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STATISTICAL LEARNING WITH
TIME-VARYING PARAMETERS

BRUCE MCGOUGH
Oregon State University

In their landmark paper, Bray and Savin note that the constant-parameters model used by
their agents to form expectations is misspecified and that, using standard econometric
techniques, agents may be able to determine the time-varying nature of the model’s
parameters. Here, we consider the same type of model as employed by Bray and Savin
except that our agents form expectations using a perceived model with parameters that
vary with time. We assume agents use the Kalman filter to form estimates of these
time-varying parameters. We find that, under certain restrictions on the structure of the
stochastic process and on the value of the stability parameter, the model will converge to
its rational expectations equilibrium. Further, the restrictions on the stability parameter
required for convergence are identical to those found by Bray and Savin.

Keywords: Bounded Rationality, Model Misspecification, Time-Varying Parameters,
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1. INTRODUCTION

Modern stochastic macroeconomic models typically include, among the factors
governing their dynamics, dependence upon the predicted values of endogenous
variables. The standard method of analysis of such models comes from the theory
of rational expectations. According to this theory, economic agents are assumed
to form predictions using conditional mathematical expectations; when these con-
ditional expectations are formed with respect to the distributions of the actual
stochastic processes generating the data, the economy is said to be in a rational ex-
pectations equilibrium (REE). This notion of equilibrium is well established as the
discipline’s benchmark; however, it is not without criticism. Evans and Honkapohja
(1998, p. 453), note that “rational expectations . . . assumes that agents know the
true economic model generating the data and implicitly assumes coordination of
expectations by the agents.” Further, examples of macroeconomic models with
multiple rational expectations equilibria are abundant; the theory gives no indica-
tion as to which equilibrium is likely to govern the behavior of the economy. To
address these criticisms, some economists choose to weaken the notion of ratio-
nality. Instead of assuming agents know the true economic model generating the
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120 BRUCE MCGOUGH

data, researchers assume agents are boundedly rational. The manifestation of this
assumption in models of statistical learning is that agents know the structure of the
rational expectations equilibrium and form estimates of the relevant parameters
adaptively, using statistical algorithms. With these estimates, agents form their
expectations of the values of the endogenous variables. One can then consider
whether the economy eventually approaches a rational expectations equilibrium:
That is, do the parameter estimates eventually converge (in some probabilistic
sense) to the corresponding rational expectations equilibrium parameter values?

The first authors to consider such a model were Bray and Savin. In their landmark
paper [Bray and Savin (1986)], they showed that if the economy is governed by a
simple cobweb model, and if agents have a perceived model of the same linear func-
tional form as the REE, and if agents estimate the parameters of this model using
ordinary least squares, then the estimates indeed converge to the associated REE
values, for appropriate values of the stability parameter. Their method of proof was
quite technical and based on the theory of Martingales. Marcet and Sargent (1989)
were able to extend this result to more general linear models using Ljung’s (1977)
theory on recursive stochastic algorithms. Evans and Honkapohja (2001) derived
a Ljung-type result designed specifically for application to economic models and
subsequently extended these convergence results to multivariate linear models.
Much further work has been done. For a survey and brief history, see Evans and
Honkapohja (1998).

All the results mentioned in the preceding paragraph are derived assuming
agents use OLS as their method of estimation. Implicit then is the presumption by
agents that the parameters of the model are constant. However, since the estimates
themselves necessarily affect the true values of the parameters, these constant
parameter beliefs by agents are erroneous. Bray and Savin knew this to be a
concern and used simulations to consider whether agents could detect the time-
varying nature of the parameters. They found that, for certain initial conditions
and parameter values, agents may in fact determine that the model is misspecified.
Since it may be possible for agents to realize that the parameters are not constant,
it is important to analyze models in which agents believe the parameter values vary
with time, hence the topic of this paper.

The behavior of an economic model based on agents with time-varying param-
eter beliefs has been considered by Bullard (1992). Bullard used a general linear
reduced-form model, of which the above-mentioned cobweb model is a special
case, to show that if agents believe that the parameters of the perceived model
follow a random walk with i.i.d. noise term, then the economy never converges
to the REE. This result is not surprising: If agents believe that the parameters of
the economy will not settle down, then their estimates of those parameters will
not settle down because the agents will always attribute some of the noise in the
model to movement in the parameter values. We conclude that, for convergence
to a rational expectations equilibrium to occur, the agents must believe that the
conditional variance of the time-varying parameters decreases to zero.1 This is
a natural assumption for the agents to make. In particular, if agents initially use
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LEARNING WITH TIME-VARYING PARAMETERS 121

OLS to form their estimates, then the results of Bray and Savin tell us that the
conditional variance of the process describing the actual parameters will decrease
to zero.2

In this paper, we analyze the asymptotic behavior of an economy described by
a simple cobweb model with agents who have time-varying parameter beliefs. We
find that if they believe the parameters of the economy follow a random walk,
and if the conditional variance of this random walk decreases rapidly enough, then
convergence to the rational expectations equilibrium obtains for appropriate values
of the stability parameter.

This paper is organized as follows: Section 2 begins with a review of the simple
cobweb model and results of Bray and Savin and then presents the modification of
the model that allows for time-varying parameter beliefs. A change of variables is
presented which allows for simpler analysis of the stochastic processes. The main
result of the paper ends the section. In Section 3, a more general cobweb model is
considered and tools from the theory of stochastic approximation are used to show
convergence in this case. A connection with E-stability is also discussed. Section 4
concludes. Most of the technical proofs are relegated to the appendices.

