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Abstract

The manipulation of articulated objects is of primary importance in Robotics and can be con-
sidered as one of the most complex manipulation tasks. Traditionally, this problem has been
tackled by developing ad hoc approaches, which lack flexibility and portability. In this paper,
we present a framework based on answer set programming (ASP) for the automated manipu-
lation of articulated objects in a robot control architecture. In particular, ASP is employed for
representing the configuration of the articulated object for checking the consistency of such rep-
resentation in the knowledge base and for generating the sequence of manipulation actions. The
framework is exemplified and validated on the Baxter dual-arm manipulator in the first, simple
scenario. Then, we extend such scenario to improve the overall setup accuracy and to introduce
a few constraints in robot actions execution to enforce their feasibility. The extended scenario
entails a high number of possible actions that can be fruitfully combined together. Therefore,
we exploit macro actions from automated planning in order to provide more effective plans. We
validate the overall framework in the extended scenario, thereby confirming the applicability of
ASP also in more realistic Robotics settings and showing the usefulness of macro actions for the
robot-based manipulation of articulated objects.

KEYWORDS: answer set programming, robots manipulation, macro actions

1 Introduction

The manipulation of articulated objects plays an important role in real-world robot

tasks, both in home and industrial environments (Krüger et al . 2009; Heyer 2010).

Much attention has been paid to the development of approaches and algorithms for
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generating the sequence of movements a robot has to perform in order to manipulate

an articulated object. In the literature, the problem of determining the two-dimensional

(2D) configuration of articulated or flexible objects has been vastly considered in the

past few years (Wakamatsu et al . 2006); Capitanelli et al . (2017); (Nair et al . 2017);

Capitanelli et al . (2018), whereas the problem of obtaining a target object configuration

via manipulation has been explored in robot motion planning (Schulman et al . 2013;

Yamakawa et al . 2013; Bodenhagen et al . 2014). A limitation of such manipulation

strategies is that they are often crafted specifically for the problem at hand, with the

relevant characteristics of the object and robot capabilities being either hard-coded

or assumed a priori known. Therefore, in these approaches, generalization properties

and scalability are somehow limited. In this paper, we present a framework based on

answer set programming (ASP) (Niemelä 1999; Baral 2003; Brewka et al . 2011) for

the automated manipulation of articulated objects in a robot 2D workspace. ASP is

a general, prominent knowledge representation and reasoning language with roots in

logic programming and non-monotonic reasoning (Gelfond and Lifschitz 1988; 1991).

In particular, in this paper, ASP is employed for representing the configuration of the

articulated object, for checking the consistency of such representation in the knowledge

base, as well as for generating the sequence of manipulation actions, that is, the plan.

The framework is first validated using a Baxter dual-arm manipulator in a simple sce-

nario, which involves the manipulation of an articulated object in a 2D workspace with

the possibility of performing such actions like rotating one of its link with respect to

another one around their joint. Afterward, we extend the simple scenario to allow for

a higher accuracy of the mockup, and we introduce some constraints in robot actions

execution to enforce their feasibility. Such extended scenario entails a high number of

actions to be possibly executed in sequence, which can be fruitfully combined. Therefore,

we exploit macro actions (Chrpa et al . 2015; Gerevini et al . 2015; Chrpa and Vallati

2019) from automated planning in order to generate more compact and effective plans.

Macro actions can be considered as sequences of elementary actions that, on an applica-

tion viewpoint, would be useful to be performed in such a sequence, and be considered

as a single action. In Robotics applications, macro actions may be useful given that

performing a sequence of multiple elementary – yet atomic – actions is expected to be

more time-consuming than executing the relative macro. In particular, in our application

scenario, we have defined macro actions considering sequences of actions that are often

performed in sequence by the robot, thus meeting such desirable property. We validate

the whole framework in this extended scenario, confirming the applicability of ASP-based

knowledge representation and reasoning in more realistic Robotics contexts as well, at

the same time showing the usefulness of macro actions in this peculiar application.

This paper is an extended and revised version of a paper appearing in the proceedings

of LPNMR’19 (Bertolucci et al . 2019). The main improvements of the current paper are

(i) the definition of a new, more realistic scenario, (ii) the extension and validation of

the whole framework on this new scenario, and (iii) the exploitation of macro actions for

the new scenario, including a new Action Planning encoding employing macro actions

and related experimental analysis of the module and validation of the framework.

The paper is structured as follows. Section 2 presents the problem statement and the

simple scenario. Section 3 shows the overall robot control architecture, while Section 4

details the modules where ASP is employed. The framework validation in the simple

https://doi.org/10.1017/S1471068420000459 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000459


374 R. Bertolucci et al.

scenario is discussed in Section 5. Section 6 introduces the extended scenario, as well

as the needed extensions to the ASP encoding. Section 7 presents the defined macros

and how they have been encoded in ASP. The paper ends in Section 8 by presenting

the analysis we have done on the extended scenario, by discussing related research in

Section 9, and by drawing some conclusions in Section 10.

2 Problem statement and the simple scenario

In this section, we define more in detail the addressed problem and we introduce the

simple scenario we consider first.

2.1 Problem statement

Our goal is to present (i) an efficient ASP-based representation, planning and execution

architecture for the manipulation of articulated objects in terms of perceptual features,

their representation and the planning of manipulation actions, which maximizes the

likelihood of being successfully executed by dual-arm robot manipulators, and (ii) given

a specific articulated object’s goal configuration, determine a plan to attain it, whereby

each step involves one or more manipulation actions to be executed by a dual-arm robot.

In so doing, our working assumptions are as follows:

A1 flexible objects can be appropriately modeled as articulated objects with a high

number of links and joints, as it is customary (Yamakawa et al . 2013);

A2 an articulated object is manipulated while placed on a table, and therefore its 2D

configuration is only affected by robot manipulation actions, whereas the effects of

external forces such as gravity are not considered;

A3 we do not consider possible issues related to grasping or motion dexterity during

the manipulation task in reasoning process;

A4 sensing is affected by noise, but the symbol grounding problem, that is, the associ-

ation between perceptual features and the corresponding symbols (Harnad 1990),

is assumed to be solved.

On the basis of assumption A1, we focus on articulated objects only. We define an

articulated object as a pair α = (L,J ), where L is the ordered set of its |L| links and J
is the ordered set of its |J | joints. Each link l ∈ L is characterized by two parameters,

namely a length λl and an orientation θl. Considering assumption A2, we restrict the set

of all possible configurations to 2D configurations only. Also, we allow only for a limited

number of possible orientations, which induces a finite set of allowed angle values. If α

is represented using absolute angles (i.e., with respect to an external Cartesian reference

frame as shown in Figure 1 on the top), then its configuration is an |L|-tuple:
Cα,a =

(
θa1 , . . . , θ

a
|L|

)
. (1)

Otherwise, if relative angles are used (e.g., with respect to the previous link, as shown

in Figure 1 on the bottom), then the configuration must be augmented with an initial

hidden link l0 in order to define a reference frame needed for actual manipulation actions:

Cα,r =
(
θr0, θ

r
1, . . . , θ

r
|L|

)
. (2)
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Fig. 1. Two possible object representations: absolute (top) and relative (bottom).

In fact, while in principle the relative angles approach could represent the configuration

of an articulated object with one joint less compared with the absolute angles one, the

resulting representation would not be unique (actually, there would infinitely many), since

the object maintains relative orientations among its parts even when rotated as a whole.

Obviously enough, this is not a practical way for grounding manipulation actions in the

robot workspace, while at the representation level would provide nonetheless a complete

representation of the articulated object configuration Capitanelli et al . (2018). In this

paper, we adopt an absolute angles representation, and we refer to the configuration of

an articulated object α simply as Cα.

