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Abstract

If X is a class of groups, we define a sequence X1,X2, . . . ,Xk, . . . of group classes by putting X1 = X and
choosing Xk+1 as the class of all groups whose nonnormal subgroups belong to Xk. In particular, if A is
the class of abelian groups, A2 is the class of metahamiltonian groups, that is, groups whose nonnormal
subgroups are abelian. The aim of this paper is to study the structure of Xk-groups, with special emphasis
on the case X = A. Among other results, it will be proved that a group has a finite commutator subgroup
if and only if it is locally graded and belongs to Ak for some positive integer k.
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1. Introduction

It is well known that a group has only normal subgroups if and only if it is either abelian
or the direct product of a quaternion group of order 8 and a periodic abelian group
with no elements of order 4. The structure of groups for which the set of nonnormal
subgroups is small in some sense has been studied by many authors in several different
situations.

A group is called metahamiltonian if all its nonabelian subgroups are normal.
Metahamiltonian groups were introduced and studied by Romalis and Sesekin. They
proved in particular that the commutator subgroup of any soluble metahamiltonian
group is finite of prime-power order (see [14–16]). Of course, any group whose
commutator subgroup has prime order is metahamiltonian, and it was shown
by Kuzennyi and Semko [8] that a soluble group G is metahamiltonian if and only
if each nonabelian subgroup of G contains the commutator subgroup G′. On the other
hand, Tarski groups, that is, infinite simple groups whose proper nontrivial subgroups
have prime order, are obviously metahamiltonian, and in order to avoid pathological
cases of this type it is usual to work within the large universe of locally graded groups.
Here a group G is said to be locally graded if every finitely generated nontrivial
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subgroup of G contains a proper subgroup of finite index. For instance, it turns out
that locally graded metahamiltonian groups are soluble of derived length at most 3
(see [4]). More information on metahamiltonian groups and related properties can be
found in the recent papers [5] and [6] and in the survey article [3].

The aim of this paper is to provide a further contribution to this topic by looking at
metahamiltonian groups in the general framework of group classes that can be obtained
by iterating a restriction on nonnormal subgroups.

Let X be a class of groups. Put X1 = X, and suppose by induction that a group
class Xk has been defined for some positive integer k; then we denote by Xk+1 the class
consisting of all groups in which every nonnormal subgroup belongs to Xk.

It is clear that a group class X is not in general contained in X2, as consideration
of the class of simple groups shows, but this is certainly the case if X is closed with
respect to forming subgroups. Moreover, for each positive integer k the class Xk+1 is
subgroup closed and Xk+1 = (Xk)2, so that Xh ≤ Xk whenever 2 ≤ h ≤ k. We put

X∞ =
⋃
k≥1

Xk.

If X is chosen to be the class A of abelian groups, then A2 is the usual class of
metahamiltonian groups and A3 consists of all groups whose nonnormal subgroups
are metahamiltonian. Members of the class Ak will be called k-hamiltonian groups
(for any k). Thus the 1-hamiltonian and 2-hamiltonian groups are precisely the abelian
and the metahamiltonian groups, respectively. Here we will investigate the structure
of k-hamiltonian locally graded groups for k ≥ 3.

Let k be any positive integer, and let p1, . . . , pk be pairwise distinct odd prime
numbers. If A is a cyclic group of order p1 · · · pk and x is the automorphism of A
which inverts all elements, the semidirect product 〈x〉 n A is a (k + 1)-hamiltonian
group which is not k-hamiltonian. Therefore Ak is a proper subclass of Ak+1 for each
positive integer k.

It is clear that Xk ≤ Yk for all k, whenever X and Y are arbitrary group classes such
that X ≤ Y. Notice also that if D is the class of groups in which all subgroups are
normal, then the classes A2 and D2 do not coincide, as consideration of the direct
product of two copies of the quaternion group of order 8 shows.

Groups with a finite commutator subgroup have been characterised by
Neumann [10] as those groups which have boundedly finite conjugacy classes of
elements; he also proved that a group is finite-by-abelian if and only if each of
its subgroups has finite index in its normal closure. The final result of the paper
provides a further characterisation of the class FA consisting of all groups with a finite
commutator subgroup. In fact, it shows that FA coincides with the class of locally
gradedA∞-groups. Therefore the classFA is saturated by k-hamiltonian locally graded
groups, when k ranges over all positive integers, and hence nothing more can be said
about the size of the commutator subgroup of locally graded groups in the class A∞.