2. BRAY AND SAVIN’S COBWEB MODEL

2.1. Constant-Parameter Beliefs

In this section, we consider the same cobweb model as analyzed by Bray and
Savin. The reduced form of this model is

yt = x ′
t m + aE∗

t yt + νt , (1)

where yt is the endogenous variable, xt ∈ Rn is an exogenous i.i.d. process observed
at time t , the first component of which is 1, νt is an unobserved white-noise shock,
and E∗

t yt is the agents’ expectation of the value of yt formed using information up
to and including time t . This reduced form may be obtained by modeling a single
competitive market with stochastic linear demand and supply which is derived
from firms that face quadratic costs and a production lag. A given firm’s supply
decision is made before stochastic demand is realized, and thus the decision is
based on expected equilibrium price. Equating market supply and demand yields
equation (1). The parameter a is the ratio of the slopes of supply and demand, and
so, provided demand slopes downward and supply slopes upward, we have a < 0.3

The model is closed by specifying the form of the expectations operator. Pro-
vided agents behave rationally,

E∗
t yt = E(yt | �t ),

where �t represents the agents’ information set. The unique REE, that is, the final
form of the model consistent with the assumption of rationality, is then easily
computed to be
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yt = x ′
t

(
m

1 − a

)
+ νt .

To weaken the assumption of rationality and subsequently incorporate learning
into their model, Bray and Savin postulate that agents believe that

yt = x ′
tβ + εt

but are unaware of the value of β. Further, Bray and Savin assume their agents
use OLS to estimate β and then use this estimate to form their expectations.
Specifically, let bt be the OLS estimate of β using data (x1, y1), . . . , (xt , yt ). Then,
E∗

t yt = x ′
t bt−1. Agents’ expectations feed back into the reduced-form model (1) to

yield the actual data-generating process

yt = x ′
t (m + abt−1) + νt . (2)

Notice that the parameter modifying xt , namely (m + abt−1), is time dependent,
contrary to the assumption of the agents.

To complete their analysis, Bray and Savin use recursive least squares, together
with true process (2), to write the sequence of estimators, bt , as

bt =
(

I + (a − 1)
1

t
Vt xt x ′

t

)
bt−1 + 1

t
Vt xt x ′

t m + 1

t
Vt xtνt , (3)

where Vt = t (
∑t

i=1 xi x ′
i )

−1. Their main result is as follows.

THEOREM 1 [Bray and Savin (1986)]. If a < 1, then bt → m/(1 − a) almost
surely.

It is important for our work to observe that the proof of this theorem does not rely on
the structure of the process Vt , but only that it converges to (Ext x ′

t )
−1 almost surely.

2.2. Time-Varying Parameter Beliefs

In this section we alter the model of Bray and Savin by allowing the parameters
of the agents’ perceived model to vary with time. We then attempt to analyze the
resulting asymptotic behavior of the economy. This analysis requires imposing
a structure on the believed process describing the time-varying parameters. Here
we consider the process to be a random walk with potentially variable conditional
variance. The reasons for choosing a random walk are fourfold: first, a random
walk is a standard model of time-varying parameters; second, it is consistent with
the learning literature [see, e.g., Bullard (1992)]; third, if the conditional variance
is zero, then the random walk reduces to the constant-parameter model considered
by Bray and Savin; and fourth, its simplicity allows for analytic tractability.

We modify Bray and Savin’s model as follows: Assume agents believe

yt = β ′
t xt + εt

βt+1 = βt + ηt

https://doi.org/10.1017/S1365100502010325 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100502010325
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and that xt and βt are independent. We assume, for technical reasons, that
var(ηt ) = σ̂ 2

t I . Notice that agents’ beliefs form a linear state-space model and
thus the Kalman filter is a natural estimator for βt+1. Denote by bt the estimate of
βt+1 using data available at time t . The recursions for the filter are given by

Kt = Pt−1
[
σ 2 + x ′

t Pt−1xt
]−1

, (4)

bt = bt−1 + Kt xt [yt − b′
t−1xt ], (5)

Pt = Pt−1 − Kt xt x ′
t Pt−1 + var(ηt ). (6)

Here Kt represents the Kalman gain, bt is the linear projection of βt+1 on time-t
variables, and Pt is the mean squared error of the estimator bt conditional on the
realizations of x . Notice that if xt and ut are normal, bt is the optimal estimator.
For details, see Brockwell and Davis (1987).

Given the agents’ beliefs and estimator, we have Et yt = b′
t−1xt .4 Inserting this

into equation (1) yields the true data-generating process

yt = x ′
t (m + abt−1) + νt . (7)

Inserting this equation into (5) gives recursions for bt in terms of lags and ex-
ogenous variables. These recursions are initialized by exogenously determined b0

and P0. We may think of b0 as representing the initial beliefs of agents and P0

as yielding a measure of the confidence that agents have in their initial estimates.
Like Bray and Savin, our goal is to analyze the process bt and determine under
what conditions it converges to m/(1 − a).

We first prove a few results concerning the process Pt . Because it will be used
repeatedly, we state the well-known matrix inversion lemma here.

LEMMA 1. Let W, X, Y, Z be conformable matrices. Then, provided the indi-
cated inverses exist,

[W + XY Z ]−1 = W −1 − W −1 X [Z W −1 X + Y −1]−1 Z W −1.

LEMMA 2. The matrix Pt is symmetric and positive definite provided P0 is
positive definite.

Proof. This is surely well known, but we provide a proof here for complete-
ness. The proof is by induction. Since var(ηt ) is symmetric and positive definite,
equation (6) shows that it suffices to prove that

Pt−1 − Pt−1xt D−1x ′
t Pt−1

is symmetric and positive definite, where D = σ 2 + x ′
t Pt−1xt > 0. Symmetry is

trivial. By induction, the matrix inversion lemma may be applied with W = Pt−1,
X = Pt−1xt , Y = −D−1, and Z = x ′

t Pt−1 to show that
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[Pt−1 − Kt xt x ′
t Pt−1]−1 = P−1

t−1 + xt x ′
t

σ 2
,

thus showing that [Pt−1 − Kt xt x ′
t Pt−1]−1 is positive definite and the result follows.

LEMMA 3. [Pt − var(ηt )]−1 = P−1
t−1 + 1

σ 2 xt x ′
t .

Proof. It is not obvious that Pt − var(ηt ) is invertible. However, since Pt−1 is
invertible, Lemma 1 applies to the expression Pt−1 − Pt−1xt D−1x ′

t Pt−1 and the
result follows by induction.

We now transform the Kalman filter recursions so that the proof of Bray and
Savin may be applied directly. To this end, set

Rt = σ 2

t

[
P−1

t−1 + 1

σ 2
xt x ′

t

]
. (8)

Note that, by the preceding lemmas, Rt is symmetric and positive definite.5

LEMMA 4. 1
t R−1

t xt = Kt xt .

