+1)-extendible cardinal, for some n � 1. Is there a
forcing notion that destroys the C (n+1)-extendibility of κ while preserving its C (n)-
extendibility?

We note that a similar question is open in the context of other C (n)-cardinals;
for instance, in the case of C (n)-supercompactness (see, e.g., Question 3.8 in [18]).
Although we have no clue regarding the answers to these questions, we nevertheless
give below some easy observations in the direction of separating levels of C (n)-
extendibility.

Fact 6.2. Suppose that κ is extendible. Then, there exists a (ZFC) model in which
κ is extendible but not C (2)-extendible.

Proof. Recall that if there is a C (2)-extendible cardinal, then there must exist
unboundedly many supercompact cardinals in the universe (this is explained in
the preliminaries; alternatively, it follows from Proposition 3.1). So, let κ be an
extendible cardinal. If κ happens to be C (2)-extendible as well (otherwise there is
nothing to show), then let � > κ be the least supercompact cardinal above κ. Then,
V� is a (ZFC) model such that V� |= “κ is extendible”, because � ∈ C (2) and being
extendible is a Π3-expressible statement.
However, it is clear that κ cannot be C (2)-extendible in V�, because otherwise
there would exist unboundedly many α < � such that V� |= “α is supercompact”.
But, any such α would indeed be a supercompact cardinal in V , since � ∈ C (2)

11Of course, there are obvious examples of posets that destroy any large cardinal property of κ
whatsoever; e.g., collapsing the cardinal κ to become countable. The interesting questions arise in the
nontrivial case in which “destroy” typically means “destroy some level of” the given large cardinal
property (while preserving lower levels of it).
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and being supercompact is a Π2-expressible statement. This would contradict the
minimality of �. �
We think of the previous fact as our “base case”, separating C (n+1)-extendibility
from C (n)-extendibility when n = 1. We may now fully generalize, for n > 1:

Fact 6.3. Suppose that κ is C (n)-extendible. Then, there exists a (ZFC) model in
which κ is C (n)-extendible but not C (n+1)-extendible.

Proof. Recall that if there is a C (n+1)-extendible cardinal (for n > 1), then
there must exist unboundedly many C (n−1)-extendible cardinals in the universe
(this follows from Proposition 3.6 in [1], or from Theorem 3.4). So, let κ be a
C (n)-extendible cardinal. If κ happens to be C (n+1)-extendible as well (otherwise
there is nothing to show), then let � > κ be the least C (n−1)-extendible cardinal
above κ. Then, V� is a (ZFC) model such thatV� |= “κ is C (n)-extendible”, because
� ∈ C (n+1) and being C (n)-extendible is a Πn+2-expressible statement.
However, it is clear that κ cannot be C (n+1)-extendible in V�, because otherwise
there would be unboundedly many α < � such thatV� |= “α is C (n−1)-extendible”.
But, any such α would be a C (n−1)-extendible cardinal in V , since � ∈ C (n+1)
and being C (n−1)-extendible is a Πn+1-expressible statement. This would again
contradict the minimality of �. �
The above facts give us an easy way to separate the C (n+1)-extendibility from
the C (n)-extendibility of a given cardinal κ, for n � 1. Note that both of these
facts are consequences of the strong reflective nature of C (n)-extendible cardinals.
In particular, we have crucially used that the existence of a C (n+1)-extendible car-
dinal implies the existence of unboundedly many appropriate large cardinals in the
universe, where, by “appropriate”, we mean either supercompact (when n = 1) or
C (n−1)-extendible (when n > 1).
Let us conclude by mentioning that it remains unclear whether an analogous
“easy separation” is possible in other cases, such as C (n)-supercompactness, where
no similar strong reflective properties are available so far. In those cases, one may
indeed need a (perhaps class-length) forcing construction in order to achieve such
a separation. At any rate, Question 6.1 still remains valid, with its answer possibly
shedding more light on those other cases as well.
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