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Language change is neutral if the probability of a language learner adopting any given
linguistic variant only depends on the frequency of that variant in the learner’s environment.
Ruling out non-neutral motivations of change, be they sociolinguistic, computational,
articulatory or functional, a theory of neutral change insists that at least some instances
of language change are essentially due to random drift, demographic noise and the social
dynamics of finite populations; consequently, it has remained little investigated in the
historical and sociolinguistics literature, which has generally been on the lookout for more
substantial causes of change. Indeed, recent computational studies have argued that a
neutral mechanism cannot give rise to ‘well-behaved’ time series of change which would
align with historical data, for instance to generate S-curves. In this paper, I point out
a methodological shortcoming of those studies and introduce a mathematical model of
neutral change which represents the language community as a dynamic, evolving network
of speakers. With computer simulations and a quantitative operationalization of what it
means for change to be well-behaved, I show that this model exhibits well-behaved neutral
change provided that the language community is suitably clusterized. Thus, neutral change
is not only possible but is in fact a characteristic emergent property of a class of social
networks. From a theoretical point of view, this finding implies that neutral theories
of change deserve more (serious) consideration than they have traditionally received in
diachronic and variationist linguistics. Methodologically, it urges that if change is to be
successfully modelled, some of the traditional idealizing assumptions employed in much
mathematical modelling must be done away with.
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1. INTRODUCTION

An outstanding problem in diachronic linguistics concerns the extent to which
language change is and can be neutral. Once variation arises, are the competing
variants created equal, or is change instead motivated by functional, computa-
tional, social or other considerations which favour certain variants over others?
Expressing an agnostic take on this question, Lass (1997) observes that

it’s perfectly POSSIBLE that both variation and change itself (as a result) are neutral:
even selection does not necessarily have to select that which is better ‘adapted’. In
any case, there are even in biology modes of (apparent) selection that are not (in the
Darwinian sense) genuinely ‘selective’ or ‘adaptive’ [. . . ]. All of these possibilities,
given the much better understood nature of variation and change in organisms, need
to be considered before any claim for ‘function’ can be made for either variation or
change. (Lass 1997: 354, my emphasis.)

The thrust of this programmatic message, mainly directed at functional expla-
nation but not limited in its scope to explanations of functionalist persuasions,
is that the possibility of neutral change has remained, and continues to remain,
underinvestigated.

This paper examines that possibility by means of a simple mathematical model
of variant competition in a finite population of speakers. Guided by the intuition
that language diachrony is typically well-behaved (in a sense to be made precise
later), I propose a quantitative metric of well-behavedness and, with the help of
computer simulations, investigate how the neutrality hypothesis fares in its light.
The upshot of this investigation is that well-behaved neutral change is, indeed,
found to be possible if the social network underlying the language community
has a suitable topology and dynamics: briefly, if the language community is
strongly clusterized, so that it can be partitioned into more central and more
peripheral speakers, neutral change is observed. Moreover, it is found that well-
behaved neutral change is a consistent, characteristic emergent feature of such
social networks: the effect is not a statistical anomaly, but flows naturally and
robustly from the way in which the language community is structured and the
way in which that structure evolves over time. On the other hand, in a classical
well-mixed (unstructured) population we find that change can rarely be neutral
AND well-behaved.

The model here studied differs from most previous mathematical models of
language change (and, more generally, cultural evolution) in two respects. First,
the model does away with the classical idealizing assumption of representing
language communities as well-mixed populations, often infinite, and looks instead
at finite social networks with non-uniform degree distributions, that is to say
networks in which different people have different patterns of connectivity. Second,
the model takes into account the fact that human social networks are never static
but are constantly being rewired by the removal and addition of individuals:
friendship and even family ties are not fixed, people move from one social network
to another, and deaths and births occur. The fact that neutral change cannot happen
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in a classical unstructured population but can happen in populations with suitable
topologies and rewiring dynamics points to the need to consider the particularities
of socialization in language communities at a level of detail that mathematical and
computational models of language change have not attempted so far.

The relevance of the possibility of neutral change to diachronic and variationist
linguistics is as follows: unless assumptions of non-neutral motivations of change
can be supported for independent reasons, a neutral theory of change remains a
viable explanatory strategy. More specifically, the observation that well-behaved
neutral change is a characteristic feature of certain kinds of social networks
suggests that in some cases of change, neutral selection may be at play in
addition to, or instead of, non-neutral selection. Moreover, the parsimonious
nature of neutral theory holds promise in clearing up certain puzzles which
have traditionally received rather AD HOC solutions in the research literature:
by removing the notion of (variant) prestige, a neutral mechanism can provide
a fresh, bias-free sociolinguistic take on change, as I will argue in Section 6.

2. NEUTRALITY

The possibility that language change might be neutral has, traditionally, received
little attention in historical and variationist linguistics. Aside from occasional
remarks such as Lass’s (1997) cited above, and Postal’s (1968: 283–285) sug-
gestion that language change is random, non-motivated ‘fashion change’, the
neutrality hypothesis has received serious consideration mainly from Trudgill
(2008), who, in questioning the role of identity in new-dialect formation, suggests
that dialect contact and dialect mixing work in ‘automatic’, non-biased ways.
Although Trudgill’s position is avowedly anti-identity, and thus rejects one form
of (social) bias, it is not entirely clear whether his account might not admit some
other form of bias, however. In fact, whether argued for or against, the neutrality
hypothesis is rarely defined in precise, unequivocal terms in the literature. In this
section, therefore, I will explicate the hypothesis by putting forward a definition
of neutrality and contrasting neutral change with change governed by non-neutral
factors.

Throughout this paper, I will focus on a situation in which a fixed number
of linguistic variants are in competition in a specific linguistic domain. To keep
the discussion maximally general, I will not make further assumptions about the
nature or composition of these variants. Depending on the application, a variant
could be a complete parametric specification of Universal Grammar, a single value
of one particular parameter, an allophone of a phoneme, and so on. What matters is
that there are a number of variants, each of which COULD be adopted, in principle,
by any speaker. The neutrality hypothesis can then be stated, in intuitive terms, as
follows.

(1) Neutrality
The probability with which a speaker acquires a certain linguistic variant
out of a number of competing variants equals the relative frequency of that
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variant in the speaker’s neighbourhood, MODULO a small probability of
innovating, uniformly at random, another variant from among all (biolog-
ically, cognitively) possible variants.

‘Neighbourhood’ here means the speaker’s linguistic neighbourhood, a term to be
explicated in more detail shortly. The content of the neutrality hypothesis, then,
is that variant selection in individual speakers is controlled by the frequencies
of the competing linguistic variants: apart from a small amount of random noise
that accounts for variant innovation, no considerations other than the frequency
distribution of variants could affect which variant an individual acquires or adopts.
To borrow terminology from biology, under an assumption like (1), change
(evolution) is FREQUENCY-DRIVEN, and the competing variants do not have
differential FITNESSES which could bias the process of adoption, favouring one
variant over another. In contrast to fitness-driven (e.g. Darwinian) selection, in
neutral change the adoption of a given variant is not adaptive in any sense. The
innovation events, when they do occur, are likewise neutral: the innovatory variant
is chosen from among all possible variants uniformly at random, so there is no bias
towards innovating any particular variant.1

It will be instructive at this point to briefly consider models and modes of
explanation in diachronic linguistics which are either explicitly or implicitly
NON-neutral, so as to bring the contrast into sharper relief. The typological-
functional explanations Lass (1997) alludes to in the quotation cited in Section 1
form an obvious but important instance: there, it is assumed that a linguistic
variant can perform better or worse in any given role; linguistic forms perform
communicative, cognitive and other functions, and some do this better than others
(e.g. Anttila 1989). Under a functionalist hypothesis, processes of change will
then be guided by people’s intuitions (conscious or subconscious) concerning the
performance of different variants in serving these various functions. Change is
not neutral, since adopting some variants is deemed, in one sense or another,
better than adopting other variants, to the extent even that possible language states
are classified into ‘consistent’ and ‘transitional’, or ‘preferred’ and ‘dispreferred’
ones (e.g. Hawkins 1990, Vennemann 1993; also see the critical discussion
in Lightfoot 1999: 85–87 and PASSIM). In the most extreme versions of this