The problem we want to formalize and solve in this paper can be described as follows.

Given an articulated object α, and having defined the number of its |L| links and |J |
joints, we want to determine an ordered sequence of grounded actions, that is, a plan P,

that is,

P =
{
a1, . . . , a|P|

}
, (3)

such that its execution by a dual-arm robot manipulator leads from an initial articulated

object configuration Cα,i to a goal configuration Cα,g, whereas actions in P are instances

of a priori defined planning operators. The set of planning operators differs whether we

consider the simple or the extended scenario. While in the simple scenario we model only

manipulation actions aimed at re-orienting pairwise links, in the extended scenario we

also model link grasping and releasing operators by robot grippers.

2.2 Simple scenario

In order to comply with assumption A2, which allows us to focus on the manipulation

process, we have set up a scenario in which a dual-arm Baxter robot manipulates an

articulated object that is conveniently located on a table in front of it.

In the setup, the table sustains the articulated object while it is being manipulated

by the robot, and it is assumed to be large enough to accommodate the whole object

itself, see Figure 2. As a consequence, link rotations occur only around axes centered

on specific object joints, but always perpendicular to the table surface. We have crafted

two wooden articulated objects of different size: the first, which is simpler, has three

40-cm long links (which are connected by two in-between joints), whereas the second is

made up of five 20-cm long links (connected by four joints). For both objects, links are
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Fig. 2. The experimental scenario.

Fig. 3. The system’s architecture: in green ASP-based modules, in orange the robot-specific
control module.

2 cm wide and 3 cm thick. The two objects have been designed to reduce the likelihood

of manipulation-specific issues when using the Baxter’s standard grippers, in order to

comply with assumption A3. The Baxter’s head is equipped with a camera pointing

downward to the table and able to acquire images of the relevant robot manipulation

workspace. QR tags are attached to each object link, which reduces perception errors and

is aimed at enforcing assumption A4. Each QR code provides an overall 6D link pose,

which directly maps to an absolute link orientation θal .

3 System’s architecture

Stemming from previous work Capitanelli et al . (2017; 2018), the overall system’s archi-

tecture is a hybrid, reactive/deliberative framework including perceptual, knowledge rep-

resentation and reasoning, as well as action modules, as shown in Figure 3. Although the

target robot platform is the Baxter dual-arm robot manipulator from Rethink Robotics,

in principle, the architecture can be adapted to other manipulators as well, either in sim-
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ulation or in real-world conditions, as long as appropriate perception, low-level motion

planning algorithms, and manipulation strategies are adopted.

In the current implementation, perception modules acquire a video stream using an

RGB-D camera sensor located on top of the robot’s head and pointing downward, which

provides 6D poses for each link. In order to simplify and make the perception process

more robust, the various links of the articulated object are uniquely identified by fiduciary

markers, that is, QR tags. Although more advanced perception strategies are certainly

possible, this does not limit the results and the scope of this paper. The perception

pipeline generates a set of 6D pose data structures, each one for an object link, which

are used to update corresponding ASP-based representation structures in the Knowledge

Base module. Once such representation structures in Knowledge Base are updated, the

Consistency Checking module verifies that facts within it are not mutually inconsistent,

and that numerical values associated with joint angles are within the proper ranges. Rel-

evant parts of the current ASP-based knowledge base are processed to this aim by the

rules encoded in the Consistency Checking module. As a result, a ASP-based problem

instance is generated, whose goal and initial conditions depend on the target articulated

object configuration, and the current configuration maintained in the Knowledge Base

module, respectively. The Action Planner module receives such problem instance and

generates a plan in the form of an ordered sequence of manipulation actions to be per-

formed by the robot on the articulated object. Once a plan is generated, its actions are

processed sequentially to drive the overall behavior of the robot by the Motion Planner

module, which is responsible for the execution of all manipulation actions. Each action in

the simple scenario involves rotating a target link with respect to another, connected one,

and in particular around axes centered on the link joints, whose poses are maintained

in the Knowledge Base module. Any action may be either successful or not, depending

on a number of reasons related to perception noise, and grasping or manipulation faults

in real-world environments. If a manipulation action is successful, the Motion Planner

proceeds with the one that follows until the plan ends and the Knowledge Base mod-

ule is notified about successful execution. Otherwise, an issue is raised and re-planning

occurs, thereby reiterating the whole workflow described above. The Goal Checker is

indeed aimed at detecting whether the remaining part of the (already computed) plan

can be successfully executed. If not, a re-planning process must occur using the current

perceived environment configuration as a new initial configuration.

It is noteworthy that all modules except Motion Planner (i.e., all green modules in

Figure 3) are based on ASP. The Motion Planner module encodes all the robot-specific

details related to kinematics constraints, dynamics, as well as control. The interested

reader is referred to Darvish et al . (2018) for a thorough description of the module. One

of our architectural assumptions is the separation between the deliberative layer (imple-

mented with ASP encodings) and the robot control layer, although such an assumption is

characterized by well-known limitations, discussed in Darvish et al . (2018). As such, we

aimed at abstracting and simplifying as much as possible all the issues typically related

to more realistic scenarios in Robotics, that is, perception, grasping, and manipulation.

To this aim, we decided not to consider the articulated object physical properties, such

as material or friction, and we assume its perception to be perfect since we use QR

tags to identify its links. Grasping and manipulation do not employ any feedback-in-the-

loop sensing, and unsuccessful actions are recognized only by their effects detected after

actions end by the expected location of QR codes.
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Fig. 4. An example of a knowledge base encoded in ASP for a five-link articulated object.

4 ASP-based modules in the system’s architecture

In this section, we describe how ASP is used to implement the modules depicted in

Figure 3. In the following, we assume that the reader is familiar with ASP and ASP-

Core-2 input language specifications (Calimeri et al . 2020).

4.1 Knowledge base

The knowledge base consists of facts over atoms of the form joint(J), isLinked(J1,J2),

angle(A), time(T), hasAngle(J,A,T), and goal(J,A), and the constants timemax and

granularity. Atoms over the predicate joint represent the joints of the articulated

object. Atoms over the predicate isLinked represent links between joints J1 and J2.

Atoms over the predicate angle represent the possible angle values that can be taken by

joints, and they can range from 0 to 359. Actually, the atom angle(0) must be always

part of the knowledge base and admissible angles are the ones that can be obtained by

rotating a joint by the degrees specified by the constant granularity, for example, if

the granularity is 90 degrees, then the admissible angles are 0, 90, 180, and 270. Atoms

over the predicate time represent the possible time steps, and they range from 0, which

represents the initial state, to timemax. Atoms over the predicate hasAngle represent

the angle A of the joint J at time T. The knowledge base only contains the initial state of

each joint, that is, its angle at time 0. Finally, atoms over the predicate goal represent

the angle A that must be reached by the joint J at the time step specified by timemax.

An example of the input is represented by the facts and constants reported in Figure 4.

It is noteworthy that the constant timemax is not included in the example, and its usage

will be described in Section 4.3.

4.2 Consistency checking

The Consistency Checking module verifies the mutual consistency of the facts maintained

within the knowledge base, in order to assure that the later Action Planning does not

draw conclusions on inconsistent pairwise facts.

