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Divisibility of torsion subgroups of abelian
surfaces over number fields
John Cullinan and Jeffrey Yelton
Abstract. Let A be a two-dimensional abelian variety defined over a number field K. Fix a prime
number � and suppose #A(Fp) ≡ 0 (mod �2) for a set of primes p ⊂ OK of density 1. When � = 2
Serre has shown that there does not necessarily exist a K-isogenous A′ such that #A′(K)tor ≡ 0
(mod 4). We extend those results to all odd � and classify the abelian varieties that fail this
divisibility principle for torsion in terms of the image of the mod-�2 representation.

1 Introduction

1.1 Background

Let A be an abelian variety defined over a number field K. If p is a prime of good
reduction for A and m is a positive integer, then we say that A locally has a subgroup of
order m at p if #A(Fp) ≡ 0 (mod m). If p has absolute ramification index ep < p − 1,
then by, [3, Appendix], the reduction-modulo- p map is injective on torsion:

A(K)tor ↪ A(Fp).

It follows that if A(K) has a subgroup of order m then it locally has a subgroup of order
m for a set of primes p of density 1. On the other hand, if A locally has a subgroup of
order m for a set of primes of density 1, then it is not necessarily true that A(K) has a
global subgroup of order m. For example, the elliptic curve with LMFDB label 11.a1
[7] locally has a subgroup of order 5 for all p ≠ 11, but has trivial Mordell–Weil group
over Q. Lang asked whether any abelian variety that locally has a subgroup of order m
for a set of primes of density 1 must be K-isogenous to one with a global subgroup of
order m:

Question 1 (Lang) Let A be an abelian variety defined over a number field K. Suppose
that m ∣ #Ap(Fp) for a set of primes p of K of density 1. Does there exist a K-isogenous
A′ such that m ∣ #A′(K)tor?

Note that if m1 and m2 are relatively prime integers and the answer to the above
question is positive for a given abelian variety A, both when we take m = m1 and
when we take m = m2, then the answer is positive for A when we take m = m1m2.
It, therefore, suffices to consider the question only in the case that m is a prime power.
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Torsion subgroups of abelian surfaces 267

In [3], Katz showed that the answer to Question 1 is affirmative when A is an elliptic
curve, when m is a prime number �, and when A is an abelian surface. However, he
showed by explicit construction that when dim A ≥ 3 and m is odd, the answer is
negative (the degree [K ∶ Q] of the field K of definition of A may be very large). In
[2], the first author considered the special case of m = 2 and showed that the answer
to Question 1 is affirmative when dim A = 3 and negative when dim A ≥ 4. While we
expect the answer when dim A = 4 and m is a higher power of 2 to be negative as well,
we do not pursue that question in this paper. More generally, it may be of interest to
determine whether a negative answer to Question 1 for fixed dim A and modulus �n

implies a negative answer for modulus �m when m > n.
On the other hand, among all moduli m = �n and among all positive integers dim A,

there are two main cases where the answer to Question 1 is unknown: the case dim A =
3 and m = 2n (n > 1), and the case dim A = 2 and m composite. In all of these cases
where there is a negative answer, it would be interesting to construct explicit examples
of such abelian varieties where the degree [K ∶ Q] of the field of definition of A is
minimized. We refer to this as the realization problem and briefly address it at the end
of this section.

Returning to the open cases of Question 1, we focus exclusively on the situation
where m is composite and dim A = 2 in this paper. In an unpublished letter to Katz
[11], Serre constructed a counterexample for the modulus 4—that is, he showed there
exists an abelian surface A that locally has a subgroup of order 4 for a set of primes
of density 1 and no surface in the K-isogeny class of A has a global subgroup of
order 4. More precisely, Serre constructed an open subgroup H of the symplectic
similitude group GSp4(Z2) such that any abelian surface whose 2-adic image equals
H is one where Question 1 has a negative answer. However, Serre’s construction does
not immediately generalize to odd, composite moduli. This is the starting point of our
paper.

It is enough to answer Question 1 for prime-power moduli and in [3, Introduction],
Katz shows that Question 1 is equivalent to Question 2 below (which in Katz’s
paper is [3, Problem 1 (bis)]). In order to state this equivalent version, we introduce
some further notation. Write m = �n for a prime number � and a positive integer n.
Following Katz, we write T�(A) for the �-adic Tate module of A and ρ� ∶ Gal(K/K) →
Aut(T�(A)) for the associated �-adic representation of A. Now Question 1 is equiva-
lent to the following.

Question 2 (Katz) Let A be an abelian variety over a number K, � a prime number,
and ρ� ∶ Gal(K/K) → Aut(T�(A)) its �-adic representation. Suppose we have

det(ρ�(γ) − 1) ≡ 0 (mod �n) for all γ ∈ Gal(K/K).

Do there exist Gal(K/K)-stable lattices L ⊃ L′ in T�(A) such that the quotient L/L′
has order �n , and such that Gal(K/K) acts trivially on L/L′?

Our main result is that the answer to Question 2 (and hence to Question 1) is
negative for all moduli �2 when A is an abelian surface. Our argument is purely group-
theoretic; in the following section, we develop our general group-theoretic set-up.
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1.2 Restriction of the image

Before stating our main theorem, we give a more detailed overview of our approach
in this subsection.

Let T be a free Z�-module of rank 4, which we equip with a nondegenerate
alternating bilinear form

⟨ , ⟩ ∶ T × T → Z� .

Two groups of invertible operators on T that concern us are the group of symplectic
similitudes, defined as

GSp(T) ∶= {g ∈ Aut(T) ∣ ⟨g .v , g .w⟩ = mg⟨v , w⟩},

for some mg ∈ Z×� depending on g, and the symplectic group, defined as

Sp(T) ∶= {g ∈ Aut(T) ∣ ⟨g .v , g .w⟩ = ⟨v , w⟩} ⊂ GSp(T).

We may identify GSp(T) and Sp(T) with GSp4(Z�) and Sp4(Z�), respectively, by
fixing a symplectic basis of T�(A) (see Definition 2.1 below).

We will be particularly interested in subgroups of Sp(T) satisfying a certain
determinant condition, motivating us to define

Fix(�n) ∶= {subgroups G ⊂ Sp(T) ∣ det(g − 1) ≡ 0 (mod �n) for all g ∈ G}.

Remark 1.1 Our motivation for the above notation is that a subgroup G ⊂ Sp4(T)
lies in Fix(�n) for some n if and only if G fixes an order- �n submodule of T under the
induced mod-�n action. Indeed, the latter condition is equivalent to saying that under
this action, for each g ∈ G, the operator g − 1 ∈ Sp4(T) kills a submodule of (T/�nT)
of order �n . We may assume that the image of g − 1 modulo �n is a diagonal matrix in
End(T/�nT) after performing a series of invertible row and column operations on it.
It is then easy to see that in order for g − 1 to kill an order- �n submodule of T/�nT, the
product of its diagonal elements must be divisible by �n , and so det(g − 1) ≡ 0 (mod
�n), which is the defining criterion for membership in Fix(�n).

We will show that the hypothesis that G ∈ Fix(�2) is so strong that, with only a few
exceptions, it forces the existence of pairs of G-stable lattices of relative index �2 with
trivial G-action on the quotient. We will refer to these “exceptions” using the following
terminology.

Definition 1.1 Given any free Z�-module T of rank 4, we call any G ∈ Fix(�2) for
which there do not exist G-stable lattices L′ ⊂ L ⊂ T with [L ∶ L′] = �2 and trivial G-
action on the quotient L/L′ a counterexample.

In the context of our investigation of Question 2, the Z�-module T is the �-adic
Tate module T�(A) of an abelian variety A over a number field K for some prime
�. After possibly replacing A with an isogenous abelian variety, we assume that A is
principally polarized so that we may define the Weil pairing as a skew-symmetric
form on T�(A). It is well known that the Weil pairing ⟨ , ⟩ on T�(A) is equivariant
with respect to the action of the absolute Galois group Gal(K/K) on T�(A). (See
[8, §16] for more details on the Weil pairing.) The image of the natural �-adic Galois
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representation ρ� ∶ Gal(K/K) → Aut(T�(A)) is, therefore, contained in GSp(T�(A)).
The following proposition explains our choice of the term “counterexample” in Defi-
nition 1.1 by showing that any counterexample G in the sense of Definition 1.1 gives a
counterexample for Question 2 (and hence to Question 1).

Proposition 1.1 Let G ∈ Fix(�2) be a counterexample in the sense of Definition 1.1.
Then, there is an abelian surface A over a number field K , which provides a counterex-
ample for Question 2 such that, taking T to be T�(A), we have im(ρ�) ∩ Sp(T) = G.

Proof It is well known that for any prime �, there exists an abelian surface A over
Q such that the image of its natural �-adic Galois representation coincides with
GSp(T�(A)). In fact, we quote the stronger result of [5, Theorem 1.3] that the image of
the �-adic representation ρ� ∶ Gal(Q/Q) → Aut(T�(A)) of the hyperelliptic Jacobian
defined by

y2 = x6 + 7471225x5 + 16548721x4 + 6639451x3 + 16857421x2 + 20754195x + 9508695

is maximal for all �.
Now, let �′(�2) ⊂ GSp(T) be the subgroup consisting of all symplectic similitudes

g ∈ GSp(T) such that g ≡ 1 (mod �2), and let G′ ⊂ GSp(T�(A)) be the subgroup
generated by G and �′(�2). Let K/Q be the extension fixed by ρ−1

� (G′); since G′
contains the finite-index subgroup �′(�2) ⊂ GSp(T�(A)) and is, therefore, an open
subgroup of GSp(T�(A)), the field extension K/Q is finite and so K is a number field.
Now, we consider A as an abelian surface over K and restrict ρ� to the absolute Galois
group Gal(K/K) of K; it is clear that we still have det(ρ�(γ) − 1) ≡ 0 (mod �2) for
all γ ∈ Gal(K/K). Meanwhile, since G′ ⊃ G and G is a counterexample, there do not
exist Gal(K/K)-stable lattices L ⊃ L′ in T�(A) such that the quotient L/L′ has order
�2, and such that Gal(K/K) acts trivially on L/L′, and we have, therefore, found a
counterexample to Question 2 by taking n = 2. ∎

By the discussion of [3, pp. 482–483], given an abelian surface A arising from
a counterexample G ⊂ Sp(T) via Proposition 1.1, after possibly replacing A with an
isogenous abelian surface, we may assume that its associated mod-� Galois repre-
sentation has a trivial one-dimensional subrepresentation. In fact, we will see from
Proposition 2.1 below that this property implies that the semisimplification of the
mod-� reduction G of a counterexample G always has at least two one-dimensional
factors. We further distinguish between the following two cases: subgroups G ⊂ Sp(T)
for which the semisimplification of the mod-� reduction either
(1) has four one-dimensional factors, two of which are trivial, or
(2) has an irreducible two-dimensional factor and two trivial one-dimensional

factors.
We remark that Serre’s original counterexample for Question 2 in [11] had four one-
dimensional factors and we will review this counterexample in Section 3 below.

Furthermore, we will only mainly consider subgroups G of Sp(T)where the kernel
of reduction modulo � is as large as possible (to be made precise below). As we will see
in Section 2.2, this assumption gives us a simple criterion for checking which lattices
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are G-stable and, therefore, whether there are any quotients of order �2 with trivial
G-action.

To summarize, in this paper, for the purpose of finding and classifying counterex-
amples, we will only consider subgroups G ⊂ Sp(T) such that
• G fixes a subspace of T/�T of dimension 1; and
• the kernel of the natural projection G to its reduction modulo � is as large as possible;

for us, this will mean G contains the full kernel �(�) of the reduction-mod-� map
from Sp(T) to Sp(T/�T) or contains a certain index- � subgroup of �(�).

What we will show using group theory is that, even under these added hypotheses,
counterexamples G ∈ Fix(�2) do exist; more specifically, counterexamples satisfying
property A exist for any �, and counterexamples satisfying property B exist when � = 2.
This, in particular, implies a negative answer to Question 2.

1.3 Statement of the results

With this motivation and background in place, we now state our main results. For
clarity of exposition, we only give the maximal counterexamples in this statement of
the main theorem; while in the course of proving the results, we give the minimal
requirements that a counterexample must meet.

Theorem 1.2 Let � be a prime number; let T be a free Z�-module of rank 4 equipped
with a nondegenerate alternating pairing; and suppose G ⊂ Sp(T) satisfies

(i) det(g − 1) ≡ 0 (mod �2) for all g ∈ G, and
(ii) there do not exist G-stable lattices L′ ⊂ L ⊂ T of relative index �2 with trivial G-

action on the quotient L/L′, and
(iii) G is maximal among subgroups of Sp(T) satisfying (i) and (ii).
Then, one of the following holds.
(a) We have � = 2, the image of G modulo 2 is isomorphic to D4 × C2 or S3 × C2, and we

have [�(2) ∶ G ∩ �(2)] = 2. In the former case, the semisimplification of the mod-2
representation consists of four one-dimensional factors and in the latter it consists
of two one-dimensional factors and a two-dimensional factor.