Most of our notation is standard and can be found in [12].
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2. Statements and proofs

As we pointed out in the introduction, the class Xk is closed with respect to
subgroups for every k > 1, even if the class X = X1 is not subgroup closed. We will
begin this section by considering some closure properties that are inherited from X to
the group classes Xk.

First of all, notice that if X is a group class which is closed with respect to
homomorphic images, the same property obviously holds also for every Xk. Recall
that a group class X is local if a group G belongs to X whenever each of its finite
subsets is contained in an X-subgroup. Clearly, a subgroup closed group class X is
local if and only if it contains all groups whose finitely generated subgroups belong to
X. Our first lemma shows that the property of being local is inherited by the classes Xk.

Lemma 2.1. Let X be a local group class. Then, for each positive integer k, the class
Xk is also local.

Proof. Since X1 = X, the statement is obvious if k = 1. Suppose now that the class Xk

is local for some positive integer k. As Xk+1 is subgroup closed, it is enough to prove
that a group G belongs to Xk+1 provided that all its finitely generated subgroups are
Xk+1-groups. Let X be any subgroup of G which is not in Xk, and let WX be the set
of all finitely generated subgroups of X which are not contained in an Xk-subgroup of
G. Then WX is not empty, because the class Xk is local. If g is any element of G
and U ∈WX , the subgroup 〈g,U〉 belongs to Xk+1, whence Ug = U. It follows that all
elements ofWX are normal in G. Moreover, 〈x,U〉 ∈ WX for all x ∈ X, and so

X = 〈V | V ∈WX〉

is likewise normal in G. Therefore G belongs to Xk+1, and hence Xk+1 is a local
class. �

Since the class of abelian groups is obviously local, the choice X = A in the above
statement gives the following interesting special case, which generalises a well-known
property of metahamiltonian groups.

Corollary 2.2. For each positive integer k, the class of k-hamiltonian groups is local.

Let X be a group class. A subgroup X of a group G is said to be compressed
by X if it contains a normal subgroup N of G such that G/N is an X-group; in this
case, such a subgroup N will be called an X-compressor for X in G. Of course, if the
class X is closed with respect to homomorphic images, the core XG of an X-compressed
subgroup X is an X-compressor for X in G. It is also clear that in any group the class
of finite groups compresses all subgroups of finite index.

Lemma 2.3. Let X be a group class, and let X and Y be subgroups of a group G such
that X is not normal in G and Y ≤ X. If Y is compressed in G by the class Xk for some
integer k > 1, then Y is compressed in X by Xk−1.
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Proof. Let N be an Xk-compressor for Y in G. Then X/N is a nonnormal subgroup of
the Xk-group G/N, and hence it belongs to Xk−1, which means that Y is compressed by
Xk−1 in X. �

We shall say that a subgroup closed group class X is a Robinson class if every
finitely generated hyper-(abelian or finite) group, whose subgroups of finite index are
compressed by X, belongs to X and is polycyclic-by-finite. Recall here that a group is
hyper-(abelian or finite) if it has an ascending normal series whose factors are either
abelian or finite. If the class X is closed also with respect to homomorphic images,
then X is a Robinson class if and only if every finitely generated hyper-(abelian or
finite) group whose finite homomorphic images belong to X is polycyclic-by-finite
and belongs to X. The most relevant group class of this type is that of nilpotent
groups, a result that was proved by Robinson [11]. On the other hand, although
any polycyclic-by-finite group whose finite homomorphic images are supersoluble is
likewise supersoluble (see [1]), it is easy to see that supersoluble groups do not form
a Robinson class. It follows easily from Robinson’s theorem and from the fact that
polycyclic groups are residually finite that the class Nc of all nilpotent groups of class
at most c has the Robinson property. Thus A is a Robinson class. As shown in [2], the
class A2 of metahamiltonian groups also has the Robinson property. Our next theorem
proves that k-hamiltonian groups form a Robinson class, for each positive integer k.

Theorem 2.4. Let X be a Robinson class of groups. Then, for each positive integer k,
the class Xk also has the Robinson property.