This is done using the ASP encoding reported in Figure 5. In particular, rules c1a and

c1b check whether atoms over the predicate isLinked represent the links between two

joints, while c2 checks whether there is no link between the same joint. Rules c3a, c3b,

and c3c check whether the predicate hasAngle expresses angles in the proper format,

whereas c4a and c4b check the correctness of the predicate goal. Rules c5 and c6 check

whether at most one goal is specified for each joint (in order to avoid multiple goals for

the same joint which would confuse the reasoner), whereas rules c7 and c8 verify whether

each joint is in exactly one angle at time step 0 (for the same reason). Rules c9 and c10
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Fig. 5. ASP encoding for consistency checking.

simply verify the existence of the first time step and angle 0, respectively. Finally, rules

from c11 to c14 check whether atoms over the predicate angle represent allowed angles.

4.3 Action Planning

ASP is not a planning-specific language, but it can be also used to specify encodings

for planning domains (Lifschitz 2002), like the problem we consider in this paper. We

have defined several encoding variants, for what concerns either the manipulation modes

and the strategy for computing plans. The encoding described in this section is our base

encoding, and it is embedded into a classical iterative deepening approach in the spirit

of SAT-based planning Kautz and Selman (1992), where timemax is initially set to 1

and then increased by 1 if a plan is not found, which guarantees to generate the shortest

possible plans for a sequential encoding, that is, when the robot performs only one action

for each step (see Section 9 for more details about other strategies).

Figure 6 reports the base encoding. It is noteworthy that it uses operations \ and |· · · |,
which are not defined in the ASP-Core-2 standard but supported by Clingo (Gebser et al .

2016) that compute the remainder of the division and the absolute value, respectively.

This encoding allows for forward propagation only, that is, manipulation actions in one

direction along the articulated object chain, for example, it is possible to move the second

joint holding the first joint but not the opposite.

Since we employ an absolute representation, r1, r2, and r3 add to the knowledge

base the joint(0), its angle, and the link to joint 1. This joint is not meant at being

moved, and it is used only to have a fixed reference between the robot-centered and the

articulated object frames. Rule r4 enforces bidirectionality of linked joints, that is, if

joint(1) is linked to joint(2) then joint(2) is also linked to joint(1). Then, rule r5
is used to select an atom of the form changeAngle(J1,J2,A,Ai,T), where J1 is the joint

around which rotation occurs, J2 is the joint related to the link to be kept steady, A is the

desired angle, Ai is the current angle of J1, and T is the current step. Rule r10 ensures
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Fig. 6. Encoding for the simple scenario: it allows for forward manipulation actions only.

the validity of the configuration represented by the atom changeAngle(J1,J2,A,Ai,T),

that is when each action has a desired angle A that can be reached in one step (rules r6,

r7, r8, and r9). Rule r10 takes advantage of the atoms over the predicate ok, which are

used to model the valid configurations of the atom changeAngle(J1,J2,A,Ai,T). Rule

r11 is used to identify which joints are affected by the atom selected in r5. In particular,

atoms of the form affected(J1,An,Ac,T) represent the fact that, at time step T, the

angle associated with joint J1 is updated from Ac to An. Rules r12 and r13 are used

to update the joints’ angle values for the next step, while r14 states that if neither r12
nor r13 have affected any joint then the corresponding angle values remain unchanged.

Finally, r15 states the the goal must be reached.

It is noteworthy that the encodings presented in this paper assume that the result-

ing (intermediate) configurations of the articulated object are feasible in practice, for

example, in case of link overlaps. While it could be certainly possible to reason about

the pairwise mutual position and orientation of each link, that is definitely out of the

scope of this work. It must be noted, however, that such assumption is quite common

in hybrid reactive/deliberate robot control architectures, although a few works in the

literature explore the interplay between the reactive and the deliberative layers (Thomas

et al . 2018; 2019).

4.4 Goal checker

During the execution of a plan, it may happen that due to errors in robot manipulation

actions, or as a result of human interventions in human–robot cooperation scenarios Cap-

itanelli et al . (2018), actual joint angle values (and therefore the relative displacement of

links) may be different with respect to those represented in the knowledge base, which

are propagated forward assuming that proper action execution.

https://doi.org/10.1017/S1471068420000459 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000459


Manipulation of Articulated Objects Using Dual-arm Robots via ASP 381

If this happens, it is necessary to check whether the current configuration of the artic-

ulated object is still compatible with the plan as it is being executed by the robot. While

small variations could be easy to accommodate, and not requiring re-planning should

the symbolic representation be preserved notwithstanding the differences in numerical

values, big variations may lead to qualitatively different configurations for the articulated

object, thereby the computation of a new plan from a new configuration may be needed.

This can be accomplished by asynchronously creating a new initial object configuration

based on the current robot perception about its workspace and the articulated object in

particular. In this process, the role of the Goal Checker module is to check whether there

is the need to create such a new object configuration, that is, when the intermediate goal

has not been reached for the reasons outlined above. This is done using rule r15 from the

encoding in Figure 6.

5 Simple scenario and the first experimental validation

In order to perform the first validation of the whole architecture, we have prepared a

setup whereby a dual-arm Baxter robot has to manipulate a five-link articulated object.

The object is located on a table in front of the robot. Articulated objects made up of

five links provide a very valuable ground for testing our approach, as the limited number

of links is expected not to make the manipulation difficult for the robot, whereas such

number proves to be sufficiently high to require the development of complex plans to

reach a goal configuration. The use of a dual-arm manipulator like Baxter is justified by

its widespread adoption as a research platform, and by the necessity to employ a robot

with two arms in order to manipulate the object, that is, the robot must hold one link

of the object while rotating an adjacent one. It may be argued that robot simulations

may be characterized by some practical advantages in this scenario. Indeed, they would

allow us to run a greater number of planning execution cycles with minimal human

supervision, shorter execution times, and a reduced number of errors in perception or

action. Moreover, simulations are less susceptible to uncertainty and low-level motion

planning failures, which are outside the scope of this work. Nonetheless, we preferred to

test our architecture with a real robot platform in order to provide a more robust proof

of concept of the approach. As a matter of fact, such choice and the related experiences

led to the development of the extended scenario, which is described in the next section.

For these reasons, we provide an example along with a discussion about the limitations

of the scenario, and we defer to the extended scenario for a more thorough analysis of

our architecture.

Currently, the developed software architecture adopts both off-the-shelf and custom

modules. In particular, we employed ALVAR, a QR tags tracking library typically used

in augmented reality applications, to detect the absolute pose of articulated object links

using a camera, as well as MoveIt!, which is a de facto standard for motion planning

and execution in the Robotics community. Modules related to ASP have been developed

custom. The architecture has been designed and implemented using the Robot Operating

System (ROS, Indigo release) framework, and runs on a machine with an Intel i7-4790

CPU and 16 GB of RAM.

Tests have been carried out as follows. First, the articulated object is located on the

table in front of the robot in a random configuration that is compatible with the link
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Fig. 7. An excerpt of the answer set returned by Clingo for a problem grounded in the simple
scenario. Labels a1 . . . a4 are compact references for ground actions.

orientation granularity encoded in the knowledge base, and within an acceptable percep-

tual error margin. A video stream is acquired by the camera, QR tag poses are extracted

by ALVAR, and the Knowledge Base module updated accordingly. It is noteworthy that

images are acquired at a 10-Hz frequency, whereas the knowledge base is updated at a

1-Hz frequency. Such a lower frequency update is due to the preprocessing of QR tag

poses, which are stabilized using state estimation and filtering techniques. Initial and

goal configurations, as well as information about the length, position and orientation of

each link, are therefore represented in terms of the ASP atoms described in Section 4.1.