(b) We have � = 2, and G is the full preimage in Sp(T) of a subgroup of Sp(T/�T)
isomorphic to S3. In this case, the semisimplification of the mod-2 representation
consists of two one-dimensional factors and a two-dimensional factor.

(c) We have � ≥ 3, and G is the full preimage in Sp(T) of a subgroup of Sp(T/�T)
of isomorphism type Z/� ⋊ (Z/�)× or Z/� × (Z/� ⋊ (Z/�)×). In this case, the
semisimplification of the mod-� representation consists of four one-dimensional
factors.

In the course of proving Theorem 1.2, we give explicit representations, including
the dimensions of the factors in the semisimplifications, of all of the groups that
occur. In Section 2.1, we give a more detailed exposition of how the group theo-
retic result of Theorem 1.2 implies the following corollary, answering Lang’s original
Question 1.
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Corollary 1.3 For all square moduli, the answer to Question 2, and hence to Question
1, is negative. In addition, when the modulus is 4, there are counterexamples to Question
1 realized by absolutely simple abelian surfaces.

Our paper proceeds as follows. In Section 2, we review the relevant background
on symplectic groups and representation theory, and we give an explicit description
of the stable lattice structure. The classification of the maximal counterexamples then
amounts to a group theory argument. We break this argument up over the ensuing
three sections. In Section 3, we classify the counterexamples for which G is contained
in a maximal pro-� subgroup of Sp(T); we show that counterexamples of this type
exist when � = 2 and do not exist for � ≥ 3. This is where we will recall Serre’s original
counterexample. Then, in Section 4 we classify the counterexamples for which G lies
in the Iwahori subgroup of Sp(T); this is where the semisimplification of the mod-�
representation consists of four one-dimensional factors. Finally, Section 5 is where we
consider the case where the semisimplification of the mod-� representation contains
an irreducible two-dimensional factor. There we show that no such counterexamples
exist when � ≥ 3 and classify the ones that do when � = 2.

1.4 The realization problem

Our main theorem shows, from the point of view of group theory, that the answer to
Question 1 is negative for abelian surfaces. A follow-up question, which we call the
realization problem, is to construct abelian surfaces with these �-adic images. By the
Galois-theoretic argument in the proof of Proposition 1.1, we can construct such an
abelian surface A over a number field K with [K ∶ Q] large. We, therefore, pose the
following question.

Question 3 Fix a prime number �. What is the minimum degree [K ∶ Q] such that
there exists an abelian variety A/K with �-adic Galois image equal to one of the groups
in Theorem 1.2?

We do not pursue the realization problem in this paper, though we mention that the
LMFDB’s current database of over 68,000 genus-2 curves is a natural place to search
for potential examples [1]. In particular, by sampling at a large number of primes, one
can find examples of surfaces that have a local subgroup of (say) order �2 but a global
subgroup of order �. For example, the isogeny class 1270.a contains the hyperelliptic
curve with label 1270.a.325120.1 . By sampling a large number of primes, this Jacobian
experimentally has a subgroup of order 4 (but a global subgroup of order 2), and
the 2-torsion field has Galois group S3 × S2. Furthermore, the semisimplification of
the mod-2 representation contains an irreducible two-dimensional factor and the
Jacobian is absolutely simple over Q.

In order to rigorously determine whether or not a Jacobian defines a counterex-
ample, one would need to determine both the mod-� and mod-�2 images of the �-
adic representation. A related question for future exploration would be to employ
known estimates on the distribution of eigenvalues of Frobenius for genus-2 curves
to determine how many primes one should sample to be “reasonably” certain (in a
precise sense) that an isogeny class consists entirely of Jacobians with a local subgroup
of order �2.
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1.5 Group theory notation

Given any prime �, suppose we have a free Z�-module T of rank 4 equipped with a
nondegerate alternating pairing ⟨ , ⟩. Throughout this paper, for any integer n ≥ 1, we
denote the kernel of the reduction-modulo- �n map from Sp(T) to Sp(T/�nT) by

�(�n) ∶= {g ∈ Sp(T) ∣ g ≡ 1 (mod �n)}.

The form ⟨ , ⟩ induces a nondegenerate alternating pairing on T/�nT via
reduction modulo �n for each n ≥ 1. We have (surjective) homomorphisms π�n ∶
Sp(T) → Sp(T/�nT) for all n ≥ 1, as well as (surjective) homomorphisms π�n→�m ∶
Sp(T/�nT) → Sp(T/�mT) for any integers n > m ≥ 1.

We use both the notations, Cn and Z/n, for a cyclic group of order n depending on
whether we are emphasizing a multiplicative or additive group structure, respectively.
The notations Sn and An refer to the symmetric and alternating groups on n letters,
respectively. We use Dn to denote the dihedral group of order 2n.

2 Symplectic groups

The basic definitions and background on symplectic groups are widely available in the
literature: see [9] for a general development or [4] for concise definitions, especially for
symplectic groups over general commutative rings. We will be content with a very brief
overview here. Let � be a prime number and T be a free rank-4 Z�-module equipped
with a nondegenerate alternating bilinear form ⟨ , ⟩ as in Section 1.2. Many of our
explicit group-theoretic arguments are performed in coordinates and so we make the
following formal definition.
Definition 2.1 A symplectic basis of T is an ordered basis {e1 , e2 , e3 , e4} that satisfies
⟨e1 , e4⟩ = ⟨e2 , e3⟩ = 1 and ⟨e1 , e2⟩ = ⟨e1 , e3⟩ = ⟨e4 , e2⟩ = ⟨e4 , e3⟩ = 0.

To ease notation, write
G ∶= π�(G)

for any subgroup G ⊂ Sp(T); this reduction G acts naturally on the four-dimensional
symplectic F�-vector space T/�T. Note that �(�) ⊲ Sp(T) is the kernel of π�. Some of
the counterexamples G of Theorem 1.2 are maximal in the sense that �(�) ⊂ G; such
a subgroup G can be described simply as the inverse image under π� of G.

2.1 The mod-� representation

We now determine the “shape” of G, where G ∈ Fix(�2) is a counterexample satisfying
the assumptions given in Section 1.2.
Proposition 2.1 Let G ∈ Fix(�2) be a counterexample whose reduction G acts trivially
on a one-dimensional subspace of T/�T. Then, with respect to the reduction of a suitable
symplectic basis of T, the elements of G are all matrices of the form

⎛
⎜⎜
⎝

1 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 1

⎞
⎟⎟
⎠

.(2.1)

https://doi.org/10.4153/S0008414X20000759 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000759


Torsion subgroups of abelian surfaces 273

Proof The statement amounts to asserting that there exists a G-invariant subspace
W ⊂ T/�T of dimension 3 such that G acts trivially on the quotient (T/�T)/W . We
now construct a symplectic basis {e1 , e2 , e3 , e4} of T such that the reduction e4 ∈
T/�T of e4 generates the one-dimensional subspace, which is fixed by G. Since the
symplectic pairing is nondegenerate, there is an element e1 ∈ T such that ⟨e1 , e4⟩ = 1.
Let V be the span of {e1 , e4}. Since the sum of the dimensions of any subspace of T
and its orthogonal complement must equal the dimension ofT, we get that the orthog-
onal complement V� of V has dimension 2. Now, clearly there is a nondegenerate
symplectic pairing on V/(V ∩ V�) induced by ⟨ , ⟩, so V/(V ∩ V�) must have even
dimension; since ⟨ , ⟩ is nontrivial on V, we must have V� ≠ V and so V ∩ V� = {0}.
Then, since V ⊕ V� = T, the pairing ⟨ , ⟩ cannot be trivial on V�, and any ordered basis
{e2 , e3} satisfies ⟨e2 , e3⟩ = 1 after appropriate scaling of one of the elements. Thus, we
have an ordered set {e1 , e2 , e3 , e4}, which is a symplectic basis of T.

Now, let W ⊂ T be the span of {e2 , e3 , e4}. It is clear that W is the orthogonal com-
plement of the subspace spanned by e4. It now follows from the G-invariance of the
symplectic pairing that since G fixes the element e4, the reduction W of W is invariant
under the action of G. Note further that for any g ∈ G, we have ⟨g(e1), g(e4)⟩ =
⟨e1 , e4⟩ = 1. It follows that since g(e4) ≡ e4 (mod �), we have ⟨g(e1), e4⟩ ≡ 1 (mod �)
and therefore g(e1) ≡ e1 +w (mod �) for some w ∈ W . Since W and the image of e1
modulo � generate T/�T, we get the desired statement. ∎

Given any counterexample G ∈ Fix(�2) satisfying the hypothesis of the above
proposition, we fix a symplectic basis {e1 , e2 , e3 , e4} of T such that, with respect to
its reduction modulo � (which we denote by {e1 , e2 , e3 , e4} and which is a basis of
T/�T), the elements of the group G are matrices of the form given in (2.1). (Note that
since G ⊂ Sp(T), there are additional constraints placed on the off-diagonal entries
by ⟨ , ⟩.)

In order to classify possible counterexamples G ∈ Fix(�2), we will now introduce
three subgroups S� ⊂ B� ⊂ P� ⊂ Sp(T). We first define P� to be the subgroup of matri-
ces whose reductions modulo � are of the lower block-triangular form given in (2.1).
According to Proposition 2.1 above, any counterexample G ∈ Fix(�2) is conjugate, in
Sp(T), to a subgroup of P�.

For any element of P�, we highlight the off-diagonal lower entries in the matrix
form of its reduction modulo � as

⎛
⎜⎜⎜
⎝

1 0 0 0
α ∗ ∗ 0
β γ ∗ 0
δ β′ α′ 1

⎞
⎟⎟⎟
⎠

,(2.2)

and we let α, α′ , β, β′ , γ, δ ∶ P� → Z/� be the maps given by taking an element g ∈ P�

to the corresponding entries of π�(g) shown in (2.2). (These maps are not homomor-
phisms in general.) Noting from (2.2) that the (1,4) entry g1,4 of any element g ∈ P� is
divisible by �, we also define a map

f ∶ P� → Z/�, g ↦ π�(g1,4/�).

It is easy to verify that this map f is a homomorphism.
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The Iwahori subgroup B� ⊂ Sp(T) is the subgroup consisting of all matrices whose
reduction modulo � is lower-triangular. We write S� ⊂ B� for the (maximal pro-�-)
Sylow subgroup of B�; it is the subgroup of B� consisting of those triangular matrices
whose reduction modulo � has all 1’s along the diagonal. Given a group G ∈ Fix(�),
we write G ⊂ B� (resp. G ⊂ S�) if there is a basis {e1 , e2 , e3 , e4} with the properties
given above with respect to which G is contained in B� (resp. S�). With respect to this
chosen basis, a calculation with ⟨ , ⟩ shows that if we let ε ∶ B� → (Z/�)× be the map
taking an element g ∈ B� to the (2, 2) entry of π�(g), the (3, 3) entry of π�(g) is given
by 1/ε(g), and that we have the formulas below:

α′(g) = −α(g)/ε(g)(2.3)
β′(g) = β(g)ε(g) − α(g)γ(g).

We note that the map ε ∶ B� → (Z/�)× is a homomorphism whose kernel coincides
with S�. For any g ∈ B�, the determinant det(g − 1) satisfies

det(g − 1)

≡ (γ(g)α(g)2 + β(g)α(g)(1 − ε(g)2)
ε(g) + δ(g)(1 − ε(g))2

ε(g) ) f (g)� (mod �2).

(2.4)

We further note that when we restrict to S�, the maps α, β ∶ S� → Z/� become
homomorphisms, and we get the simplified formulas from (2.3) below:

α′(g) = −α(g)(2.5)
β′(g) = β(g) − α(g)γ(g).

In this special case, the determinant formula (2.4) simplifies to

det(g − 1) ≡ α(g)2γ(g) f (g)� (mod �2).(2.6)

2.2 Lattices

As we see from the conditions given in Question 2, in order to determine whether
a given group G ∈ Sp(T) is a counterexample, it is crucial to understand the stable
lattice structure of T under the action of G. The following proposition will allow
us to essentially work with the mod-� representation and search for pairs of stable
subspaces of T/�T whose quotients admit trivial G-action rather than search through
all sublattices of T.

Proposition 2.2 Assume that G ∈ Fix(�2) contains �(�) ∩ ker( f ) and that f is not
trivial on G. Let L ⊂ T be a G-stable lattice. Then, we have L ⊂ �T or L ⊃ �T.

In order to prove the above proposition, we first need a lemma.

Lemma 2.1 Choose a vector v ∈ T/�T.
a) For any integer n ≥ 1, the orbit of v under the action of the subgroup �(�n) ⊂ Sp(T)

coincides with the coset v + �nT.
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b) Let W ⊂ T be the submodule consisting of vectors w such that ⟨w , e4⟩ ∈ �Z�. The orbit
of v under the action of the subgroup �(�) ∩ ker( f ) ⊂ Sp(T) coincides with the coset
v + W (resp. v + �T) if v is (resp. is not) a (unit) scalar multiple of e4 ∈ T.