Proof. This is simply algebra. Notice, by Lemma 3,

1

t
R−1

t = 1

σ 2
(Pt − var(ηt )) (9)

which, by recursion (6), shows that

1

t
R−1

t xt = 1

σ 2

[
Pt−1 − Pt−1xt D−1x ′

t Pt−1
]
xt

= 1

σ 2
D−1

[
Pt−1xt

[
σ 2 + x ′

t Pt−1xt
] − Pt−1xt x ′

t Pt−1xt
]

= D−1 Pt−1xt = Kt xt .

This lemma allows us to write equation (5) as

bt = bt−1 + 1

t
R−1

t xt [yt − b′
t−1xt ]. (10)

Notice that if Rt = (1/t)
∑

xi x ′
i , then equation (10) coincides with the recur-

sive least-squares estimator of the linear model yt = β ′xt + εt . Recursions for this
estimator are given by equations (14) and (15) below.6 Furthermore, using the
substitution Vt = R−1

t , and plugging in the true data-generating process (7), we
see that recursion (10) is identical to recursion (3), up to the process Vt . As we
mentioned previously, the proof of Bray and Savin’s main result depended not on
the specific process Vt , but only its almost sure convergence to (Ext x ′

t )
−1. Thus,

to show almost sure convergence of the process (10) to m/(1 − a), it suffices to
show Rt converges to Ext x ′

t almost surely.
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Analysis of Rt is simplified using the following result.

LEMMA 5. The recursion for Rt may be written

ρt (Rt−1, var(ηt−1)) = − t (t − 1)2

σ 2
Rt−1

[
t − 1

σ 2
Rt−1 + var(ηt−1)

−1

]−1

Rt−1 (11)

Rt = Rt−1 + 1

t
(xt x ′

t − Rt−1) + 1

t2
ρt (Rt−1, var(ηt−1)). (12)

Proof. By (9),

P−1
t−1 =

[
σ 2

t − 1
R−1

t−1 + var(ηt−1)

]−1

.

Insert this into (8) and apply Lemma 1 to complete the proof.

2.2.1. Back to Bray and Savin. Bray and Savin considered the case in which
agents believed the parameters of the model to be constant. This is equivalent to the
agents in our model believing that var(ηt ) = 0. However, whereas Bray and Savin’s
agents used OLS to form their estimates, our agents use the Kalman filter. In this
subsection, we show that these estimators are equivalent.7 This is not difficult.
Indeed,

lim
‖var(ηt−1)‖→0

(ρt (Rt−1, var(ηt−1)))

= lim
‖var(ηt−1)‖→0

(
t (t − 1)2

σ 2
Rt−1var(ηt−1)

[
t − 1

σ 2
Rt−1var(ηt−1) + I

]−1

Rt−1

)
= 0.

The recursions defining the Kalman filter estimator, then, reduce to

yt = (m + abt−1)
′xt + νt , (13)

bt = bt−1 + 1

t
R−1

t xt [yt − b′
t−1xt ], (14)

Rt = Rt−1 + 1

t
(xt x ′

t − Rt−1). (15)

These recursions are the same as those obtained by Bray and Savin and show that
their model is a special case of the model we consider here.

2.2.2. The Bullard result. Bullard (1992) showed, for a class of models that
includes ours, that if agents believe the parameters of the perceived model to follow
a random walk and if the conditional variance of the random walk is constant, then
convergence to REE cannot obtain. The idea behind this result is quite simple. For
convergence to occur (and to apply the main results of the theory of stochastic
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approximation), the gain of the algorithm must go to zero. In the Kalman filter
recursions, this gain is represented by

Kt = Pt−1
[
σ 2 + x ′

t Pt−1xt
]−1

.

For this term to go to zero (almost surely), Pt , as given by

Pt = Pt−1 − Kt xt x ′
t Pt−1 + var(ηt ),

must go to zero (almost surely). However, if var(ηt ) = Q > 0, this cannot happen.
Note that Pt represents the agents’ perceived mean squared error at time t . If agents
believe that the parameters of the model will always have some nonzero constant
conditional variance, they will always believe that the MSE is nonzero, and in fact,
bounded away from zero by the conditional variance of the parameters. Further, if
their perceived MSE is strictly positive and bounded away from zero, agents will
always be willing to adjust their estimates in the presence of forecast error, forecast
error which will occur because of the stochastic nature of the model. Thus, the
agents’ estimators cannot possibly converge to a constant value.

Also, we note here that if var(ηt ) does not converge to zero, then Bullard’s result
still holds. To show this, it suffices to show that, in this case, Pt does not converge
to zero. Since var(ηt ) does not converge to zero, there is a subsequence, indexed,
say, by t (k), which is bounded away from zero. Since Pt ≥ var(ηt ), it follows that
Pt (k) is bounded away from zero, and thus Pt cannot converge to zero.8

2.2.3. Vanishing variance. The results of the preceding section indicate that
a necessary condition for convergence to the REE is that the conditional variance
of the random walk be decreasing to zero. And, as mentioned in the introduction,
we believe that this is a reasonable assumption to make, for if agents initially use
OLS to estimate their parameters, then Bray and Savin’s result implies that the
conditional variance of the parameters does decrease (eventually) since conver-
gence of the agents’ estimators to a constant value does occur. In this section, we
take as given that agents believe that the conditional variance of the random walk
is decreasing to zero and consider what rate is sufficient to guarantee convergence
to the REE.

Recall that the recursion describing Rt is given by

Rt = Rt−1 + 1

t
(xt x ′

t − Rt−1) − 1

t2
ρt (Rt−1, var(ηt−1)). (16)

Further, we have seen that the form of the Kalman filter recursions, properly
transformed, together with the proof of Bray and Savin’s main result, shows that
if a < 1, then convergence of bt to m/(1 − a) occurs with probability 1, provided
Rt converges to Ext x ′

t almost surely. Analysis of stochastic processes of the form
(16) may be done using the theory of stochastic approximation. Under certain
restrictions on the functions ρt , a differential equation can be analyzed to determine
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possible points of convergence. Unfortunately, because of the form of ρt , only local
convergence results can be applied and the restrictions on the conditional variance
are strong. This is discussed in detail in Section 3. Fortunately, it is possible to
prove global convergence (in the sense described later) with weaker restrictions,
using a less direct approach. Specifically, we obtain the following result.