As described above, the Goal Checker module continuously control whether the infor-

mation provided by the perception layer is compatible with the desired articulated object

expected configurations. When this happens, the Knowledge Base module is notified, and

plan execution proceeds as expected until the goal configuration is reached. In this case,

the Knowledge Base module does not produce a new problem instance for the Action

Planning module, and therefore execution stops. Otherwise, if the Goal Checker module

finds an incoherence in the knowledge representation structure, for example, the currently

perceived articulated object configuration is not compatible with the expected one, then

execution is interrupted, and the Knowledge Base module updates the problem instance

for the Action Planning module accordingly. Such inconsistencies may typically occur in

two cases, both generated by rules c12, c13, and c14 shown in Figure 5. As an example,

we can consider human–robot cooperation scenarios, whereby a human operator and a

collaborative robot may interact to jointly manipulate the articulated object Capitanelli

et al . (2018). On the one hand, if the robot were loosing grip on a link while manipulating

it, or the human operator were rotating a link to an orientation not compatible with the

set of represented ones, a consistency exception would rise. On the other hand, if the

unexpected orientation were compatible with the set of represented ones, plan execution

would proceed flawlessly until the robot had to perform an action on that link. In such

a case, the Motion Planning module would expect a certain link orientation different

from the current one, which would raise a consistency exception and cause re-planning.

On the basis of the encoding described in Section 4.3, the Action Planning module

exploits the state-of-the-art ASP solver Clingo (Gebser et al . 2016) to generate a (valid)

plan. It is important to notice that the video stream from the camera is continuously

acquired, and therefore the Knowledge Base module updated, and Consistency Checking

performed. In order to avoid false-positive consistency exceptions, for example during

robot manipulation actions, the update of the knowledge base is paused during their

execution.

An example of the whole process is shown in Figures 4, 7, and 8. Figure 4 reports

an example of ASP-based representation of a problem instance in the simple scenario,

whereby the number of joints of the articulated object, their initial poses, and the goal

configuration to achieve are specified. Figure 7 lists an excerpt of an answer set obtained

by Clingo with the encoding presented in Section 4.3. Each atom of the form changeAngle

in the answer set represents an action to perform on a joint, with the meaning detailed in
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Fig. 8. Execution of a problem instance in the simple scenario.

Section 4.1. Figure 8 provides a few snapshots associated with the plan execution process,

from top-left to bottom-right. In particular, starting from the initial configuration of the

articulated object shown in the top-left Figure, the second, fourth, fifth, and seventh

figures represent the execution of actions a1, a2, a3, and a4, respectively, as shown in

Figure 7, whereas the third and the sixth represent intermediate configurations. Finally,

the bottom-right figure shows the final state corresponding to the articulated object goal

configuration. It is important to note that the fourth figure displays both a3 execution

and its resulting intermediate state, since it just corresponds to a rotation of the whole

object.

As part of this initial experimental assessment, we performed also a computational

analysis on the performance associated with the Action Planning module, by varying

the number of links (up to 12), the angle granularity, and by randomly generating initial

and final configurations, for a total of 280 instances. On the successfully solved problem

instances, Clingo took a 1.5-s processing time on average and could solve the problems

in around eight steps on average, with results as low as 0.01 s/4 steps and never above

2.2 s/9 steps, which confirms the applicability of ASP reasoning in this scenario. All the

plans have been validated with the VAL tool (Howey et al . 2004).

Albeit the computational performance deteriorates when both the number of links and

allowed orientations are increased, results are encouraging considering the limited robot

workspace size, and the robot dexterity capabilities for grasping and manipulation, which

represent the real drawback of the simple scenario. As a matter of fact, the majority of

run-time issues are related to the impossibility for the robot to reach with both arms the

required grasping poses on the articulated object links due to the fact that rotations tend

to displace the whole object on the table to a great extent. It is noteworthy, however, that

the proposed ASP-based approach is guaranteed to compute the shortest plan leading to

the target object configuration due to the use of an iterative deepening procedure. This

is pivotal, as it allows minimizing the actual execution time of the plan, which is the

most time-consuming part of the whole process.
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6 Extended scenario and the updated encoding

Analyzing the overall execution performance of our framework in the simple scenario, we

noticed that the robot was not always able to perform the required manipulation actions

due to the unreachability of the grasping poses associated with the links to manipulate,

for example, for links displaced outside the robot manipulation space.

These considerations led us to the design of a new, extended scenario. The scenario

does not modify any physical characteristics with respect to the setup introduced in

Section 2.2 but represents the setup and its constraints with a higher accuracy with the

aim of enforcing actions feasibility. In particular, the extended scenario builds up on a

model with an improved trade-off between accurately modeling the physics of the specific

scenario and having a general model that can be easily reused in similar settings. To this

aim, the most sensible aspect of the scenario at hand is related to links manipulation,

so in the new encoding it is modeled with a greater level of detail. Furthermore, there

are different ways whereby a robot can center a link to manipulate with respect to its

manipulation space. For this reason, the newly introduced encoding provides a more

general way for modeling this specific aspect. On top of these considerations, there is

still the need for the model to be operational, so that ASP solvers can find solutions in

a reasonable amount of time.

In this section, we present, in two separate subsections, the extended scenario we have

designed, and the related, improved encoding we have defined in order to deal with such

scenario in our robot control architecture.

6.1 Extended scenario

Herewith, we briefly describe the main differences with respect to the simple scenario.

These can be summarized as follows.

• Robot grippers are explicitly modeled. Each robot gripper should be considered as a

resource that can be either occupied, for example, keeping a link firmly or rotating

a link, or free. With this modification, it is possible to explicitly represent which

robot gripper can manipulate a given link.

• In the simple scenario, it may happen that a link could not be reached or grasped

or it may be placed to an area of the robot’s workspace where manipulation could

be difficult or even impossible because of the robot kinematics configuration. This

situation may happen for reasons related to the articulated object’s configuration

while being manipulated, or the specific sequence of manipulation actions required

by the plan. In the extended scenario, each time a manipulation action is carried out

on a given link, it is assured that the target link is centered in the robot workspace.

If this is not the case, the link is first moved toward the central part of the table.

This maximizes the likelihood of a relevant link to be successfully reached and

manipulated by the robot.

• Grasping and release actions by the two grippers are explicitly modeled. In the sce-

nario described in Section 2.2, these two manipulation actions were not modeled,

although they were assumed to be properly carried out during the execution phase,

as part of each action execution. By considering an explicit modeling, we can rep-

resent grippers occupancy, and we can better characterize the semantics associated

with each action, since now grasping, manipulation, and release are distinct.
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It is noteworthy that the above-mentioned features allow for a number of improve-

ments. We can envisage two main advantages. On the one hand, this encoding is expected

to better manage the explicitly modeled robot resources, that is, the grippers. On the

other hand, manipulation actions are now characterized by a more precise semantics,

which does not make any implicit assumption about actual robot behavior. In a nut-

shell, the encoding provides a more accurate description of the domain, that supports a

less abstract planning process, and can easily generalize to different conditions (e.g, by

modeling robot resources, you can also deal with cases where some of those resources are

unavailable).

Furthermore, in the new encoding, we provide a specific action for displacing links

to the center of the robot manipulation space, which enforces the reasoner to take po-

sitioning into account, but does not explicitly mention the sequence of movements to

be done for this operation. Such choice has been taken for two main reasons: (i) differ-

ent robots may employ different strategies to displace the object, for example, using a

combination of manipulation and pushing behaviors, so we aimed at providing a model

that can be easily reused with other platforms and (ii) the way a link is moved to the

center of the workspace requires a somewhat lower degree of accuracy when compared

to a manipulation action.

6.2 ASP encoding for the extended scenario

In this section, we describe ASP-related modifications to the Knowledge Base module

and the Action Planning module to implement the extended scenario.