Proof. The statement is obvious if k = 1. Suppose now by induction on k that Xk is a
Robinson class for some positive integer k, and let G be any finitely generated hyper-
(abelian or finite) group in which all subgroups of finite index are compressed by Xk+1.
If X is any nonnormal subgroup of finite index of G, it follows from Lemma 2.3 that
every subgroup of finite index of X is compressed in X by the Robinson class Xk; then
the finitely generated hyper-(abelian or finite) group X belongs to Xk, and in particular
it is polycyclic-by-finite. On the other hand, if all subgroups of finite index of G are
normal, then every finite homomorphic image of G is nilpotent, and so it follows from
Robinson’s theorem that G itself is nilpotent and hence also polycyclic. Therefore G
is polycyclic-by-finite in any case.

Let H be any nonnormal subgroup of G. Since H is the intersection of a collection
of subgroups of finite index of G (see, for instance, [13, 5.4.16]), it is contained in a
subgroup K of finite index which is not normal in G. Thus K belongs to Xk and so H
is an Xk-group, because Xk is subgroup closed. Therefore G belongs to Xk+1 and hence
Xk+1 is a Robinson class. �

Let X be a class of groups. A group is said to be minimal non-X if it is not
an X-group but all its proper subgroups belong to X. We shall say that X is accessible
if every locally graded group whose proper subgroups belong to X is either finite or
an X-group, or equivalently if any locally graded minimal non-X group is finite. In
particular, a group class X containing all finite groups is accessible if and only if there

https://doi.org/10.1017/S0004972719001047 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719001047


100 D. Esposito, F. de Giovanni and M. Trombetti [5]

are no minimal non-X groups in the universe of locally graded groups. It is easy to
show that abelian groups form an accessible group class and A shares such a property
with other relevant classes of groups. Further information on accessible group classes
can be found in [7].

It is known that the class of metahamiltonian groups is accessible (see [2]), and we
will see that all Ak are accessible classes.

Lemma 2.5. Let X be a subgroup closed group class and let G be a group in the class
Xk for some integer k > 1. Then all proper subgroups of G′′ belong to Xk−1.

Proof. Let X be any subgroup of G which is not in Xk−1. Then all subgroups of G
containing X are normal, so that G/X is a Dedekind group and hence G′′ ≤ X. It
follows that all proper subgroups of G′′ belong to Xk−1. �

Theorem 2.6. Let X be a Robinson class consisting of soluble-by-finite groups, which
is local and closed with respect to homomorphic images. If X is accessible, then for
each positive integer k the class Xk is also accessible.

Proof. Assume for a contradiction that the statement is false and let k be the smallest
positive integer such that there exists an infinite locally graded group G which is not
an Xk-group while all its proper subgroups belong to Xk. Clearly, k > 1 since X is
accessible. Moreover, G is finitely generated because Xk is a local class by Lemma 2.1,
and so G contains a proper subgroup X of finite index. By an iterated application of
Lemma 2.5, there is a positive integer n such that the subgroup X(n) either is minimal
non-Xh for some h < k or belongs to X. In the first case X(n) is finite by the minimal
assumption on k and so it follows that the subgroup X is soluble-by-finite in any case,
and hence G itself is soluble-by-finite.

Since Xk is a Robinson class by Theorem 2.4, the group G contains a normal
subgroup N of finite index such that G/N is not in Xk. On the other hand, the Frattini
factor group G/Φ(G) is infinite by a result of Lennox (see [9]), and so there exists a
maximal subgroup M of G such that G = MN. It follows that G/N ' M/M ∩ N is an
Xk-group, and this contradiction completes the proof of the theorem. �

Corollary 2.7. For each positive integer k the class of k-hamiltonian groups is
accessible.

Lemma 2.8. Let X be a subgroup closed group class such that Xk is accessible for each
positive integer k. If X consists of soluble-by-finite groups, then all groups in X∞ are
soluble-by-finite.

Proof. Assume for a contradiction that the statement is false and let k be the smallest
positive integer such that the class Xk contains a group G which is not soluble-by-finite.
Then k > 1 and it follows from Lemma 2.5 that all proper subgroups of G′′ belong to
Xk−1. As the class Xk−1 is accessible, G′′ either is finite or belongs to Xk−1. In any case,
G′′ is soluble-by-finite, an evident contradiction. �
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Corollary 2.9. Let k be a positive integer and let G be a locally graded k-hamiltonian
group. Then G is soluble-by-finite.

Proof. By Corollary 2.7 the group class Ak is accessible for each positive integer k and
it follows from Lemma 2.8 that all groups in A∞ are soluble-by-finite. The statement
is proved. �

It was mentioned in the introduction that any soluble metahamiltonian group
has derived length at most 3 and its commutator subgroup has prime-power order.
Notice here that GL(2, 3) is a soluble 3-hamiltonian group of derived length 4 and its
commutator subgroup has order 24.