[1] Although one should beware of drawing facile cross-disciplinary analogies, it is worthwhile to
point out that neutral mechanisms of change have been proposed in evolutionary biology. In
biological evolution, a variant (a genotype or a phenotype, or some part of one) is said to be
selectively neutral or simply neutral if having that variant confers neither a selective advantage
nor a selective disadvantage. Depending on one’s take on the level of selection debate (Reeve &
Keller 1999), this implies that a neutral variant will neither increase nor decrease the fitness of
its bearer, of the bearer’s species or of that variant itself. This mechanism of neutral evolution
(Alonso et al. 2006) is to be contrasted with Darwinian natural selection, which operates on
complicated fitness landscapes that confer selectional pressures on the competing replicators
or vehicles. Although (non-neutral) natural selection remains the DE FACTO mechanism for
explaining evolution on various levels of biological organization, neutral theories have been
proposed and defended for molecular evolution (Kimura 1994) as well as in ecology for
competition within a trophic level (Hubbell 2001).
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framework, linguistic systems are viewed as teleological (Itkonen 1981, 1982),
and ‘language change is language improvement’ (Vennemann 1993: 322).

Another way of flouting the neutrality hypothesis (1) is by way of consider-
ations of economy of computation or of production. Starting with Lightfoot’s
(1979) Transparency Principle, the diachronic generative syntax literature has
generally favoured explanatory frameworks of this kind, where innate principles
or third-factor processing constraints are taken to bias the acquisition of syntax.
To take a more recent example, Roberts & Roussou (2003) assume a Merge-over-
Move principle to account for parametric reanalysis and grammaticalization under
the right kind of trigger experience. In much the same vein, theories and models of
sound change which appeal to articulatory (e.g. aerodynamic, inertial) constraints
as a motivation or cause of change are non-neutral, in that speakers are assumed to
be biased to produce certain (e.g. centralized, lenited) phonetic variants over other,
possible ones. Such constraints are said to give rise to variation in the auditory
input available to the listener, eventually causing change in the speaker–listener
loop (Ohala 1989, Pierrehumbert 2001).2

A third mechanism for non-neutral change is constituted by different kinds of
social biases. In a typical prestige-based explanation, for example, speakers are
said to accommodate towards variants they consider prestigious or associate with
a particular social group (Labov 1972). Again, the acquisition or adoption of a
variant under such circumstances will be non-neutral, as it is not driven simply by
the frequency distribution of variants in the speakers’ environments. In a prestige-
based explanation, the explanatory onus is on speakers’ estimations of the social
‘desirability’ of particular variants, either overt or covert, and even sociolinguists
who are careful to consider other components of processes of actuation and
propagation, such as variation in social network structure, have usually assumed
(often A PRIORI) that at least a small amount of prestige is necessary for
innovatory forms to propagate through a language community. Thus,

in view of the very general finding of sociolinguistic research that the prestige values
attached to language are often quite covert and difficult to tap directly, we may
suggest that a successful innovation needs to be evaluated positively, either overtly
or covertly. This is OF COURSE a necessary but not a sufficient condition for its
ultimate adoption. (Milroy & Milroy 1985: 368, my emphasis.)

These non-neutral mechanisms have been implemented, in varying degrees
of detail, in computational models of language change. For instance, Ke, Gong
& Wang (2008) find that an innovatory variant must in their model be biased
over the prevailing conventional variant, sometimes twentyfold, in order to secure
successful propagation. Similarly, in a model of sociolinguistic factors in change,
Fagyal et al. (2010) find that speakers must be biased to adopt variants from

[2] It perhaps needs to be stressed in this connection that the point of contest between neutral
and non-neutral theory is not whether things such as computational or articulatory constraints
EXIST, but whether they are OPERATIVE or CAUSATIVE in language change on a population
level.
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speakers who are both well-connected and prestigious in order for the model
to generate propagation curves that have the broad outline of an S-curve, the S-
curve being taken as a basic desideratum that a model of change should be able
to replicate. Finally, in what is perhaps the most extensive computational study
so far of the effect of various kinds of biases in variant adoption and propagation,
Blythe & Croft (2012) find that in their extension of the utterance selection model
of language change (Baxter et al. 2006, 2009), a neutral, non-biased mechanism
is unable to generate realistic time series of change such as S-curves.

The framework adopted in the latter study deserves more detailed comment, as
it provides a useful sociolinguistic taxonomy of selection mechanisms in language
change more generally. Leaning on Croft’s (2000) evolutionary theory of language
change, itself based on Hull’s (1988) general theory of selection processes, Blythe
& Croft (2012: 272–277) classify replication mechanisms into four categories: (i)
neutral evolution, which is random, frequency-driven drift; (ii) neutral interactor
selection, in which speaker–speaker interaction frequencies play a role; (iii)
weighted interactor selection, in which interactions between different speakers
are weighted differently; and (iv) replicator selection, in which the competing
linguistic variants themselves are weighted differently. The neutrality hypothesis
(1), as here defined, corresponds to (i) and (ii) with the proviso that interaction
frequencies play a role at the point of acquisition, not (necessarily) across the
lifespan of speakers as in the usage-based model of Blythe & Croft (2012). The
difference between the neutral mechanisms (i)–(ii) and the non-neutral ones (iii)–
(iv) is that in the former case no social evaluations take place, whereas in the
latter case either speakers or the competing linguistic variants themselves receive
potentially differential evaluations, which fact is taken to be the motor of change.
In fact, Blythe & Croft (2012) find that, in their model, S-curves are reliably
obtained only for replicator selection, in other words for selection where the social
evaluations mark linguistic variants directly, in the Labovian sense.

Although the aforementioned formal models have elucidated important aspects
of variation and change in natural language, they have their limitations. Most
importantly from the point of view of our present concerns, each of the three
models mentioned above (Ke et al. 2008, Fagyal et al. 2010, Blythe & Croft
2012) represents language communities as static networks of speakers. That is
to say, even though these models are rich enough to represent differences in social
network topology, or differences and asymmetries in the probabilities with which
different speakers interact, they lack a mechanism for evolving that topology,
and consequently fail to model the social DYNAMICS of a language community:
in the aforementioned models, there is no way for individual speakers to be
removed from or added to the network, or for their connection sets or interaction
probabilities to evolve within a single simulation run. Importantly, the models then
fail to address the question of whether and how that social dynamics might affect
the linguistic variant dynamics operating on the social network. The assumption
of a static network clearly does not hold for human societies – and the longer
the time spans of any particular changes we may be interested in explaining, the
worse this approximation becomes. Moreover, recent research in fields such as
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mathematical epidemiology and evolutionary game theory has demonstrated that
the qualitative features of a dynamical system operating on a network may be
significantly altered when that underlying network is endowed with a dynamics of
its own (Gross et al. 2006, Traulsen, Santos & Pacheco 2009). It is then reasonable
to ask whether previous computational studies of language change may not have
arrived at the wrong conclusions concerning the neutrality hypothesis by making
the wrong kinds of idealizing assumptions.

3. MODEL

In this section, I will define the present model in intuitive terms, using as little
mathematical notation as possible. A technical, mathematical definition can be
found in Appendix A.