ASP encoding for the Knowledge Base module. In order to have a working architecture

in the extended scenario, we have to update the Knowledge Base module, which has been

extended to include more atoms. Atoms gripper(1) and gripper(2) represent the two

robot grippers. Atoms free(1,0) and free(2,0) represent the fact that at time step

0, the two robot grippers are free and ready to grasp. Atom in centre(J,0) represents

the fact that the joint J is at the center of the workspace at time step 0. Moreover, this

last change led us to the necessity to add to the knowledge base both links and joints,

because the robot must act on the links but we want that a certain joint is in the middle

of the workspace. For this reason, the atoms of the form isLinked(L1,L2), where L1

and L2 are two links, became connected(J,L), where J is a joint and L a link. We also

use facts over atoms of the form link(L) to represent the links of the articulated object.

Finally, we mention that atoms of the form hasAngle(J,A,T), where the first term J

represents a joint, are replaced by atoms of the form hasAngle(L,A,T), where the first

term L is a link.

ASP encoding for the Consistency Checking module. The changes to the Knowledge Base

module require also to update the Consistency Checking module in order to keep con-

sistency with the other modules of the architecture. For this reason, we add a check on

each new added atom and modified rules that were not needed for the new knowledge

base. Such checks are similar to the ones presented in Figure 5 and reported as follows:
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Fig. 9. Rule r5 with its preconditions updated.

c3a′ :- hasAngle(L,A,T), not link(L).

c15 :- connected(J,L), not joint(J).

c16 :- connected(J,L), not link(L).

c17 :- in centre(J,T), not joint(J).

c18 :- in centre(J,T), not time(T).

c19 :- in hand(L,T), not link(L).

c20 :- in hand(L,T), not time(T).

c21 :- grasped(G,L,T), not gripper(G).

c22 :- grasped(G,L,T), not link(L).

c23 :- grasped(G,L,T), not time(T).

c24 :- free(G,T), not gripper(G).

c25 :- free(G,T), not time(T).

Note that c1a, c1b, and c2 are removed since isLinked(L1,L2) are not part of the Knowl-

edge Base, whereas c3 is replaced with c3a′ .

ASP encoding for the Action Planning Module. Differently from the encoding, we de-

signed for the simple scenario (Figure 6), and which from now on we refer to as Simple

Action Scenario (SAS), in the encoding for the extended scenario, referred to as Simple

Action Extended Scenario (SAES) from now on, we added the possibility of perform-

ing manipulation actions in both directions, that is, it is now possible to rotate a link

with respect to any of its neighboring links in the articulated object chain. This is ac-

complished by slightly modifying the encoding to allow for both forward and backward

propagation. In particular, we removed the constraint J1 > J2 in rule r5 and we changed

its body. Such updates are necessary to comply with the new model: since two links must

be grasped, we had to consider the presence of the grippers and of the links. Moreover,

those links must be at the center of the robot manipulation space and, therefore, it is

necessary to ensure that the rule is selected only if the joint between them is located at

the center. For the sake of readability we will, from now on, refer to the modified version

of rule r5 as rule r5′ , as shown in Figure 9. It is important to emphasize here that, aside

from such changes, the idea behind the SAS encoding is maintained: the general struc-

ture and the strategy employed by the SAES encoding to deal with manipulation actions

related to the articulated object configuration changes are the same as in Figure 6.

Figure 10 reports the additional rules needed to deal with the extended scenario.

Rules r16, r18, and r23 are related to the selection of possible actions in this model:

r16 locates the joint that has to be moved to the center of the manipulation space,

r18 selects an atom of the form take links to move (L1,L2,J,G1,G2,T), where L1

and L2 are the links that have to be grasped, while r23 selects an atom of the form

release links(L1,L2,J,G1,G2,T) to release the links the robot is acting upon, respec-
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Fig. 10. Simple Action Extended Scenario (SAES) encoding.

tively. Rule r17 is used to signal which link is located at the center of the space, as

effects of move link to central(L1,J1,G2,T). To this end, we use atoms of the form

in centre(J,T), which represent the fact that a joint J is at the center at time step T.

Rules r19 and r20 are used to identify grasped links. In particular, they use atoms of the

form in hand(L,T), representing the fact that a link L has been grasped by one robot

gripper at time step T. In a similar way, r21 and r22 are used to identify which gripper is

occupied or is free. To this aim, atoms of the form grasped(G,L,T) are used, and they

represent the fact that a link L is grasped at the time step T using gripper G. Rules r24
and r25 are used to notify that robot grippers are free and they can be used again. We

used atoms of the form free(G,T), which model the fact that a gripper G is free at time

step T. Furthermore, rules from r26 to r30 ensure that only one action (among the ones

represented by rules r16, r18, r23, and r5′) is selected for each time step. Atoms of the

form action(T,A) are used to ensure that action A is executed at time step T. Finally,
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the rules from r31 to r33 are used to propagate the information that has not been changed

in the current time step to the next one. It is noteworthy that grasping for manipulating

links or grasping for displacing a link to the center of the manipulation space are very

different actions. Links must be grasped in different ways as the robot has to move the

arms differently. For this reason, our encoding requires that after the link to be moved

has been put in the center of the workspace (rule r16), appropriate grasp actions have to

be performed before actual manipulation. Overall, the SAES encoding is composed by:

• the rules from r1 to r4 and from r6 to r15 of SAS (shown in Figure 6),

• the rule r5′ shown in Figure 9, and

• the rules from r16 to r33 shown in Figure 10.

The rule involving the goal is already present in the SAS encoding, that is, r15.

7 Macro actions and their usage in the extended scenario

This section shows how the concept of macro actions, henceforth, possibly referred to

simply as macros, originally defined in the Automated Planning community, can be

fruitfully employed in the context of the extended scenario. The section describes the

general concept of what a macro is, how macros can be represented in ASP, and a

description about the macros we have employed and their encoding, respectively.

7.1 Macros in automated planning

Macros encapsulate sequences of elementary planning operators. Advantageously, they

can be encoded in the same form as planning operators, and therefore they can be

added into a domain model seamlessly and can be exploited in a solver-independent way.

Macros can be seen as shortcuts in the state space of a planning problem. They can

reduce the number of steps needed to reach the goal state, however, at the cost of an

increased branching factor. It is noteworthy that macros can provide a mean for encoding

additional, practical, and common sense knowledge about a specific domain. A domain

expert can suggest actions that are usually executed in sequence to be encoded as a macro

and added to the domain model. On the one hand, if macros are added to the original

model, and the related elementary operators are not removed, the extended model is

able to cope with cases where encapsulated operators are usually executed in sequence,

but not always. On the other hand, removing the original operators can lead to more

significant performance improvements. It is noteworthy that macros could be considered

as a sort of extra-logic trick to force a planning engine toward certain trajectories in the

planning search space. As such, one may argue whether there could be a better option

to implement that trick, for example, in the action execution phase of our architecture.