LEMMA 6. If R1 is positive definite and symmetric, and

lim sup
t

t2‖var(ηt )‖ = 0, (17)

then Rt converges to Ext x ′
t almost surely.

The proof of this lemma is in Appendix A. The implication of restriction (17)
is that the norm of the conditional variance must die just a little faster than 1/t2.
Also, the convergence is global with respect to the initial condition, subject to the
restriction that the initial condition is symmetric, positive definite. Note that R1

is symmetric, positive definite provided P0 is, and that P0 represents the agents’
perceived mean squared error of their initial belief, b0. We conclude that this is not
a significant restriction.

Lemma 6, together with the previous observations concerning the application
of Bray and Savin’s proof to our recursions, yields the following theorem which
is the main result of this paper.

THEOREM 2. If P0 is positive definite and

lim sup
t

t2‖var(ηt )‖ = 0,

then bt → m/(1 − a) almost surely, provided that a < 1.

Observe that the restriction on the parameter a, called the stability parameter, is
the same as obtained by Bray and Savin. This is not surprising. The recursions de-
scribing the time path of bt are the same for both models, except for the value of the
positive definite matrix modifying the forecast error. Specifically, both recursions
can be written as

bt = bt−1 + 1

t
Vt xt ((1 − a)b′

t−1xt + m ′xt + νt ),

and the only difference will be the values of the positive definite matrix Vt . The
restriction on a guarantees that bt moves toward its REE value. Because Vt is
positive definite in both models, its specific value does not affect this direction.

The theorem predicts convergence provided that agents believe that the condi-
tional variance of the random walk eventually decreases a little faster than t−2.
Also, as Bullard showed, convergence is not obtained if the conditional variance is
constant. What happens when the conditional variance decreases to zero at a rate
less than or equal to t−2 has not been determined analytically. In a companion pa-
per (McGough, Forthcoming), we report the results of simulations indicating that
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convergence can be obtained for rates of decrease slightly less than t−2 and also
that for slow rates of decrease, say t−0.5, convergence does not appear to occur.

3. A MORE GENERAL COBWEB MODEL

The analysis of stochastic recursive algorithms is usually done using the theory of
stochastic approximation. For economic models, the standard is to use the results
of Ljung (1977), Marcet and Sargent (1989), and Evans and Honkapohja (2001),
which tell us to associate a differential equation with the given stochastic process.
It can then be shown that, under certain conditions, possible convergence points of
the process correspond to stable fixed points of the differential equation.9 In this
section, we apply the theory of stochastic approximation to the sequence of esti-
mators obtained from a more general cobweb model. We obtain local convergence
results, provided that stronger restrictions are placed on the rate of decrease of the
conditional variance.

3.1. Model

We generalize the model used by Bray and Savin to include serially correlated,
observable shocks. Specifically, we consider a reduced-form Muth model as given
by

yt = aE∗
t−1 yt + λ′xt

(18)
xt = Bxt−1 + νt ,

where xt ∈ Rn is an asymptotically stationary process with the first component
equal to 1 and yt ∈ R. For technical reasons, we require the i.i.d. process νt to be
almost surely uniformly bounded. Deviating slightly from the assumptions of the
previous model, we assume that the expected time-t value of the endogenous vari-
able is formed with respect to information available at time t − 1. This information
includes xt−1. This form of the model has been studied by, for example, Evans and
Honkapohja (2001).

The unique REE for this model is given by

yt = λ′ B
1 − a

xt−1 + λ′νt .

To incorporate learning into the model, we assume that agents believe the final
form of the model to be

yt = β ′
t xt−1 + εt ,

(19)
βt+1 = βt + ηt .

Notice that this is the same form of beliefs as in the previous model, except for the
timing of the exogenous variable.
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LEARNING WITH TIME-VARYING PARAMETERS 129

Given the beliefs of the agents, the natural estimator is again given by the Kalman
filter. Denote by bt the Kalman filter estimate of βt+1 using information available
at time t . Then, at time t − 1, agents believe that yt will be determined by the
following equation, called the perceived law of motion, or PLM:

yt = b′
t−1xt−1 + εt . (20)

Using the PLM, agents determine E∗
t−1(yt ) = b′

t−1xt−1. This may be inserted
into equation (18) to obtain the actual data-generating process. Define the map
T : Rn → Rn by

T (b) = ab + λ′ B. (21)

Then, the data are generated by the following equation, called the actual law of
motion, or ALM:

yt = T (bt−1)
′xt−1 + λ′νt . (22)

The map T takes the perceived parameters to the actual parameters. When the
perceived parameters equal the actual parameters, the model in is an REE; thus, a
fixed point of the T − map determines an REE.

The recursions describing the agents’ estimators can now be reported. Since the
state-space model (19) describing agents beliefs is identical, up to timing, to the
state-space model considered earlier, the recursions describing the Kalman filter
estimator are identical up to timing as well. We obtain

Kt = Pt−1
[
σ 2 + x ′

t−1 Pt−1xt−1
]−1

, (23)

bt = bt−1 + Kt xt−1[(T (bt−1) − bt−1)
′xt−1 + λ′νt ], (24)

Pt = Pt−1 − Kt xt−1x ′
t−1 Pt−1 + var(ηt ), (25)

where the actual law of motion has been inserted for yt . As before, our goal is to
analyze the asymptotic behavior of bt .