As outlined in Section 2, I will be focussing on a situation in which some
number C of variants are in competition; often, the focus is on cases where C
is small, but in general this number could be arbitrarily large. The variants are
assumed to be distributed across a language community in the following sense:
each one of N speakers will entertain exactly one of the C variants at any time.
The speakers themselves are distributed on a social network, and the connections
a speaker has in this network will affect their process of variant acquisition or
adoption. For simplicity, I assume that the network is symmetric, that connections
are binary and that the network is not multiplex. In other words, if speaker i is
connected to speaker j , then speaker j will also be connected to speaker i ; each
pair of speakers is either connected or not connected (there is no notion of ‘weight’
of connection); and only one connection is allowed between any two speakers.

The set of speakers to whom a given speaker is connected I shall call the
NEIGHBOURHOOD of that speaker; using basic graph-theoretical terminology, the
cardinality of this set is called the speaker’s DEGREE (in other words, the degree
of a speaker is simply the number of speakers that speaker is connected to). When
new speakers acquire their variant, their neighbourhoods are all important. In
line with (1), I assume that the probability of acquiring variant r (r = 1, . . . , C)
equals the relative frequency of that variant in the speaker’s neighbourhood,
MODULO random noise which is taken to model processes of innovation. This
random noise is inserted into the model as an INNOVATION PARAMETER µ, which
ranges from 0 to 1 and gives the probability that the speaker picks a variant from
among the C possible variants uniformly at random. It is clear that this probability
has to be rather low for language communities to display a degree of coherence
in what variants they use – and this expectation is borne out by the simulations
reported in Section 5 below. The parameter is, however, an essential part of the
model, for without it, variation could not arise in the first place.3

[3] To see this, suppose that each individual in the community happens to use the same variant, so
that the relative frequency of this variant in the community equals 1. If µ= 0, then, in line with
(1), any new speaker inserted into the network will acquire the said variant with probability 1,
and change is impossible.
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To model social dynamics, the network of speakers is mixed by a graph-
rewiring process over time, as follows. At each iteration step, one of the speakers
is selected for removal uniformly at random and is replaced by a new speaker,
whose social connections are set according to a socialization algorithm. The new
speaker then acquires their variant as outlined above. The socialization algorithm
is modelled on the intuition that human social networks normally contain both
more and less connected individuals (cf. Barabási & Albert 1999), and operates
as follows. Let σ be a real number with 06 σ 6 1 and K an integer with
16 K 6 N − 1. The new speaker is then given exactly K connections according
to the following procedure. For each connection, the speakers in the network are
first rank-ordered into a queue in terms of decreasing degree in such a way that
the order of speakers having the same degree is random, but speakers with higher
degree occur earlier in the queue than speakers with lower degree. Then, with
probability σ , a connection is made to the first speaker in this queue, and with
the remaining probability mass 1− σ a connection is made to a speaker chosen
uniformly at random from the queue. Once the connection is established, this
speaker is removed from the queue and the procedure is iterated until the new
speaker has received K connections. (Note that this does not imply that each
speaker will, at any point of time, have exactly K connections: speakers’ degrees
will change during their lifetimes thanks to the graph-rewiring process, as other
speakers are removed from the network and replaced by new ones.) Different
values of σ , a PREFERENTIALITY PARAMETER, then give rise to networks with
different amounts of clusterization around a central component, and different
combinations of K and σ can be used to model different kinds of population
structures: for high K and low σ (K ≈ N − 1 and σ ≈ 0), the population is well-
mixing, whereas for small K and high σ , for instance, the network has a star-
like appearance, with a clear partitioning into central and peripheral individuals
(Figure 1).

The model assumes invariant and categorical speakers – speakers who fix
onto one of the competing variants at the point of acquisition and never change
thereafter – this assumption being made in the interest of computational and
mathematical tractability. Although some linguistic features are known to remain
variable throughout a speaker’s lifetime (e.g. Harrington 2006, Sankoff & Blon-
deau 2007), there is, equally, evidence that for other features late-life change is
unlikely or outright impossible. For instance, a number of studies have shown the
existence of ‘hard features’ – features that only young children manage to acquire
and for which plasticity is lost as the speaker matures (these include, for example,
phonological features with lexically irregular conditioning; see Kerswill 1996 for
a review of a number of relevant studies). Moreover, there is evidence that early
categoricity predicts late-life stability: in a longitudinal panel study of a dozen
phonetic variables undergoing change in a rural Finnish-speaking community,
Nahkola & Saanilahti (2004) found significant late-life change only in speakers
who had acquired features as variable ones. For categorical or near-categorical
features, late-life change appears to be unlikely. These findings suggest that
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Figure 1
Different values of the preferentiality parameter σ , combined with varying values of K ,
lead to networks with different amounts of clusterization. Note that the networks are not

static but are rewired over time by the removal and addition of speakers; as a consequence,
individual speakers may at times become disconnected from the rest of the network. For the

networks in this figure, N = 50.

categorical, acquisition-driven change is one way in which languages change, and
that the assumption of invariant speakers is therefore not unduly unrealistic – but
future modelling work should, of course, investigate the consequences of relaxing
the assumption.

4. WELL-BEHAVING

Evaluation of the neutrality hypothesis (1) requires us to compare the output
of the neutral model defined in Section 3 against some sort of standard. More
specifically, our interest is in two questions. (i) Does the neutral mechanism give
change in the first place? (ii) If so, do the trajectories of change look anything like
real life change trajectories? In this section, I introduce a way of operationalizing
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these two questions by way of a notion of the ‘well-behavedness’ of change.
Following a preliminary, intuitive characterization, I will show how this notion
can be formalized in mathematical, quantitative terms, so that the presence or
absence of well-behaved change can be detected in simulation data generated by
mathematical models of language change. The following section then proceeds to
evaluate the current model vis-à-vis this quantitative operationalization in order
to investigate the viability of neutral change.

Change, in a very general sense, can be said to occur when the distribution
of linguistic variants over a language community changes. In most cases of
interest to the historical linguist, such changes proceed from a state where one
variant is DOMINANT or nearly so in the community (has relative frequency of,
or close to, 1) to another such state where another variant has become (near)
dominant. Moreover, when diachronic data are consulted, such SHIFTS between
two dominance states are, as a general rule, found to be remarkably smooth, or
well-behaved. Language change is not a random walk in the frequency space of
possible linguistic variants; on the contrary, time series of changes can often be
approximated to a good degree using a sigmoid, or S-shaped, function (Bailey
1973, Kroch 1989, Croft 2000, Blythe & Croft 2012). Although it remains
unknown whether all changes follow an S-curve, and, if so, whether the detailed
‘shape of S’ is the same in all changes (Niyogi & Berwick 1997, Denison 2003,
Ghanbarnejad et al. 2014), propagation curves of linguistic variants tend to be
reasonably MONOTONE: they are unlikely to show oscillations by repeatedly
inflecting up and down in the time domain, but rather proceed smoothly from
one dominance state to another.

With these considerations in mind, I suggest that any model of language
change should fulfil the following three criteria, which I here lay out, in a
programmatic manner, as characteristic properties of language diachrony under
normal conditions.

(2) Dominance
For most of the time, the language community relaxes into a state in which
one variant is (nearly) dominant, so that most or even all speakers use that
variant.

(3) Shifting
Upon introduction of an innovatory variant, this innovation may nonetheless
begin to spread and eventually permeate (most of) the community; thus, the
community may shift from a state of dominance by variant r to a state of
dominance by variant r ′ 6= r .

(4) Monotonicity
Such shifts proceed in a monotone manner, with the frequency of the invad-
ing variant increasing and the frequency of the receding variant decreasing
along smooth propagation curves.

A language community that fulfils all three criteria I shall call WELL-BEHAVED.
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Figure 2
Portion of an ill-behaved history that violates dominance and monotonicity in a system of
three variants. This trajectory was generated with parameter settings N = 100, K = 10,

C = 3, µ= 0.005 and σ = 0.