While it may be certainly possible to achieve that, for instance, by performing a post-

processing step on a plan made up of elementary actions that would make the architecture

less flexible and general-purpose. Instead, macro encodings can be seamlessly integrated

with planning operators, and therefore the engineering effort to add, remove, or modify

them is minimum.
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For the sake of the discussion carried out in the section, let us provide a more formal

description of planning operators, and of macros in automated planning. We say that an

operator:

o = (name(o), pre(o), del(o), add(o)), (4)

is a planning operator, where name(o) = op name(x1, . . . , xk), with op name is a unique

operator name and x1, . . . xk are k variable symbols, that is, arguments, appearing in

the operator, and pre(o), del(o), and add(o) are sets of (non) grounded predicates with

variables taken only from x1, . . . , xk representing operator precondition, delete, and add

effects, respectively. Actions are grounded instances of planning operators. An action a is

applicable in a state s if and only if pre(a) ⊆ s. The application of a in s, if possible, results

in a state (s\del(a))∪add(a)); we call (del(a))∪add(a)) effects. Therefore, a macro oi,j
is constructed by orderly assembling planning operators oi and oj as follows. Let Φ and

Ψ be mappings between variable symbols, because we may need to appropriately rename

variable symbols of oi and oj to construct oi,j , the macro is constructed as follows:

• pre(oi,j) = pre(Φ(oi)) ∪ (pre(Ψ(oj)) \ add(Φ(oi))),
• del(oi,j) = (del(Φ(oi)) \ add(Ψ(oj))) ∪ del(Ψ(oj)),

• add(oi,j) = (add(Φ(oi)) \ del(Ψ(oj))) ∪ add(Ψ(oj)).

Longer macros, that is, macros encapsulating longer sequences of original planning op-

erators, can be constructed iteratively using the same approach.

For a macro to be sound, no instance of Φ(oi) can delete an atom required by a

corresponding instance of Ψ(oj), otherwise they cannot be applied consecutively, whereas

it is obvious that if a predicate deleted by Φ(oi) (and not added back) is the same (in

terms of both name and variable symbols) as a predicate in the precondition of Ψ(oj),

then the macro oi,j is unsound.

7.2 Representing macros in ASP

In this section, we describe how macros are encoded in ASP. In order to ease the descrip-

tions, we emphasize the relation between our SAES encoding and common concepts in

planning. In particular, atoms appearing in the head of rules r16, r18, and r23 represent

the actions, whereas their bodies represent preconditions that must be satisfied in order

to select that action. Rule r17 represents the effect of the action described in r16; rules

r19–r22 and r32 represent the effects of the action in rule r18; and rules r24–r25, r31, and

r32 represent the effects of the action in rule r23. Fluents are all the atoms appearing in

the encoding that contains the variable representing the time, in our case usually referred

to as T.

In ASP, a macro is encoded by a single choice rule, which implicitly represents multiple

actions, and by several normal rules needed to model their effects. The head of the choice

rule contains a single fresh atom, whose variables are all the one appearing in the body of

the choice rule, whereas its body is built as described in the following paragraph. Given

a rule ri representing an action, pre(ri) denotes the rule body. Intuitively, it represents

the conditions that must hold in order to activate the action represented by the rule.

Moreover, del(ri) (respectively, add(ri)) represent all the atoms which are set as false

(respectively, true) whenever the conditions denoted by pre(ri) hold. Therefore, a macro
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ri,j is constructed by assembling the rules representing single actions and by generating

pre(ri,j), del(ri,j), and add(ri,j), as follows:

• pre(ri,j) = pre(ri) ∪ (pre(rj) \ add(ri)),
• del(ri,j) = (del(ri) \ add(rj)) ∪ del(rj),

• add(ri,j) = (add(ri) \ del(rj)) ∪ add(rj).

where ri and rj are two distinct rules. As a consequence, for a macro ri,j , the body of

the choice rule is represented by pre(ri,j).

Example 1

As an example, let us consider the two rules r16 and r18, which correspond to the two

actions move link to central and take links to move. The aim is to create the macro

linkToCentral take combining such two actions. Therefore, pre(r16) and pre(r18) cor-

respond to the bodies of rules r16 and r18, that is, they are defined as follows:

pre(r16) = {link(L1), joint(J1), gripper(G2), time(T), free(G2,T),
connected(J1,L1), not in hand(L1,T), not in centre(J1,T)}

pre(r18) = {link(L1), link(L2), joint(J1), gripper(G1), gripper(G2),
in centre(J1,T), free(G1,T), free(G2,T), connected(J1,L2),
not in hand(L1,T), not in hand(L2,T), connected(J1,L1),
L1<>L2, G1<>G2}.

Afterward, del(r16) and del(r18) contain all the atoms which are set to false after the cor-

responding actions have been selected. In our example, no atoms are set to false because

action move link to central is selected, therefore del(r16) = ∅. Instead, free(G,T) is

set to false because take links to move is selected from rule r32, that is, since only one

action can be selected at each time step. Therefore, del(r18) = {free(G,T)}. Finally,
add(r16) and add(r18) correspond to atoms which are set to true after the correspond-

ing actions have been selected. In our example, action move link to central leads to

atom in centre(J,T) holding true (from rule r17), whereas take links to move leads

to atom in hand(L1,T), in hand(L2,T) (from rules r19 and r20), grasped(G1,L1,T)

and grasped(G2,L2,T) (from rules r21 and r22) holding true. Therefore:

add(r16) = {in centre(J1,T)}
add(r18) = {in hand(L1,T), in hand(L2,T),

grasped(G1,L1,T), grasped(G2,L2,T)}.
Now we are ready to define pre(r16,18), add(r16,18), and del(r16,18), which are as follows:

pre(r16,18) = {link(L1), link(L2), joint(J1), gripper(G1), time(T),
gripper(G2), not in centre(J1,T), free(G1,T),

free(G2,T), not in hand(L1,T), not in hand(L2,T)

connected(J1,L1), connected(J1,L2), L1<>L2, G1<>G2}
del(r16,18) = {free(G,T)}
add(r16,18) = {in centre(J1,T), in hand(L1,T), in hand(L2,T),

grasped(G1,L1,T), grasped(G2,L2,T)}.
Therefore, the choice rule representing the macro r16,18 is as follows:

{linkToCentral take(L1,L2,J1,G1,G2,T)} :-link(L1), link(L2),

gripper(G1), gripper(G2), time(T), free(G1,T), free(G2,T),

not in centre(J1,T), not in hand(L1,T), not in hand(L2,T),

L1<>L2, G1<>G2, joint(J1), connected(J1,L1), connected(J1,L2).
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Fig. 11. Macros encoding for the extended scenario.

7.3 Macros for the extended scenario and their ASP encoding

While evaluating robot plans related to problem instances in the extended scenario, we

noticed that some of the actions could be merged. In fact, we observed typical sequences

of actions corresponding to the manipulation of links. Leveraging on this observation, we

modified the SAES encoding to include such macros. From now on, we will refer to the

new encoding as Macro Action Extended Scenario (MAES). This section describes the

macros we have defined, and then how they have been encoded in ASP, following the

example given in the previous subsection. The complete MAES encoding can be found

in online Appendix A.

Macros for the Extended Scenario. The following macros have been considered:

• linkToCentral take is shown in Example 1, and it is the composition of the action

move link to central, which displaces the articulated object so that the joint in-

between the links which must be manipulated can be located in the center of the

robot manipulation space, and the action takes links to move, which grasps the

links to be manipulated. Since links may not be successfully grasped by the robot

unless they were in the robot manipulation space, this macro aims at providing a

single rule for cases whereby links are not in the right position.

• changeAngle release is the composition of changeAngle, which changes the ori-

entation of a link, and release links, which releases the currently grasped link.

This macro provides a single rule for cases whereby it is necessary to act on a link

and release it afterward.

• grasp changeAngle release represents the composition of the following actions:

take links to move, changeAngle, and release links. This macro provides a

single action for cases when it is necessary to act on a link that was already at the

center of robot manipulation space.