3.2. Convergence

To analyze the asymptotic behavior of the agents’ estimators, we use the the-
ory developed by Evans and Honkapohja (2001); for a summary, see Evans and
Honkapohja (1998). Consider a recursive stochastic algorithm of the following
form:

θt = θt−1 + 1

t
H(θt−1, wt ) + 1

t2
ρt (θt−1, wt ),

(26)
wt = A(θt−1)wt−1 + B(θt−1)µt ,

where µt is white noise. To this process is associated a differential equation as
follows. Set

h(θ) = lim
t→∞ E(H(θ, xt )). (27)
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The differential equation is
dθ

dt
= h(θ). (28)

The main result of the theory says that if θ∗ is a locally asymptotically stable fixed
point of this differential equation, and H and ρt satisfy some nice properties in
some neighborhood of this fixed point, then the process (26) converges to θ∗ with
probability 1, provided a projection facility is used; see Appendix B for details.10

To employ the theory described above, we must put our algorithm into the form
(26). This is done using the same variable substitution that was used to analyze
the previous model. Specifically, set

Rt = σ 2

t

[
P−1

t−1 + 1

σ 2
xt−1x ′

t−1

]
.

Then, the Kalman filter recursions can be rewritten as

ρ̂t (bt−1, Rt−1) = − t (t − 1)2

σ 2
Rt−1 Qt−1

[
t − 1

σ 2
Rt−1 Qt−1 + I

]−1

Rt−1, (29)

Rt = Rt−1 + 1

t
(xt−1x ′

t−1 − Rt−1) + 1

t2
ρ̂t (bt−1, Rt−1), (30)

bt = bt−1 + 1

t
R−1

t xt−1((T (bt−1) − bt−1)
′xt−1 + λ′νt ), (31)

where Qt = var(ηt ). The dependence of bt on Rt forces us to make the standard
variable change St−1 = Rt . Letting θt = [b′

t , S′
t ]

′ then allows us to write the Kalman
filter recursions in the form (26),11 where wt = [x ′

t , x ′
t−1, νt ]′,

H(θt−1, wt ) =
[

S−1
t−1xt−1((T (bt−1) − bt−1)

′xt−1 + λ′νt )

(xt x ′
t − St−1)

]
, (32)

ρt (θt−1, wt ) =


 0

−
(

t
t + 1

)[
t3

σ 2
St−1 Qt

[
t

σ 2
St−1 Qt + I

]−1

St−1 + xt x ′
t − St−1

]

.

(33)

Having placed our stochastic algorithm in the correct form, we now consider its
associated differential equation. It is easily computed to be

db
dτ

= S−1 M(T (b) − b), (34)

d R
dτ

= M − S, (35)

where M = limt→∞ Ext x ′
t exists and is positive definite because xt is asymptoti-

cally stationary.
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Just as in the previous model, the Kalman filter estimator reduces to the OLS
estimator as ‖Qt‖ → 0. Since Qt is only present in the ρt term, it does not affect
the functional form of the associated differential equation. Thus, we are not sur-
prised to find that the differential equation above is identical to the one obtained
when least-squares learning is modeled. Also, as has been shown in the litera-
ture on least-squares learning, the unique fixed point of the preceding system is
b∗ = (λ′ B)/(1 − a) and S = M , and this fixed point is locally asymptotically stable
provided that a < 1.

According to the preceding paragraph, to show convergence to REE, it suffices
to restrict the model so that the technical conditions on H and ρt are satisfied. As
mentioned, the form of H seen here is not new; it is identical to the H obtained
from least-squares learning models. In particular, that it satisfies the appropriate
conditions is well known: see, for example, Evans and Honkapohja (2001). On the
other hand, the form of ρt is new and thus the restrictions must be considered.

Because the technical nature of the formal restrictions on ρt would be distracting,
we will work informally here and relegate the formal details to Appendix B.
Intuitively, provided ρt does not get big, then, when scaled by t−2, it becomes
irrelevant to the asymptotic behavior of Rt . More specifically, if ρt is bounded in
t the theorem of Evans and Honkapohja may be applied.12 For ρt to be bounded
in t , it is clear, given equation (33), that the conditional variance, Qt , must vanish
like t−3. To this end, we make the following assumption:

sup
t>0

t3‖Qt‖ = σ 2k < ∞. (36)

We have following theorem.

THEOREM 3. If the economy is given by the model (18) and if agents have
beliefs given by (19) together with the restriction on the conditional variance,
(36), and if agents use the Kalman filter to obtain their expectations, and if the
value of the stability parameter a is less than 1, then the economy will converge
to the REE with probability 1 provided the learning algorithm is augmented with
a projection facility.

The proof of this result is contained in Appendix B.

3.3. E-Stability

In this section, we make an important link to the learning literature. To determine
the stability under learning of a given REE, the industry standard is to use the
theory of E-stability.13 This theory tells us to consider the differential equation14

db
dτ

= T (b) − b. (37)

Notice that an REE, b∗, is a stationary solution to this differential equation. The
REE is said to be E-stable provided that it is locally asymptotically stable. The
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E-stability principle says that an E-stable REE is locally stable under learning
provided that a reasonable learning algorithm is employed. The intuition behind
this principle is not difficult. Suppose that, by reasonable learning algorithm, it is
meant that the new parameter estimates are obtained by moving in the direction of
the forecast error redirected appropriately by the value of the regressor.15 Given
the actual law of motion, this product may be written

xt−1x ′
t−1(T (bt−1) − bt−1) + xt−1ν

′
tλ.

Because xt−1x ′
t−1 is non-negative definite, the components of the vector determined

by the preceding expression will, on average, have the same signs as the compo-
nents of T (bt−1) − bt−1. Thus, if the differential equation above is locally asymp-
totically stable at b∗, then moving according to the learning algorithm should, on
average, result in convergence to b∗. Note that the E-stability principle is not a
general result, and so, whenever possible, convergence should be proven using
other techniques.

Recall that a differential equation of the form (37) is locally asymptotically
stable at b∗ provided the eigenvalues of the derivative have real part less than zero.
In our case, the derivative is DT − I , and so, local asymptotic stability requires that
the eigenvalues of DT must have real part less than 1. Since DT = aI , it follows
that the REE is E-stable provided a < 1.16 It is well known that a < 1 implies
convergence to REE of the least-squares learning algorithm: See, for example,
Evans and Honkapohja (2001). Thus, E-stability determines convergence when
least-squares learning is used. We have shown that E-stability also determines
convergence when Kalman filter learning is used, provided the conditional variance
of the random walk decreases rapidly.