(5) Well-behavedness
Language change is well-behaved if, and only if, it satisfies dominance,
shifting and monotonicity.

To fix these ideas, let us inspect two simulation histories generated by the model
defined in Section 3 qualitatively. Figure 2 shows a snapshot of an ill-behaved
history in a three-variant system violating both dominance and monotonicity; this
history was generated by setting σ = 0 and µ= 0.005, the remaining parameters
having the values N = 100, K = 10 and C = 3. Although the language commu-
nity does display a kind of change, and hence exhibits shifting, this change is not
monotone: there is too much zig-zagging movement in the propagation curves
of the individual variants for this trajectory to be considered well-behaved. More-
over, the community does not settle on a dominant variant for any extended period
of time. The history in Figure 3, on the other hand, illustrates an entirely different
situation, even though it was produced by the very same neutral mechanism. This
history, generated with σ = 1, the other parameter values remaining the same,
satisfies all three conditions: dominance, shifting and monotonicity.

Well-behaved neutral change is, then, possible. It remains to show that this
is not merely a chance occurrence but a consistent behavioural characteristic of
the model for certain ranges of model parameter values. For this, a quantitative
analogue of each of the criteria (2)–(4) is needed, one that can be calculated over
a large batch of simulation runs for a number of possible combinations of model
parameter values in order to estimate, in a statistically robust manner, to what
extent that criterion is satisfied by that combination of model parameters. A formal
definition of such quantitative measures is given in Appendix B; here, I introduce
the measures in prose.
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Figure 3
Portion of a well-behaved history satisfying dominance, shifting and monotonicity. For this

simulation, N = 100, K = 10, C = 3, µ= 0.005 and σ = 1.

To estimate to what extent a given simulation run satisfies dominance, I shall
use a measure of dominance time Dδ that ranges from 0 (language community
never dominant) to 1 (language community dominant all the time). The parameter
δ, a small real number, controls how strictly dominance is to be measured. More
precisely, for given δ, I say that a language community is δ-DOMINANT if some
one variant has a relative frequency equal to or greater than 1− δ; the Dδ measure
then gives the proportion of time (in relation to the length of the entire simulation
run) the system spends in a state of δ-dominance. Variation of δ allows one to
calculate dominance times to varying degrees and, INTER ALIA, to subsume a
notion of stable variation under the notion of dominance. For example, setting
δ = 0.3, we would call a community dominant if one of the competing variants
had a relative frequency of at least 0.7 – allowing the rest of the frequency mass,
a number bounded from above by 0.3, to be distributed among the remaining
variants in any manner.

To measure shifting, I shall simply determine, for a given simulation run, the
number of times the community shifts from a state of δ-dominance by some
variant r to a state of δ-dominance by another variant r ′ 6= r , for a predefined
dominance level δ. In what follows, I shall denote this shifting measure with Sδ ,
where δ gives the desired dominance level.

Finally, to quantify monotonicity, I shall look at the autocorrelation properties
of individual simulation histories. The idea is to place a short time window of
some τ time steps at a specific time point t0 of a history (so that the time window
extends from t0 to t0 + τ ), and then to count how many times the frequency
of each competing variant both increases and decreases inside that window. To
be more precise, let m+r = m+r (t0, τ ) be the number of times the frequency of
variant r increases within such a time window, and let m−r = m−r (t0, τ ) be the
corresponding count of decreases. It is then easy to see that the product m+r m−r
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equals 0 if, and only if, the frequency curve of variant r is monotone in the
window: the product is zero if and only if at least one of the multiplicands is zero,
which is equivalent to monotonicity. For technical reasons explained in Appendix
B, I next take the square root of this product and sum over competing variants,
arriving at

∑C
r=1

√
m+r m−r . Finally, an average is taken over different selections

of the time window start point t0 (in other words, the time window is slid across
the entire simulation history), and an inversion and a normalization are performed
so that the final measure, Mτ , ranges from 0 in the NON-monotone case to 1 in the
perfectly monotone case, with τ controlling the resolution at which monotonicity
is measured.

Some of the properties of this measure, proved in Appendix B, are worth
mentioning here: it can be shown that Mτ = 0 for any even4 integer τ if the
frequency of at least one variant zig-zags persistently, increasing at every other
iteration step and decreasing at every other; that Mτ = 1/3 for large τ if the
history is a random walk (so that for any variant and any iteration step, it is equally
probable that the frequency of this variant increases, decreases or stays the same
at that step); and that Mτ = 1 for any τ if the frequency curve of each variant is
monotone in all windows of size τ . Figure 4 illustrates a few histories with their
corresponding Mτ scores for different window sizes τ , to give an idea of what
amount of smoothness to expect for individual trajectories, given a value of Mτ .

We then have three measures, Dδ , Sδ and Mτ , to measure dominance, shift-
ing and monotonicity in individual simulation runs. Before proceeding to an
application of these measures to the neutral model, it is perhaps in order to
clarify the purpose of defining the measures in the first place. Importantly, the
above operationalization of the well-behavedness of linguistic change should not
be taken to imply that no language community is ever ILL-behaved. After all,
empirically demonstrated cases exist of both stable variation (violation of strict
dominance; cf. Wallenberg 2013) and zig-zagging or failing changes (violation
of monotonicity; Postma 2010, Coussé & De Sutter 2012). The purpose of
introducing dominance, shifting and monotonicity as conditions of well-behaved
change is to fashion a litmus test for the neutral model: insofar as the model
satisfies the three conditions, it can be taken seriously as a mathematical model of
language change. With the above operationalization, dominance and monotonicity
are actually continuous quantities, ranging from 0 to 1, and thus admit a notion of
degree. Requiring the neutral model to satisfy well-behavedness to a large degree
is the strictest possible analytical test to which the model can be subjected in this
regard, and if real life language communities are found to be less well-behaved
than this, then the case for neutral change is correspondingly strengthened.

[4] The technical reason for the restriction here, without loss of generality, to even (rather than odd)
integers is explained in Appendix B.
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Figure 4
Four histories with their corresponding monotonicity scores Mτ for two different window
sizes τ = 10, 50. Note that for a random walk the expected value of Mτ is 1/3 (see text),

and that Mτ approaches 1 as the history becomes more and more monotone.

5. SIMULATIONS

To investigate to what extent the model defined in Section 3 satisfies dominance,
shifting and monotonicity, or criteria (2)–(4), a number of computer simulations
of the model were run using a range of model parameter settings. For each
combination of model parameters investigated, 50 simulations were run to arrive
at the averages reported below, and in each simulation, a social network of
N = 100 speakers was assumed. The simulations were run in parallel on a high-
throughput computing cluster, with the pseudorandom number generator seeded
using environmental noise to ensure statistical independence of simulation runs.
Before starting each actual linguistic simulation, the social network algorithm was
iterated for 100N = 104 iterations so that the degree distribution of the network
settled; each actual linguistic simulation (apart from the simulations reported in
Section 5.5; see below) lasted for 5× 104 iterations and started from a state in
which one of the competing variants had strict dominance (relative frequency 1,
or, in other words, δ-dominance with δ = 0).
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Figure 5
Shifting S0.1 in a system of C = 3 competing variants, for various values of preferentiality
σ and innovation rate µ and for attachment set sizes K = 10, 30, calculated using a
dominance threshold of δ = 0.1; averages over 50 simulation runs. Neutral change is

supported the best by tightly clusterized communities (small K , high σ ).