Proof In order to prove part (a), we first show that for any integer m ≥ 1, the
orbit of any vector v ∈ T/�m+1T under the action of the subgroup �(�m)/�(�m+1) ⊂
Sp(T/�m+1T) consists of all vectors v′ ∈ T/�m+1T equivalent to v modulo �m . (Below
we abuse notation slightly and write ⟨ , ⟩ for the pairing on T/�m+1T induced by
reducing the symplectic pairing on T modulo �m+1; it takes values in Z/�m+1.) In
order to do this, we define, for any vector u ∈ T/�m+1T, the (unipotent) operator
Tu ∈ �(�m)/�(�m+1) given by w ↦ w + �m⟨w , u⟩u for w ∈ T/�m+1T. Now choose
a ∈ (T/�T)/�m+1T; we proceed to show that v + �m a lies in the orbit of v under
�(�m)/�(�m+1). First assume that ⟨v , a⟩ /≡ 0 (mod �). In this case, we clearly have
T⟨v ,a⟩−1

u (v) = v + �m a and we are done. Now assume that ⟨v , a⟩ ≡ 0 (mod �). Then,
one sees from a simple dimension-counting argument that there is a vector b ∈
(T/�T)/�m+1T satisfying ⟨v , b⟩ ≡ 1 (mod �) and ⟨b, a⟩ /≡ 0 (mod �). Now, we compute
(T⟨b ,a⟩−1

a+b T−1
b )(v) = v + �m a, and we are done proving our claim about the orbit of v

under �(�m) modulo �m+1.
Now, we fix n ≥ 1 and claim that for any n′ > n ≥ 1 the orbit of any v ∈ T/�n′T

under the action of the subgroup �(�n)/�(�n′) ⊂ Sp(T/�n′T) consists of all vectors
v′ ∈ T/�n′T equivalent to v modulo �n′ . We prove this claim by performing induction
on n′, noting that we get the n′ = n + 1 case by applying the statement we proved in
the last paragraph with m = n. Now, if our claim is true for a particular n′ > n, we see
that it holds for n′ + 1 as well: indeed, for any vectors v , w ∈ T/�n′+1T with v ≡ w (mod
�n′), the inductive assumption provides an operator g ∈ �(�n)/�(�n′+1), which takes
v to some w′ , which is equivalent to w modulo �n′ ; then by applying the statement,
we proved in the last paragraph with m = n′ we get an operator h ∈ �(�n′)/�(�n′+1) ⊂
�(�n)/�(�n′+1) that takes w′ to w. Therefore, w is in the orbit of v under the action of
�(�n)/�(�n′+1), and our claim is proved. Now, by moving to the inverse limit of the
groups �(�n)/�(�n′) and the modules T/�n′T, we get the statement of part (a).

Now, by applying part (a) for n = 2, it is clear that in order to prove part (b),
it suffices only to consider the orbit of a vector v ∈ (T/�T)/�2T under the action
of the subgroup (�(�) ∩ ker( f ))/�(�2). First, assume that v is (the image modulo
�2 of) a scalar multiple of e4. Then, it follows immediately from the definition of
f that an operator T ∈ �(�)/�(�2) lies in ker( f )/�(�2) if and only if ⟨v , T(v)⟩ =
⟨v , T(v) − v⟩ = 0, or equivalently, if T(v) = v + �w for some w ∈ W , whence the first
statement of (b). Now, assume that v is not (the image modulo �2 of) a scalar multiple
of e4. Then, there exists a vector b ∈ (T/�T)/�n+1T satisfying ⟨e4 , b⟩ /≡ 0 (mod �)
and ⟨v , b⟩ ≡ 0 (mod �); the first condition implies that Tb ∉ (�(�) ∩ ker( f ))/�(�2),
while the second condition implies that Tb fixes v. We know from part (a) that there
exists an operator T ∈ �(�)/�(�2) such that T(v) = v + �a for any given vector a ∈
(T/�T)/�2T. Since �(�)/�(�2) is cyclically generated over (�(�) ∩ ker( f ))/�(�2),
the operator TT m

b lies in (�(�) ∩ ker( f ))/�(�2); the second claim of part (b) follows
from the fact that (TT m

b )(v) = T(v) = v + �a. ∎
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Proof of Proposition 2.2 We assume that L /⊂ �T and proceed to show that L must
contain �T. Choose a vector v ∈ L/�T. Since we have �(�) ∩ ker( f ) ⊂ G by hypothesis,
we may apply Lemma 2.1(b) to get that v + W ⊂ L (resp. v + �T ⊂ L) if v is (resp.
is not) a scalar multiple of e4, where W ⊂ T is as defined in the statement of the
lemma. Since L is closed under addition, we immediately get L ⊃ �W (resp. L ⊃ �T,
in which case we are done). Now, suppose that we are in the former case; we assume
without loss of generality that v = e4. Since f is nontrivial on G, we may choose
some element y ∈ G/ker( f ). As G has the block-upper-triangular structure described
above, we have that y(e4) − e4 ∈ �T; the fact that f (y) ≠ 0 then implies that we have
y(e4) − e4 ∈ �T/W . Since T is generated over W by any element in T/W , we get the
desired inclusion L ⊃ �T. ∎

Let G be a group in Fix(�2), and for 0 ≤ i ≤ 3, define the sublattice

L i ∶= spanZ�
{�e1 , . . . , �e i , e i+1 , . . . , e4} ⊂ T.(2.7)

The following proposition will be useful below for determining whether a given G ∈
Fix(�2) is a counterexample or not.

Proposition 2.3
a) The sublattices L1 and L3 are always G-stable. Moreover, the quotient L3/�L1 is fixed

under the induced G-action if and only if the homomorphism f ∶ G → Z/� is trivial.
Thus, if G is a counterexample, then f is nontrivial on G.

b) If we have G ⊂ B�, then L2 is also a G-invariant sublattice. Suppose further that
we have G ⊂ S�. Then, the quotient L1/L3 (resp. the quotients L0/L2 and L2/�L0)
is fixed under the induced G-action if and only if the homomorphism γ ∶ G → Z/�
(resp. α ∶ G → Z/�) is trivial. Thus, if G ⊂ S� is a counterexample, then both α and γ
are nontrivial on G.

c) In order to verify that G is a counterexample, it suffices to verify that for any G-
invariant sublattices L′ ⊂ L ⊂ T both containing �T and with quotient of order �2,
the induced action of G on the quotients L/L′ and L′/�L is not trivial.

Proof The statements of parts (a) and (b) can be verified straightforwardly from the
discussion and definitions in Section 2.1.

We proceed to prove part (c). Choose any group G ∈ Fix(�2) such that there exist G-
invariant lattices M′ ⊂M ⊂ T whose quotient M/M′ has order �2 and is fixed under
the induced action by G. If we haveM ⊂ �T, then we may replaceM andM′ with 1/�M
and 1/�M′ , respectively, without changing the induced action of G on their quotient.
We, therefore, assume that M /⊂ �T, which by part (a) combined with Proposition 2.2
implies that M ⊋ �T. If we also have M′ /⊂ �T, then we similarly get M′ ⊋ �T. In this
case, we let L =M and L′ =M′, and we are done.

Now, assume that M′ ⊂ �T. Then, it follows from considering the order of the
quotient M/M′ that we certainly have M′ /⊂ �2T, implying that 1/�M′ /⊂ �T. Now,
by part (a) combined with Proposition 2.2, this implies that 1/�M′ ⊋ �T and so we
have the inclusions �2T ⊊M′ ⊂ �T. Suppose that M/M′ ≅ Z/�2, so that there exists
an element v ∈M/�T whose image modulo M′ generates M/M′. If v ≡ e4 (mod �),
then one verifies directly from the definition of f that since v is fixed modulo M′ by
G, the homomorphism f must be trivial on G; then by part (a) we may take L = L3
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and L′ = �L1 and we are done. If, on the other hand, we have v /≡ e4 (mod �), we
may take L to be generated by �T and the elements v and e4; it is immediate to
check that G acts trivially on L/L′ and again we are done. Now finally, suppose that
M/M′ ≅ Z/�⊕ Z/�. In this case, we clearly have M ⊂ 1/�M′ ⊂ T and can, therefore,
take L =M′ and L′ = 1/�M, finishing the proof of part (c). ∎

The following lemma will be useful in both Section 3 and Section 4.

Lemma 2.2 Let G be any subgroup of B� such that the homomorphisms α and γ are
nontrivial on G. Then, the only proper G-stable sublattices of T, which properly contain
�T are L0, L1, L2, L3, where the sublattices L i are as in (2.7). Moreover, if G ∈ Fix(�2)
and the homomorphism f is also trivial on G, then G is a counterexample.

Proof For i = 0, 1, 2, 3, we write e i ∈ T/�T for the reduction modulo � of e i ∈ T and
L i ⊂ T/�T for the G-invariant subspace given by L i/�T, so that L i = ⟨e i+1 , ..., e4⟩. The
first statement of the lemma is equivalent to saying that the only nontrivial G-invariant
subspaces of T/�T are the L i ’s. We prove this by showing that for i = 0, 1, 2, given a
vector v ∈ L i/L i+1, the minimal G-invariant subspace containing v is L i . We start by
choosing v ∈ L2/L3; on choosing some g ∈ G/ker(α), we get that ε(g)−1v − π�(g).v ∈
⟨e4⟩ = L3. Any G-invariant subspace containing v therefore contains the subspace
generated by L3 and v, which coincides with L2. We have thus proved that the minimal
G-invariant subspace containing v is L2. We now show that for v ∈ L1/L2, the minimal
G-invariant subspace containing v is L1, using a similar argument where this time
we choose some g ∈ G/ker(γ) and take ε(g)v − π�(g).v. Finally we show that for
v ∈ L0/L1, the minimal G-invariant subspace containing v coincides with L0 in the
same way, this time choosing some g ∈ G/ker(α) and taking v − π�(g).v.

The second statement now follows easily by applying all three parts of Pro-
position 2.3. ∎

3 The Sylow subgroup S�

In this section, we consider subgroups G ⊂ S� that belong to Fix(�2). Throughout this
section, by fixing an appropriate symplectic basis of our free rank-4 Z�-module T,
we identify S� with the subgroup of Sp4(Z�) whose reduction modulo � consists of
lower-triangular matrices with only 1’s on the diagonal.

We have two main results: that there are no counterexamples when � ≥ 3, and that
there exist counterexamples when � = 2.

Theorem 3.1 Suppose G ⊂ S� with G ∈ Fix(�2).
a) If � ≥ 3, then one of α, γ, or f is trivial on G, i.e., there are no counterexamples when

� ≥ 3 and G ⊂ S�.
b) Let G ⊂ S2 be a counterexample. Then, we have either G = S2 ≅ C2 × D4 or G ≅ D4.

In either case, for any H ⊂ �(2) ∩ ker( f ), the subgroup of Sp4(T) generated by G
and H is also a counterexample. In particular, if G is a maximal counterexample,
then we have G = D4 × C2 and G ∩ �(2) = �(2) ∩ ker( f ).
Moreover, there do exist counterexamples satisfying G = S2 and counterexamples

satisfying G = D for any subgroup D ⊂ S2 isomorphic to D4.
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Because of the difference in techniques of the two cases of Theorem 3.1, we separate
our argument into multiple subsections. We begin with a short description of the
structure of S� ⊂ Sp4(Z/�) that we will use extensively throughout this section.

3.1 The structure of S�

Let S� be the �-Sylow subgroup of B� and S� the �-Sylow subgroup of B�. We define
the following four elements of S� that we will use extensively in the rest of the paper:

x1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
1 1 0 0
0 0 1 0
0 0 −1 1

⎞
⎟⎟⎟
⎠

x2 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

x3 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟
⎠

x4 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

⎞
⎟⎟⎟
⎠

.

The group S� is nonabelian of order �4 and the following facts are easily verified to hold
for all �. It is straightforward to compute directly that the order-� elements x2 , x3 , x4
commute and so ⟨x2 , x3 , x4⟩ defines an elementary abelian subgroup of S� of order
�3. We also have the commutation relations

[x1 , x2] = x−1
3 x−1

4

[x1 , x3] = x−2
4 ,

which show that x1 /∈ ⟨x2 , x3 , x4⟩ because it does not commute with x2 or x3. Therefore,
⟨x1 , x2 , x3 , x4⟩ = S� since it must have maximal order �4. It is then a calculation to see
that the element x4 lies in the center of S�. By the commutation relations, the center
of S� is ⟨x4⟩, while the center of S2 is ⟨x3 , x4⟩. We can simplify the generating set
even more: when � is odd we have S� = ⟨x1 , x2⟩, while S2 = ⟨x1 , x2 , x4⟩.

For � ≥ 5, S� has exponent �, while for � ∈ {2, 3} S� has exponent �2 (this is a
special case of a general fact about the Sylow subgroups of classical groups in defining
characteristic [12, Corollary 0.5]). In these two special cases, the �-Sylow subgroups
have isomorphism type S2 ≃ C2 × D4 and S3 ≃ C3 ≀ C3 (the wreath product of C3
and C3 with respect to a nontrivial permutation action). We now seek an explicit
description of the subgroups of S� of order �3 , which will be used in the proof of
Proposition 3.1.