4. CONCLUSION

Since its conception, the assumption of rational agents has been criticized as being
too strong. The landmark paper of Bray and Savin, and the learning literature pub-
lished since, has given credence to the rational expectations hypothesis because it
has shown that, for many models, weakening the assumption to that of boundedly
rational agents preserves rational expectations equilibria asymptotically. However,
these least-squares learning models have been plagued by the same criticism orig-
inally borne by the simple adaptive models that predated and, in fact, led to the
rational expectations hypothesis: Why would reasonable agents make systematic
errors?17

In this paper we have begun the process of addressing the issue of model mis-
specification. We have allowed our agents to increase their sophistication by pos-
tulating a time-varying process for the parameters of the model. We have shown
that, for certain restrictions on the postulated process, convergence to REE still
obtains. This further strengthens the learning literature’s justification for continued
analysis of REE. And these results are in contrast to the nonconvergence result
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obtained by Jim Bullard. He shows that if the conditional variance of the random
walk is constant, then convergence cannot possibly obtain. We have argued that it
is more natural to consider the specification that the conditional variance decreases
to zero and subsequently overturned his result.

The results of this paper are not complete. Several important questions remain.
First, what is the asymptotic behavior of the economy if the conditional variance
of the random walk decreases to zero more slowly than the restrictions required
for our results? Simulations that are reported in a companion paper suggest that
convergence is obtained for rates of decrease that are slower, but not all such rates.
Second, what is the effect of altering the assumption that the parameters follow a
random walk? Bray and Savin suggest a return-to-normalcy process; such a process
with constant conditional variance is analyzed by Bullard and he again obtains
a nonconvergence result. Analysis of such a model with decreasing variance has
proven difficult because the form of the resulting recursions is not addressed by the
stochastic approximation literature. Simulations reported in the companion paper
suggest that convergence to REE is obtained, provided the conditional variance
decreases rapidly enough and that the restrictions on this rate of decrease may
be weaker than the analogous restrictions in the random-walk model. Finally, our
agents, just like Bray and Savin’s, have a misspecified model. Can the agents
use some natural econometric technique to detect this misspecification? We are
working on this problem currently.

NOTES

1. This conclusion is explained more fully in Section 2.
2. Margaritis (1990) also considers a model with time-varying parameters. For convergence to a

point to occur, his results require that the gain of the adaptive algorithm tends to zero. As we note in
Section 2.2.2, and as was shown by Bullard (1992), this cannot hold in our model if the conditional
variance of the time-varying parameters is positive definite.

3. For a careful derivation of this reduced form, see Bray and Savin (1986).
4. Agents are free to use xt in their estimation of bt−1 but the independence assumption made above

implies that the realization of xt will not alter their estimates.
5. This variable transform was used by Margaritis (1990).
6. For more on the RLS algorithm, see Evans and Honkapohja (2001).
7. This type of equivalence was noted in a different model by Bullard (1992).
8. The notion of “greater than” for matrices is reviewed in Appendix A.
9. Note the power of this type of result. It tells us not only that convergence occurs, but also yields

the possible limit points. And, being fixed points of differential equations, these limit points are often
not difficult to compute.

10. Informally, a projection facility puts the process back near the fixed point if it wanders too far
away. For details, see Appendix B. Projection facilities were introduced by Ljung (1977) and Marcet
and Sargent (1989). Evans and Honkapohja (1998, 2001) also show how weaker results can be obtained
if the projection facility is dropped.

11. We are being a little sloppy here. Technically, the theorems apply to vector processes θ, but
in our case, R is a matrix. The complication is avoided via application of the column operator, which
takes a matrix to the associated column vector. We suppress this for notational simplicity as is standard
in the literature.

12. Again, additional restrictions apply; see Appendix B for details.
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13. Originally coined by George Evans.
14. The T − map, and hence E-stability, can be defined for many different types of models. Also,

the T − map depends only on the reduced-form equation and the agents’ perceived beliefs and thus is
independent of parameter estimation procedure.

15. Both the OLS estimator and the Kalman filter estimator behave in this manner.
16. Of course, this is the same restriction on the stability parameter as obtained by Bray and Savin

for their slightly different model.
17. The error in the models of least-squares learning—the misspecification of the model—is, admit-

tedly, more subtle than before, but still sometimes detectable using standard econometric techniques.
18. By “surely well known,” I mean that it is easier to prove than to try to look up, but I deserve no

credit for its discovery.
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APPENDIX A: CONVERGENCE OF Rt

The argument that follows will repeatedly use the probabilistic notion of event. We employ
the following notation: Let x be a random variable and P be some property that realizations
of x may or may not have. Then, E = {x has P} means E is the event that the realization of
x has the property P . Further, if E and F are events, then E ⊂ F means the event F occurs
whenever the event E occurs. Also, for a given random variable w, denote by w̃ a particular
realization. Notice that if E = {x has P} and x̃ has P , then E has occurred.

The following results concern almost sure convergence of stochastic processes. Recall
that the process xn converges to x almost surely (that is, with probability 1) provided the
event that the sequence of realizations of xn converges to the realization of x occurs with
probability 1. In the sequel, we make repeated use of the following lemma.
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LEMMA A.1. The sequence of random variables xn converges almost surely to the
random variable x if and only if for any ε > 0 and any p ∈ (0, 1) there is an N so that

Pr{‖xn − x‖ ≤ ε ∀ n ≥ N } > p.

This result follows immediately from Lemma 14.1 in Stokey and Lucas (1989).
We say a matrix is positive if it is symmetric and positive definite, and nonnegative if it

is symmetric and positive semidefinite. If A and B are symmetric, we say A < B if B − A
is positive (or written B − A > 0) and we say A ≤ B if B − A is nonnegative (or written
B − A ≥ 0.) These relations induce partial orderings on the set of symmetric matrices.
It is well known that a matrix is positive (nonnegative) provided all eigenvalues are positive
(nonnegative and real).

The recursion Rt is defined as follows: Let xt ∈ Rn be i.i.d. Then,

ρt (Rt−1, Qt−1) = (t − 1)2

σ 2
Rt−1 Qt−1

[
t − 1

σ 2
Rt−1 Qt−1 + I

]−1

Rt−1,

Rt = Rt−1 + 1

t
(xt x ′

t − Rt−1) − 1

t
ρt (Rt−1, Qt−1).