5.1 Main result

Figure 5 gives shifting scores for a system of C = 3 competing variants, for
various values of preferentiality σ and innovation rate µ, and for two different
values of attachment set size K , using a dominance threshold of δ = 0.1. The
results indicate that each of these model parameters has its effect on shifting
ability: keeping K and µ constant, the effect of increasing σ from 0 towards 1
is a monotonic increase in shifting; for µ, on the other hand, an optimal value
exists that supports shifting ability the best. Increasing K , in turn, has the effect
of flattening the shifting measure with respect to σ : as the population becomes
more and more well-mixing, preferential connectivity naturally ceases to have an
effect and shifting becomes rarer. In sum, change is the more probable the smaller
K is and the larger σ is – the more clusterized the community is around a central
component (cf. Figure 1) – provided that innovations (µ) occur at a suitable rate.

Figure 6 plots dominance times and monotonicity, the former calculated
assuming δ = 0.1, the latter computed using a window size of τ = 10; variation
in τ has only a minor effect on the monotonicity measure (not reported; but cf.
Figure 4). The main finding with respect to dominance is that increasing the
innovation rate µ results in a sharp drop in this measure, with the value of σ
attenuating the effect a little, so that communities with higher preferentiality σ
remain dominant for larger µ than communities with lower preferentiality σ . A
similar, but much less drastic, drop as a response to variation in µ is observed for
monotonicity.

To gauge what combinations of model parameter values support well-behaved
neutral change the best overall, we can consider the product of the three measures,

341

https://doi.org/10.1017/S0022226716000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0022226716000141


H E N R I K AU H A N E N

Figure 6
Dominance D0.1 (bottom surface) and monotonicity M10 (top surface) in a system of

C = 3 competing variants; averages over 50 simulation runs. Both dominance and
monotonicity drop as the innovation rate µ is increased, with large preferentialities σ

attenuating this effect.

Figure 7
The combined well-behavedness measure S0.1 D0.1 M10 for a system of C = 3 variants;

averages over 50 simulation runs. Overall, well-behaved neutral change is supported best
by tightly clusterized language communities and by innovation rates µ that are low but not

too low.

namely S0.1 D0.1 M10. Figure 7 gives this product, and we find that communities
with low K , high σ and intermediate µ are the most likely to exhibit well-behaved
neutral change.

5.2 Effect of number of variants

In the above simulations, the number of competing variants was fixed at C = 3.
This is a rather small number, and it is reasonable to ask whether the behaviour
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Figure 8
Difference (B − A) in shifting S0.1 between (A) the 3-variant system of Section 5.1

(Figure 5) and (B) another system with C = 30 competing variants CETERIS PARIBUS. For
large σ , the 30-variant community shifts more than the 3-variant system if µ has a modest

value; for larger µ, the reverse obtains.

of the system would change if more variants were available to speakers. To
investigate this, another batch of simulations was run using identical model
parameter settings except that the number of competing variants was now fixed
at C = 30.

Increasing the number of variants turns out to have a non-trivial effect on the
well-behavedness of a neutral system. Figure 8 gives the difference between the
shifting scores received by the new batch of simulations and those received by
the simulations of Section 5.1. Here, we find that for certain combinations of
preferentiality σ and innovation rate µ, the community with C = 30 shifts more
than the community with C = 3, whereas for other model parameter combinations
the reverse is true: increasing the number of competing variants improves shifting
for large σ , but only if µ has a modest value.

Figure 9 reports, similarly, the difference in dominance and monotonicity
scores received by the two batches of simulation runs. Increasing C leads to
slightly lower dominance and monotonicity overall, an effect that is the strongest
for an intermediate range of values of µ.

Thus, overall, allowing speakers a larger space of grammatical options can
have the effect of increasing the probability of change, but only at the cost of
some reduction in how well-behaved that change is in terms of dominance and
monotonicity.

5.3 Effect of dominance threshold

The dominance threshold δ = 0.1 used above is rather strict: it demands a variant
to have a relative frequency of more than 0.9 in order for that variant to be
considered dominant. Lowering the dominance threshold is expected to increase
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Figure 9
Difference (B − A) in dominance D0.1 and monotonicity M10 between (A) the 3-variant
system (Figure 6) and (B) a system with C = 30 competing variants CETERIS PARIBUS.

Increasing the number of competing variants leads to slightly lower dominance and
monotonicity overall, the effect being the most pronounced for intermediate values of the

innovation rate µ.

both shifting and dominance, and this expectation is confirmed by calculations of
Sδ and Dδ using a less stringent dominance threshold of δ = 0.3 (Figures 10 and
11). A non-trivial finding is that the preferentiality parameter σ has a strong effect
on dominance for less extreme dominance thresholds: for δ = 0.3 and K = 10, for
instance, σ = 0 implies practically no dominance if µ is of the order of 0.1, while
for σ = 1 dominance times remain in the > 0.5 region for such innovation rates.
Thus, the model predicts that when change is neutral, stable variation is supported
best by language communities that are tightly clusterized.

5.4 Effect of rewiring dynamics

We can also ask whether it is just the topology of the social network that licenses
well-behaved neutral change for certain ranges of parameter values, or whether
the social dynamics induced by the removal and addition of speakers plays a
role. To investigate this, another batch of simulations was run with parameter
settings identical to those of the first ensemble (Section 5.1), but with the rewiring
dynamics turned off. (In other words, the network was first rewired for 104

iteration steps, as above, to give it the topology induced by the particular choice of
K and σ in each case, so that the network had the same topology as in the rewired
case. However, the rewiring dynamics was turned off at this point, so that during
the actual linguistic simulation no rewirings took place and the network was thus
static.) Figure 12 gives the difference in the overall well-behavedness score –
the product S0.1 D0.1 M10 – between these two ensembles. For less clusterized
networks (large K or small σ ) the difference is negligible, as would be expected.
For strongly clusterized networks, however, an entirely different picture emerges
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Figure 10
Shifting S0.3 for a system with model parameter values identical to those of the system of
Figure 5, calculated using a less stringent dominance threshold of δ = 0.3. Adjusting the

threshold in this way leads to more shifting events across all of the model parameter space.

Figure 11
Dominance D0.3 (bottom surface) and monotonicity M10 (top surface) for a system with

model parameter values identical to those of the system of Section 5.1 (cf. Figure 6),
calculated using a less stringent dominance threshold of δ = 0.3. For this laxer dominance

threshold, network preferentiality σ has a strong effect on dominance: σ = 0 implies
essentially no dominance if innovations occur at a rate of about µ= 0.1, whereas for more
tightly clusterized communities (σ ≈ 1) dominance times remain in the > 0.5 region for

such innovation rates. This means that stable variation – δ-dominance with a lax dominance
threshold such as δ = 0.3 – is supported best by language communities that are tightly

clusterized, when change is neutral.

when the rewiring dynamics is removed: the community without rewiring displays
consistently lower well-behavedness scores.

This finding may appear puzzling at first sight, but is actually connected
in a natural way to one of the central idealizing assumptions of the model,
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Figure 12
Difference (B − A) in the overall measure of well-behavedness, S0.1 D0.1 M10, between
(A) the system of Section 5.1 (Figure 7) and (B) another one with the rewiring dynamics
turned off, model parameter settings remaining the same. When the community is tightly

clusterized, suppression of rewiring suppresses well-behaved neutral change. (Note that in
this figure, in contrast to previous ones, both the σ axis and the µ axis have been inverted

to better exhibit the dip in the high-σ regime.)

that speakers stabilize and do not change after initial acquisition.5 With this
assumption, a tightly clusterized network gives rise to a central hub consisting of
speakers who are connected to most other speakers in the network, and whose
role in the competition of linguistic variants depends on whether the network
is rewired or not. With rewiring, in a highly clusterized network new speakers
always receive many connections to these central speakers, who, thanks to the
critical period assumption, do not themselves change after maturation. Central
speakers therefore become the vehicle of change, conserving their own variant
while distributing it to speakers newly joined to the network. If network rewiring
is suppressed, however, the central speakers of a clusterized network effectively
sample from the majority of the population and thus get a very representative
picture of the frequency of variants that exist in the network. The central speakers,
rather than advancing a change, serve to hinder changes in this setting: as the
frequency of an innovation is necessarily low, any innovation event is likely to
be quelled by speakers in the central hub, as when these speakers do update their
variant, they are unlikely to adopt the innovatory one.