To make the notation less cumbersome in the next lemma, we define the homo-
morphisms

α, γ ∶ S� → Z/�

to be the ones induced by factoring α and γ, respectively, through π�∣S�
∶ S� → S�; i.e.,

given an element g ∈ S�, the images α(g) and γ(g) are its (2, 1)-entry and its (3, 2)-
entry, respectively.
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Lemma 3.2 Let � be an odd prime. There are exactly � nonabelian subgroups of S� of
order �3, and these are given explicitly by

⟨x1xk
2 , x3⟩k = 0,.. . ,�−1 .(3.1)

Proof It is routine to verify that the groups ⟨x1xk
2 , x3⟩k=0,.. . ,�−1 are distinct, non-

abelian, and of order �3. In addition, observe that ⟨x2 , x3 , x4⟩ coincides with the kernel
of α and is the unique abelian subgroup of S� of order �3. Therefore, if H ⊂ S� is a
nonabelian subgroup of order �3, then α(H) ≠ 0.

Because H is an �-group, it has nontrivial center. Let h ∈ H be such that α(h) ≠ 0.
Then, h only commutes with powers of x4. Thus, H contains ⟨x4⟩. Since h and x4 each
have order � and commute, we have ⟨h, x4⟩ ≃ C2

� , hence H contains another element g
so that H = ⟨g , h, x4⟩. Since H is nonabelian we must have H = ⟨g , h⟩ since otherwise
⟨g , h⟩ ≃ C2

� and then H would be elementary abelian.
Next, observe that H ∩ ⟨x2 , x3 , x4⟩ has order �2. Since ⟨x4⟩ ⊂ H, it must be the case

that H contains a subgroup K of ⟨x2 , x3⟩ of order �, whence we can write K = ⟨x c
2 xb

3 ⟩
for some b, c. If c ≠ 0, then we claim that the group generated by h, x4, and K is all
of S�. This claim can be verified by checking that the commutator [h, x c

2 xb
3 ] equals a

nontrivial power of x3 times a power of x4, thus ensuring that the group generated by
h, x4, and K contains ker(α); since h ∉ ker(α), this group coincides with S�. So in fact
we can take c = 0 and have K = ⟨x3⟩.

Thus, G contains the order-�2 subgroup ⟨x3 , x4⟩, and also contains the element
h. By multiplying h by suitable powers of x3 and x4, we can take h to be xa

1 x c
2 for

some a, c. By raising xa
1 x c

2 to a suitable power and re-multiplying by suitable powers
of x3 and x4, we can take h to be of the form x1xk

2 , for some k ∈ {0, . . . , � − 1}, as
claimed. ∎

3.2 The case � ≥ 3

We now show that there are no counterexamples G ⊂ S� when � ≥ 3 by proving that
if G ∈ Fix(�2) then one of the homomorphisms α, γ, f is trivial on G and applying
Proposition 2.3.

Proof of Theorem 3.1(a) Let � be an odd prime and G ⊂ S� with G ∈ Fix(�2). We
argue case by case based on the order of G.

G has order �4 . In this case, G = S� = ⟨x1 , x2⟩. For i ∈ {1, 2} let g i ∈ G be any
element such that g i ≡ x i (mod �). Observe that α and γ are each nonzero on g1 g2 and
on g1 g2

2 , whence f (g1 g2) = f (g1 g2
2) = 0; it then follows easily that f (g1) = f (g2) = 0.

Because g1 and g2 were chosen arbitrarily, it follows that f is trivial on all of G.
G has order �3 . There are � + 1 subgroups of S� of order �3. One of these subgroups

is elementary abelian and the remaining � are nonabelian by Lemma 3.2. If G is
elementary abelian, then G = ⟨x2 , x3 , x4⟩ and so α(G) = 0.

For the nonabelian groups, we appeal to the classification of Lemma 3.2. Fix an
index k ∈ {0, . . . � − 1} and suppose G is such that

G = ⟨x1xk
2 , x3⟩.
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If k = 0 then visibly γ(G) = 0. If k ≠ 0, then let x and y be any elements of G such that
x ≡ x1xk

2 (mod �) and y ≡ x3 (mod �). Then, α and γ are nontrivial on x and xy, so
f (x) = f (xy) = 0 and thus f (y) = 0. Since x and y were chosen arbitrarily, f (G) = 0.

G has order �2 or �. Since G ∈ Fix(�2), for every g ∈ G one of α(g), γ(g), or f (g)
must be trivial. If G is cyclic and g ∈ G is such that π�(g) generates G, then whichever
of α, γ, or f is trivial on g must also be trivial on G. This takes care of every group G
for which G has order �, as well as the special case of cyclic subgroups of G3 of order
9. We will now assume G is elementary abelian of order �2.

Suppose G contains an element g on which α and γ are both nontrivial. Because G
is abelian, and such g only commute with powers of x4, then G = ⟨x4 , g⟩. But then G
is also generated by ⟨gx4 , g⟩, and α and γ are both nontrivial on these elements. By
the same reasoning as in the previous cases this implies f (G) = 0.

If G contains an element g ∈ ker α then g will not commute with any element of S�

on which α is nontrivial. Therefore, G ⊂ ker α and so G ⊂ ker α.
If G contains an element g ∈ ker γ, let h ∈ G lie outside ⟨g⟩ so that G is generated

by g and h. If h ∈ ker γ then we are done. If not, then both g and h must belong to ker α
or else g and h would not commute and so G ⊂ ker α. ∎

3.3 The case � = 2

In contrast to the previous section, there do exist counterexamples G ⊂ S2, as we now
show.

Proof of Theorem 3.1(b) We begin by noting, from the discussion above, that S2 =
⟨x1 , x2 , x4⟩ and that each pair of these generators commutes except that we have
x1x2x−1

1 x−1
2 = x3x4; moreover, each of these generators commutes with x3. It is then

straightforward to check that S2 decomposes as a direct product of ⟨x4⟩ ≅ C2 with
⟨x1 , x2⟩ ≅ D4. From evaluating α and γ on generators, it is clear that the order-8
elementary abelian group ⟨x2 , x3 , x4⟩ (resp. ⟨x1 , x3 , x4⟩) is contained in the kernel of α
(resp. γ); moreover on checking orders we see that these containments are equalities.
It follows that the center of S2 coincides with Z ∶= ⟨x3 , x4⟩ = ker(α) ∩ ker(γ).

We first prove that if G ⊂ S2 is a counterexample then we must have G = S2 or
G ≅ D4. To show this, we start by claiming that if G is abelian then G cannot be a
counterexample. Suppose that G is an abelian subgroup of S2. Since neither α nor γ
can be trivial on G, there must exist (not necessarily distinct) elements w , y ∈ G such
that w ∉ ker(α) and y ∉ ker(γ). If w ∈ ker(γ)/ker(α), then w ≡ x1 (mod Z), and the
relations given above imply that w cannot commute with anything not lying in ker(γ);
this contradiction implies that w ∉ ker(α) ∪ ker(γ). By an analogous argument, we
also have y ∉ ker(α) ∪ ker(γ), and indeed, any element g ∈ G/Z must satisfy g ∉
ker(α) ∪ ker(γ), i.e., α(g̃) = γ(g̃) = 1 for any g̃ ∈ G with π2(g̃) = g. Now if we assume
that G is a counterexample, for any g̃ ∈ G we must have −α(g̃)2γ(g̃) f (g̃) ≡ 0 (mod
2) by (2.6) and, therefore, f (g̃) = 0 for each g̃ ∈ π−1

2 (G/Z). Then, since G/Z clearly
generates G, we get that f is trivial on G, thus contradicting our assumption and
proving our claim.

We now assume that G is a proper nonabelian subgroup of S2 (and therefore of
order 8) and show that it is isomorphic to D4. Note that since both ker(α) and ker(γ)
are elementary abelian 2-groups, any order-4 element of G must lie in S2/(ker(α) ∪
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ker(γ)). By considering the quotient S2/Z using the generators and relations given
above, we see that any element of S2/(ker(α) ∪ ker(γ)) must be equivalent modulo Z
to x1x2. It follows that any two such elements commute, and so G has the property that
any two of its order-4 elements commute. Since the only nonabelian group of order 8
with that property is D4, we get G ≅ D4 as claimed.

Now for any counterexample G ⊂ S2, we claim that ⟨G , H⟩ ∈ Fix(4) for any sub-
group H ⊂ �(2) ∩ ker( f ). This follows directly from the formula (2.6) and the fact
that replacing any element g ∈ G with its translation by an element in H clearly does
not change α(g), β(g), or f (g). Since we have ⟨G , H⟩ ⊃ G, the fact that G satisfies the
lattice condition in Question 2 automatically implies that ⟨G , H⟩ satisfies it as well,
and so ⟨G , H⟩ is also a counterexample.

Now, that we have shown that any counterexample G satisfies that G contains a
subgroup isomorphic to D4, we set out to prove the converse: that a counterexample
subgroup G ⊂ S2 can be constructed satisfying that G = S2 or that G coincides with
any given subgroup of S2 , which is isomorphic to D4. We start by letting D ⊂ S2 be any
subgroup isomorphic to D4, generated by an order-4 element x and an order-2 element
y ≠ x2. Now, suppose that G = ⟨x̃, ỹ, �(2) ∩ ker( f )⟩, where x̃ and ỹ are elements of S2
lying in the inverse images π−1

2 (x) and π−1
2 (y), respectively, and satisfying f (x̃) = 0

and f (ỹ) = 1. Then, by construction we have G = ⟨x, y⟩ = D. We now show that every
element of G satisfies the determinant condition required for G to lie in Fix(4), for
which we make use of the formula (2.6). First of all, if g ∈ G lies in π−1

2 (⟨x⟩), then we
clearly have f (g) = 0 and so det(g − 1) ≡ 0 (mod 4). Now, choose g ∈ G/π−1

2 (⟨x⟩), so
that π2(g) ∈ D ≅ D4 has order 2. If we assume that g ∈ S2/(ker(α) ∪ ker(γ)), then it
is easily verified, using the fact that the only nontrivial commutator in S2 lies in Z, that
π2(g) ≡ x1x2 (mod Z) and so π2(g)2 = x3x4 ≠ 1, contradicting the fact that π2(g) has
order 2. We therefore have π2(g) ∈ ker(α) ∪ ker(γ). We then get det(g − 1) ≡ 0 (mod
4) from the fact that α(g) = 0 or γ(g) = 0. It follows that G ∈ Fix(4).

Suppose that we replace G with ⟨G , x̃4⟩ for some element x̃4 ∈ S2 satisfying
π2(x̃4) = x4 and f (x̃4) = 0. We know from the group structure of S2 that it is a
direct product of ⟨x4⟩ and any of its subgroups isomorphic to D4; therefore, we
have G = S2. Now given any g ∈ G/⟨x̃, ỹ, �(2) ∩ H⟩, we have g = g′x4 for some g′ ∈
⟨x̃, ỹ, �(2) ∩ H⟩. We have already shown that det(g′ − 1) ≅ 0 (mod 4); now it is clear
that det(g − 1) ≡ 0 (mod 4) also, using (2.6) and the fact that the homomorphisms α,
β, and f each take the same value on g′ and g′x4. Thus, again we have G ∈ Fix(4).

Now, using the fact that the maps α, γ, and f are each nontrivial on G in any of
the above cases, we apply Lemma 2.2 to get that G is a counterexample. We have thus
proven the existence of counterexamples G with G = S2 or G ≅ D4. ∎

3.4 Serre’s counterexample

Because the reference [11] does not appear in the literature, and because it was the
genesis of this paper, we give a brief description of Serre’s original counterexample.
Let � = 2 and consider the subgroup H of S2 consisting of all g such that

α(g) + γ(g) + f (g) = 0.
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This ensures that the product α2γ f is zero on H (when � = 2 we have α = α′) and hence
that H ∈ Fix(4) by (2.6). Now consider the elements

g1 =
⎛
⎜⎜⎜
⎝

1 0 0 0
1 1 0 0
0 0 1 0
0 0 −1 1

⎞
⎟⎟⎟
⎠

g2 =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

g3 =
⎛
⎜⎜⎜
⎝

1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

.

and set A = g1 g2, B = g1 g3, and C = g2 g3. Then, one of α, γ, or f is nontrivial on each of
A, B, and C and, in addition, A, B, and C each belong to H. This makes H ⊂ Sp4(Z2) a
counterexample by Lemma 2.3 and Proposition 2.2. We now replace H by π−1

4 (π4(H)),
so that the image modulo 4 is the same, but H now contains �(4). This enlarged group
is then open in GSp4(Z2), belongs to Fix(4), and does not stabilize any additional
lattices; it is therefore a counterexample. Since there exists an abelian surface over Q
with full 2-adic image GSp4(Z2), one can enlarge the field of definition to produce an
abelian surface over a number field with the desired mod-4 image, which produces a
counterexample to Question 1.

4 The Iwahori subgroup

Throughout this section, by fixing an appropriate symplectic basis of our free rank-
4 Z�-moduleT, we identify B� with the subgroup of Sp4(Z�)whose reduction modulo
� is the full subgroup of lower-triangular matrices. Note that S� ⊂ B�. If G ⊂ B� also
belongs to Fix(�2), then the elements of G can be explicitly described in terms of
the maps α, β, γ, δ, ε as outlined in Section 2.1. The main result of this section is the
following theorem, which classifies the counterexamples G ⊂ B�. Because B2 = S2, in
this section we only consider primes � ≥ 3.