We assume that Qt is positive for all t . We take the initial condition of the recursion to
be a positive matrix and recall the previously mentioned implication that, with probability
1, all elements of the sequence Rt will be positive. Assume lim supt t2‖Qt‖ = 0 and set
E(xt x ′

t ) = �. Our goal is to prove the following result.

THEOREM A.1. If R1 is positive, then the process Rt converges to � almost surely.

This will be facilitated by the following lemma on positive matrices and the induced partial
ordering.

LEMMA A.2. Let A, B, and C be positive conformable matrices.

(i) If A ≤ B and if C commutes with A and B then AC ≤ BC.
(ii) If A ≤ B, then B−1 ≤ A−1.

(iii) A ≤ ‖A‖I .
(iv) If A ≤ B, then ‖A‖ ≤ ‖B‖.

These results are standard. The first three can be found in Kadison and Ringrose (1983).
To prove the fourth, proceed as follows: Statement (iii) implies A ≤ ‖B‖I . Note that λ is
an eigenvalue of A if and only if ‖B‖ − λ is an eigenvalue of ‖B‖I − A. Also, since A
is symmetric, ‖A‖ = maxi‖λi‖ where λi varies over the eigenvalues of A. Let λm be the
eigenvalue of maximum modulus. Note that it is also real and positive. Since ‖B‖I − A ≥ 0,
its eigenvalues must be nonnegative. Thus, ‖B‖ − ‖A‖ = ‖B‖ − λm ≥ 0.

The following result relating the partial ordering on symmetric matrices to convergence
is needed.

LEMMA A.3. Suppose xn is a sequence of stochastic matrices that are almost every-
where positive and that converge almost surely to the positive matrix x. Fix some δ > 0 and,

for given N , define the event E as

E(N ) = {xn ≤ (‖x‖ + δ)I ∀ n ≥ N }.
Then, for any p ∈ (0, 1), there exists N so that Pr{E(N )} > p.
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Proof. Define the event F as follows:

F(N ) = {‖xn‖ ≤ ‖x‖ + δ ∀ n ≥ N }.
Because xn → x a.s., we may choose N so that Pr{F(N )} > p. Now notice that whenever
F(N ) occurs,

xn ≤ ‖xn‖I ≤ (‖x‖ + δ)I, ∀ n ≥ N ,

which implies F(N ) ⊂ E(N ).

The next lemma is used to provide an upper bound for the sequence Rt . Define a new
sequence as follows:

R̂t = R̂t−1 + 1

t
(xt x ′

t − R̂t−1).

Note that R̂t = (1/t)
∑t

i=1 xi x ′
i so that, by the law of large numbers, R̂t converges to �

almost surely.

LEMMA A.4. Rt ≤ R̂t .

Proof. The proof is by induction. Let R̂1 = R1 and assume Rt−1 ≤ R̂t−1. Also, notice
ρt (Rt−1, Qt−1) is positive. Then,

Rt = Rt−1 + 1

t
(xt x ′

t − Rt−1) − 1

t
ρt (Rt−1, Qt−1)

= t − 1

t
Rt−1 + 1

t
xt x ′

t − 1

t
ρt (Rt−1, Qt−1)

≤ t − 1

t
R̂t−1 + 1

t
xt x ′

t = R̂t .

Now that we have established an upper bound for Rt , we begin work on the lower
bound. Fix δ > 0 and let ξ = ‖�‖ + δ, and M(T ) = supt>T (t2/σ 2)‖Qt‖. Notice that, by
assumption, M(T ) → 0 and is decreasing. For each T , we define a new sequence as follows:

St (T ) =
{

Rt if t ≤ T

St−1(T ) + 1

t
(xt x ′

t − St−1(T )) − 1

t
M(T )ξ 2 I else.

It is simple to show that St (T ) converges to � − M(T )ξ 2 I almost surely. Indeed, a straight-
forward induction argument shows St (T ) = (1/t)

∑t
i=1 xi x ′

i − M(T )ξ 2 I , and the law of
large numbers completes the result. The following lemma relates these sequences to Rt .

LEMMA A.5. Let p ∈ (0, 1) and

E(T ) = {St (T ) ≤ Rt ∀ t}.
Then there exists a T̂ so that T ≥ T̂ implies Pr(E(T )) > p.

Proof. Set
F(T ) = {R̂t ≤ ξ I ∀ t ≥ T }.

By Lemma A.3, there is a T̂ so that Pr(F(T̂ )) > p. To complete the proof then, it suffices
to show that T2 ≥ T1 ⇒ F(T1) ⊂ E(T2). The proof is by induction. Assume F(T1) occurs.
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By construction, St (T2) ≤ Rt for t ≤ T2. So, let t > T2 and assume St−1(T2) ≤ Rt−1. Since
F(T1) occurred and t > T2 > T1, it follows, using Lemma A.2, that

ρt (Rt−1, Qt−1) = (t − 1)2

σ 2
Rt−1 Qt−1

[
t − 1

σ 2
Rt−1 Qt−1 + I

]−1

Rt−1

≤ M(T2)Rt−1

[
t − 1

σ 2
Rt−1 Qt−1 + I

]−1

Rt−1

≤ M(T2)R2
t−1 ≤ M(T2)ξ

2 I.

It follows that

St (T2) = St−1(T2) + 1

t
(xt x ′

t − St−1(T2)) − 1

t
M(T )ξ 2 I

= t − 1

t
St−1(T2) + 1

t
xt x ′

t − 1

t
M(T )ξ 2 I

≤ t − 1

t
Rt−1 + 1

t
xt x ′

t − 1

t
M(T )ξ 2 I

≤ t − 1

t
Rt−1 + 1

t
xt x ′

t − 1

t
ρt (Rt−1, Qt−1) = Rt .

We are now ready to prove the main result.

Proof. Let p ∈ (0, 1) and ε > 0. As usual, we have

‖Rt − �‖ ≤ ‖Rt − St (T )‖ + ‖St (T ) − R̂t‖ + ‖R̂t − �‖.