Macros Encoding for the Extended Scenario. The MAES encoding is an improved version

of the SAES encoding, and it is based on principles similar to those employed in the SAS
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and SAES encodings. The general structure and the way the MAES encoding deals

with robot manipulation actions are the same shown in Figure 6. Figure 11 partially

reports how the three macros introduced above are encoded in ASP, considering only

preconditions and choice rules, and not showing the effects. To give an overall idea,

MAES encoding is composed of these three macros, and their effects plus (modified

versions of) the rules from r26 to r30, which are necessary to ensure that only one action

is selected at each time step, the rules from r31 to r33, and eventually r15 that ensure the

goal is reached. Rules from r26 to r33 must be modified according to other rules of the

encoding, for example, rules from r26 to r29 are reduced to just three rules, one for each

macro. As already stated, the full MAES encoding is reported and explained in online

Appendix A.

8 Validation in the extended scenario and experimental analysis

In this section, we present and discuss the results of the analysis we carried out on the

extended scenario. We first present an experimental validation of the whole framework

in the extended scenario, in a way similar to what we have done in Section 5 for the

simple scenario, and then we discuss an analysis about the contribution of macros on the

Action Planning module.

8.1 Validation in the extended scenario

We employed the same experimental setting already described in Section 5. Figure 12

shows the knowledge base of one sample problem instance, as well as two excerpts of the

answer set produced by Clingo when using the SAES and MAES encoding, respectively.

From the figure, it is possible to appreciate the differences in the knowledge base with

respect to the one ones in the simple scenario.

We can compare the solutions generated by SAES and MAES: in the plan generated

by the SAES encoding, as1 denotes the fact that the robot must take links 3 and 4 with

the left and the right grippers, respectively; in as2, the orientation of link 4 must change

from 60◦ to 0◦; as3 foresees that the orientation of link 4 must change from 0◦ to 300◦;
in as4, the two links must be released; in as5, joint 4 (located between links 4 and 5)

must be placed at the center of robot manipulation space; according to as6, the robot

must grasp links 4 and 5 with the left and the right grippers, respectively; finally, in as7,

the orientation of link 5 must change from 0◦ to 300◦. Instead, according to the plan

generated using the MAES encoding, am1 requires the robot to grasp links 3 and 4 with

the left and the right grippers, respectively, that the orientation of link 4 be changed

from 60◦ to 0◦, and that links are released; according to am2, the robot must grasp links

3 and 4 with the left and the right grippers, respectively, change the orientation of link

4 from 0◦ to 300◦, and then release the links; in am3, the two links must be grasped; in

am4, the orientation of link 5 must be changed from 0◦ to 300◦.
While the two solutions share a number of similarities, there are nonetheless few re-

markable differences. It is possible to notice that with the macros it is not possible to act

on a link without releasing it just afterward: this leads to a small unnecessary idle time

if the robot has to move a link two times in a row since it has to release it and grasp it
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Fig. 12. An example of problem instance in the extended scenario: the knowledge base of the
problem solved with both SAES and MAES (top); two excerpts of the answer set returned by

Clingo, respectively, when SAES (middle) or MAES (bottom) are employed.

again. We avoid that problem in the SAES encoding since the two actions changeAngle

and releaseLinks are not encapsulated in a macro.

Figure 13 illustrates the execution of the solution generated using the MAES encoding

(from top-left to bottom-right), on the sample instance at the top of Figure 12, which

produces the (partial) answer set at the bottom of the same figure. Starting from the

initial configuration of the articulated object (top-left), the up row represents the three

steps associated with macro action am1, that is, grasping, link angle change, and release,

respectively. Next, the first three figures in the mid row represent action am2, which is

almost equivalent to action am1. The last figure in the mid row and first two figures of

the bottom raw represent three steps of action am3, which brings the fourth joint to the

center of robot manipulation space, whereas the third figure in the bottom row shows the

changing orientation step of action am4. It is noteworthy that even if moving the object

toward the center of the manipulation space strictly requires only one gripper, during

action execution we hard-code the use of two grippers to increase precision. Finally,

the bottom-right figure shows the final configuration corresponding to the required goal

configuration of the five-link articulated object. It is important to notice that, for the

sake of brevity, we skipped some of the steps involved in actions am2 and am3. It is

interesting to notice, however, although the steps shown in Figure 13 would have been

skipped by a SAES-generated plan (see Figure 12), therefore reducing the robot idle

time, that the flow of the actions during the execution process of both MAES and SAES

is almost equivalent even if the organization of the plan is different. However, we will see

in the next subsection the computational advantages that MAES brings.
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Fig. 13. Execution of a problem instance in the complex scenario.

8.2 Experimental analysis on the Action Planning module

In order to obtain an assessment of the capabilities of the developed encodings, we

selected and applied to the new, extended scenario some of the 280 instances generated

for the simple scenario. Eventually, we considered 180 problem instances with the number

of links varying from 4 to 12, and with orientation granularity values of 4, 6, 8, or 12

possible angles, 5 instances for each pair (number of links, granularity). For each problem

instance, a time limit of 300 s and a memory limit of 16 GB was applied. Clingo was

used to solve the ASP-encoded instances. All the experiments have been conducted on

Intel i7-4790 CPU and Linux OS.

We compared the performance of the considered encodings using coverage, that is,

the percentage of solved instances, and the Penalised Average Run-time (PAR10) score.

The latter is a metric usually exploited in machine learning and algorithm configuration

techniques. It trades off coverage and run time for solved problems: if an encoding e

allows the solver to solve an instance Π in time t ≤ T (T = 300 s in our case), then

PAR10(e,Π) = t, otherwise PAR10(e,Π) = 10× T (i.e., 3000s in our case).

Table 1 summarizes the results achieved by Clingo to solve instances encoded in SAS,

SAES, and MAES. It is noteworthy to recall that SAS is much more simplistic than the

other encodings, as it ignores the position of the links to be manipulated and considers

high-level actions which have to be broken down into a large number of low-level ele-

mentary actions. On the contrary, SAES and MAES provide a more detailed and rich

description of the problem, which allows to generating plans easier to be put in place by

the robot. Therefore, a direct comparison between SAS and SAES/MAES is not straight-

forward, but it is nonetheless interesting to analyze also the results obtained by SAS.

Unsurprisingly, the SAS encoding solves a larger number of instances and is generally the

fastest among the considered encodings. Due to the above-mentioned issues, the excellent

planning performance of SAS comes at the cost of a potentially large number of failures
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Table 1. Results, in terms of PAR10 and coverage, achieved by the considered encodings

on the tested instances. Instances are grouped according to the number of links of the

articulated object to be manipulated (rows) and the granularity of the angular values,

with five instances for each pair (number of links, granularity). Cases not solved by any

considered encoding are omitted

Number of allowed orientations: 4
PAR10 Coverage

SAS SAES MAES SAS SAES MAES

4 0.02 2.0 0.3 100.0 100.0 100.0
5 0.06 622.5 6.6 100.0 80.0 100.0
6 615.54 1852.7 676.3 100.0 40.0 80.0
7 197.31 1817.1 1505.8 80.0 40.0 40.0
8 18.97 2411.9 1254.3 100.0 20.0 60.0
9 92.41 3000.0 3000.0 100.0 – –
10 1335.49 3000.0 3000.0 60.0 – –
11 1803.77 3000.0 3000.0 40.0 – –
12 2401.08 3000.0 3000.0 20.0 – –

Number of allowed orientations: 6

SAS SAES MAES SAS SAES MAES

4 0.04 35.6 16.9 100.0 100.0 100.0
5 2.028 1800.1 36.3 100.0 40.0 100.0
6 628.962 3000.0 2400.6 80.0 – 20.0
7 637.682 3000.0 3000.0 80.0 – –
8 1816.754 3000.0 3000.0 40.0 – –
9 2718.2 3000.0 3000.0 20.0 – –

Number of allowed orientations: 8

SAS SAES MAES SAS SAES MAES

4 6.762 671.7 665.6 100.0 80.0 80.0
5 43.816 3000.0 1860.8 100.0 – 40.0
6 1239.81 3000.0 2454.9 60.0 – 20.0
7 1822.898 3000.0 3000.0 40.0 – –

Number of allowed orientations: 12

SAS SAES MAES SAS SAES MAES

4 614.232 3000.0 101.2 80.0 – 80.0
5 1877.986 3000.0 3000.0 40.0 – –
6 1232.116 3000.0 3000.0 40.0 – –
7 2809.50 3000.0 3000.0 20.0 – –

in execution, since the encoding does not take into consideration the effective boundaries

of the robot workspace. During the execution of the computed plans, the robot may

have to perform actions on joints which are at the limit of the robot manipulation space,

therefore causing the robot arms to singularity positions and to stop plan execution.
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It is trivial to notice that the more links the articulated object has, the easier it is to

experience such failures.