Theorem 4.1 Suppose that � ≥ 3 and that G ∈ Fix(�2) is a counterexample such that
G ⊂ B� but G /⊂ S�. Then G satisfies the following:
(i) α(G ∩ S�) = 0 and (G ∩ S�) has order � or �2; or

(ii) γ(G ∩ S�) = 0 and (G ∩ S�) has order �.
In either case, for any H ⊂ �(�), the subgroup of Sp4(Z/�2) generated by G and H is
also a counterexample.

In particular, if G is a maximal counterexample, then �(�) ⊂ G and G has isomor-
phism type Z/� × (Z/� ⋊ (Z/�)×) or Z/� ⋊ (Z/�)×, depending on whether α(G ∩ S�) =
0 or γ(G ∩ S�) = 0, respectively.

Moreover, there do exist counterexamples satisfying (i) and counterexamples satisfy-
ing (ii).

Observe that if G ∈ Fix(�2) then G ∩ S� ∈ Fix(�2) as well. By our work in Section 3,
one of α, γ, or f must be trivial on G ∩ S�. Starting with f, we will consider the effect
on G of α, γ, or f being trivial on G ∩ S�.

Lemma 4.2 Suppose G ∈ Fix(�2), G ⊂ B�, and f (G ∩ S�) = 0. Then f (G) = 0 and
therefore, by Proposition 2.3, G is not a counterexample.
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Proof The fact that G ∩ S� ⊲ G and the hypothesis f (G ∩ S�) = 0 together imply
f induces a homomorphism G/G ∩ S� → Z/�. But elements in G/G ∩ S� have order
coprime to �, whence such a homomorphism is trivial and so is f. ∎

In contrast to Lemma 4.2, we do get counterexamples when α(G ∩ S�) = 0 and
when γ(G ∩ S�) = 0, as claimed in Theorem 4.1. Our first step in each classification
is to show that if G is a maximal counterexample, then (G ∩ S�) has order �2 when
α(G ∩ S�) = 0 and order � when γ(G ∩ S�) = 0.

We start with a computation that will be used in both cases. In order for G to be
a counterexample, f ∶ G → Z/� must be nontrivial and, therefore, surjective. If g ∈ G
and f (g) ≠ 0, our determinant formula (2.4) directly implies

γ(g)α(g)2 + β(g)α(g)(1 − ε(g)2)
ε(g) + δ(g)(1 − ε(g))2

ε(g) ≡ 0 (mod �).(4.1)

Remark 4.3 Even though we will not need it for the work that follows, one can prove
that if the mod-� images of the entries of g satisfy (4.1), and if ε(g) ∈ (Z/�)× has order
m, then gm ≡ 1 (mod �).

Now, we consider the effect of α and γ being trivial on G ∩ S�. If either α(G ∩ S�) =
0 or γ(G ∩ S�) = 0, then (G ∩ S�) cannot be the full �-Sylow subgroup of Sp4(Z/�).
We will now show, among other things, that (G ∩ S�) cannot have order �3 either. To
do this, we will argue separately for α versus γ. Because neither α nor γ extends to a
homomorphism of G, our arguments will be different from those for Lemma 4.2.

Lemma 4.4 Suppose G ⊂ B� lies in Fix(�2) and that f ∣G is nontrivial. Suppose further
that α(G ∩ S�) = 0. Then (G ∩ S�) has order dividing �2.

Proof Recall that ker α = ⟨x2 , x3 , x4⟩ is the unique elementary abelian subgroup of
(G ∩ S�) of order �3. Fix g ∈ G/G ∩ S� and suppose det(g − 1) ≡ 0 (mod �2), so that
either f (g) = 0 or (4.1) holds.

Let s ∈ G ∩ S�. Then, direct computation in coordinates reveals that

det(gs − 1) ≡ (⋆)( f (g) + f (s))� (mod �),

where the expression (⋆) is given by

⋆ = α(g)2γ(s) + (1 − ε(g))2δ(s) + 2α(g)(1 − ε(g))β(s)
ε(g) .

Thus, for every s ∈ G ∩ S� , we must have either

α(g)2γ(s) + (1 − ε(g))2δ(s) + 2α(g)(1 − ε(g))β(s) ≡ 0 (mod �)(4.2)

or f (s) + f (g) ≡ 0 (mod �).
For fixed g, we claim that it is not the case that every s ∈ ker α satisfies (4.2) or

f (s) + f (g) ≡ 0 (mod �). To see this, note that the subset

{(β(s), γ(s), δ(s))}s∈ker α∩S�
⊂ (Z/�)3

defines a three-dimensional F�-vector space E. Indeed, it is easy to verify from the
discussion in Section 3.1 that the maps β, γ, δ ∶ S� → Z/� are homomorphisms and
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form a dual basis {β, γ, δ} to the basis {x2 , x3 , x4} of the three-dimensional F�-space
ker α ∩ S�. Since g is fixed and ε(g) ≠ 1, the congruence (4.2) defines a codimension-1
subspace V of E.

Then, every s such that (β(s), γ(s), δ(s)) lies outside V must have f (s) = − f (g).
If f (g) = 0, then f (s) = 0 for all s /∈ π−1

� (G ∩ S�). This implies f (G) = 0 because
the complement of π−1

� (G ∩ S�) generates G, and contradicts the hypothesis f ∣G is
nontrivial. If f (g) ≠ 0, then we have

f (s) = f (s2) = − f (g),

which is impossible since f (s2) = 2 f (s). If follows that (G ∩ S�) cannot have order �3

and so must have order dividing �2. ∎

Lemma 4.4 constrains the order of (G ∩ S�) to be at most �2. We now show that
counterexamples exist when the order equals �2. While it is possible that counterexam-
ples may exist when the order of (G ∩ S�) equals �, they would come from subgroups
of the order-�2 counterexamples. Because of this, it will satisfy us to describe only the
maximal counterexamples.

Remark 4.5 In the extreme case, where (G ∩ S�) is trivial, then G cannot be a
counterexample, since G is then cyclic (if a generator fixes an order-�2 submodule,
then the entire group will fix the same).

Proposition 4.1 Fix an element g ∈ B�/S� satisfying det(g − 1) ≡ 0 (mod �2). Let S be
the subgroup of ker α satisfying (4.2) relative to the coordinates of g. Then, the subgroup
G of B� generated by the element g and the subgroups S and �(�) is a counterexample.

Proof By hypothesis det(g − 1) ≡ 0 (mod �2), and det(gs − 1) ≡ 0 (mod �2) for all
s ∈ G ∩ S� because of (4.2). Therefore, the coset g(G ∩ S�) consists entirely of elements
σ satisfying det(σ − 1) ≡ 0 (mod �2). We claim that this is enough to conclude that
G ∈ Fix(�2). To see this, we use the fact that G/(G ∩ S�) is cyclic, generated by g(G ∩
S�) and, for fixed n ≥ 1, evaluate the expression (⋆) of Lemma 4.4 on elements gns:

(⋆)′ ∶ α(gn)2γ(s) + (1 − ε(gn))2δ(s) + 2α(gn)(1 − ε(gn))β(s)
ε(gn) .

We have ε(gn) = ε(g)n because ε ∶ G → (Z/�)× is a homomorphism. It is easy to show
that

α(gn) = 1 − ε(g)n

1 − ε(g) α(g).

Then, applying the expressions for α(gn) and ε(gn) to (⋆)′ and using (4.2), algebraic
manipulation reveals that (⋆)′ = 0. Therefore, every coset gn(G ∩ S�) consists of σ
with det(σ − 1) ≡ 0 (mod �2) and so G ∈ Fix(�2).

To see that G is a counterexample, we apply Propositions 2.3 and 2.2. Our assump-
tion that �(�) ⊂ G means that f ∣G is nontrivial, satisfying Proposition 2.3(a). If α∣G
and γ∣G are nonzero, then Proposition 2.2 shows that the only proper G-stable lattices
we need to check for quotients with trivial G-action are L0, L1, L2, and L3. But any pair
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of these with relative index �2 visibly has nontrivial G-action due to the nontriviality
of ε. There is one exceptional case to check by hand.

If α(G) = 0, then δ(s) = 0 for all s ∈ G ∩ S� by (4.2). If, in addition, γ(G) ≠ 0, then
an argument in the vein of the proof of Proposition 2.3 shows that the only new G-
stable lattices to include among L0, L1, L2, and L3 are:
• the lattice L̃1 generated by �T and e3, and
• the lattice L̃2 generated by �T and e1, e3, and e4.
The nontriviality of ε again shows that the action on any quotient of order �2 is
nontrivial.

If γ(G) = 0, (in particular γ(s) = 0 for all s ∈ G ∩ S�), then (4.2) imposes an
additional linear condition on the entries of G ∩ S� and so G ∩ S� has order dividing
�. Since we only classify maximal counterexamples in this proposition, we can safely
omit this case.

This completes the classification of maximal counterexamples and finishes the
proof. ∎

We can produce counterexamples that are as large as possible within the constraints
of Proposition 4.1, as the following example shows.

Example 4.6 Suppose α(g) = 0 so that (⋆)’ simplifies to
(1 − ε(g)n)2δ(s).

for all s. In particular, (1 − ε(g)n)2δ(s) must equal 0 for all powers of n, including
those for which ε(g)n ≠ 1, whence δ(s) = 0 for all s. The maximal subgroup satisfying
all of these conditions is then seen to be the preimage in Sp4(Z�) of the group

⎛
⎜⎜⎜
⎝

1 0 0 0
0 ε 0 0
β γ 1/ε 0
0 βε 0 1

⎞
⎟⎟⎟
⎠
⊂ Sp4(Z/�),

where β, γ ∈ Z/� and ε ∈ (Z/�)×.

Finally, we consider the case where γ(G ∩ S�) = 0. Similar to when α(G ∩ S�) = 0,
we will show that if G is a counterexample, then (G ∩ S�) cannot have order �3; in fact,
we will show that (G ∩ S�) must have order �.

Lemma 4.7 Suppose G ⊂ B� lies in Fix(�2) and that f ∣G is nontrivial. Suppose further
that γ(G ∩ S�) = 0. Then (G ∩ S�) has order dividing �.

Proof The proof strategy is nearly identical to that of Lemma 4.4. Fix g ∈ G/G ∩
S� with det(g − 1) ≡ 0 (mod �). For all s ∈ G ∩ S� , we must have det(gs − 1) ≡ 0
(mod �) and a direct calculation reveals that

det(gs − 1) ≡ (⋆⋆)( f (g) + f (s))�,

where the expression (⋆⋆) is given by

γ(g)α(s)2 + 2(β(g)(1 − ε(g)) + α(g)γ(g))α(s)+
2α(g)(1/ε(g) − 1)β(s) + (1/ε(g) − 1)α(s)β(s) + (ε(g) + 1/ε(g) − 2)δ(s).
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Therefore, for every s ∈ G ∩ S� it must be the case that either

γ(g)α(s)2 + 2(β(g)(1 − ε(g)) + α(g)γ(g))α(s)+(4.3)
2α(g)(1/ε(g) − 1)β(s) + (1/ε(g) − 1)α(s)β(s) + (ε(g) + 1/ε(g) − 2)δ(s) = 0

or f (s) + f (g) = 0.
Not every triple (α(s), β(s), δ(s)) ∈ (Z/�)3 satisfies (4.3) (for example, (0, 0, 1)

does not), and those that do not need not satisfy f (s) + f (g) = 0 by the same
reasoning in the proof of Lemma 4.4. Therefore, the group (G ∩ S�) cannot have
order �3, and hence has order dividing �2. We will now show that the order must in fact
divide �.

While the group ker γ is not elementary abelian, any subgroup of order dividing �2

is. We will show that the set

{(α(s), β(s), δ(s)) ∈ F�
3}

taken over all s ∈ G ∩ S� that satisfy (4.3) does not contain a two-dimensional linear
space. Suppose it did. Let s ∈ G ∩ S� so that s2 ∈ G ∩ S� as well. Apply the condition
(4.3) to s2 and subtract twice the relation (4.3) applied to s to obtain the new condition

α(s)(γ(g)α(s) + (1/ε(g) − 1)β(s)) = 0.(4.4)

If α(s) = 0 then substituting into (4.3) shows

2α(g)(1/ε(g) − 1)β(s) + (ε(g) + 1/ε(g) − 2)δ(s) = 0(4.5)

whence the linear space is at most one-dimensional.
On the other hand, if γ(g)α(s) + (1/ε(g) − 1)β(s) = 0, then substituting into (4.3)

additionally shows that

2β(g)(1 − ε(g))α(s) + (ε(g) + 1/ε(g) − 2)δ(s) = 0(4.6)

as well, whence the linear space is at most one-dimensional.
In all cases, we see that G ∩ S has order dividing �, which completes the proof of

the lemma. ∎
We now show that there exist counterexamples G ⊂ B� where (G ∩ S�) has

order �.

Proposition 4.2 Fix an element g ∈ B�/S� with det(g − 1) ≡ 0 (mod �2). Let S be
any subgroup of ker γ satisfying (4.3) such that S has order �. Then, the subgroup G of
B� generated by g, S , and �(�) is a counterexample.