This observation, then, reveals that interactions between features of within-
speaker dynamics (here, the critical period assumption) and between-speakers
dynamics (here, the degree of clusterization of the social network) may be impor-
tant enough to affect causation in language change, by adjusting the probability
of an innovation surviving and propagating through a language community.

[5] I am much indebted to an anonymous reviewer for raising this point.
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Figure 13
A log–lin plot of time-to-dominance for various values of attachment set size K and

preferentiality σ , quantified as the number of iterations it takes for an innovatory variant to
permeate the community from an initial state where a number m0 of speakers entertain the
innovatory variant. Here, for each pair of K and σ , the network size was fixed at N = 100
and the number of innovators at m0 = 10, and the latter were picked uniformly at random

from among all speakers. C = 3 competing variants were assumed throughout with
innovation rate µ= 0.01. Time-to-dominance is found to be an exponential function of σ ,

so that increasing σ leads to a speed-up in change for small K .

5.5 Rate of change

A comparison of Figures 2 and 3 suggests, impressionistically, that the speed with
which an innovation spreads through a community can depend quite drastically on
the structure of the community. To investigate this dependence systematically, a
final batch of simulations was run (200 simulations for each combination of model
parameters), this time with a number of innovative speakers inserted ‘by hand’
into an otherwise homogeneous community at the start of each simulation. Out
of all simulation histories thus generated, the ones where change from this initial
state to a state of δ-dominance with δ = 0 by the innovative variant occurred were
then selected for further investigation by recording the number of iteration steps it
took the community to traverse from the former state to the latter. Figure 13 gives
this TIME-TO-DOMINANCE for various combinations of K and σ for a network
of size N = 100, with 10 innovators. We find that the presence of a central, well-
connected hub of speakers in the network has the effect of speeding up change; for
small K , the decrease in time-to-dominance is as much as tenfold when moving
from σ = 0 (no clusterization) to σ = 1 (maximal clusterization).
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6. DISCUSSION

The above simulations show that the form a linguistic trajectory assumes –
whether well-behaved or not – can depend crucially on the social structure and
social dynamics of the language community, if none of the competing linguistic
variants are biased over others. The results demonstrate well-behaved neutral
change for certain types of preferentially attached societies, and show that such
change is much less likely in societies lacking preferential connections. Whether
real language communities exist with these parameter settings is an empirical
matter; the above considerations imply that if such communities exist, well-
behaved neutral change is a characteristic property of them.

It is worthwhile to point out explicitly how these results differ from earlier ones,
particularly those obtained by Fagyal et al. (2010). While both studies investigate
the role of network effects in language change, the model here studied is neutral
in the sense that variant acquisition is determined by frequency and does not
depend on sociolinguistic considerations. In the model of Fagyal et al. (2010), by
contrast, speakers give more weight to speakers who have high degree centrality,
so a linguistic variant becomes the fitter the more it is adopted by such central
speakers, and their model is thus classified as weighted interactor selection in
the Blythe–Croft taxonomy (see Section 2, above). This difference has non-trivial
sociolinguistic implications. With a biased model, one assumes that speakers are
able to evaluate the centrality or prestige, or both, of each speaker to whom they
are connected, and that they in fact pay attention to such evaluations. In a neutral
model, the only causative social factor in language change is the way in which
speakers are (happen to be) connected, and one need not (or does not) assume that
speakers have access to or make use of prestige evaluations.

An important feature of the framework adopted in this paper is not exhibited
by previous mathematical models of language change: it models evolution ON
and OF a network simultaneously. Infinite-population models have considered
non-overlapping, well-mixed generations (e.g. Niyogi & Berwick 1997, Yang
2000, Komarova, Niyogi & Nowak 2001, Mitchener 2006, Niyogi & Berwick
2009), and in most if not all finite-population models (including those of Ke
et al. 2008, Fagyal et al. 2010 and Blythe & Croft 2012) the social network is not
allowed to evolve as the linguistic variants compete on that network. In the present
model, the generations of speakers are overlapping and the network is updated
in accordance with the socialization algorithm in use, at each iteration. The
simulation results demonstrate that this interplay of the social network rewiring
dynamics and the linguistic variant dynamics has an effect on the probability
of a language community shifting, as well as on the well-behavedness of any
such shifts (Section 5.4); importantly, this refutes previous claims (based on static
population modelling) that neutral change cannot be well-behaved (Fagyal et al.
2010, Blythe & Croft 2012).

An obvious criticism of the model is that there is, as yet, no independent evi-
dence for the sort of social network structure the model presupposes. Although the
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role and importance of social network effects in language change have been noted
before (Milroy 1980, Milroy & Milroy 1985), we still lack a deep understanding
of the basic properties of human social networks, both topological and dynamic.
Two immediate goals can be discerned in this regard. First, empirical studies are
needed to establish what the connectivity patterns of actual language communities
are – how exactly they are clusterized, what their typical degree distributions are,
whether they are possibly multiplex, whether inter-speaker links have weights on
them or a binary characterization is sufficient, and so on. Second, these patterns
have to be captured in mathematical models that are considerably more complex
than the algorithms currently in use in the complex systems and network science
literature (for a review of the state of the art and some suggestions for future
directions, see Kivelä et al. 2014).

That said, it is possible to interpret the present model, in what is perhaps a
promising and productive way, in the light of earlier proposals concerning social
factors in linguistic change. We have seen that the preferentiality parameter σ
controls the clusterization of the social network, and it is possible to take this as an
operationalization of the degree to which a language community is CLOSEKNIT,
in the terminology of Milroy & Milroy (1985): networks with large (close to 1)
σ will then correspond to communities that are closeknit. Now, we may well
imagine several such communities to be connected along inter-community links,
composing thereby a network of networks, so that many links are found within
the subcommunities, but between the subcommunities a much smaller number of
links exist. The intra-community links can then be thought to correspond to the
Milroys’ STRONG TIES, the inter-community links corresponding to WEAK TIES.
In the present model, networks with large σ act as both strong conservers and
rapid distributors of linguistic variants: for instance, it can be shown that in the
limiting case of σ = 1, the probability of a speaker in the central cluster of the
highly clusterized network distributing their variant to at least one other speaker
during the former’s lifetime is given by

q = 1−
(

1−
1
K
+ µ

(
1
K
−

1
C

))N

, (1)

as long as µ < 1/K . Importantly, this number is bounded from below by 1−
1/e ≈ 0.63, irrespective of the values of N (network size) and K (attachment set
size), and tends to 1 as K tends to 1 and µ tends to 0. Thus, IT IS ALWAYS MORE
PROBABLE FOR VARIANTS FLOWING FROM THE CENTRE OF THE NETWORK TO
BE REPLICATED THAN NOT TO BE REPLICATED, and the probability is the greater
the more clusterized the network is (Figure 14). This explains both conservatism
and progressivism: on the one hand, if no innovatory variants happen to be
introduced into the centre of the strongly clusterized network, the centre acts
as a strong suppressor against innovations that occur in intermediately (but not
strongly) connected speakers, and on the other hand, if an innovatory variant
happens to invade the centre of the network, it is almost certainly distributed to
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Figure 14
The probability, q , of a central speaker distributing their variant to at least one other

speaker before the former is removed from the network by the network-rewiring algorithm,
for innovation rate µ= 0.01 and number of competing variants C = 30 (Equation (1)).

Note that q→ 1 as K → 1 and µ→ 0, and that q > 1− 1/e ≈ 0.63 for any choice of K
and N satisfying µ < 1/K .

at least one other speaker before the bearer of that innovatory variant is removed
from the network by the network-rewiring process.