It follows from Corollary 2.9 that k-hamiltonian locally soluble groups are soluble
and we can now show that their derived length is bounded in terms of k. In our next
statement An denotes the class of soluble groups of derived length at most n.

Lemma 2.10. Let G be a soluble group in the class (An)k, where n and k are positive
integers. Then G has derived length at most n + 3(k − 1).

Proof. It can obviously be assumed that k > 1. Then it follows from Lemma 2.5 that
all proper subgroups of G′′ belong to the class (An)k−1 and hence by induction G′′′ has
derived length at most n + 3(k − 2). Therefore the derived length of G is at most

n + 3(k − 2) + 3 = n + 3(k − 1)

and the result is proved. �

Corollary 2.11. Let k be a positive integer, and let G be a k-hamiltonian locally
soluble group. Then G is soluble of derived length at most 3k − 2.

Our next lemma shows in particular that locally graded k-hamiltonian groups locally
satisfy the maximal condition on subgroups.

Lemma 2.12. Let k be a positive integer, and let G be a finitely generated locally
graded k-hamiltonian group. Then G is nilpotent-by-finite.

Proof. The group G is soluble-by-finite by Corollary 2.9. If every subgroup of finite
index of G is normal, then all finite homomorphic images of G are trivially nilpotent
and so G itself is nilpotent. Suppose now that G contains a nonnormal subgroup X of
finite index, so that k > 1 and X is a finitely generated (k − 1)-hamiltonian group. By
induction on k, it follows that X is nilpotent-by-finite and hence G itself is nilpotent-
by-finite. �

Our final result characterises finite-by-abelian groups as those locally graded groups
that belong to some Ak.

Theorem 2.13. A locally graded group G has a finite commutator subgroup if and only
if it belongs to the class A∞.
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Proof. Assume first that there exist locally graded A∞-groups with an infinite
commutator subgroup, and let k be the smallest positive integer such that Ak contains
a locally graded (and so even soluble-by-finite) group G with G′ infinite. Of course,
k > 1 and, by the local closure property of the class Ak−1, the group G contains a
finitely generated subgroup E which is not (k − 1)-hamiltonian. Then E is normal in G
and G/E is a Dedekind group, so that G′/G′ ∩ E is finite. Since E satisfies the maximal
condition on subgroups, it follows that G′ is finitely generated. Let T be the largest
locally finite normal subgroup of G. Then G′T/T is infinite, so that G/T is likewise
a counterexample, and hence we may suppose without loss of generality that G has
no nontrivial locally finite normal subgroups. By Lemma 2.5 all proper subgroups
of G′′ belong to Ak−1 and it follows from Corollary 2.7 that G′′ is either finite or
(k − 1)-hamiltonian. Thus in any case G′′′ is finite and hence even trivial, so that G′′ is
torsion-free abelian. Let X be any nonnormal subgroup of G′. Then X belongs to Ak−1,
so that X′ is a finite subgroup of G′′ and hence X′ = {1}. It follows that all nonnormal
subgroups of G′ are abelian, that is, G′ is metahamiltonian and G′′ is finite, so that
G′′ = {1} and G′ is torsion-free abelian. Similarly, if Y is any nonnormal subgroup
of G, its commutator subgroup Y ′ is finite and so trivial. Therefore the group G
is metahamiltonian. This contradiction shows that all locally graded k-hamiltonian
groups have a finite commutator subgroup.

Conversely, let G be a group with a finite commutator subgroup, and let m be the
number of (not necessarily distinct) prime factors of the order of G′. Consider an
arbitrary finite nonnormal chain of G, that is, a finite chain

X0 < X1 < · · · < Xt

of subgroups of G such that Xi is not normal in Xi+1 for i = 0, . . . , t − 1. If 0 ≤ i ≤ j ≤ t
and Xi ∩G′ = X j ∩G′,

[Xi, X j] ≤ X j ∩G′ ≤ Xi,

so that Xi is normal in X j and hence i = j. It follows that

X0 ∩G′ < X1 ∩G′ < · · · < Xt ∩G′

and hence t ≤ m. On the other hand, it can be easily proved by induction that a group
in which all (finite) nonnormal chains contain at most m elements belongs to Am+1 and
so also to the class A∞. The proof is complete. �
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