Proof The proof of Lemma 4.7 showed that there are two ways for G ∩ S� to have
order �; see equation (4.4), which yields the two cases (4.5) and (4.6). We will consider
these case by case.

Case 1. Suppose α(s) = 0 for all s ∈ G ∩ S�. Then, by (4.3), we have

2α(g)(1 − ε(g))β(s) + (ε(g) + 1/ε(g) − 2)δ(s) = 0(4.7)

and so g(G ∩ S�) consists entirely of elements σ such that det(σ − 1) ≡ 0 (mod �2).
Fix a positive integer n > 1 such that gn /∈ G ∩ S� and consider the coset gn(G ∩ S�).
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Because

γ(gn) = (1 − ε(g)2n)
(1 − ε(g)2)ε(g)n−2 γ(g),

the determinant condition det(gns − 1) ≡ 0 (mod �2), under the assumption that
α(s) = 0 and making the substitution g ↦ gn in (4.3) reduces to

2α(gn)(1 − ε(gn))β(s) + (ε(gn) + 1/ε(gn) − 2)δ(s) ≡ 0 (mod �),

which simplifies to

2α(g)β(s)(1 − ε(g)n)2 (1 − 1/ε(g)(n−1))
1 − ε(g) ≡ 0 (mod �)

for all s ∈ G ∩ S�. If β(s) = 0 for all g ∈ S�, then by (4.7) we have δ(s) = 0 for all s ∈ S�

as well, and so G ∩ S� is trivial, violating the hypothesis that it have order �. We also
assume that ε(gn) and ε(gn−1) are nontrivial, and thus we are left with α(g) = 0.

If α(g) = 0 then α(G) = 0, and then it is immediate to check that (4.3) is satisfied
for all nontrivial cosets gn(G ∩ S�).

Case 2. Here, we assume

γ(g)a(s) + (1/ε(g) − 1)β(s) = 2β(g)(1 − ε(g))α(s) + (ε(g) + 1/ε(g) − 2)δ(s) = 0
(4.8)

for all s ∈ G ∩ S�. Now, we proceed in an identical fashion to the previous case to
determine conditions for an arbitrary coset gn(G ∩ S�) to consist of elements σ with
det(σ − 1) ≡ 0 (mod �2). If γ(g) ≠ 0, then a similar argument to the one above shows
that we are forced to take α(s) = 0 for all s. But the linearity conditions then show
β(s) = δ(s) = 0 for all s as well, whence G ∩ S� is trivial, a contradiction. On the other
hand, if γ(g) = 0, then γ(G) = 0; and then a straightforward argument, similar to the
one above, shows (substituting g ↦ gn in the formula (4.8)) that det(gns − 1) ≡ 0
(mod �2) for all s ∈ G ∩ S� and so G ∈ Fix(�2).

We see that either α∣G = 0 or γ∣G = 0, so we cannot apply Proposition 2.2 directly.
In the case α∣G = 0 but γ∣G ≠ 0, then the only lattices to check in addition to the L i are
the L̃1 and L̃2 of the proof of Proposition 4.1. Similarly, due to the nontriviality of ε,
there do not exist quotients of order �2 with trivial G-action.

If γ∣G = 0 but α∣G ≠ 0, then the only additional stable lattice to check is the lattice
L̃3 generated by �T and the elements e2 and e4. As in all other cases, the nontriviality
of ε means that none of the quotients of order �2 have trivial G-action.

This completes the proof. ∎
As with Proposition 4.1, we can use Proposition 4.2 to produce maximal coun-

terexamples. That is, we can find G ∈ Fix(�2) such that �(�) ⊂ G and such that G has
order (� − 1)�. The following example has G ∩ S� ⊂ ker γ and is distinct from the ones
classified by Proposition 4.1.
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Example 4.8 Let G ⊂ B� be the full preimage of the group

⎛
⎜⎜⎜
⎝

1 0 0 0
α ε 0 0
0 0 1/ε 0
0 0 −α/ε 1

⎞
⎟⎟⎟
⎠
⊂ Sp4(Z/�),

where α ∈ Z/� and ε ∈ (Z/�)×. One can check that this group falls into the classification
of the counterexamples given above.

5 Subgroups with an irreducible two-dimensional factor

Now, we suppose that the subgroup G ⊂ Sp(T) is such that the semisimplification of
the action of G on T/�T contains an irreducible two-dimensional factor. Throughout
this section, by fixing an appropriate symplectic basis {e1 , e2 , e3 , e4} of our free rank-
4 Z�-module T (in which we require that e4 be fixed by all of G), we identify P� with a
particular subgroup of Sp4(Z�) whose reduction is lower block-triangular. We recall
the maps α, β, β′ , α′ ∶ P� → Z/�, as well as their induced maps α, β, α′ , β

′ ∶ P� → Z/�
defined in Section 2.1. Each element of P� is a lower-block-diagonal matrix that fixes e4
and whose middle block is a 2 × 2 submatrix reflecting how that operator acts on the
component corresponding to the span of {e2 , e3} in the semisimplification of T/�T.
There is, therefore, a homomorphism π ∶ P� → SL2(Z/�) given by sending a matrix in
P� to its middle block, which is a matrix in SL2(Z/�). Composing this with π� gives
us a homomorphism π ∶ G → SL2(Z/�).

When the image under π of a subgroup G ⊂ P� is reducible, via an appropriate
change of symplectic bases of T, it can be simultaneously conjugated to a group of
lower-triangular matrices in SL2(F�) (without affecting the block-diagonal structure
of G), and, therefore, we are in the situation dealt with in Section 3 and Section 4. In
this section, we are concerned with the case that π(G) is an irreducible subgroup of
SL2(F�), i.e., there is no nontrivial subspace of F2

� fixed by the whole group π(G).
We now show how the vector (β′ , α′)(g) = (β′(g), α′(g)) ∈ F�

2 is determined by
(α, β)(g) and π(g). The group SL2(F�) injects into P� as the subgroup of all block-
diagonal matrices whose first and last blocks are trivial; this injection SL2(F�) ↪ P�

is a section of the surjective map π. Given any matrix g ∈ P�, we may multiply its
reduction π�(g) ∈ P� on the right by the block-diagonal matrix in P� corresponding
to the image of π(g)−1 to get a matrix x ∈ P� lying in ker(π). We have seen in Section
2 that then we have (β

′
, α′)(x) = (β,−α)(x). One then checks directly through the

operation of matrix multiplication that (α, β)(g) = (α, β)(π�(g)) = (α, β)(x) and
that we have the formula

(β′ , α′)(g) = (β(g) − α(g))π(g).(5.1)

We are now ready to present the main result of this section, which states that,
under the hypotheses of this section, there are no counterexamples for � ≥ 3 and which
roughly classifies the counterexamples that exist for � = 2. For notational convenience,
we switch to using F� for Z/� to emphasize the fact that we are doing linear algebra
rather than considering an image of reduction modulo �.
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Theorem 5.1 Let G ⊂ Sp(T) be a counterexample satisfying that π(G) ⊂ SL2(F�) is an
irreducible subgroup. Then we have � = 2; i.e., there are no counterexamples satisfying
the above property when � ≥ 3. When � = 2, we have that G ⊂ Sp(T) satisfies either
(i) G2 ≅ π(G) × C2; or

(ii) G2 ≅ π(G) ≅ SL2(F2).
In case (i), for any H ⊂ �(2) ∩ ker( f ), the subgroup of Sp(T) generated by G and

H is also a counterexample. In case (ii), for any H ⊂ ker(π2), the subgroup of Sp(T)
generated by G and H is also a counterexample (in particular, the full inverse image
π−1

2 (G2) is a maximal counterexample).
Moreover, there do exist counterexamples satisfying (i) and counterexamples satisfy-

ing (ii).

The rest of this section is dedicated to proving the above theorem. Throughout
the following arguments, we will freely use the fact that if a subgroup G ⊂ Sp(T) is a
counterexample, then f must be nontrivial on G, by Proposition 2.3(a).

5.1 Restricting the possible images of counterexamples

In this subsection, we will show that under the assumption of an irreducible two-
dimensional factor, which was established at the beginning of this section, a coun-
terexample G must satisfy G ≅ π(G) × C� or G ≅ π(G). We first need to provide
some basic results concerning the properties of the classical groups SL2(F�) and their
irreducible subgroups, as in the below proposition.

For the statement below and the arguments given throughout the rest of the section,
recall that a unipotent operator x is one satisfying (x − 1)n = 0 for some n ≥ 1. In our
situation where x belongs to SL2(F�) for some prime �, this is equivalent to satisfying
that (x − 1)2 = 0; that x − 1 is noninvertible; that x fixes some nontrivial vector v ∈ F2

� ;
or that the only eigenvalue of x is 1.

In what follows, an irreducible subgroup of SL2(F�) is one that acts irreducibly
on F2

� .

Proposition 5.1 Let � be a prime. The following facts hold.
a) (i) If � ≥ 5, then there is no nontrivial homomorphism from SL2(F�) to Z/�.

(ii) The only normal subgroup of SL2(F3) of index 3 is the subgroup Q8 ⊲ SL2(F3)
coinciding with the subset of all elements whose orders are not divisible by 3 and
which is isomorphic to the quaternion group; there are thus only two nontrivial
homomorphisms from SL2(F3) to Z/3, both having kernel Q8.

(iii) Since SL2(F2) is isomorphic to the symmetric group S3, the only nontrivial
homomorphism from SL2(F2) to Z/2 is the one whose kernel is the order-3
subgroup A3 ⊲ SL2(F2) corresponding to the alternating group.

b) An element of SL2(F�) is unipotent if and only if it has order dividing �.
c) The order of any proper irreducible subgroup of SL2(F�) is not divisible by �; thus

there is no nontrivial homomorphism from a proper irreducible subgroup of SL2(F�)
to Z/�.

d) Assume that � ≥ 3, and let H ⊊ SL2(F�) be a proper irreducible subgroup. The group
SL2(F�) is generated by set of nonunipotent matrices lying in SL2(F�)/H.

e) If � ≥ 3, each irreducible subgroup of SL2(F�) has nontrivial center.
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Proof If � ≥ 3, any homomorphism from SL2(F�) to Z/�Z must kill the scalar
−1, since the order of this element is never divisible by �. Such a homomorphism,
therefore, factors through the projective linear group SL2(F�)/{±1}. According to [10,
Section IV.3.4, Lemma 1], this group is simple as long as � ≥ 5. Such a homomorphism
must therefore be trivial, proving part (a)(i). The statements of (a)(ii) and (a)(iii) are
evident from direct verification.

Parts (c) and (b) are precisely the statement of [6, Theorem XI.2.2] (see also [10,
Section IV.3.2, Lemma 2] and the unnamed statement appearing right before it in [6,
Section XI.2] respectively.

Now assume that � ≥ 3, and let H ⊊ SL2(F�) be a proper irreducible subgroup.
Consider the subset S ⊂ SL2(F�) consisting of all matrices x such that −x is nontrivial
and unipotent. Since each operator in S has −1 as its only eigenvalue, there are no
unipotent matrices in S. Moreover, given any element x ∈ S, since � is odd and −x ≠ 1
is unipotent and so has order �, we have x�+1 = (−x)�+1 = −x. This proves both that
S ∩ H = ∅ (because otherwise H would contain the unipotent matrix −x for each
x ∈ S; it follows from parts (b) and (c) that this contradicts the fact that H is proper and
irreducible) and that S generates the set of all unipotent matrices in SL2(F�), which
are well known to generate all of SL2(F�). Thus, part (d) is proved.

Now retaining our assumption that � ≥ 3, the group SL2(F�) itself has nontrivial
center since it contains the scalar −1. Let N ⊊ SL2(F�) be a proper irreducible sub-
group. By part (c), the order of N is not divisible by � and so we may apply [6, Theorem
XI.2.3] to get that N/(N ∩ {±1}) is isomorphic to a dihedral group or to A4, S4, or A5.
One verifies through straightforward computation that the only element of order 2 in
SL2(F�) is the scalar−1. It follows that if N has even order, then N has nontrivial center.
We therefore assume that N has odd order. Then, we have that N ≅ N/(N ∩ {±1})
itself must be an odd-order subgroup of a dihedral group or of A4, S4, or A5. We claim
that the only odd-order subgroups of these groups are abelian, thus proving that N still
has nontrivial center. Indeed, the only odd-order elements of a dihedral group lie in
its index- 2 cyclic subgroup and thus can only generate a cyclic subgroup, while we see
by looking at the orders of A4, S4, and A5 that their odd-order subgroups must have
order dividing 15, and all such groups are abelian. Thus, part (e) is proved. ∎
Lemma 5.2 Let � be any prime and G be any group in Fix(�2).

a) For each nontrivial element g ∈ G with f (g) ≠ 0, there exists a vector wg =
((wg)1 , (wg)2) ∈ F2

� such that (α, β)(g) = π(g).wg −wg . If f (g) ≠ 0 and π(g) is
not unipotent, then π�(g) fixes the vector (−1, (wg)1 , (wg)2 , 0) ∈ F4

� and we have the
formula

δ(g) = (β(g) −α(g))(π(g) − 1)−1(α(g)
β(g)).

b) Suppose that the maps α and β both vanish on the subgroup G ∩ ker(π). Then,
there exists a vector w = (w1 , w2) ∈ F2

� (depending only on G) such that (α(g), β(g)) =
π(g)w −w for every element g ∈ G. For those elements g ∈ G such that f (g) ≠ 0 and
π(g) is not unipotent, we have that π�(g) fixes the vector (−1, w1 , w2 , 0) ∈ F4

� .