This analogy between the present model and the Milroys’ framework can be
pressed further. Milroy & Milroy (1985) draw, following Rogers & Shoemaker
(1971), a distinction between the INNOVATORS and the EARLY ADOPTERS of
a change. In the present model, all innovation events occur in speakers whose
degree is K ; these speakers, who correspond to the Milroys’ innovators, do not
belong to the central cluster of the social network. Clearly, language change
only happens if, following this initial ACTUATION of an innovatory variant, the
variant is subsequently PROPAGATED through the layers of the social network and
becomes, eventually, dominant. In the present model, this happens typically if the
social network comes to be so rewired that the innovating speaker is ‘promoted’
to the centre of the clusterized, closeknit community, i.e. if their degree increases
due to rewirings of other speakers; this occurs with a finite probability which
increases as σ is increased. Once in the centre, the probability of this innovating
speaker influencing the variant adoption processes of new speakers is significantly
increased; these speakers adopting the new variant then correspond to the Milroys’
early adopters, and propagation of the innovatory variant is successful if the
number of early adopters is large enough.

Yet the present model does not serve merely as a computational implementation
or (partial) corroboration of the Milroys’ framework; it adds a positive contribu-
tion thanks to the neutrality assumption. As I have noted above (see Section 2),
Milroy & Milroy (1985) assume that innovatory variants MUST have a non-zero
prestige value attached to them, if they are to propagate successfully through
a language community. This is PRIMA FACIE puzzling, as it raises the further
question of how (and why) language communities should be able to agree on the
social valuation of invading variants.
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The puzzle is of course how young people living in the closed communities of
Ballymacarrett, Clonard and Hammer, whose contact with others outside their
areas has been only of a very tenuous kind, have come to reach cross-community
consensus on the social value to be assigned to the two variants of the (pull) variable
(Milroy & Milroy 1985: 374).

The above simulation results suggest that such cross-community consensus may,
in fact, be unnecessary. Prestige need not be attached EITHER to linguistic variants
OR to individual speakers; in order to have well-behaved neutral change, it
suffices to have a non-uniform, but dynamic, population structure containing hubs
of speakers.6 Prestige reduces to degree centrality: the influence of individual
speakers lies in the number of connections they have in their language community,
not in a social evaluation assigned on top of that number of connections.

7. CONCLUSION

In this paper, I have investigated the possibility that language change is, in
some cases, neutral and not motivated by functional, social, articulatory or other
biases. I have defined a simple model of variant competition in a finite network
of speakers in which variant adoption is neutral, and have tested this model
against three criteria that together constitute well-behavedness of change, namely
dominance, shifting ability and monotonicity. Results from computer simulations
show that if the network of speakers is suitably clusterized, so that it has a
central component with some very well connected speakers, well-behaved neutral
change is observed in this model. I have proposed a way of interpreting this
finding in the framework of Milroy & Milroy (1985) and have suggested that a
neutral mechanism, such as the one here considered, calls for a re-evaluation of
the role of prestige as a causal factor in at least some cases of change. I have
stressed the importance of approaching language diachrony from the viewpoint
of mathematical models, and the need to increase the complexity and realism of
these models, and hope that results like those reported in this paper can go some
way towards justifying this angle of attack. Subsequent work on the neutrality
hypothesis should both incorporate more realistic models of social dynamics and
relax some of the simplifying assumptions made in this paper, to see whether
well-behaved neutral change continues to be observed under such modifications.

The discrepancy seen between the results here reported and those obtained by
Ke et al. (2008), Fagyal et al. (2010) and Blythe & Croft (2012) is explained
by the different assumptions that go into the definition of each of these four
models of language change. In the latter three models, the social network structure
underlying the linguistic variant dynamics is not allowed to evolve during a sim-
ulation run, so that speakers’ neighbourhoods remain fixed. In the present model,

[6] Assuming again, as the model does, that speakers are categorical and invariant after a critical
period. The results in Section 5.4 suggest that the interaction of this assumption with the
(language-external) social dynamics of the language community is non-trivial; the conse-
quences of relaxing the assumption need to be systematically investigated in future research.
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speakers are added to and removed from the social network in accordance with
the network-rewiring algorithm described in Section 3 and Appendix A, and the
neighbourhood of a speaker may change during their lifetime if speakers in that
neighbourhood are removed, or if new speakers are added thereto. The simulation
results show that this interplay between the network-rewiring dynamics and the
linguistic variant dynamics, together with the assumption of having speakers
who latch onto one or another variant early on and do not change thereafter, is
instrumental in supporting well-behaved neutral change in communities that are
tightly clusterized (Figure 12).

The model here studied makes a number of predictions which are, in principle,
open to investigation and empirical testing. First, the above simulations predict
that increasing the number of linguistic variants available to speakers makes neu-
tral change more likely if the innovation rate has a moderate value – but only at the
expense of a slight drop in the well-behavedness of change, when quantified using
the notions of dominance and monotonicity (Section 5.2). Second, the simulations
predict that stable variation should be more likely in clusterized communities than
in well-mixing ones (Section 5.3). Finally, change in a clusterized community is
much faster than in a well-mixing one of corresponding size (Section 5.5).

The possibility of well-behaved neutral change has implications for diachronic
work that seeks to establish non-neutral motivations for language change. While
the possibility of neutral change does not imply its probability and does not,
PER SE, undermine non-neutral theory in instances where sound reasons exist
for believing in the presence of non-neutral motivations, the results here reported
do warn against appealing to non-neutral explanations when such reasons are
lacking; ‘these possibilities [. . . ] need to be considered before any claim for
‘function’ can be made for either variation or change’ (Lass 1997: 354). Any
particular case of change may in fact be a constellation of neutral and non-neutral
factors, and one important goal for research in language diachrony must be to
tease apart the relative contributions of these two modes of change.

APPENDIX A. FORMAL DEFINITION OF THE MODEL

Consider a language community of N speakers distributed on an undirected graph
(V, Et ), where V = {1, . . . , N } is the set of speakers (vertices) and Et is an
irreflexive, symmetric relation giving the speaker adjacencies (edges), indexed for
time t . Denote by Et (i)= { j ∈ V : (i, j) ∈ Et } the NEIGHBOURHOOD of speaker
i and by degt (i)= |Et (i)| the DEGREE of speaker i at time t . Let C = {1, . . . , C}
be the set of linguistic variants, and for each time t define a function vt : V → C
which gives the variant of speaker i at time t . Then define an indicator function

χt (i, r)=
{

1 if vt (i)= r,
0 otherwise, (2)

and let the graph (V, Et ) be rewired in discrete time by the following algorithm.
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Algorithm 1. Define a stochastic process to shuffle the graph (V, Et ) as follows.

(1) Let 06 µ, σ 6 1 and K be a positive integer with K 6 N − 1.
(2) At time 0, the relation E0 is initialized randomly; say, every speaker has a

probability of 1/2 to be connected to any other speaker.
(3) Choosing a simulation length n, iterate from t = 1 to t = n.

(a) Select a speaker i from V uniformly at random.
(b) Remove all of i’s connections.
(c) For each d = 0, . . . , N − 1, take each speaker other than i having a

degree of exactly d; put these speakers into a set Qd ; and shuffle Qd
to make an ordered tuple Q̂d .

(d) Define an ordered set Q, the QUEUE, as follows, where ◦ denotes
concatenation:

Q = Q̂N−1 ◦ Q̂N−2 ◦ · · · ◦ Q̂0. (3)

(e) Give the speaker i a connection as follows.

i. With probability σ , connect i to the first speaker in Q, and delete
this speaker from Q

ii. With probability 1− σ , connect i to a speaker selected uniformly
at random from Q, and delete this speaker from Q.