The comparison of the performance achieved by Clingo when using SAES and MAES

can shed some light on the usefulness of macros. It can be noticed that macros allow

Clingo to solve a larger number of instances, and that macros are generally helpful

in improving the run time. This is true regardless of the granularity considered for

allowed link orientations and of the number of considered links. As an example, with a

granularity value of 12 (i.e., joint’s angles can be modified by 30◦ per movement), the

use of macros allow Clingo to solve 80% of instances of size 4; no instances can be solved

using SAES, instead.

In summary, it is evident from Table 1 that macros improve considerably planning

performance as well as run-time success rate. The introduction of macros leads to better

run-time performance, but at the cost of reintroducing idle robot time in certain specific

cases. This is aligned with the results achieved in automated planning when exploiting

macros: run time and coverage performance of planners tend to improve, but the quality

of generated plans may be negatively affected due to repetitions and sub-optimalities

(Chrpa and Vallati 2019).

9 Related work

In Sections 4.3 and 6.2, we have shown two of our encodings of the Action Planning

module, for the simple and extended scenario, respectively, with one particular manip-

ulation mode and search strategy. In online Appendix A, we provide the encoding ex-

ploiting macro actions, with the same manipulation mode and search strategy. However,

as we already stated, we have designed a series of encodings, including different search

strategies. In particular, after imposing a reasonable timemax, we have devised further

encodings implementing (i) the first strategy based on the algorithm optsat (Giunchiglia

and Maratea 2006; Di Rosa et al . 2008; 2010), whereby the heuristic of the solver is

modified so as to prefer plans with increasing length, and (ii) a second strategy employ-

ing a choice rule to select the time step, of course possibly losing optimality (see also

Dimopoulos et al . (2017)).

In Capitanelli et al . (2017; 2018), a similar framework based on automated reason-

ing methodologies was presented. The framework employs a Description Logic (DL)-

based knowledge representation framework and the Planning Domain Definition Lan-

guage (PDDL), as well as automated planning engines for the Action Planning module,

whereas we use an ASP-based uniform language and approach for the whole framework,

leaving to the Motion Planner module handling the kinematics problems. Moreover, dif-

ferently from most of our approaches, models and solvers employed in Capitanelli et al .

(2017; 2018) are not guaranteed to generate the shortest length plans, which is indeed

important, given that in this context action execution is quite time-consuming.

The ASP-based architecture described in this paper can be integrated with ROSo-

Clingo (Andres et al . 2015), which is a framework combining the ASP solver Clingo

(version 4) with the ROS middleware. In particular, it provides a high-level ASP-based

interface to control the behavior of a robot and to process the results of actions exe-

cution. In our framework, the interaction with ROS is handled by a software adapter

developed ad hoc. Furthermore, our architecture can be integrated with telingo (Cabalar

et al . 2019), an extension of the ASP system Clingo with temporal operators over finite
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linear time, which automatically uses the multishot interface of Clingo, and therefore it

might be useful to further simplify our architecture and improve performance.

ASP has been employed in different domains, including Robotics (Gebser et al . 2013;

Erdem et al . 2013; Andres et al . 2015; Erdem et al . 2015; Schäpers et al . 2018), encom-

passing various application domain. However, in the current literature, the goal is not

the validation and exploitation of the techniques on a real robot, as it is in our case. For

a recent overview, the interested reader is referred to Erdem and Patoglu (2018).

Focusing on planning encodings, recently the Plasp system Dimopoulos et al . (2017)

has been further extended with both SAT-inspired and genuine encodings. Some of them

have helped reduce the (still existing) gap with automated planning techniques. Our

aim in the design of the encoding for our scenario is to obtain a working solution for

the problem at hand, rather than achieving the best-performing solution. Nonetheless,

results discussed in Dimopoulos et al . (2017) could be employed to further speed up our

Action Planning module.

An important line of research in Action Planning focuses on increasing the efficiency of

the planning process by reformulating the domain knowledge, with the aim of obtaining

models which are more amenable for automated reasoners. Significant work has been

done in the area of reformulation for improving the performance of domain-independent

planners. Macro-operators (Korf 1985; Newton et al . 2007; Chrpa 2010; McCluskey and

Porteous 1997) are one of the best known types of reformulation in classical planning.

They encapsulate in a single-planning operator a sequence of original operators. From a

technical perspective, an instance of a macro is applicable in a state if and only if a cor-

responding sequence of operator instances is applicable in that state and the result of the

application of the macro instance is the same as the result of applying the corresponding

sequence of operator instances. The notion of macros can also be exploited by specifically

enhanced planning reasoners. This is the case for MacroFF SOL-EP version (Botea et al .

2005), which is able to exploit offline extracted and ranked macros, and Marvin (Coles

et al . 2007), which generates macros online by combining sequences of actions previously

used for escaping plateaus. Such systems can efficiently deal with drawbacks of specific

planning engines, in this case the FF planner (Hoffmann and Nebel 2001). However,

their adaptability for different planning engines might be low. In this work, we aimed at

exploiting macros in ASP following the more traditional solver-independent approach,

that is, by modifying the encoding, replacing simple actions with macros.

10 Conclusions

In this paper, we presented an ASP-based framework for the automated manipulation of

articulated objects in a 2D workspace by a dual-arm robot manipulator. We demonstrated

the validity and usefulness of the proposed approach by running real-world experiments

with a real robot in two scenarios. In the second extended scenario, we applied to ASP the

concept of macros in order to deal with plan generation and execution more efficiently.

Our analysis shows the effectiveness of the proposed ASP-based approach, using Clingo

as a solver, and the usefulness of employing macros.

We see several directions for future work. First, we are interested in validating the

framework on different dual-arm robots, possibly manipulating different articulated ob-

jects. Given the nature of the approach, we expect it to generalize with a reasonably

limited effort. We also plan to integrate telingo with our framework. Then, we plan to
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develop a mixed encoding composed by simple and macro actions. Furthermore, our

instances could be an interesting benchmark domain for ASP competitions, for exam-

ple, Gebser et al . (2017; 2020). Finally, we would like to evaluate our encodings also with

other solvers, for example, Alviano et al . (2019) and, given that the encodings contain

a significant number of arithmetic operations, to explore the possibility of employing

CASP encodings and solvers, for example, Clingcon (Banbara et al . 2017), EZCSP (Bal-

duccini and Lierler 2017), and EZSMT (Shen and Lierler 2018), to deal with numerical

constraints.

All the material presented in this paper, including encodings, instances, results, and

validations, can be found at https://tinyurl.com/ycbp798j.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068420000459
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