Proof Let g ∈ G be an element such that f (g) ≠ 0. Since G ∈ Fix(�2), it follows
from Remark 1.1 that π�2(g) ∈ Sp4(Z/�2) fixes a submodule of T/�2T of order �2. It
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is already clear that π�2(g) fixes the mod-�2 image of �e4; it must, therefore, be the
case that π�2(g) fixes a vector u ∈ T/�2T such that �e4 modulo �2 is �u (that is, u =
(�u1 , �u2 , �u3 , u4) with u4 ≠ 0) or that there is a vector v ∈ T/�2T with �v ≠ �π�2(e4)
such that g fixes �v. The first case is impossible, as one verifies easily that the first
entry of g .u equals the first entry of u plus f (g)u4 ≠ 0. We, therefore, have a vector
v ∈ T/�2T such that �g .v = �v, or equivalently, such that the image modulo � of v is
fixed under multiplication by π�2→�(g). Write v = (v1 , v2 , v3 , v4) ∈ F4

� for the image
modulo � of v. We observe that the second and third entries of π�(g)v are given by
the vector v1(α(g), β(g)) + π(g).(v2 , v3). The fact that π�(g).v = v now implies

(v2 , v3) = v1(α(g), β(g)) + π(g).(v2 , v3).(5.2)

If v1 ≠ 0, then it follows that (α, β)(g) = −v−1
1 (π(g) (v2 , v3) − (v2 , v3)), and we get

the first claim of part (a) when we take wg = −v−1
1 (v2 , v3). We, therefore, assume

that v1 = 0. In this case, the above equation implies that (v2 , v3) is invariant under
multiplication by π(g) (in particular, this implies that π(g) is unipotent). It follows
from the above discussion that the final entry of π2(g).v is equal to

(β − α) π(g)(v2
v3
) + v4 = (β −α)(v2

v3
) + v4 .

Since we have π2(g).v = v, it follows that (β − α)(v2
v3
) = 0. It is now clear that the

vector (β,−α) ∈ F2
� must be a scalar multiple of (v3 ,−v2), and so (α, β)(g) is a scalar

multiple of (v2 , v3). Then, we take wg to be any vector in the subspace ⟨e2 , e3⟩ that is
not a scalar multiple of (v2 , v3). Since the operator π(g) is not the identity, it cannot
also fix wg . It is now easily verified that π(g).wg −wg is a nontrivial scalar multiple of
(v2 , v3) and thus also of (α(g), β(g)); after replacing wg with a suitable multiple of
itself, we even get π(g).wg −wg = (α(g), β(g)), and the first claim of part (a) follows.

Now, suppose that f (g) ≠ 0 and π(g) is not unipotent. We have seen above
that π�(g) fixes a vector (v1 , v2 , v3 , v4) ∈ F4

� and that we must have v1 ≠ 0, because
otherwise π(g)would be unipotent. We have shown that in this case, we may take wg =
−v−1

1 (v2 , v3). Since π(g) fixes both −v−1
1 (v1 , v2 , v3 , v4) = (−1, (wg)1 , (wg)2 ,−v−1

1 v4)
and (0, 0, 0, 1), we get the claim that (−1, (wg)1 , (wg)2 , 0) is fixed by π(g). Now, the
final entry of π(g)(−1, (wg)1 , (wg)2 , 0) is given by

0 = −δ(g) + β′(g)(wg)1 + α′(g)(wg)2 = −δ(g) + (β′(g)α′(g))((wg)1
(wg)2

) .(5.3)

Since from the discussion at the start of this section we have (β′ , α′)(g) =
(β(g) − α(g))π(g)and we have shown above that (α, β)(g) = (π(g) − 1).wg , we get

δ(g) = (β(g) −α(g)) π(g)(π(g) − 1)−1 (α(g)
β(g)) .(5.4)

Now, one sees that the above is equivalent to the formula claimed in part (a) by noting
that π(g)(π(g) − 1)−1 = (π(g) − 1)−1 + 1 and (β(g) −α(g))(α(g) β(g))⊺ = 0.
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We now assume the hypothesis of part (b), which implies that the map (α, β) ∶ G →
F2
� induces a map (α̂, β̂) ∶ π(G) → F2

� . We observe directly from multiplying matrices
that we have the identity

(α̂, β̂)(x y) = (α̂, β̂)(x) + x .(α̂, β̂)(y)(5.5)

for any x , y ∈ π(G). The map (α̂, β̂) is, therefore, a cocycle with respect to the obvious
action of π(G) on F2

� . The claim of part (b) is equivalent to saying that (α̂, β̂) is also
a coboundary, so it suffices to prove that the first group cohomology of π(G) with
coefficients in the π(G)-module F2

� is trivial. We first assume that we do not have
� = 2 and π(G) = SL2(F2) and prove the vanishing of the first group cohomology
by appealing to Sah’s Lemma [6, Lemma VI.10.2], which implies as an immediate
corollary that if a group A acting on a module M has a central element x such that x − 1
acts as an automorphism on M, then the first group homology H1(A, M) vanishes. In
our case, we need to show that π(G) has a central element x such that the operator
x − 1 is invertible. Either we have � = 2 and π(G) = A3 (which is a nontrivial abelian
group), or we have � ≥ 3 and then Proposition 5.1(e) implies that π(G) has a nontrivial
central element. In either case, choose an element x ≠ 1 lying in the center of π(G).
Since a unipotent operator cannot lie in the center of an irreducible subgroup of
SL2(F�), the operator x − 1 must be invertible, and we have proved part (b) except
in the exceptional case that � = 2 and π(G) = SL2(F2). In this case, we consider the

values that (α, β) takes on the elements u1 ∶= (
1 1
0 1) and u2 ∶= (

1 0
1 1), noting that

together these elements generate SL2(F2). It follows from part (a) that there exist
scalars c1 , c2 ∈ F2 such that (α̂, β̂)(u1) = c1(1, 0) and (α̂, β̂)(u2) = c2(0, 1). Taking
w = (c2 , c1) ∈ F2

2, we get the desired statement. ∎
Lemma 5.3 If G is a counterexample, then the maps α and β vanish on the subgroup
G ∩ ker(π).

Proof Suppose that there is an element g ∈ G ∩ ker(π) with (α, β)(g) ≠ (0, 0).
Using the identity in (5.5), it is easy to verify that for any h ∈ G we have
(α(hgh−1), β(hgh−1)) = π(h)(α, β)(g). Since π(G) is irreducible, there is some h ∈
G such that the set {π(h).(α, β)(g), (α, β)(g)} is linearly independent. We note
that the map (α, β) is a homomorphism when restricted to G ∩ ker(π) thanks to the
identity (5.5). It follows that given any vector (α0 , β0) ∈ F2

� , there is an element g ∈
G ∩ ker(π)with (α, β)(g) = (α0 , β0). We shall show that for any g ∈ G ∩ ker(π) such
that (α, β)(g) ≠ (0, 0), we have f (g) ≠ 0. Under the assumption that such an element
g exists, this implies an obvious contradiction and thus will prove the statement in the
lemma.

In order to prove our claim that f (g) ≠ 0 for any g ∈ G ∩ ker(π) such that
(α, β)(g) ≠ (0, 0), we consider the cases π(G) = SL2(F�) and π(G) ⊊ SL2(F�) sep-
arately. We first assume that π(G) = SL2(F�). Assume that there exists an element
h ∈ G ∩ ker(π)with (α, β)(h) ≠ (0, 0) and f (h) = 0. Let y ∈ F2

� be a vector that is not
a scalar multiple of (α, β)(h). Then, π(G) contains a nontrivial unipotent operator
u, which fixes y, so that uw −w is a scalar multiple of y for each w ∈ F2

� . There exists
some g ∈ π−1(u) ⊂ G with f (g) ≠ 0, because otherwise, the fact that any nontrivial
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unipotent operator in SL2(F�) normally generates all of SL2(F�) implies that f is
trivial on all of G. Now, Lemma 5.2(a) implies that (α, β)(g) is a scalar multiple of y.
We have π(hg) = u and f (hg) ≠ 0, while the identity (5.5) implies that (α, β)(hg) =
(α, β)(h) + (α, β)(g), which is not a scalar multiple of y, thus contradicting Lemma
5.2(a).

We now assume that π(G) ⊊ SL2(F�). Assume again that there exists an element
h ∈ G ∩ ker(π)with (α, β)(h) ≠ (0, 0) and f (h) = 0. Since the set of all such elements
is clearly closed under conjugation and group multiplication, this implies that in fact
for every vector (α0 , β0) ∈ F2

� there is an element h ∈ G ∩ ker(π) with (α, β)(h) =
(α0 , β0) and f (h) = 0. There exists an element g ∈ G/ker(π) with f (g) ≠ 0, because
otherwise f would be trivial on G. Since π(G) is a proper irreducible subgroup of
SL2(F�), we know that π(g) is not unipotent by Lemma 5.2(b), (c), and so we may
apply Lemma 5.2(a) to get the formula given there for δ(g). We may do the same
to get a formula for δ(hg) for any h ∈ G ∩ ker(π) ∩ ker( f ) since then π(hg) = π(g)
and f (hg) = f (g) ≠ 0. Using the previously noted fact that (α, β)(hg) = (α, β)(h) +
(α, β)(g) along with the easily verified fact that δ(hg) = δ(h) + δ(g), we get the
below general formula for δ(hg).

δ(hg) = ((β(h) −α(h)) + (β(g) −α(g))) (π(g) − 1)−1 ((α(h)
β(h)) + (

α(g)
β(g))) .

(5.6)

We now expand the above formula, use the easily verified fact that δ(hg) = δ(h) +
δ(g), and subtract the formula for δ(g) from (5.6) to get

δ(h) = (β(h) −α(h)) (π(g) − 1)−1 (α(g)
β(g)) + (β(g) −α(g)) (π(g) − 1)−1 (α(h)

β(h))

+ (β(h) −α(h)) (π(g) − 1)−1 (α(h)
β(h)) .(5.7)

We now use the fact that the final term on the right-hand side of (5.7) is in some
sense “quadratic” while the other terms in (5.7) are “linear” in order to derive a
contradiction. More precisely, we consider the cases when � ≥ 3 and � = 2 separately
as follows. We note in either case that (α, β, δ)(h2) = 2(α, β, δ)(h) for any h ∈ G ∩
ker(π). If � ≥ 3, then choose an element h ∈ G ∩ ker(π) such that (α(h), β(h)) is not
an eigenvector of π(g) − 1, which ensures that

(β(h) −α(h))(π(g) − 1)−1(α(h)
β(h)) ≠ 0.(5.8)

Then, applying the formula (5.7) to h2 and subtracting (5.6), we get

2(β(h) −α(h))(π(g) − 1)−1(α(h)
β(h)) = 0,(5.9)

which contradicts (5.8). Now if � = 2, we deduce from the relations given in Section
3 that α, β, and δ are all homomorphisms when restricted to G ∩ ker(π). Noting that
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π(g) ∈ {(1 1
1 0), (0 1

1 1)}, we now compute

(β(h) −α(h))(π(g) − 1)−1(α(h)
β(h)) = α(h)2 + α(h)β(h) + β(h)2 .

Choosing elements h1 , h2 ∈ G ∩ ker(π) such that (α, β)(h1) = (1, 0) and (α, β)(h2) =
(0, 1), putting h = h1 + h2 into (5.7) and then subtracting the formula (5.7) for h1 and
for h2 yields the desired contradiction. ∎
Corollary 5.4 Let G ⊂ Sp(T) be a counterexample satisfying that π(G) ⊂ SL2(F�) is
an irreducible subgroup. We then have G ≅ π(G) × C� or G ≅ π(G).

Proof Clearly, G is an extension of π(G) by G� ∩ π�(ker(π)). Since Lemma 5.3
says that the maps (homomorphisms) α and β vanish on the latter, we get that
G ∩ π�(ker(π)) ⊂ ⟨x4⟩ ≅ C�, where x4 is the element defined in Section 3. Moreover, it
follows from the discussion there that x4 commutes with everything in π�(ker(π)) ⊂
Sp4(T/�T), which directly implies the desired statement. ∎

5.2 The nonexistence of counterexamples for � ≥ 3

We assume throughout this subsection that � ≥ 3 and proceed to prove the first
statement of Theorem 5.1.

Proof of Theorem 5.1 for � ≥ 3 We first consider the case that G ≅ SL2(F�) × C�.
In this case, we claim that f is trivial on G ∩ ker(π�). To see this, assume that f is
nontrivial on G ∩ ker(π�). Let g ∈ G be an element such that π(g) is not unipotent,
and let h ∈ G be an element such that π�(h) = x4. Then, after possibly translating g
or h by an element of G ∩ ker(π�)/ker( f ) ≠ ∅, we get that f (g) = f (hg) ≠ 0. Since
h ∈ ker(π), we have already seen that (α, β)(hg) = (α, β)(g); meanwhile, one verifies
in a straightforward manner that δ(hg) = δ(g) + 1. Then, putting hg into the formula
given by Lemma 5.2(a) yields the desired contradiction.