(f) Repeat the previous step until i has received exactly K connections.
(g) Set the variant of speaker i as follows: for each possible variant r , the

probability of setting vt (i)= r is to equal

µ

C
+

1− µ
K

∑
j∈Et (i)

χt ( j, r). (4)

APPENDIX B. QUANTIFYING WELL-BEHAVEDNESS

In quantifying well-behavedness of change, our interest is in how the frequencies
of the C competing variants unfold in time. For this, let xr (t) denote the
relative frequency of the r th variant at time t , and let Ex(t)= (x1(t), . . . , xC (t))
be the FREQUENCY-STATE of the system. A sequence of frequency-states
Ex(1), . . . , Ex(n) I shall call a HISTORY or (FREQUENCY) TRAJECTORY.

B.1 Dominance

Let 06 δ 6 1. I shall call a frequency-state Ex(t)= (x1(t), . . . , xC (t)) δ-
DOMINANT if xr (t)> 1− δ for some r . Dominance times for a history
Ex(1), . . . , Ex(n) are then obtained by the time-averaged measure

Dδ =
1
n

n∑
t=1

1δ(t), (5)
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where

1δ(t)=
{

1 if Ex(t) is δ-dominant,
0 otherwise. (6)

B.2 Shifting

To measure shifting ability, I shall record, for a given simulation run, the number
of shifts from δ-dominance by variant r to δ-dominance by another variant
r ′ 6= r , for a predefined dominance threshold δ. More formally, for a history
Ex(1), . . . , Ex(n), the shifting measure, Sδ , is defined as the number of time points
t ∈ {1, . . . , n} such that xr (t)> 1− δ for some t , some r , and xr ′(t ′)> 1− δ for
some t ′ < t , some r ′ 6= r .

B.3 Monotonicity

A sequence x(1), . . . , x(n) is monotone if t < t ′ implies either x(t)6 x(t ′) or
x(t)> x(t ′). A history Ex(1), . . . , Ex(n) will be called monotone if each variant
frequency sequence xr (1), . . . , xr (n) is monotone.

Generally, it is possible to estimate the monotonicity of a history by the
following measure, for integer τ > 0 and real α > 0:

Wτ,α =
1

n − τ

n−τ∑
t0=1

C∑
r=1


t0+τ−1∑

t=t0

s+r (t)


︸ ︷︷ ︸
=m+r (t0,τ )

t0+τ−1∑
t=t0

s−r (t)


︸ ︷︷ ︸
=m−r (t0,τ )



α

, (7)

where

s+r (t)=
{

1 if xr (t) < xr (t + 1),
0 if xr (t)> xr (t + 1) (8)

and

s−r (t)=
{

1 if xr (t) > xr (t + 1),
0 if xr (t)6 xr (t + 1). (9)

(For an intuitive characterization of this equation in terms of the quantities
m+r (t0, τ ) and m−r (t0, τ ), see Section 4.) This has the following properties under
our model.

Proposition 1. For a simulation operating under Algorithm 1 (Appendix A):

(i) 06Wτ,α 6 τ 2α/22α−1 for all τ, α;
(ii) Wτ,α = 0 for any τ and α if and only if the history is monotone;

(iii) Wτ,α = 0 for some (sufficiently small) τ and all α if and only if the history
is piecewise monotone;
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(iv) Wτ,α = τ
2α/22α−1 for τ even, and Wτ,α = (τ

2
− 1)α/22α−1 for τ odd, if

and only if the history zig-zags persistently;
(v) for large τ , the expected value of Wτ,α is (2/3)2ατ 2α/C2α−1 if the history

is a random walk.

Proof. Let m+(r, t0, τ )= m+r (t0, τ )=
∑t0+τ−1

t=t0 s+r (t) and m−(r, t0, τ )=

m−r (t0, τ )=
∑t0+τ−1

t=t0 s−r (t).
(i) That Wτ,α > 0 is plain. The maximum is achieved when two variants r1

and r2 alternate in upward and downward inflections. For τ even, this
means that m+(ri , t0, τ )= m−(ri , t0, τ )= τ/2 for i = 1, 2, for all t0, and
m+(ri , t0, τ )= m−(ri , t0, τ )= 0 for i 6= 1, 2, and therefore

Wτ,α =
1

n − τ

n−τ∑
t0=1

2
((τ

2

)2
)α
=

τ 2α

22α−1 . (10)

If τ is odd, then 

m+(ri , t0, τ ) =
τ − 1

2
,

m−(ri , t0, τ ) =
τ − 1

2
+ 1,

m+(r j , t0, τ ) =
τ − 1

2
+ 1,

m−(r j , t0, τ ) =
τ − 1

2
,

(11)

either for i = 1, j = 2 or for i = 2, j = 1. In either case,

Wτ,α =
1

n − τ

n−τ∑
t0=1

2
(
τ − 1

2

(
τ − 1

2
+ 1

))α
=

(
τ 2
− 1

)α
22α−1 <

τ 2α

22α−1 .

(12)
(ii) If a history is monotone, then either m+(r, t0, τ )= 0 or m−(r, t0, τ )= 0

or both for each variant r , for each time t0. Hence, Wτ,α = 0. Conversely,
if Wτ,α = 0, then m+(r, t0, τ )= 0 or m−(r, t0, τ )= 0 for each r , for each
t0, which implies that the history is monotone.

(iii) Suppose that a history is monotone when viewed through a window of size
τ0. Then, with the above reasoning, m+(r, t0, τ )= 0 or m−(r, t0, τ )= 0
in such windows, and consequently we have Wτ0,α = 0 for the average.
Conversely, if Wτ0,α = 0, the history is piecewise monotone in windows of
size at most τ0.

(iv) This was shown in (i).
(v) Consider an arbitrary variant r at any time t . Then, xr (t) can inflect

upwards in two ways: either r is selected to change so that xr increases
while some r ′ 6= r decreases, or some r ′ 6= r is selected so that xr ′

decreases and xr increases. Since Ex(t) is assumed to be a random walk,
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the probability for xr (t) to increase is then given by

p =
1
C
·

1
3
+

C − 1
C
·

1
3
·

1
C − 1

=
2

3C
(13)

(probability of picking r times probability of xr increasing (rather than
decreasing or not changing), plus probability of picking r ′ times probabil-
ity of xr ′ decreasing so that xr increases). By symmetry, the probability
for r to inflect downward is the same. In a window of length τ , we would
then expect pτ upward and pτ downward inflections for variant r , if τ is
sufficiently large. This gives us

F :=
C∑

r=1

((
2

3C
τ

)2
)α
= C

22ατ 2α

32αC2α =

(
2
3

)2α
τ 2α

C2α−1 , (14)

hence

Wτ,α =
1

n − τ

n−τ∑
t0=1

F =
(

2
3

)2α
τ 2α

C2α−1 , (15)

as wished. �

Now let

Mτ = 1−
Wτ,1/2

τ
. (16)

Then we have the following.

Proposition 2. For a simulation operating under Algorithm 1 (Appendix A):

(i) 06 Mτ 6 1 for any τ ;
(ii) Mτ = 1 for any τ if and only if the history is monotone;

(iii) Mτ = 1 for some (sufficiently small) τ if and only if the history is piecewise
monotone;

(iv) Mτ = 0 for even τ if and only if the history zig-zags persistently;
(v) for large τ , the expected value of Mτ is 1/3 if the history is a random walk.

Proof. From Proposition 1 by simple substitution via (16). �

Thus, the value of Mτ will range from 0 (inclusive) to 1 (inclusive) for even
window sizes τ . The closer this value is to 1, the more monotone the history is; the
closer this value is to 0, the less monotone the history is. Having these desirable
properties, Mτ (restricted, without loss of generality, to even τ ) will serve as our
measure of monotonicity.
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