Set

D(K ) =
{

‖R̂t − �‖ <
ε

3
∀ t ≥ K

}

and choose K̃ so that Pr(D(K̃ )) > (2 + p)/3. Choose T1 so that M(T1)ξ
2 < ε/6 and choose

T2 > T1 so that Pr(E(T2)) > (2 + p)/3, where E(T ) is the event as defined in Lemma A.5.
This fixes the sequence St (T2). Define the event F by

F = {0 ≤ ‖Rt − St (T2)‖ ≤ ‖R̂t − St (T2)‖ ∀ t}.

Notice that, by statement (iv) of Lemma A.2, E(T2) ⊂ F .
Since St (T2)→�− M(T2)ξ

2 I and R̂t →� almost surely, it follows that‖R̂t − St (T2)‖ →
M(T2)ξ

2 almost surely. Let

G(K ) =
{

‖R̂t − St (T2)‖ < M(T2)ξ
2 + ε

6
∀ t ≥ K

}
.

Then we may choose K̂ > K̃ so that Pr(G(K̂ )) > (2 + p)/3.
Now, let H(K ) be the following event:

H(K ) = {‖Rt − �‖ < ε ∀ t ≥ K }.
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The main result is proved by showing that we may choose K so that Pr(H(K )) > p. We
claim that K̂ suffices. To see this, first notice G(K̂ ) ∩ F ∩ D(K̃ ) ⊂ H(K̂ ). Indeed, suppose
G(K̂ ) ∩ F ∩ D(K̃ ) occurs. Then, for all t > K̂ ,

‖Rt − �‖ ≤ ‖Rt − St (T2)‖ + ‖St (T2) − R̂t‖ + ‖R̂t − �‖
≤ M(T2)ξ

2 + ε

6
+ M(T2)ξ

2 + ε

6
+ ε

3
< ε.

Finally, note that

Pr(G(K̂ ) ∩ F ∩ D(K̃ )) = 1 − Pr((G(K̂ ) ∩ F ∩ D(K̃ ))c)

= 1 − Pr(G(K̂ )c ∪ Fc ∪ D(K̃ )c)

≥ 1 − [Pr(G(K̂ )c) + Pr(Fc) + Pr(D(K̃ )c)]

≥ 1 − 3

[
1 − 2 + p

3

]
= p.

APPENDIX B: PROOF OF THEOREM 3

The main result of Section 3 is proved using a theorem by Evans and Honkapohja. We
present the remaining details of that theorem’s use here. We placed our algorithm in the
required form, repeated here for convenience:

θt = θt−1 + 1

t
H(θt−1, wt ) + 1

t2
ρt (θt−1, wt ).

To apply the results of Evans and Honkapohja, it must be shown that H and ρt satisfy
certain conditions. These conditions are carefully reported by Evans and Honkapohja (2001).
The form of H in our model is not new; it is well known, and shown by Evans and
Honkapohja (2001), that H has the appropriate properties. We proceed to examine the
necessary restrictions on ρt . The result of Evans and Honkapohja requires ρt to be bounded
in t by a simple function of w for all S in compact sets surrounding the fixed point.
Specifically, we must show there is a U with M ∈ U so that, given compact K in U , there
are constants C and q so that for all t and for all S ∈ K ,

|ρt (S, w)| ≤ C(1 + |w|q).
It is easier to work with matrix norms. The following lemma, which is surely well known,
allows us to do that.18

LEMMA B.1. Let A ∈ Rn×n, xn ∈ Rn, and ‖A‖ = sup|v|≤1|Av| be the usual matrix norm.
Then,

(i) n‖A‖2 ≥ (col(A))2,

(ii) ‖xx ′‖ ≤ n2|x |2.
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Proof. (i) It can be shown that ‖A‖ = maxi
∑

j |ai j |. Thus,

n‖A‖2 = n max
i

∑
j

|ai j |2 +
∑
j �=k

|ai j aik |

≥ n max
i

∑
j

|ai j |2 ≥
∑

i j

|ai j |2 = (col(A))2.

(ii)

‖xx ′‖ = max
i

∑
j

|xi x j | ≤
∑

i j

|xi x j |

≤ n2 max
i j

|xi x j | = n2 max
i

x2
i ≤ n2|x |2.

Recall the restriction on the condition variance Qt :

sup
t>0

t3‖Qt‖ = σ 2k < ∞. (B.1)

Using the fact that t Qt/σ
2 → 0, it is straightforward to show that there exists an open set

U about M so that for S ∈ U , the matrix t Qt/σ
2 S + I is invertible, and further, for any

compact subset K of U , there exists a positive number N so that ‖(t Qt/σ
2 S + I )−1‖ < N

for all S ∈ K and for all t . Now let

C1 = max
S∈K

{‖S‖2 N + ‖S‖},

C = √
n max{kC1, n2}.

Then

|ρt (S, x)| ≤ √
n‖ρt (S, x)‖ ≤ √

n(k‖S‖2 N + ‖xx ′‖ + ‖S‖)
≤ √

n
(

C1 + n2|x |2) ≤ C(1 + |x |2).
We may now proceed to state and apply the result of Evans and Honkapohja. The differ-

ential equation (34) is locally asymptotically stable at (b∗, M) provided a < 1. Let D be an
open domain of attraction of (b∗, M). By the converse to Lyapunov’s theorem [see Evans
and Honkapohja (2001, Proposition 5.9)], there is a Lyapunov function U : D → R with the
following properties:

(i) U (b∗, M) = 0 and U (θ) > 0 for all θ �= (b∗, M)

(ii) U (θ) → ∞ as θ → ∂ D.

For c > 0, set K (c) = {θ : U (θ) < c}. Note that c1 ≤ c2 ⇒ K (c1) ⊂ K (c2) ⊂ D. For fixed c2

and c1 < c2, define the projection facility as follows:

P(θ) =
{

θ if θ ∈ K (c2)

∈ K (c1) if θ /∈ K (c2).

The theorem of Evans and Honkapohja allows us to conclude that if the algorithm is
augmented with the preceding projection facility, then the process θt = [ bt

St
] converges

almost surely to (b∗, M).
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