The fact that the homomorphism f is trivial on G ∩ ker(π�) implies that it induces a
homomorphism f ∶ G� → Z/�Z. Write G� = S × ⟨x4⟩, where S is a component isomor-
phic to π(G). It follows from Proposition 5.1(a) that f is trivial on S except in the case
that � = 3 and S ≅ SL2(F3). Assume for the moment that we are not in that exceptional
case. Then we must have f 3(x4) ≠ 0, because otherwise f would be trivial on G. Let
g , h ∈ G be elements such that π�(h) = x4, π�(g) ∈ S, and π(g) is not unipotent. Then
f (hg) = 1 ∈ Z/�, so that we may apply Lemma 5.2(a) to get the formula given there for
δ(hg). Since � ≥ 3, we have f (h2 g) = 2 ≠ 0 ∈ Z/�, and since again δ(h2 g) = δ(hg) + 1
and (α, β)(h2 g) = (α, β)(hg), the formula given by Proposition 5.2(a) applied to
δ(h2 g) implies a contradiction. It follows that there is no counterexample for these
cases.

We now assume that � = 3 and S ≅ SL2(F3). We claim that there is a subgroup S′ ⊂
G3 with G3 = S′ × ⟨x4⟩ such that f is trivial on S′, so that the above argument works in
this case also by replacing S with S′. If f is trivial on S, then we take S′ = S and are done,
so we assume that f is not trivial on S. Note that there exists g ∈ S with f (g) ≠ 0 such
that π(g) is not unipotent, since by Proposition 5.1(a)(ii) we have ker( f ) ∩ π(G) ⊂ Q8
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and certainly there are nonunipotent matrices in SL2(F3)/Q8. Now, again letting h ∈ G
be an element such that π3(h) = x4, if we assume that f (h) = 0 and apply a similar
argument as was used above to the formula for δ(hg) given by Proposition 5.2(a), we
get a contradiction. Therefore, the homomorphism f is nontrivial on ⟨x4⟩ and we may
define S′ to be {x− f 3(y) f (x4)

−1

4 y ∣ y ∈ S}; it is easy to check that S′ ⊂ G3 is a subgroup
contained in the kernel of f and satisfying G = S′ × ⟨x4⟩. We have thus shown that
there are no counterexamples in the case that G ≅ SL2(F�) × C�.

We now consider the case that G� ≅ π(G). First suppose that there is an element
h ∈ G ∩ ker(π�)with f (h) ≠ 0. We shall show that G fixes a two-dimensional subspace
of T/�T, and that therefore G is not a counterexample by Proposition 2.3(c). Let
x ∈ G ≅ π(G) be any nonunipotent operator and lift it to an element g ∈ G with
π�(g) = x. If f (g) = 0, we let g′ = hg, and we let g′ = g otherwise, so that f (g′) ≠
0. Now by Lemma 5.2(b), there is a vector w = (w1 , w2) ∈ F2

� such that x = π�(g′)
fixes the vector (−1, w1 , w2 , 0) ∈ F4

� . Now, Proposition 5.1(d) says that the subset of
nonunipotent operators in π(G) generates π(G); it follows that the whole group
G fixes (−1, w1 , w2 , 0). Since the group G� also fixes (0, 0, 0, 1), it fixes the two-
dimensional subspace generated by these two vectors and so G is not a counterex-
ample.

Now, suppose that the homomorphism f is trivial on G ∩ ker(π�), so that f induces
a homomorphism f ∶ G → Z/�. We know that f cannot be trivial on G ≅ π(G),
because otherwise f would be trivial on all of G, so we are left with the only possibility
being that � = 3 and G3 ≅ SL2(F3) with the induced homomorphism f ∶ SL2(F3) →
Z/3 being a surjection whose kernel is Q8. There exist nonunipotent operators in
SL2(F3)/ker( f 3), which generate all of SL2(F3) by Proposition 5.1(d). Then, the argu-
ment proceeds in a similar fashion: we know from Lemma 5.2(b) that there is a vector
w = (w1 , w2) ∈ F2

3 such that x ∈ G3/ker( f 3) fixes the vector (−1, w1 , w2 , 0) ∈ F4
� if x is

not unipotent; since the set of such elements generates all of G3, we get that the whole
group G3 fixes the two-dimensional subspace spanned by {(−1, w2 , w3 , 0), (0, 0, 0, 1)}
and, therefore, G is not a counterexample. ∎

5.3 Classifying counterexamples for � = 2

In this subsection, we assume that � = 2 and finish the proof of Theorem 5.1. We first
present the following useful lemma.

Lemma 5.5 Let S ⊂ S2 be the subgroup isomorphic to S3 , which fixes the subspace
⟨e1 , e4⟩ ⊂ T/�T and acts as SL2(F2) on its complement subspace ⟨e2 , e3⟩ ⊂ T/�T, and let
x4 ∈ S2 be the element defined in Section 3. Suppose that G ⊂ S2 is a subgroup satisfying
one of the following:

(i) G = ⟨x4⟩ × S;
(ii) G ⊂ ⟨x4⟩ × S is the subgroup isomorphic to A3 × C2; or

(iii) G ⊂ ⟨x4⟩ × S is the subgroup given by {(x , ϕ(x)) ∈ S × ⟨x4⟩ ∣ x ∈ S}, where ϕ ∶
S → ⟨x4⟩ is the unique surjective homomorphism.

Then, the only nontrivial G-invariant sublattices of T that properly contain �T are
M1 ∶= ⟨�T, e1 , e4⟩, M2 ∶= ⟨�T, e2 , e3⟩, L1 and L3, where the L i ’s are as in (2.7).
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Proof We write M1, M2, L1, and L3 for the subspaces of T/2T given by the quotients
by 2T of M1, M2, L1, and L3 , respectively. The statement of the lemma is equivalent
to saying that the only proper, nontrivial G2-invariant subspaces of T/2T are M1, M2,
L1, and L3.

Note that in cases (i), (ii), and (iii) of the statement, the only proper nontrivial G2-
invariant subspace of M1 is ⟨e4⟩ = L3, while M2 has no proper, nontrivial G2-invariant
subspaces. Choose any vector v ∈ T/�T, and let L ∈ T/�T be the smallest G2-invariant
subspace containing v. Since the vector space T/�T can be decomposed as the direct
sum M1 ⊕ M2, we may write v = m1 + m2 for some vectors m1 ∈ M1 and m2 ∈ M2.

We claim that L = L1 ⊕ L2, where L i is the smallest G2-invariant subspace of M i
containing m i for i = 1, 2. If m1 = 0 or m2 = 0, this is trivially true, so we assume
that m1 , m2 ≠ 0. It is straightforward to check for cases (i), (ii), and (iii) given in the
statement that given any element m′2 ∈ M2/{0, m2}, there is an element of G2 , which
sends v = m1 + m2 to m1 + m′2; taking their difference, we get that 0 ≠ m2 − m′2 ∈ M2
lies in L. Since in all of the cases in the statement, G2 acts irreducibly on M2, we get
L2 = M2 ⊊ L. Now since m2 ∈ L, we have v − m2 = m1 ∈ L, so that L1 by definition
is contained in ⊂ L. We, therefore, have L1 ⊕ L2 ⊂ L, and since L1 ⊕ L2 is a G2-
invariant subspace containing v, this inclusion of subspaces is in fact an equality,
whence our claim. The statement of the lemma follows now from the observation that
L1 = M2 ⊕ L3. ∎
Proof of Theorem 5.1 for � = 2 We first consider the case that G ≅ π(G) × C2. Here,
we have that f is trivial on G ∩ ker(π2) by the exact same argument we used in
Section 3 under the case that � = 3 and G ≅ π(G) × C�, so we again have an induced
homomorphism f ∶ G → Z/2. As before, we write G = S × ⟨x4⟩, where S ≅ π(G). We
also have that f (x4) ≠ 0 by the same argument as was used under Case 1. Fix an
element h ∈ G with π2(h) = x4. We now claim that G is a counterexample if and only
if for each element g ∈ G such that π(g) is not unipotent, we have either (i) f (g) = 1
and δ(g) is equal to the expression in terms of (α, β)(g) in the formula given in
Lemma 5.2(a), or (ii) f (g) = 0 and δ(g) is not equal to the expression in terms of
(α, β)(g) in the formula given in Lemma 5.2(a). Indeed, if such an element g ∈ G
satisfies neither (i) nor (ii), then either g or hg clearly violates the conclusion of Lemma
5.2(a), which contradicts the fact that G ∈ Fix(4). Suppose conversely that either (i)
or (ii) holds for all such elements g ∈ G; we will show that now G is a counterexample.
For each element g ∈ G such that π(g) is unipotent and fixes a nontrivial vector v =
(v1 , v2) ∈ F2

2, we have that π2(g) fixes the two-dimensional subspace of T/2T spanned
by {(0, v1 , v2 , 0), (0, 0, 0, 1)}. Meanwhile, for each g ∈ G such that π(g) = π(hg) is not
unipotent, Lemma 5.2(b) says that for some vector w = (w1 , w2) ∈ F2

2, either π2(g)
or π2(hg) fixes the vector (−1, w1 , w2 , 0) ∈ T/2T. An easy computation shows that
if π2(g) fixes (−1, w1 , w2 , 0), then π2(hg) does not fix (−1, w1 , w2 , 0) but hg does
fix (2, 2, 2, 1) ∈ T/2T, and vice versa. Moreover, the subspace of T/2T fixed by π2(g)
contains the vector (0, 0, 0, 1) but can have dimension at most 2 (otherwise π(g) − 1
would be noninvertible so that π(g) would be unipotent). It follows that there is no
two-dimensional subspace of T/2T fixed by the whole group G. Since, of course, f is
not trivial on G, we get that G is a counterexample by Proposition 2.3(c) and by a quick
check of quotients of the G-stable sublattices provided by Lemma 5.5. Now, it is clear
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that for any subgroup H ⊂ ker(π2) ∩ ker( f ), the group generated by the subgroups G
and H is also a counterexample since multiplying by elements in H will not affect their
images under α, β, δ, or f.

We now consider the case that � = 2 and G ≅ π(G). We first eliminate the possibility
that G ≅ π(G) = A3. Indeed, if we have G ≅ π(G) = A3, then the group G ≅ π(G) is
cyclic and there is some element g ∈ G with f (g) ≠ 0 such that π2(g) generates G
(otherwise f would be trivial on G). Then, by Lemma 5.2(a), the operator π2(g) fixes
a vector of the form (−1, w1 , w2 , 0) ∈ T/2T, implying that all of G fixes the subspace of
T/2T spanned by {(−1, w1 , w2 , 0), (0, 0, 0, 1)} and so G is not a counterexample.

We, therefore, assume that G ≅ π(G) = SL2(F2). Let w = (w1 , w2) ∈ F2
2 be the

vector provided by Lemma 5.2(b) applied to G, and let S ⊂ G2 × ⟨x4⟩ be the subgroup
that fixes the vector (−1, w1 , w2 , 0). A straightforward calculation similar to the ones
done in the proof of Lemma 5.2(a) shows that the first three entries of (−1, w1 , w2 , 0)
are fixed under multiplication by every matrix in G × ⟨x4⟩; meanwhile, it is immediate
that x4 acts by changing the final entry of any vector in T/�T whose first entry is
nontrivial. It follows that for each y ∈ G2 we have y ∈ S or x4 y ∈ S and so S ≅ SL2(F2).
If G2 = S, then G2 is not a counterexample by Proposition 2.3(c) because it fixes the
subspace of T/�T spanned by {(−1, w1 , w2 , 0), (0, 0, 0, 1)}. The only alternative is that
G2 = {xϕ(x)

4 y ∣ y ∈ S} where ϕ is the surjection from SL2(F2) to Z/2. In this case,
since not everything in G2 fixes (−1, w1 , w2 , 0); the unipotent elements already each
fix some two-dimensional subspace; and the nonunipotent elements do fix the two-
dimensional subspace spanned by {(−1, w1 , w2 , 0), (0, 0, 0, 1)} but cannot fix a larger
subspace (as was argued above), we get that G does not fix a two-dimensional subspace
ofT/�T. Therefore, as long as f is not trivial on G (which means that either f is nontriv-
ial on G ∩ ker(π2) or that it factors through the only nontrivial homomorphism from
G ≅ SL2(F2) to Z/2), we have that G is a counterexample by Proposition 2.3(c) and by
a quick check of quotients of the G-stable sublattices provided by Lemma 5.5. Now,
it is clear as before that for any subgroup H ⊂ ker(π2) ∩ ker( f ), the group generated
by the subgroups G and H is also a counterexample because multiplying by elements
in H will not affect images under α, β, and δ; since each element of G2 fixes a two-
dimensional subgroup of F4

2 , we do not need f to take a certain value on any particular
element of G2. ∎
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